4. Life on Earth

- Basic biochemical structure
- Origin and Evolution of Life

Basic biochemical structure built on C-chain molecules:

Simplicity:

Limited number of monomer building blocks

20 Amino acids

4 Nucleotides Sugars

Complexity:

Large number of polymer molecules

- \rightarrow proteins
- \rightarrow genetic code (DNA cross-links)
- → structural and energy storing molecules

Distinguish between

- Polymers repeating without ordering (e.g. cellulose, glycogen)
- Polymers with specific ordering of monomers → complex shapes and highly specific functionality (e.g. proteins)

20 amino acids \rightarrow 10,000 proteins << "theoretical number" (see Lecture 1)

20 amino acids in terrestrial life

The "handedness" of terrestrial Life

<u>All</u> amino-acid monomers found in terrestrial life are "left handed" (in sense of arrangement of the bonds to CO_2 , NH₃, H and the 4th branches)

Note: glycine is actually ambidextrous because of having an H atom as the 4th branch

- System of right-handed monomers would "work" equally well
- Having only one handedness certainly allows greater structural definition of long-chain molecules
- Evidence that amino-acids in the Murchison meteorite are 2-9% enhanced in Left vs. Right (not terrestrial contamination) see Science Feb 14, 1997

Role of DNA in replication and protein synthesis

Double helix structure of DNA with ladder of sugar+phosphate and "rungs" composed of nucleotide pairs:

Adenine (A) + Thymine (T) Cytosine (C) + Guanine (G)

When DNA splits in half:

- each half contains <u>all</u> the required information to replicate the missing half
- each single strand can code for amino-acid chains (RNA)

Role of DNA in replication and protein synthesis:

Replication through splitting now seen directly in electron microscopy

Triplets of bases on RNA code for individual aminoacids in protein chain (with some redundancy)

		Second				lLetter				
		U		(2	А	C	5		
		טטט	nhe	UCU		UAU tvr	UGU	CVS	U	
	IJ	UUC J	prie	UCC	ser	UAC	UGC J	stop	С	
	Ũ	UUA	leu	UCA		UAA stop	UGA		Α	
F		UUG)	icu	UCG .		UAG stop	UGG	trp	G	Т
i										h
r		CUA		CCU		CAU	CGU		U	i
s	C	CUC	leu	CCC	pro	CAC	CGC	arg	С	r
t		CUA		CCA	1	CAA	CGA	ang	Α	d
		CUG		CCG		CAG	CGG		G	
L										L
e		AUU		ACU	thr	AAU] asn	AGU	ser	U	e
t	А	ACU	ile ACC ACA	ACC		AAC	AGC J		С	t
t		AUA			AAA] lvs	AGA	arg A	Α	t	
e		AUG	met	ACG)	AAG	AGG)		G	e
r										r
		GUU		GCU		GAU asp	GGU		U	
	G	GUC	val	GCC	ala	GAC	GGC	gly	С	
		GUA		GCA		GAA] glu	GGA		Α	
		GUG		GCG	J	GAG	GGG)		G	
Abbre	wiati	ane:				2.5	0.001			
ala = alanine gln =glutamin				ne	leu = leucine		ser =	= serine	2	
arg = arginine			glu = glutamic acid		lys = lysine		thr = threonine			
asn =	aspar	agine	gly = glycine		met = methionine		trp = tryptophan			
asp =	aspar	tic acid	his = histidine		phe = phenylalanine		tyr =	tyr = tyrosine		
cvs = cvsteine			ilo –	isoleucine pro=proline val=va		- valin	۵			

Note: 4 bases give $4^3 = 64$ triplets (> 20 amino acids + 1 "stop") but only $4^2 = 16$ pairs. 2 bases would give only 8 triplets.

