
II. Non-linear development 
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As Δ in	a	given	place	approaches unity, we can no longer use linear perturbations 
around a homogeneous Universe.  We must use either 

•  Numerical simulations (easy due to only needing gravitational physics) 

•  Simple analytic approximations of idealized situations to understand the main 
physical effects  

We will cover here two aspects of this: 

•  The analytic evolution of an idealized spherical “top-hat” over-dense region 
through to collapse. 

•  The analytic “Press-Schechter” calculation of the numbers of collapsed objects, 
i.e. the so-called “mass-function” φ(m,t): how many objects of mass m (in 
interval dm) are there at any given time 
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From	Gauss’	theorem,	the	evolu9on	of	a	uniform	over-dense	sphere	embedded	in	
a	uniform	medium	(assumed	to	have	Ωm	=	1)	will	follow	the	solu9ons	to	the	
Friedmann	equa9on	of	Ω	>	1	Universe.			This	has	a	parameteric	solu9on	in	terms	
of	a	parameter	θ	as	follows:			

Note	that	“turn-around”	
occurs	at	θ = π

ρ = ρ(1+Δ)
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= 0.58

!ρ = 0.58−3 = 5.5ρ

Turn-around	at	θ = π

Note	that	already	at	turn-
around,	the	density	in	the	
region	is	5.5	9mes	that	of	the	
surrounding	Universe.	

θ

Rest	of	Universe	
expands	as	τ2/3	
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Virializa'on	
All	stable	systems	of	par9cles	moving	under	the	influence	of	their	own	
gravity	(i.e.	“self-gravita9ng”)	sa9sfy	the	virial	condi9on	between	their	total	
kine9c	and	total	poten9al	energies.			

	

For	our	density	perturba9on,	collapse	back	to	a	point	source	will	not	
happen	in	prac9ce	–	structure	will	instead	become	stabilized	(“virialized”)	
through	so-called	“violent	relaxa9on”	that	randomizes	mo9ons.	
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At	turn-around:	
During	subsequent	collapse,	
conver9ng	P.E.	to	K.E.	

Virial	condi9on	is	sa9sfied	at	rvir	=	1/2	rmax,	
i.e.	when	structure	has	collapsed	by	factor	
of	two	from	turnaround.	

Virial condition: Kinetic Energy = -1/2 Potential Energy 
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ρvir = 5.5×2
3 ×22

=176 ρ(rvir )

Density	of	the	structure	is	
therefore	~	200	9mes	that	of	
rest	of	Universe	when	it	
virialises	

In	principle,	our	idealized	
object	would	keep	constant	
density	a`er	virializa9on,	so	
the	density	of	an	object	today	
tells	us,	in	principle,	when	it	
formed	

The	density	at	virializa9on	is	
eight	9mes	that	at	turn-around.		
By	this	9me	rest	of	Universe	has	
decreased	density	by	about	
(22/3)3		
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But, there are two effects that will cause continuing addition of material. 
 
Even an idealized spherical over-density is unlikely to be uniform and will look 
more like an onion with over-density decreasing with radius.  

					

Furthermore, for a spherically symmetric 
object, the idealized evolution of a spherical 
shell will not depend on the matter exterior to 
it, and will (only) depend on the mass (i.e. 
mean density) of the shells interior to it. 
 
So, even a hypothetical point mass excess at 
the center will cause ρ > average ρ around it. 

The central virialized “object” will therefore grow in mass and the (virialization) 
radius of the object will also increase with time, so that the density within the 
virialization radius will always be ∼ 200 times the average density of the 
Universe. 

Important terminology:  A collapsed, self-gravitating and virialized dark 
matter structure (or “object”) is called a dark matter “halo”. 37	



The density distribution within a dark matter halo 
	
The density distribution ρ(r) within a collapsed virialized dark matter object will reflect two 
things: 
•  The growth history of the halo:  the earlier arriving material will have virialized at a 

higher density, because the density of the Universe was higher. 
•  The process of violent relaxation that redistributes PE and KE amongst the material 

subject to the virial condition. 
Numerical simulations suggest that the density profile in dark matter haloes is well 
represented by the following analytic fitting formula, the so-called  
Navarro-Frenk-White (NFW) profile (there are other very similar choices) 

ρ(r) = ρ0
r
Rs
1+ r
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The density varies as r-1 in the center and r-3 at large r 
The enclosed mass in this representation actually logarithmically 
diverges, so we will assume the halo ends at rvir 
Aside: There is observational evidence for flatter profile 
at center “core” – Why?   

The transition radius Rs is related to rvir by a “concentration” 
parameter, c, which is about 10 for Milky Way, 4 < c < 40 for other 
haloes  

rvir = c Rs

Total mass interior to rvir given by M = 4πρ0Rs
3 ln(1+ c)− c

1+ c
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Important point:  Assuming that ΔM increases to small M, large haloes will have been built 
up by accreting smaller haloes which had already “formed” in the outer low density shells 
before accreting onto the main halo.  
 
These pre-formed haloes may well survive virialization (at least partially) in the larger halo 
since their central densities will be much larger than the density in the outer parts of the 
larger halo.   These surviving structures within haloes are called sub-haloes.  

At least to first order, the amount of sub-structure 
should be roughly self-similar, i.e. independent of 
halo mass. 

Another aside: There is not much 
observational evidence in support of 
this much substructure – Why? 



VIRGO simulation © Simon Lilly 2002 
VIRGO	

consor9um	
40	

What does the dark matter universe actually look like? 



