ETH zürich

Game Theory, Experience, Rationality (Reinhard Selten)

Leonie Bauer – Paola Daniore – Konstantinos Patelis 06.10.2017

EHzürich

Game Theory

- What is Game Theory?
 - Game Theory is the mathematical modelling and analysis of <u>purposeful</u> interaction in conflict and cooperation.
- 1944 Von Neumann and Morgenstern developed the basic modelling approaches used today:
 - Extensive Game D'(2, 1)Player II Confess Refuse Normal Form Game Confess 2.2 4.0 Player I Coalition Game (Characteristic Function) Refuse 0,4 3,3 D'(3, 1)
- Their idea about rationality?
 - Individual Behaviour: Maximization of objectively expected utility
 - Group Behaviour: Exhaustion of all Cooperative Possibilities (Coase Theorem)

ETHzürich

Experience I - Experiments

What is the relation between rationality and experience?

- Naïve Rationalism: What is rational is real and what is real is rational.
- 1954 Kalish, Milnor, Nash and Nering conduct the first experiment on <u>cooperative game theory</u>.
- 1968 1989
 - Series of experiments by other researchers were conducted.
 - Several theories were developed: Equal Share Analysis, Equal Division Payoff Bounds, Proportional Payoff Bounds.
- Result: Emergence of <u>descriptive theory</u> aimed at *boundedly* rational behavior observed in laboratory experiments.

Experience II – Evolutionary Games

- Emergence of *Biological Game Theory*: A game theoretic explanation of animals and plants, where <u>natural selection</u> tends to maximize <u>fitness</u>.
 - Fitness is defined as the expected number of offspring; in social interaction between members of the same species
 - Developed by Maynard Smith and Price in 1973
- The Streetcar Theory (Hammerstein and Selten, 1994) makes a distinction between:
 - a) Short run evolution, through adaptation of gene frequencies without mutation (fixed gene pool).
 - b) Long run evolution, through the invasion of mutants.
- Biological game theory really intends to <u>describe</u> the behaviour and the morphological structure of animals and plants.

Rationality

Methodological dualism

Normative Game Theory

Strives to mold balanced mathematical structure of *ideal rationality* out of conflicting inherent tendencies of the human mind.

Descriptive Game Theory

Aims to explain the observed behaviour of man, animals and plants.

Experimental evidence on human game playing refutes naïve rationalism.

> Thus, a *descriptive game theory about human players* must be developed.

Example 1: Limits to Rationality

A sells firm to B

Value for A:vv random, uniformly distributed over $0 \le v \le 100$ Value for B: 1.5^*v

A knows v, but B only knows distribution of v B places bid x

A accepts if $x \ge v$

What would you bid?

Example 1: Limits to Rationality

A sells firm to B

Value for A:vv random, uniformly distributed over $0 \le v \le 100$ Value for B: 1.5^*v

0

What would a rational agent bid?

- B receives firm only if 0 ≤ v ≤ x
- $E(v|x) = \frac{1}{2} x$
- Expected Payoff for B when bidding x: $1,5 * E(v|x) = 1,5 * \frac{1}{2} x = \frac{3}{4} x$
- **Expected Loss** for B when bidding x: $\frac{3}{4}x x = \frac{1}{4}x$


```
Distribution of v

(: 1,5 * E(v|x) = 1,5 * \frac{1}{2})

\frac{3}{4}x - x = \frac{1}{4}x
```

Х

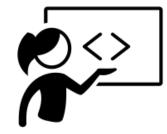
 \rightarrow Optimum **x** = **0**

100

Non-Cooperative Games – An Overview

Nash (1951)		
 Game theoretical notion of equilibrium The distinction between non-cooperative and cooperative theory 	 The Nash Program Non-cooperative modeling of cooperation Nash: cooperative Nash solution Aumann: Super Games Selten: Proposal Model 	Incomplete Information
		Harsanvi – Reduction to

Example 2: Non-Cooperative Games


Experimental study to investigate the behaviour of agents in an asymmetric quantity duopoly

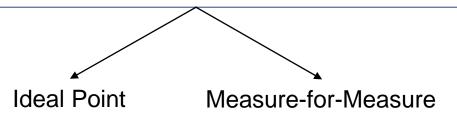
Player 1: Fixed Costs > Marginal Costs

Player 2: Marginal Costs > Fixed Costs

Students received the task to write a computer program specifying strategies for both roles

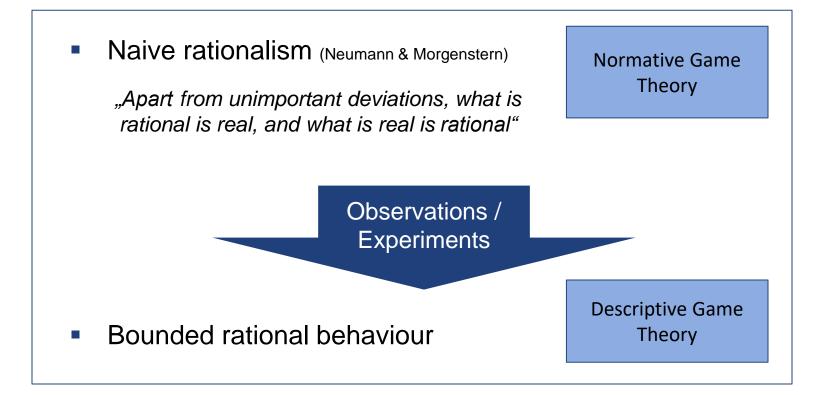
These students are then matched with each other in a computer tournament

What will be the result of this game after three rounds?


Example 2: Non-Cooperative Games

Students were graded on performance, so they were highly motivated to do well

After rounds 1, 2 and 3: Each player got the results and they could revise their programs


After the three rounds, the participants reached the solutions that they **must** cooperate to be successful

However, a notion of **sub-game perfectedness** excluses rational cooperation in this game; the students were not impressed by this argument!

Summary

Game Theory is the mathematical modelling and analysis of **purposeful** interaction in conflict and cooperation.

ETH zürich

Thank you for your attention! Any questions?