A key feature of replication is that it is <u>not</u> perfect

Inaccuracies in replication of DNA (mutations) due to:

- Radiation (cosmic rays or radioactivity)
- Chemical agents
- Rare errors of DNA copying machinery

Differential propagation of the resulting "trials"

• "natural selection" in one form or another

Thomas Malthus

Charles Darwin

Gregor Mendeleev

Energy for Life

- Chemical energy from surroundings (very small amounts)
- Geothermal energy
- Sunlight
- Other life products (sugars)

Origin of Life on Earth:

- 0. Earth's evolving atmosphere:
 - Initially highly reducing atmosphere (NH₃, H₂0, CH₄)
 - Early: photo-dissociation by solar ultraviolet and H loss \rightarrow less reducing atmosphere (CO, CO₂, N₂ and H₂0)
 - Much Later: Production of O₂ by Life itself (photosynthesis) → highly oxidizing atmosphere (N₂, O₂)
- 0.1 What about Panspermia ("Life" brought from elsewhere)?
 - Long duration interstellar travel hazardous (γ-radiation, CR)
 - "Martian" meteorites suggest interplanetary travel certainly not impossible, recent evidence for interstellar asteroids.
 - Just defers the question of the "origin" to somewhere else (note: only increases the available time by x3)
 - Complex organic molecules are observed in gas in space and in primitive meteorites in Solar System (see later).

Aside: "Complex" molecules detected in interstellar space (in giant molecular gas clouds)

• Detected with characteristic spectral lines (generally in mm waveband)

# atoms	Molecule	Name	Mass
10	(CH ₃) ₂ CO	Acetone	58
	(CH ₂ OH) ₂	Ethylene glycol	62
	CH ₃ CH ₂ CHO	Propanol	58
	CH ₃ OCH ₂ OH	Methoxymethanol	62
	CH ₃ C ₅ N	Methyl-cyano-diacetylene	89
	CH ₃ CHCH ₂ O	Propylene oxide	58
11	HC ₈ CN	Cyanotetra-acetylene	123
	C ₂ H ₅ OCHO	Ethyl formate	74
	CH ₃ COOCH ₃	Methyl acetate	74
	CH ₃ C ₆ H	Methyltriacetylene	88
12	C ₆ H ₆	Benzene	78
	C ₃ H ₇ CN	N-Propyl cyanide	69
	(CH ₃)2CHCN	Iso-Propyl cyanide	69
13	C ₆ H ₅ CN	Benzonitrile	104
	HC ₁₀ CN	Cyanopenta-acetylene	147
60	C ₆₀	Buckminsterfullerene	720
70	C ₇₀	C ₇₀ fullerene	840

1. Chemical synthesis of organic chemicals:

- Requires reducing atmosphere and absence of free oxygen
- Miller-Urey experiments (highly reducing atmosphere) do make aminoacids, sugars, nucleotide bases etc: e.g. glycine

 $NH_3 + 2CH_4 + 2H_2O + energy \rightarrow C_2H_5O_2N + 5H_2$

• Experiments with less reducing atmospheres also work:

3HCN + 2H₂O + energy \rightarrow C₂H₅O₂N + CN₂H₂

- Chemical reactions in small surface liquid pools are attractive: preserve reagents, utilize solar energy etc., compared to undersea vents which have short duration, severe dilution problems, extreme conditions.
- Role of impacts on the young Earth? External origin of complex organic molecules? e.g. amino-acids found in meteorites. These impacts can also certainly sustain the reducing atmosphere by replenishing volatile materials (CH₄, NH₃, H₂0 etc).

e.g. Murchison meteorite contains 14,000 organic compounds including 70 amino acids, with a small excess of Left- over Right- chirality.

Miller-Urey-type experiments

Miller-Urey experiment (1953) One of several similar conducted at the time.

Debate over precise composition of atmosphere (e.g. effect of volcanoes, CO_2 vs CH_4 , Hcontent etc) but basic conclusions remain.

Analysis of sealed vials indicate results better than earlier analysis indicated: >25 amino acids produced. Most of the natural amino acids, hydroxyacids, purines, pyrimidines, and sugars have been made in variants of the experiment.

Bottom line: it is relatively easy to make basic organic building blocks of complex molecules in the kind of reducing atmosphere(s) that are expected on early Earth.

