Chapter 3: Exosolar Planets

Part 1: Clever techniques for detecting extrasolar planets and planetary systems

Brightness of extrasolar planets

What's the problem?
Nearest stars are about 50,000 times further away than Jupiter - i.e. 3×10^{9} fainter in brightness.
[In astronomical magnitudes, $m=-2.5 \log f+$ const.]
$m_{\text {Jupiter }} \sim-2 \rightarrow m_{\text {planet }} \sim 21.6$ (easy!)

Angular separation 3.8 arcsec (should also be easy!)

Brightness of extrasolar planets

Planets will shine by both reflected (sun)light and thermal emission. Assuming an albedo of a and radius r of the planet a distance D from a star of radius R_{s} and temperature T_{s}, and neglecting non-stellar heat sources:

Reflected sunlight:

$$
L_{p}=a 4 \pi R_{s}^{2} \sigma T_{s}^{4} \frac{2 \pi r^{2}}{4 \pi D^{2}}=L_{s} a \frac{r^{2}}{2 D^{2}}
$$

Self-emission:

$$
\begin{aligned}
& L_{p}=(1-a) L_{s} \frac{r^{2}}{2 D^{2}}=(1-a) 4 \pi R_{s}^{2} \sigma T_{s}^{4} \frac{r^{2}}{2 D^{2}} \\
& T_{p}=\sqrt[4]{\frac{L_{p}}{4 \pi \sigma r^{2}}}=T_{s}(1-a)^{1 / 4} \sqrt{R_{s} / 2 D}
\end{aligned}
$$

	radius	distance	$\mathrm{r}^{2} / 2 \mathrm{D}^{2}$
Earth	$6.3 \times 10^{6} \mathrm{~m}$	$1.6 \times 10^{11} \mathrm{~m}$	7.8×10^{-10}
Jupiter	$7.1 \times 10^{7} \mathrm{~m}$	$7.8 \times 10^{11} \mathrm{~m}$	4.1×10^{-9}
Sun	$7.0 \times 10^{8} \mathrm{~m}$	---	---

- Brightness contrast relative to Sun is $\sim 10^{9}$ at $\lambda<1 \mu \mathrm{~m}$, and still 10^{5} at $\lambda \sim 100 \mu \mathrm{~m}$
- Note: Earth is brighter than Jupiter at $10 \mu \mathrm{~m}$!

Diffraction from ideal telescope aperture:

Point spread function of telescope (image of point source) is Fourier transform of entrance aperture:

For an idealised perfectly circular aperture:

$$
I(\theta)=I_{0}\left(\frac{2 J_{1}(u)}{u}\right)^{2} \quad u=2 \pi \theta / \lambda
$$

$\mathrm{J}_{1}=1^{\text {st }}$ order Bessel function of first kind

84% of energy within a diameter of $1.22 \lambda / \mathrm{d}$ (~ 0.015 arcsec for 8 m telescope at visible wavelengths 550 nm), but scattered light decreases slowly with radius

In practice it is even worse
"On-axis" telescopes usually have central obstruction of some kind Imperfections throw light to large angles

Plus: Phase errors across aperture due to variations in atmospheric refractive index (for ground-based telescope) produce approximately gaussian images of typical FWHM ~0.5-1.2 $\operatorname{arcsec} \sim 30 \times$ diffraction limit

F150W2

F212N

F090W

Radius [arcsec]

Radius [arcsec]

F212N

A: Indirect searches (do not detect the light from planet)

1. Radial velocity measurements (and pulsar timing)
2. Astrometric searches
3. Transits
4. Gravitational lensing

B: Direct searches
Use different approaches to subtract the dominant star-light

1. Coronagraphy
2. Adaptive optics
3. Polarimetry and/or spectral chopping
4. Interferometry and nulling interferometry

1. Doppler (radial velocity) methods

Simple two-body problem in Newtonian gravity: both bodies orbit their common center of mass \rightarrow detectable shifts in radial velocity (and/or astrometric position on sky) during orbit.