Zoom-in 41	



Cosmic Web © Simon Lilly 2002 

What is the relation between idealized spherically-symmetric “top-
hat collapse” and the “cosmic web” of filamentary structures? 

Can intuitively see that the collapse of non-spherical 
density perturbations will proceed fastest along the 
shortest axis.  The peculiar acceleration is given by: 

g = GΔm/r2 

	

So, initially triaxial structures collapse to pancakes and 
then to filaments 
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The number density of collapsed objects as f(mass,epoch): 

dN = φ(m) dm dV

First, I’d like to clarify the concept of the “mass function”, φ(m).  This is a conventional 
distribution function that describes the properties of a population: 

In this case: “how many objects are there between mass m and m+dm in unit volume” 

We are dealing with a huge range of mass, e.g. at least 106-1015M¤, so I will probably 
want to plot the mass and φ(m) on logarithmic axes (also makes it easier to see self-
similarities etc.).   

It then also makes sense to consider an increment in logarithmic mass.  The units now 
become e.g. dex-1 Mpc-3 
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dN = ʹφ (logm) d logm dV
Since dm = m dlnm = 2.30 dlogm, it is easy to see that, if φ(m) is a power-law in m, then 
φ’(m) has an index differing by unity.   

Whether the mass function is expressed per mass or per log mass interval is obvious 
from the units (and my pedantic use here of φ and φ’ is not needed). 

The units are therefore per mass per volume, e.g. M¤
-1 Mpc-3 



Press-Schechter I 

The Press-Schechter formalism 
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We had before:  the probability 
distribution of density fluctuations when 
sampled on a mass scale M is gaussian 

Fraction of sampling spheres on this mass scale M (= 
fraction of mass in the Universe) that exceed a critical 
threshold for collapse is therefore: 

What is the appropriate threshold Δc?  It is analytically 
convenient to choose the Δ that would have been obtained from 
purely linear growth at the time of (non-linear) virialization, so 
we can use the relations of linear growth.  

F(M) is then given by a standard 
probability distribution function 
parameterized by tc in terms of 
σ(M) and Δc. 

with	
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Press-Schechter II 
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From earlier, we get the σ(M) from the power-law 
fluctuation spectrum (valid for small range of k).   

The factor A (proportional to Δ2) will incorporate the growth 
of density fluctuations with time.  The growth of density 
fluctuations (squared) in an Ωm = 1 Universe is given by 

Now we introduce a characteristic mass, 
M*, such that at this mass M*, we have 
(see previous slide)    tc = 1, so that tc at 
other masses is given by: 

Note for n ~ -2 relevant for galactic scales, M* grows as τ4 (assuming Ωm ~ 1) 

This characteristic mass M* is therefore given 
in terms of A (which increases with time as 
structure Δ in the Universe grows, depending 
on Ωm) and also on the power law index n. 



We actually want to know the number of objects of mass M.    

This will be given by  

•  the derivative of F(M) why? 

•  multiplied by ρ/M  why? 

Press-Schechter III 
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For n ~ -2 (appropriate for the CDM spectrum on galactic scales) we then get: 
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This is a power-law at low masses, with an exponential cut-off at high masses. 



Press-Schechter III 

Small decrease below M* with 
time as some small objects are 

destroyed through merging 

Large objects 
above M* rapidly 

increase in 
number 

M* increases 
with time ∝τ4 

Present-day M* is about 1013.5 M�, 
c.f. Milky Way halo ~ 1012 M� 
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This power-law + exponential cut-off is 
called a Schechter function (at least by 
astronomers) 

It is characterized by: 
•  M*, the mass of the exponential 

break from the power-law 
•  α the “faint end slope” of the power 

law 
•  φ* the density normalization 
Intriguingly, it had been introduced by 
Schechter (1974) to empirically describe 
the galaxy luminosity function. 
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First thought: So, let’s compare with the galaxian stellar mass function 
 
This  indeed looks quite like a Schechter function, but four things are in fact a bit wrong: 
•  It’s got a bit of an extra bump around Mstar*   
•  The faint end slope is a bit shallow, α ~ -1.5, c.f. -11/6 for DM mass function 
•  Mstar* is rather low: Mstar* ~ 1011 M¤ in stars, which is about 0.03 MDM*,  whereas we have 

a cosmic ratio of baryons to dark matter of ΩB/ΩCDM ~ 0.2. 
•  Mstar* seems not to change significantly with time, whereas MDM* increases rapidly. 

There are no 1012 M¤ super-
galaxies in the center of 
1013.5 M¤ M* dark matter 
haloes. 
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Example: here we are 
plotting log {φ’(log m)} 



Important points (Part III) 

•  Non-linear collapse produces self-gravitating, gravitationally bound objects, 
called dark matter haloes. 

•  The density after collapse (i.e. after virialization) is related to the average 
density of the Universe, such that ρ > 200 times the average density of the 
Universe. 

•  The density profile of a halo has a particular form (e.g. NFW) that reflects, 
at some level, the mass accretion history of the halo. 

•  Haloes likely grow by accreting other, previously formed, haloes, which 
subsequently become long-lived “sub-haloes” within the larger halo. 

•  The number density of haloes can be calculated using the Press-Schechter 
approach, and results in a so-called Schechter function (power-law plus 
exponential fall-off at high masses) whose characteristic mass M* increases 
rapidly with time.   This has some superficial similarities to the galaxy 
(stellar mass) mass function.  49	