Amino acids found in Miller-Urey, Murchison and used in proteins

Amino acid	Miller-Urey	Murchison meteorite	Used in proteins
glycine	****	****	✓
alanine	****	****	v
α -amino-N-butyric acid	***	****	×
α-aminoisobutyric acid	****	**	×
valine	***	**	v
norvaline	***	***	×
isovaline	**	**	×
proline	***	*	~
pipecolic acid	*	*	×
aspartic acid	***	***	v
glutamic acid	***	***	v
β-alanine	**	**	×
β-amino-N-butyric acid	**	**	×
β-aminoisobutyric acid	*	*	×
γ-amino-butyric acid	*	**	×
sarcosine	**	***	×
N-ethylglycine	**	**	×
N-methylalanine	**	**	×

2. Polymerization (how to make the initial strand of DNA)

- Today, the production of polymers (e.g. proteins) from DNA (i.e. from RNA) itself depends on catalysis by other proteins hat are themselves made from RNA. Chicken and egg problem?
- Some sequences of RNA can perform catalysis function → "RNA-World": how to make the RNA?
- Interest in clays as structures to promote polymerization
 - Regular structures with high surface area
 - Organic compounds attracted to surface
 - Water is absorbed
 - Located near standing water
- Idea of possible earlier, simpler, but now <u>disappeared</u>, non-DNA "Life" as a kind of "scaffolding" on which DNA-life was constructed?

3. Emergence of prokaryotic cells (~3.5 Gyr ago)

- Proto-cells as droplets in solution?
- Simplest cells: Prokaryotes (without nucleus): Archaea and Bacteria (differ on basis of RNA production). Single long strand of DNA (several 1000 genes).
- Archaea likely developed first still found as extremophiles (extreme conditions) and anaerobic systems. Depend on (small amounts of) local chemical energy.
- Source of free organic compounds gradually declined as atmosphere became less reducing
- 2-3 billion years ago, some prokaryotes develop photosynthesis (earliest form may have used H₂S) producing O₂ and sugars (e.g. glucose) out of sunlight energy. This enabled more complex Life using more efficient aerobic respiration. First really good fossil evidence of complex Life.

Digression: Energy for cells - fermentation and respiration

Net effect of "burning" glucose in a controlled way: the effect of oxygen

2% energy "efficiency" (energy in *useful* form)

40% energy "efficiency"

(c.f. 0% in a wood fire – burning uncontrollably – and 30% in modern combustion engine)

Availability of oxygen allows vastly more efficient extraction of energy

Photosynthesis: extraction of energy from sunlight to <u>make</u> glucose and oxygen

Easy to write the basic reaction, but the details are extremely complex:

Photosynthesis:

(some bacteria use S not O)

$$6 \text{ CO}_2 + 6 \text{ H}_2 0 + \text{light} \rightarrow \text{C}_6 \text{H}_{12} \text{O}_6 + 6 \text{ O}_2$$

Photosynthesis: extraction of energy from sunlight to make glucose

Two forms: both produce glucose to be used in fermentation and respiration. The most efficient form also liberates O_2 as waste.

light (photons)

High energy photons needed to split (abundant) water

Common dark phase: ATP, NADPH₂ synthesize glucose out of CO₂

Multiple electronic transitions in chlorophyl produce a complex absorption spectrum of light (which would be detectable remotely!)

under anerobic conditions

Green Alga

Purple Bacterium

Origin of Life on Earth (continued)

- 4. Emergence of Eukaryotic cells (~2.7 Gyr ago)
 - Single cells with distinct cell nucleus, plus specialized organelles (mitochondria, chloroplasts etc.)
 - Contain 10-1000 times more DNA than in bacteria
 - Incorporation of prokaryotes into proto-Eukaryote (similar gene systems to bacteria)?
 - Development of sexual reproduction (meiosis), producing vastly increased genetic sampling (about 1 Gyr ago?)
 - Development of multi-cellular organisms (multiple development)
 - \rightarrow e.g. Jellyfish (<u>700 Myr ago</u>)***

*** note that the Earth was already 85% of present age

Origin of Life on Earth (continued)

5. Emergence of advanced animals

- Cambrian explosion (600 Myr ago) → anatomically modern animals (two eyes, legs, shells/carapaces/skeletons, etc.)
- Colonization of land by plants and arthropods (440 Myr ago)
- Appearance on land of vertebrates, amphibians, insects, seed plants (410 Myr ago)
- Diversification of reptiles (285 Myr ago)
- Emergence of dinosaurs and reptiles (245 Myr) after a mass extinction
- Diversification of mammals (65 Myr) after another mass extinction
- Appearance of Homo (2 Myr)....

Short diversion on statistics:

What if anything can be inferred from the apparently rapid emergence of the most basic forms of Life on Earth?

Life is easy and common in the Universe?? Not necessarily!

Interesting point on conditional probabilities....