High stability high resolution spectrographs can measure radial velocities of bright stars at the $<1 \mathrm{~m} / \mathrm{s}$ level through Doppler shift of wavelengths:

$$
\frac{v_{r}}{c}=\frac{\lambda_{\text {obs }}-\lambda_{\text {rest }}}{\lambda_{\text {rest }}}=\frac{\Delta \lambda}{\lambda}
$$

$$
\begin{gathered}
\frac{v_{1}^{2}}{r_{1}}=\frac{G m_{2}}{\left(r_{1}+r_{2}\right)^{2}} \\
m_{1} r_{1}=m_{2} r_{2} \\
2 \pi r_{1}=v_{1} P \\
m_{2}=m_{1}^{2 / 3}\left(\frac{P}{2 \pi G}\right)^{1 / 3} v_{1} \\
\text { We know } m_{1} \text { from the type of star }
\end{gathered}
$$

$$
v_{r}=v_{1} \sin i
$$

We don't a priori know the inclination of the orbit w.r.t. the line of sight, and measure only the radial component v_{r} (relative to us) of v_{1}, so the measurement is actually of $m_{2} \sin i$. A lower limit on m_{2} is obtained with $\sin i=1$.

51 Peg discovered 1995 by Mayor and Queloz (Geneva)

Circular orbits give sinusoidal wave $v_{\mathrm{r}}(t)$

Eccentric orbits give distorted wave

What about the observability (to others!) of our own Solar

 System?$$
v_{1}=v_{2} \frac{m_{2}}{m_{1}}
$$

	v_{2}	$\mathrm{~m}_{2} / \mathrm{m}_{\text {sun }}$	v_{1}
Earth	$30 \mathrm{kms}^{-1}$	3.0×10^{-6}	$0.1 \mathrm{~ms}^{-1}$
Jupiter	$13 \mathrm{kms}^{-1}$	1.0×10^{-3}	$13 \mathrm{~ms}^{-1}$

For a given m_{1}, easier detection for higher m_{2}, and smaller r, i.e. smaller $P\left(\propto r^{-1 / 2}\right)$.

Note: in principle the signal $\Delta \mathrm{v}$ is independent of the distance to system (but of course star is fainter at larger distances so harder to measure v)

2. Closely related: timing methods

Precise clocks in orbit change speed for distant observers (can think of either as Doppler shift during approach/recession or as light travel time across the orbit)

- Δ (rate) $/$ rate $\sim v_{\mathrm{r}} / c$
- $\Delta t \sim r / c$

Same $\sin i$ inclination effects as before

> Aside: this is effectively the same method as Römer used to determine speed of light using Jupiter's moons as "clocks" in 1676

Observability for timing methods

$\qquad \Delta t=\frac{r_{2}}{c} \frac{m_{2}}{m_{\text {star }}}$

Pulsars: rapidly rotating neutron stars $\left(M \sim 1 \mathrm{M}_{\odot}, r \sim 10 \mathrm{~km}, P \sim\right.$ few $\left.\mathrm{ms}-\mathrm{few} \mathrm{s}\right)$
PSR 1257+12 (1992): Three roughly one Earth-mass "planets" orbiting a spinning neutron star at 0.2-0.5 AU (plus possible 35 AU Saturn-mass object): Life?

- No light
- Hazardous radiation
- SN explosion few million years ago

2. Astrometric methods

Motion of star around center of mass produces change in position on sky (superimposed on any systematic motion due to stars velocity through space).
(Note center of mass of Sun-Jupiter system is $0.9 R_{\text {sun }}$ from the center of the Sun)

Observability for astrometric methods

Note: Angular displacement decreases with the distance to the star as d^{-1}

$$
\Delta \theta=\frac{r_{2}}{d} \frac{m_{2}}{m_{\text {star }}}
$$

Assume $\mathrm{d}=10 \mathrm{pc}$	r_{2}	$\mathrm{~m}_{2} / \mathrm{m}_{\text {Sun }}$	$\Delta \theta$
Earth	1 A.U.	3.0×10^{-6}	$0.3 \mu \mathrm{arcsec}$
Jupiter	12 A.U.	1.0×10^{-3}	0.1 marcsec

3. Occultations

Jupiter has $0.1 \times$ radius of Sun, i.e. 1% of area. When Jupiter passes in front of Sun (for an extrasolar observer) the brightness of Sun drops by 1% for ~ 15 hours
\rightarrow monitor large numbers of stars hoping for occultations
\rightarrow or
\rightarrow focus on known RV systems at the
 phase when $v_{\mathrm{r}} \sim 0$

Note: occultations will only occur if $\sin i \sim 1$ (i.e. $i \sim 90^{\circ}$) making a real m_{2} measurement out of the $m_{2} \sin i$. Also, the occultation gives size of the planet (assuming size of star is known) and therefore can give the density of the planet.

