Chapter 3: Some key things about stars and star-formation in galaxies

1. There appears to be a dichotomy between "actively star-forming galaxies", which have $sSFR = SFR/M \sim \tau_{\rm H}^{-1}$ and those which are not forming stars at a cosmologically significant rate: $sSFR \le 0.1 \tau_{\rm H}^{-1}$.

The specific star-formation rate of galaxies in the Universe today

log Masso

This tight relation ($\sigma \sim 0.3$ dex) is called the "Main Sequence" of galaxies, not to be confused with Main Sequence of stars

$$sSFR = \frac{SFR}{m} \propto m_{star}^{\beta}$$
 with $\beta \sim 0.1 - 0.2$

The objects with much lower sSFR are variously called "passive", or "quenched" or "quiescent"....

10

 10^{-2}

 10^{-3}

10-51

 $(dex^{-1}Mpc^{-3})$

⊷ 10⁻

10

log Massa

3

These two populations have different mass functions The "Main Sequence" and "passive populations" seen in 3-d (from Renzini & Peng 2015)

- 1. There appears to be a dichotomy between "actively star-forming galaxies", which have $sSFR = SFR/M \sim \tau_{\rm H}^{-1}$ and those which are not forming stars at a cosmologically significant rate: $sSFR \leq 0.1 \tau_{\rm H}^{-1}$.
- 2. There appears to be a less pronounced dichotomy in structure, with some galaxies dominated by a flat uniformly rotating "disk" of stars and gas, and some dominated by a 3-d "spheroid" distribution of stars in which random velocities σ play a large role in support, with a full range in between.

Oth-order links between star-formation and structure

Star-forming galaxies

Flattened disks with ordered rotation of stars and gas

Passive galaxies

3-d structures supported by randomly oriented velocities of stars

Structure and morphology

Sersic surface brightness formula

- Exponential disk has n = 1
- Most spheroid dominated galaxies have $n \sim 4$

$$\mu = \mu_0 e^{-kr^{1/n}}$$

There is a clear correlation between n and sSFR but it is not exact

Star-forming disk galaxies

Quiescent disk galaxies

Quiescent elliptical galaxies

- 1. There appears to be a dichotomy between "actively star-forming galaxies", which have $sSFR = SFR/M \sim \tau_{\rm H}^{-1}$ and those which are not forming stars at a cosmologically significant rate: $sSFR \leq 0.1 \tau_{\rm H}^{-1}$.
- 2. There appears to be a less pronounced dichotomy in structure, with some galaxies dominated by a flat uniformly rotating "disk" of stars and gas, and some dominated by a 3-d "spheroid" distribution of stars in which random velocities σ play a large role in support, with a full range in between.
- 3. If we define a "star-formation efficiency" ε or "gas-depletion timescale" τ_{dep} , based on the formation of stars from gas, then most galaxies have more or less the same value.

Star-formation efficiency and gas depletion ("Kennicutt-Schmidt")

Gas-depletion timescale τ_{dep} is typically ~ few Gyr

- ~ 100 times longer than free-fall time
- ~ several times shorter than τ_H
- apparently varies little with redshift (or galactic mass)

This is presumably telling us something about the physics of how stars form, rather than how galaxies as a whole evolve.

Aside: galaxies above the Main Sequence

About 2% of galaxies at all redshifts lie significantly above MS, with sSFR more than $4 \times <sSFR >_{MS}$.

These should be regarded as "star-bursts" (on duty-cycle arguments)

These are generally more highly dust-obscured. They are probably merger-induced, producing short-lived enhancement in the star-formation efficiency (SFR/m_{gas}). They represent only about 10% of the total SFR at any epoch.

- 1. There appears to be a dichotomy between "actively star-forming galaxies", which have $sSFR = SFR/M \sim \tau_{\rm H}^{-1}$ and those which are not forming stars at a cosmologically significant rate: $sSFR \leq 0.1 \tau_{\rm H}^{-1}$.
- 2. There appears to be a less pronounced dichotomy in structure, with some galaxies dominated by a flat uniformly rotating "disk" of stars and gas, and some dominated by a 3-d "spheroid" distribution of stars in which random velocities σ play a large role in support, with a full range in between.
- 3. If we define a "star-formation efficiency" ε or "gas-depletion timescale" τ_{dep} , based on the formation of stars from gas, then most galaxies have more or less the same value.
- 4. The ratio of stellar mass to DM halo mass varies strongly with halo mass (also sometimes confusingly called "star-formation efficiency" of a halo), peaking around 10^{12} M_{\odot}.

