
Introduction to Big Bang Cosmology 



The Universe is expanding 
Hubble (1929) redshift-distance relation (– but also Lemaitre!) 
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The “redshift” is the shift 
of spectral features to 
longer wavelengths (or 
lower frequencies) in the 
spectra of distant galaxies 

Relativistic Doppler 
effect (but see later) 

Hubble’s 
“Law” 
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 SN1a “standard candles” 

V ∝ d is a signature of an expanding 
“space” 

 Although the redshift can be interpreted as 
a Doppler effect in our inertial frame, 
defining an inertial frame over large 
distances becomes problematic. 

There is a better way of thinking about the 
redshift in an expanding Universe (see next 
slides) 



The Universe appears to us (on large 
scales) to be isotropic and thus 
homogeneous 

Best	evidence	for	this:	
•  Cosmic	Microwave	Background	(about	97%	

of	radiant	energy	in	Universe)		
•  Also,	galaxy	counts	etc.	

Dipole at 10-3 

Our Galaxy at 10-4 

Random fluctuaions at 10-5 

CMB 

Light from galaxies, 
quasars etc. 



An	isotropic	and	homogeneous	expanding	Universe	is	described	by	the	
Robertson-Walker	metric	

ds2 = c2dτ 2 − R2 (τ )(dω 2 + Sk
2 (ω)(dθ 2 + sin2θ dϕ 2 ))

ω, θ and φ are a “comoving” polar 
coordinate system, such that a given 
galaxy has fixed position even as the 
Universe expands. Sk(w) represents effect 
of curvature of space. 

R(τ) is a cosmic scale 
factor describing the 
expansion, and τ is a 
cosmic time, or epoch. 

Most important for us: the more useful concept 
of redshift in an expanding Universe.  It is easy 
to show that if we observe a source of light with 
redshift z, then this simply tells as the cosmic 
scale factor when the light was emitted.  

(1+ z) = R(now)
R(τ emit )

Also, Hubble’s parameter H is just  H =
!R
R



Hubble Deep Field and redshifts 

z = 5.340 (92%) z = 5.600 (93%) 

z = 1.012 (57%) 
z = 0.454 (34%) 

z = 3.216 (85%) 

z = 0.089 (8%) 

z = 2.233 (78%) 

z = 0.873 (52%) 



Consequences of the Robertson-Walker metric 
 
Principle of Equivalence:  Freely falling reference frame must reduce locally 
to the familiar Minkowski form of the metric.   
 
 
The Robertson-Walker metric therefore allows us to do physics “over there” and 
transform to observables in our own local frame via invariant ds2. 

Some effects you’d need to know if you were working in this field, but 
won’t concern us very much: 
•  Clocks appear to run slow (time dilation) by factor (1+z). 
•  Things appear bigger than you might expect by (1+z), and a fixed rod 

eventually gets bigger in angular size as the distance increases. 
•  Photons lose energy as (1+z) (by definition). 
•  The above lead to surface brightness being dimmed by (1+z)4, and 
•   a blackbody appears as a blackbody but with temperature reduced by 

(1+z)  
 

ds2 = c2dt2 − dl2



Black body radiation 
 
The Cosmic Microwave 
Background (CMB) is a 
perfect black-body spectrum 
in shape and intensity.   
T = 2.736 K 

RW metric “explains” the BB spectrum and very low temperature of the CMB.  
The Universe is manifestly not in thermal equilibrium today. But this radiation 
field was once very much hotter when there would have been thermal 
equilibrium between matter and radiation.  As the Universe cooled, this thermal 
equilibrium was lost.  The CMB today is the relic radiation of a hot Universe. 



The	Friedmann	equa.on	for	R(τ)	
To	get	R(t)	we	need	to	reduce	the	GR	field	equaMons	for	homogenous	isotropic	
Universe	to	give	the	Friedmann	equaMon	linking	the	dynamics,	density,	and	
curvature	of	the	Universe.			

!R2 = 8πG
3

ρR2 − kc
2

A2

The solutions are determined by ρ(R), the “equation of state”.  In what form is 
the gravitating mass at a particular time?   
  
•  Normal “cold” matter                 ρ ∝ R-3 
•  Radiation or relativistic particles      ρ ∝ R-4 
•  False vacuum?                       ρ = constant 
•  Empty (curvature dominates)        ρ = 0 

Different components may dominate at different times, and may even 
transmute from one form into another (e.g. relativistic particles cool). 

R ∝ τ2/3		decelerated
R ∝ τ1/2  decelerated 
R ∝ eHτ   accelerated 

R ∝ τ     undecelerated 



The	parameter	Ω

( Ωi∑ −1) = c2

A2
1
!R2

It	can	be	useful	to	think	of	an	Ωk	coming	from	
curvature.	

Then,	the	sum	of	all	Ωi	=	unity.		This	is	a	check	of	the	
validity	of	the	Friedmann	equaMon,	i.e.	of	GR	itself.		