Note: Also, there will be a much smaller drop when the planet passes behind the star and we lose the planets light (best in infrared)

If the planet has a "transparent" atmosphere with absorption lines, then the planet will be effectively bigger at the wavelengths of the absorption lines, blocking more light \rightarrow "transit absorption spectroscopy"

4. Gravitational lensing

Planets passing in front of background stars can produce gravitational lensing effects, i.e. brightening of the background star.

Light passing at distance b from point mass M is deflected through angle α

$$
\alpha=\frac{4 G M}{b c^{2}}
$$

Again, you must monitor a huge number of stars for a long period of time to see lensing by foreground star, some fraction of which may have planet if you are lucky.
\rightarrow Monitor either stars in central region of our Galaxy or nearby system like LMC

B: Direct searches

Potential approaches to try to reduce the dominant starlight so as to detect light from the planet

1. Coronagraphy
2. Adaptive optics
3. Polarimetry and/or spectral chopping
4. Interferometry and nulling interferometry

Simple optics: (doesn't matter whether lenses or mirrors)

Key point: at various points through the optical system there are "images" of the different optical elements. This includes "images" of the atmosphere at different altitudes above the telescope

Simple coronagraphics: The classical circular aperture

Coronagraphics II:
Simple Lyot camera Simple Lyot camera

Telescope Pupil Evenly Illuminated

1. Illumination of the pupil

Image is made (top)
And occulted (bottom)
2. First image
plane: normal
Airy image of
star

3. Central region blocked
out

Pupil is reimaged (top)
And partially blocked (bottom)
4. Star-light in re-imaged
 pupil is concentrated in thin rings around edge of pupil and central obscuration

The Final image after Coronagraph has only 1.5% of the original Starlight.

6. Final image plane

2. Adaptive Optics

 Refractive index variations in atmosphere above telescope introduce wavefront distortions

Large aperture telescope \rightarrow distorted wavefront produces multiple rapidly moving images

Generic adaptive optics system optical layout

How to measure distortions of the wavefront?
Wavefront sensing (e.g. Shack-

Hartmann method)

Position of image in subpupil gives gradient of wavefront

As an aside: correction of primary mirror aberration on Hubble Space Telescope

HST's primary mirror had gross curvature error: spherical aberration $=$ different radii on mirror have different focal lengths

[^0]

AO image of Galactic Center

$65 \mathrm{M}_{\text {Jupiter }}$ brown dwarf 0.8 arcsec from 5 mag star

3(a) Spectral subtraction

Simultaneous differential "on-off" imaging at two wavelengths at which planet and star are expected to have different relative brightnesses
$2 \mu \mathrm{~m}$: atmospheric albedo very low due to CH_{4} absorption

Visible light: uniform albedo

3(b) Differential polarimetric imaging

SPHERE
If the central star and planet (or dust disk) have different polarizations, then one can effectively remove the star-light

SPHERE "planet-finder" instrument for European VLT combines

- High order multi-layer adaptive optics
- Differential infrared imaging onoff spectral features
- Differential polarimetric imaging

3. Interferometry

Young's Two-Pinhole Experiment

- Light source at infinity
- Intensity pattern $=1+\cos (2 \pi \alpha B / \lambda)$, where $\alpha \mathrm{B}$ is the Optical Path Difference (OPD)
- When OPD > coherence length, fringes disappear
- Light source at angle a_{0} shifts fringe pattern

Michelson stellar interferometer (1920) used to measure stellar sizes

- Stellar source with angular diameter a_{0}
- Add fringe patterns shifted by 0 to $a_{0} / 2$.
- Fringe pattern reduced in contrast, depending on a_{0} and separation B

Radio interferometry

$$
\mathrm{V}_{\mathrm{A}} \times \mathrm{V}_{\mathrm{B}}=<\mathrm{V}_{\mathrm{A}}><\mathrm{V}_{\mathrm{B}}>\cos \phi ; \quad \phi=2 \pi \mathrm{D} \theta / \lambda
$$

Much harder at optical wavelengths:

- cannot measure phase of photon like in the radio (must allow the photons themselves to interfere rather than multiply voltage signals)
- short coherence time for short λ photons
- Rapid variation of atmospheric phase effects

Leaders: 4x8m ESO VLT in Chile.

Other techniques: Nulling interferometry

Take half of light and add $\pm \pi$ phase. Central part of Airy disk is now a minimum and first maximum occurs where previously there was the first minimum:

Planet Detection Methods

Michael Perryman: Rep. Prog. Phys, 2000, 63, 1209 (updated Aug 2002)

Summary (Perryman tree)

[^0]: HST aberration correction