The relation between stellar mass and halo mass

Stellar to halo mass relation

Moster+ (2010)

Estimated via extensive statistical analysis based on assumption of a simple monotonic relationship between the two, plus input of data on number density, spatial clustering, etc.

Then, checked with observational estimates of DM halo masses from weak lensing, X-ray gas data and dynamical mass estimates.

- 1. There appears to be a dichotomy between "actively star-forming galaxies", which have $sSFR = SFR/M \sim \tau_{\rm H}^{-1}$ and those which are not forming stars at a cosmologically significant rate: $sSFR \leq 0.1 \tau_{\rm H}^{-1}$.
- 2. There appears to be a less pronounced dichotomy in structure, with some galaxies dominated by a flat uniformly rotating "disk" of stars and gas, and some dominated by a 3-d "spheroid" distribution of stars in which random velocities σ play a large role in support, with a full range in between.
- 3. If we define a "star-formation efficiency" ε or "gas-depletion timescale" τ_{dep} , based on the formation of stars from gas, then most galaxies have more or less the same value.
- 4. The ratio of stellar mass to DM halo mass varies strongly with halo mass (also sometimes confusingly called "star-formation efficiency" of a halo), peaking around 10^{12} M_{\odot}.
- The mass function of star-forming and passive galaxies, the sSFR of the Main Sequence and the overall star-formation rate of the Universe all evolve with cosmic epoch.

The evolution of the mass-function of galaxies

The mass function of both starforming and passive galaxies changes with epoch, but in a possibly *surprising* way:

Not evolution in M* as in the Press-Schechter mass function of haloes, but rather evolution in density ϕ^* with constant M*

-2.6

-2.8

3.2

-3.4

-3.6

-3.8

10.0

log φ*

-2star-forming -3dex⁻¹) -4-2.5**8.0** -5 (Mpc⁻³ 3.0-4.0 -6 quiescent dN/dM. -3from Caplar+ 2015 -4 data from Ilbert et al. 2013, SF galaxies 000 Redshift -5 Schechter -6 M^*, ϕ^* of SF 2.5 population 80 60 40 20 0 3.5 8 10 11 12 9 10.2 10.4 10.8 11.0 11.2 10.6 $Log_{10}[M^*/M_{\odot}]$ $\log(M_*)$ [M_{\odot}] 15 log M*

from Ilbert+ 2013

The star-formation rate density of the Universe evolves...

... as also does the characteristic sSFR of the Main Sequence

Noeske et al 2007 ApJ 660 L43

This characteristic sSFR of the Main Sequence population increases with redshift as something like $(1+z)^{2.5}$

By $z \sim 2$, the mass doubling timescale has reduced to $sSFR_{MS}^{-1} \sim 0.5$ Gyr, which is considerably less than the age of Universe at that redshift.

A simple cartoon of galaxy evolution

Stellar mass

Finally, what about the black holes?

There are clear correlations between the mass of the central super-massive black holes and the stellar component of galaxies.

e.g. m_{BH} vs. stellar velocity dispersion

Summary: Some obvious questions

- What sets the value and rather small dispersion of the sSFR of typical "Main Sequence" star-forming galaxies and why does this change with time/ redshift, increasing roughly as $(1+z)^{2.5}$?
- Why do lower mass haloes have a lower m_{star}/m_{halo} ratio than those like the Milky Way, at $10^{12}M_{\odot}$, i.e. why are they less effective at forming stars?
- What does the fact that the mass doubling timescale $sSFR^{-1} = m_{star}/SFR$ is much longer than τ_{dep} tell us?
- Why is the characteristic star-formation timescale for most star-forming galaxies $\tau_{dep} \sim m_{gas}/SFR \sim 10^9$ yr, so much longer than the free-fall time in gas clouds $\sim 10^7$ yr.
- What causes some galaxies to stop forming stars altogether, i.e. to quench their star-formation?
- How does galactic structure come in? And what about central black holes?