Ωk =
c2

(A !R)2

Ωi =
ρi
ρc

with ρc =
3H 2

8πGIntroduce ratio of density in each 
component i to a critical density 
defined in terms of H (= R-1 dR/dτ) 

Friedmann equation again 

Ωi∑ +Ωk =1



The Figures which follow compare various quantities for three cosmological 
models. Fifteen years ago, these would have been regarded as equally plausible 
possibilities. 

 

Ωk	= 0; Ωm = 1   (flat, no Dark Energy)   “Einstein-de Sitter model” 

Ωkv= 0; ΩΛ,0 = 0.75; Ωm,0 = 0.25    “Concordance” 

Ωk	= 0.75; Ωm,0 = 0.25  (low density, no Dark Energy)     “Open Universe” 



R(τ) and the Big Bang 

Ωm = 1   Einstein-de Sitter 
Ωm = 0.25; ΩΛ = 0.75 “Concordance” 
Ωm = 0.25  Open Universe	

All models have R~0 at 
some finite time in the 
past = BIG BANG 



D(z) 

Ωm = 1   Einstein-de Sitter 
Ωm = 0.25; ΩΛ = 0.75 “Concordance” 
Ωm = 0.25  Open Universe	

Note how two Ω = 1 
models track each other 
at high z – same 
geometry and same 
matter-dominated 
dynamics at high z 



Angular size of 10 kpc rod 

Ωm = 1   Einstein-de Sitter 
Ωm = 0.25; ΩΛ = 0.75 “Concordance” 
Ωm = 0.25  Open Universe	

… so apparent angular 
size of objects of fixed 
physical size will actually 
start to increase beyond 
a certain redshift 
(typically z ~ 1). 



50% of 
photons 

Δz=120 

The Universe is full of CMB photons, travelling in straight lines.   
 
When did these photons last scatter off of an electron, i.e. scatter onto their 
present trajectory? 

The probability distribution of where the 
photons were last scattered is dP(z)/dz is 
roughly Gaussian with a mean z of 1065 
and σ ~ 80. 

The Last Scattering Surface (LSS) of the 
CMB is well-defined with a relatively 
narrow width in redshift space (of order 
10%). 

We can calculate the density of free 
electrons (which increases rapidly at z > 
1000 because H is ionized) 



Transparent Universe Opaque 
Universe 

The Last Scattering Surface is the transition between opaque and 
transparent Universe 

Inhomogeneities at later times not seen 
because Universe is transparent (except for 

e.g. small gravitational lensing effects) Inhomogeneities at earlier times 
not seen because all positional 

information is washed out by 
multiple scattering 



Small anisotropies in the CMB distribution reflect inhomogeneities 
in the Universe on the Last Scattering Surface that are imprinted as 

small temperature variations 

Each Fourier mode in the density distribution of 
the Universe at LSS will correspond to a Fourier 

mode in the brightness distribution of the CMB  



Small anisotropies in the CMB distribution reflect inhomogeneities 
in the Universe on the (fuzzy) Last Scattering Surface 



ΔT
T

θ,ϕ( ) = al,m
l,m
∑ Yl,m θ,ϕ( )

Rather than Fourier modes, it is convenient to 
characterise CMB brightness variations in terms 
of spherical harmonics 

Planck power spectrum of 
CMB fluctuations 

•  The Universe was very homogeneous at z ~ 1000 (note µK2 scale) 
•  We understand the (early-ish) Universe very well (380,000 yr after BB) 
•  CMB fluctuation spectrum is a Rosetta stone for cosmological parameters  



Observational determination of parameters 

ObservaMonal	determinaMon	of	cosmological	parameters	
	
•  CMB	fluctuaMons	
•  EsMmates	of	maTer	density	from	dynamics	
•  Big	Bang	Nucleosynthesis	(first	three	minutes	H	à	4He,	3He,	2H,	7Li	etc)	
•  SN1a	distance	brightness	relaMon	

… are all entirely consistent with a universe described by ~ 6 numbers, 
the so-called Concordance Cosmology 



What	do	we	mean	by	the		Concordance	Cosmology?	
	
EffecMvely	six	numbers:	
	
ΩΛ	=	0.69	±	0.02	
ΩM	=	0.30	±	0.02	of	which	ΩB	=	0.049	±	0.01																																					and	

the	remainder	in	Cold	Dark	MaTer	
|Ωk|	<	0.01	
	
H0	=	68	±	3	kms-1	Mpc-1	
	
σ8	=	0.81	±	0.03	
n	=	0.97	±	0.01	
	
The	precise	values	and	uncertainMes	depend	on	
•  exactly	which	data	sets	are	used	
•  which	priors	are	adopted	
Above	values	and	uncertainMes	should	be	taken	as	indicaMve	
	

Describing dark 
matter density 
fluctuations 
(next lectures) 

Spatially flat universe, with 5x more dark matter than 
baryonic matter, and now dominated by False Vacuum 
(Dark Energy) 