Suppose we have a sequence of "steps" in a process, each of which has a certain chance p_i of happening per unit time. Generally, we would expect to have to wait a time $t_i \sim p_i^{-1}$ for a given step to occur.

A step with $p_i > t_{avail}^{-1}$ is "easy" and is likely to happen. A "difficult step" has $p_i < t_{avail}^{-1}$ and is unlikely to happen in the available time.

Clearly, if we have one or more difficult steps in the process, the chance that <u>all</u> the steps successfully take place will be small.

But, if we look only at just those systems that were, by great good luck, able to complete *all* the steps, what is the distribution of the time that was spent "waiting" for each step in the chain to occur?

A perhaps counter-intuitive answer:

- For "easy" steps, the average wait, $< t_i > \sim p_i^{-1}$ (as expected)
- For "difficult" steps, $\langle t_i \rangle$ is *independent* of the difficulty p_i of that step, and is instead given just by the number N of of difficult steps $\langle t_i \rangle \sim t_{avail} / (N+1)$.

Example: Run a simulation with a total time interval $t_{avail} = 10^6$ units, and eight "steps" with individual probabilities of occurring per unit time of 10^{-1} , 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} ("easy") and then 10^{-6} , 10^{-7} , 10^{-8} (increasingly hard steps) – the precise ordering does not matter.

The chance of them all happening in 10⁶ time steps is very small, of order $10^{-2} \times 10^{-1} \times 1 \sim 10^{-3}$ (actually $\sim 3.3 \times 10^{-4}$). The distribution of $\langle t_i \rangle$ in the few lucky ones that complete all steps is as follows:

"easy" steps, $< t_i > \sim p_i^{-1}$							$< t_i > \sim t_{avail} (N+1)^{-1}$			
Step p _i -1	10	100	1000	104	105	106	107	108	Left at end	
<t<sub>i></t<sub>	9.8	95.8	989	9,810	68,385	207,920	257,860	254,910	220,015	
$\sigma(t_{\rm i})$	9.3	99.5	837	11,236	60,212	164,590	179,680	189,212	161,118	

"difficult" stops

Note that the dispersion in the individual step lengths $\sigma(t_i)$ is large, $\sigma(t_i) \sim \langle t_i \rangle$

The explanation of this perhaps counter-intuitive result is actually straightforward:

If we know that all the hard steps were completed, then the probability that we have a particular configuration of t_i is given by the <u>product</u> of the probabilities that each step completed in its t_i , which is $p_i t_i$ (for $p_i t_i \ll 1$).

$$P = \prod_{i} t_{i} p_{i} = \prod_{i} p_{i} \prod_{i} t_{i}$$

The Πp_i is constant, so *P* is <u>maximized</u> when Πt_i is maximized, subject to the <u>constraint</u> that $\Sigma t_i + t_{end} = t_{avail}$, where t_{end} is the time after the last step completed before the end of the experiment. It is easy enough to show that Πt_i is maximized (subject to this constraint) when all the t_i and t_{end} are <u>equal</u>, i.e.

$$t_i = \frac{t_{avail}}{(N+1)}$$

On Earth $t_1/t_{avail} \sim 0.1$. This may tell us nothing at all about the value of p_1 . It is just as consistent with all the *p* steps being very unlikely (all p_i being very small) but having $N \sim 10$.

Continuing interactions of Life on planets with the astronomical environment

1. "Nearby" explosions in the Galaxy, e.g. γ-ray bursts

2. Late epoch impacts leading to mass extinctions

- The rate at which species (families etc) become extinct shows wide variations, leading to "sudden" loss of large numbers (e.g. Permian/Triassic 50% of marine families = 95% of marine species, 70% of land species)
- Easiest to see in marine fossil record, but the effect is distributed across environments and across the planet (synchronous?)
- Almost impossible to estimate the duration if less than 10⁴-10⁵ years due to the limited resolution of the fossil record.

<u>Causes are debated</u> but there is rather good evidence that the K/T extinction 65 million years ago (dinosaur extinction) was associated with a major impact (10-20 km asteroid). The KT boundary has:

- Iridium anomaly (Alvarez et al 1980) --> leading to estimate of 10 km asteroid.
- Beads of "shocked quartz", especially near the Caribbean region.
- Isotope anomalies in the Iridium and Chromium that are similar to those found in meteoritic material.
- The major impact crater Chicxulub (Yucatan) accurately dated to the KT event (200 km diameter)

Key Point: Large impacts do happen There will be a broad spectrum of impacts: Small ones happen often, large ones happen rarely.

e.g. 2013 Chelyabinsk meteorite (\sim 20m diameter, 500kT deposited energy) was likely the largest impact since Tunguska in 1908 (estimated to be \sim 100m, with \sim 50 MT energy).

