

Eligenősüsche Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich		D Provinse MTEC			
4 What is a susta	t is a sustainability transition?				
 Diffusion of photov 	voltaics in California				
 Abolishment of Ap 	bolishment of Apartheid regime in South-Africa				
 ICT revolution, Inter- 	ternet of things				
 Emergence of electronic 	ctric vehicles				
 Transformation in 	Eastern European countri	es 1980s & 90s			
 Phase-out of nucle 	Phase-out of nuclear power in Germany				
 Introduction of cor 	ntainer based sanitation in	slums of Nairobi			
 Achievement of M 	IDGs (e.g. peace & justice)			
Lausanne, April 27, 2017	Transition studies: frameworks & challenges - BT/	e Mu			

Eigenössiche Hichsiche Hichsiche Zürich Siedis Federal Institute of Federaling Zurich	D Bendard Strendings and Controls MTEC	
Particularities of sustainability transitions		
 Complex, uncertain, long-term 		
Multi-dimensional: institutional, organizational, technological		
Multiple levels: global, regional, national, local		
 Value-laden & contested → conflicting views, trade-offs (e.g. low-carbon vs. nuclear risks) 		
 Key role for public policies → purposive transitions, associated with sustainability targets 		
 Power & politics central → vested interests; winners & losers; coalitions & alliances 		
Context dependent: different pathways		
EGOS, July-6, 2017 Sustainability transitions & Management Studies	11	

genössische Technische Hochschule Zürich iss Federal Institute of Technology Zurich			
Hahn, T., Kolk, A., Winn, M., 20 Business and Society 49, 38	10. A new future for business? F 5-401.	Rethinking management the	eory and business strategy.
Hahn, T., Figge, F., Aragón-Cor	ea, J.A., Sharma, S., 2017. Adv	vancing Research on Corpo	orate Sustainability – Off to
Hart, S.L., Ahuja, G., 1996. Doe reduction and firm performan	s it pay to be green? An empiric	cal examination of the relati	onship between emission
less, D.J., 2014. Sustainability	transitions: A political coalition	perspective. Research Polic	cy 43, 278-283.
Hill, C.W.L., Rothaermel, F.T., 2 Academy of Management Re	J03. The performance of incum eview 28, 257-274.	bent firms in the face of rad	lical technological innovation.
lughes, T.P., 1987. The Evoluti	on of Large Technological Syste	ems, in: Bijker, W., Hughes,	T.P., Pinch, T. (Eds.), The
Social Construction of Techni lacobsson S Sanden B Bar	Diogical Systems. Mill Press, C idens 1 2004 Transforming th	ambridge/MA, pp. 51-82. he Energy Systemthe Evol	ution of the German
Technological System for Sol	ar Cells. Technology Analysis 8	Strategic Management 16,	, 3-30.
Kern, F., Smith, A., 2008. Restru Energy Policy 36, 4093-4103	cturing energy systems for sus	tainability? Energy transitio	n policy in the Netherlands.
King, A.A., Lenox, M.J., 2001. E performance. Journal of Indu	oes it really pay to be green? A strial Ecology 5, 105-116.	n empirical study of firm en	vironmental and financial
Kishna, M., Negro, S., Alkemad strategies by incumbents. Inc	e, F., Hekkert, M., 2016. Innova Justry and Innovation, 1-17.	tion at the end of the life cy	cle: discontinuous innovation
Kolk, A., Pinkse, J., 2005. Busir Management Review 47, 6-2	ess Responses to Climate Cha 0.	nge: Identifying Emergent S	Strategies. California
efsrud, L.M., Meyer, R.E., 201 Organization Studies 33, 147	 Science or Science Fiction? I 7-1506. 	Professionals' Discursive Co	onstruction of Climate Change.
evy, D.L., Egan, D., 2003. A N Climate Change Negotiations	eo-Gramscian Approach to Corp *. Journal of Management Stud	oorate Political Strategy: Co lies 40, 803-829.	onflict and Accommodation in the
evy, D.L., Kolk, A., 2002. Strat Oil Industry. Business and Po	egic Responses to Global Clima blitics 4, 275-300.	ate Change: Conflicting Pre	ssures on Multinationals in the
innenluecke, M.K., Griffiths, A. corporate sustainability field.	, 2013. Firms and sustainability Global Environmental Change	: Mapping the intellectual or 23, 382-391.	rigins and structure of the
Maguire, S., Hardy, C., 2009. D 52, 148-178.	scourse and Deinstitutionalizat	ion: the Decline of DDT. Aca	ademy of Management Journal
GOS. Julv-6. 2017 I	Sustainability tonsitions	& Management Studies	

ETH

GOS, July-6, 2017

Margolis, J.D., Walsh, J.P., 2003. Misery Loves Companies: Rethinking Social Initiatives by Business. Administrative

MTEC

Science Quarterly 48, 268-305.
 Markard, J., Raven, R., Truffer, B., 2012. Sustainability Transitions: An emerging field of research and its prospects. Research Policy 41, 955-967.

