What is Risk?

There are more things in heaven and earth, Horatio,

Than are dreamt of in your philosophy.

William Shakespeare, Hamlet

Risk

- Loss x Chance
- Not a number, but a curve
- Not just a single curve

- Not necessarily quantitative

Types of Uncertainty

Intrinsic \& Knowledge Uncertainty

Intrinsic \& Knowledge Uncertainty

- Instinsic Uncertainty
- Like a game of chance (2) - we can make a choice from a space of possibilities
- Knowledge Uncertainty
- From lack of knowledge (4) - there is only one ball, we just don't know which one
- In the absence of any other information assume same as the intrinsic gamble
- Yet we do not view these two types of uncertainty with the same confidence ...

Ellsberg Paradox

| You win £100 if you pick a white ball | | You win $£ 100$ if you pick a red ball | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Urn A Urn B Urn A Urn B
 Winnings Choice Winnings Choice Winnings Choice Winnings Choice
 $£ 100$ 50% $£ 100$ $? \%$ - 50% - $? \%$
 - 50% - $100-? \%$ $£ 100$ 50% $£ 100$ $100-? \%$ | | | |

People mostly choose the Urn with the intrinsic not knowledge risk Even switching colour, still choose the intrinsic (alaetory) Urn!

Talebian Uncertainty

Taleb's demon

- Initially we have Intrinsic Uncertainty
- Usual probability theory applicable (2)
- A demon can change the balls
- We no longer know the space of possibilities (3 \& 4)
- But the principle of indifference would leave the odds the same if there were no new balls introduced or balls taken away
- Then we discover a black ball
- We know something we didn't know but not what has happened to the space of possibilities (5 \& 6)

The Jargon of Uncertainty

$\left.\begin{array}{|c|c|c|c|}\hline \text { Intrinsic } & \text { Aleatory / } & & \\ & \text { Type A / } \\ \text { Stochastic / } \\ \text { Natural Variability / } \\ \text { Irreducible }\end{array}\right)$

TaleBayesian

Re-consider the Model and Space of Possibilities as well as the probabilities or parameters

Loss Curves

Two Dice

Three Dice

Four Dice

Loss Probability Curve

Exceedance Probability (EP) Curve

A Risk Curve!

EP Curve

Full Risk Curve

Plus

Risk Curves

Example 1 - Property Fire Risk

Example 3 - Catch Cold this Year

Example 2 - Insurance Portfolio

Example 4 - Run Over this Year

Top 23 Global Risks 2007

By economic loss

Source: World Economic Forum Global Risks 2007 report

Risk Map

Impact	Risk Distribution		
Slgniflcant	${ }_{5}^{58}$		$T_{1}^{T / 2}$
Moderate	12		
Miner		${ }_{5}^{1}$	${ }_{6}^{5}$
	Likelihood		

Economic and Financial

F1 Interest rate
F2 Securities
F3 Cost of insurance

Environmental

E1 Climate change E2 Pollution
E3 Ozone depletion

Legal

L1 Liabilities L2 Human rights
L3 International agreements
Technological
T1 Nuclear power
T2 Biotechnology
T3 Genetic engineering
Safety and Security
S1 Invasion
S2 Terrorism
S3 Organized crime

Our challenge is to represent the full range of uncertainty.

When we can quantify that then we are charging a fair price for the risks we are bearing.