Resulting impact craters are produced by release of gas (vapourized rock) that is produced by the impactor tunneling through rock.

Impacts are expected to have <u>global effect</u> for diameters above about 1 km (10^6 MT), which occur of order once per million years.

Expected effects:

- Dust in atmosphere blocks out sunlight
- Tsunamis swamp coastal regions
- Blasts of hot gas
- Fall-out of hot rock

Note: A 10km object contains enough material to deposited a 2mm layer over entire surface of the Earth Key Point: Large impacts do happen

Interesting question:

What is the worst impact that has been "witnessed":

- by "historical people" in the last 10,000 years?
 1000 MT
- by Homo in the last one million years 300,000 MT

Compare these with the largest man-made explosion:

• Tsar Bomba RDS-220 hydrogen bomb which was 50 MT

5. Other chemical systems than C-N-H-O based Life

How strange could life be?

Terrestrial Life is based on organic molecules (long C-C-chains) with water as a solvent.

Carbon's ability to form long hydrogenated chains: carbon with H up to C₉₀H₈₄, compared with oxygen (H₂O, H₂O₂) or nitrogen (NH₃, N₂H₂)

Could well imagine different "details" (e.g. other handedness, use of other amino acids, etc.).

But what about other elements and/or solvents?

- e.g. Silicon-based instead of Carbon-based?
- e.g. NH₃ or CH₃OH instead of water as solvent?

What about Silicon-based Life?

Si is the next valence-4 element below C in Periodic Table). BUT:

- Si-Si bond has <u>half</u> the strength of the C-C bond.
- Chain-ending Si-H and Si-O are actually stronger than Si-Si (c.f. $C-O \sim C-H \sim C-C$).
- Si_mH_n is unstable for m > 3.
- SiO polymers do exist (silicones) but are essentially completely inert.
- Si has <u>extreme affinity</u> for O: SiH₄ only exists at T > 1000 K
 - e.g. Jupiter has hydrogenated NH₃, PH₃, AsH₃, CH₄, GeH₄, H₂S, H₂0 in atmosphere but no detectable SiH₄ (all Si is in the form of SiO₂)
- Si found with other elements as Silicates (e.g. many rock types on Earth!)

CO ₂	SiO ₂	CH ₄	SiH ₄
Gas at > 200K	Gas at > 2300K	Exists in	Bursts
Soluble in H ₂ O	Insoluble (except in HFl)	oxidising atmosphere (e.g.	spontaneously into flame with
\rightarrow C + O in uv	Stable (quartz)	10 yr on Earth)	oxygen

What would be an ideal solvent?

- Solvent should be a liquid over a range of temperature (better than a gas for concentration reasons) which:
 - is high enough for chemical reactions to occur.
 - is low enough for survival of complex molecules.
 - is wide enough to give tolerance of environmental variations (e.g. on planets).
- Should have high heat capacity and latent heats to facilitate active temperature control.

	H ₂ O	NH ₃	CH ₃ OH
Liquid	0-100 C	-78 – -33 C	-94 – +65 C
SHC	1	1.2	0.6
LHV	600	300	290
Surface tension	1	0.5	0.33
"Solvent"	1	0.5	0.5

Conclusion: H₂0 is the best solvent, but NH₃ and CH₃OH are not bad

Look again at the relative abundances (by weight) of elements in the Sun (typical of the Galaxy and the wider Universe):

Apart from H and He, the <u>most abundant</u> elements are C and O with N next (excluding the boring noble gas Ne).

C and O based life is natural and easy!

Key points

- Hierarchy of structure and function in terrestrial Life
- Complexity gives extreme efficiencies for energy conversion
- Organic molecules were naturally produced on and around young Earth
- There were multiple steps in the emergence of advanced Life on Earth
- Little can be said from the early emergence of Life on Earth
- There is interaction of Life with the extraterrestrial environment via impacts etc.
- C-life is extraordinarily much easier than Si-life!
- Other solvents may be possible, but why not H₂O, since O is so common?