Markard, J., Suter, M., Ingold, K., 2016. Socio-technical transitions and policy change - Advocacy coalitions in Swiss energy policy. Environmental Innovation and Societal Transitions 18, 215-237.

Markard, J., Wirth, S., Truffer, B., 2016. Institutional dynamics and technology legitimacy: A framework and a case study on biogas technology. Research Policy 45, 330-344 Meadowcroft, J., 2011. Engaging with the politics of sustainability transitions. Environmental Innovation and Societal

Transitions 1, 70-75.

Musiolik, J., Markard, J., Hekkert, M., 2012. Networks and network resources in technological innovation systems:

Towards a conceptual framework for system building. Technological Forecasting and Social Change 79, 1032-1048. Patenaude, G., 2011. Climate change diffusion: While the world tips, business schools lag. Global Environmental Change 21, 259-271

Rao, H., 2002. 'Tests tell': Constitutive legitimacy and consumer acceptance of the automobile:1895-1912, in: Ingram, P., Silverman, B.S. (Eds.), The new institutionalism in strategic management. Emerald Group Publishing, Bingley, pp 307-335

Rao, H., 2004. Institutional activism in the early American automobile industry. Journal of Business Venturing 19, 359-384. Reid, W.V., Chen, D., Goldfarb, L., Hackmann, H., Lee, Y.T., Mokhele, K., Ostrom, E., Raivio, K., Rockström, J., Schellnhuber, H.J., Whyte, A., 2010. Earth System Science for Global Sustainability: Grand Challenges. Science 330,

916-917 Sandén, B.A., Hillman, K.M., 2011. A framework for analysis of multi-mode interaction among technologies with examples

from the history of alternative transport fuels in Sweden. Research Policy 40, 403-414. Sine, W.D., Lee, B.H., 2009. Tilting at windmills? The environmental movement and the emergence of the U.S. wind

energy sector. Administrative Science Quaterly 54, 123-155

Slager, R., Gond, J.-P., Moon, J., 2012. Standardization as Institutional Work: The Regulatory Power of a Responsible Investment Standard. Organization Studies 33, 763-790. Smink, M.M., Hekkert, M.P., Negro, S.O., 2015. Keeping sustainable innovation on a leash? Exploring incumbents'

institutional strategies. Business Strategy and the Environment 24, 86-101.

ETH MTEC Smith, A., 2006, Green niches in sustainable development: the case of organic food in the United Kingdom, Environment and Planning C 24, 439-458 Smith, A., Raven, R., 2012. What is protective space? Reconsidering niches in transitions to sustainability. Research Policy 41, 1025-1036 Smith, Á., Stirling, A., 2010. The Politics of Social-ecological Resilience and Sustainable Socio-technical Transitions. Ecology and Society 15. Smith, A., Stirling, A., Berkhout, F., 2005. The governance of sustainable socio-technical transitions. Research Policy 34, 1491-1510. Stirling, A., 2014. Transforming power: Social science and the politics of energy choices. Energy Research and Social Science 1, 83-95. Teece, D.J., 1986. Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy. Research Policy 15, 285-305. Turnheim, B., Geels, F.W., 2012. Regime destabilisation as the flipside of energy transitions: Lessons from the history of the British coal industry (1913-1997). Energy Policy 50, 35-49. Unruh, G.C., 2000. Understanding carbon lock-in. Energy Policy 28, 817-830. Van de Ven, A.H., 1993. The development of an infrastructure for entrepreneurship. Journal of Business Venturing 8, 211-230. Wijen, F., Ansari, S., 2007. Overcoming Inaction through Collective Institutional Entrepreneurship: Insights from Regime Theory. Organization Studies 28, 1079-1100. Wright, C., Nyberg, D., 2016. An Inconvenient Truth: How Organizations Translate Climate Change into Business As Usual. Academy of Management Journal.

EGOS, July-6, 2017