CMS Status Report

G. Dissertori^{*} SPC Meeting CERN 25.09.2017

Contents

Operations

Physics Highlights

Operations

SPC

25/9/2017

Data taking in 2016

- LHC has exceeded design luminosity
 - 2016 maximum peak lumi
 1.5x10³⁴ cm⁻² s⁻¹ with pileup ~ 45
 - With 2208 colliding bunches
- LHC had much higher availability, ~50%, than expected
- CMS recording efficiency held steady at 92.5%
- Each CMS sub- detector had
 >96% of all channels working

Data validated for all detectors is ~95% of the data recorded \rightarrow 35.9 fb⁻¹ to analyze

Data taking in 2017

- The recording efficiency so far for all 2017 is ~88%, as compared to 92.5% for 2016.
 - This reflects the period of commissioning the new pixel detector, addressing a number of unexpected issues.
- This has improved lately, albeit at "low" luminosity running of ~ 1x10³⁴cm⁻²s⁻¹, to ~94%
 - Pixels are no longer the big contributor to downtime
- Further upgrades in 2017 (besides the Pixel system):
 - Forward Hadron Calorimeter (HF) readout
 - One phi-wedge of HCAL Endcap (HPDs → SiPMs)

CMS Integrated Luminosity, pp, 2017, $\sqrt{s}=$ 13 TeV

A New Pixel Detector

New pixel detector installed in EYETS 2016/17 twice number of channels & active area (2m²)

- Number of barrel layers 3 → 4 and 2 → 3 in endcaps
 more robust tracking & seeding
- Innermost layer moved closer to beam pipe (4.4cm → 2.9cm)
 ➤ improved vertex reconstruction and b-tagging
- New readout chips for barrel layers 2-4 + FPIX (PSI46dig) and barrel layer 1 (higher rates, PROC600)
 Less dynamic inefficiency at high instantaneous luminosity
- DC-DC conversion powering system & CO₂ cooling system
- New µTCA DAQ system
- Significantly reduced amount of material

Pixel Detector Performance

- ~95% good channels, losses mainly due to few power & readout groups
- Resolutions in L2-4 & FPIX match simulations (eg. σ~12 µm in barrel layer 3)

Pixel Detector Performance

- ~95% good channels, losses mainly due to few power & readout groups
- Resolutions in L2-4 & FPIX match simulations (eg. σ~12 µm in barrel layer 3)
- Significant reduction of dynamic inefficiency at high inst. luminosity compared to old detector, with layer 1 closer to beampipe!
- Readout bandwidth sufficient up to a PU of ~80

Vertexing and B Physics Performance

- Vertexing and b-tagging as good as ultimate 2016 performance, despite higher instantaneous luminosity, and not yet fully optimized settings & reconstruction SW – further improvements expected
- Performance of barrel layers 2-4 and FPIX as envisaged

Vertexing and B Physics Performance

- Vertexing and b-tagging as good as ultimate 2016 performance, despite higher instantaneous luminosity, and not yet fully optimized settings & reconstruction SW – further improvements expected
- Performance of barrel layers 2-4 and FPIX as envisaged
- Work in progress to improve further the performances of Layer 1, despite of some shortcoming of the layer 1 chip
 - Higher than expected threshold & dynamic inefficiency

SPC

Physics Highlights

Overview on Publications

- Remarkable output of physics publications
- 655 publications in total (on collider data)
- Many new results with full 2016 13TeV data set
- Some selected (very) recent highlights in the following

CMS Preliminary

SPC

25/9/2017

Weak Mixing Angle

• Exploit forward-backward asymmetry A_{FB} in $Z/\gamma^* \rightarrow$ ee and $\mu\mu$ Drell-Yan events

Weak Mixing Angle

Exploit forward-backward asymmetry A_{FB} in $Z/\gamma^* \rightarrow$ ee and $\mu\mu$ Drell-Yan events

SPC

25/9/2017

Weak Mixing Angle

- Exploit forward-backward asymmetry A_{FB} in $Z/\gamma^* \rightarrow$ ee and $\mu\mu$ Drell-Yan events
- Effective leptonic weak mixing angle sin²θ^{lept}_{eff} from minimizing χ² between A_{FB} templates and data in
 72 bins of dilepton mass and rapidity

Weak Mixing Angle

- Exploit forward-backward asymmetry A_{FB} in $Z/\gamma^* \rightarrow$ ee and $\mu\mu$ Drell-Yan events
- Effective leptonic weak mixing angle sin²θ^{lept}_{eff} from minimizing χ² between A_{FB} templates and data in
 72 bins of dilepton mass and rapidity

 $\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23101 \pm 0.00036 \text{ (stat)} \pm 0.00018 \text{ (syst)} \pm 0.00016 \text{ (theory)} \pm 0.00030 \text{ (pdf)} \quad (\pm 0.00052 \text{ tot)}$

Best LHC measurement so far, approaching precision achieved at the Tevatron

SPC 25/9/2017

Same-Sign WW prod.

Submitted to PRL last week!

- Search for EWK production of two W bosons of same charge
- Signal: two same-sign leptons and two jets with large rapseparation and large inv. Mass

Same-Sign WW prod.

- Search for EWK production of two W bosons of same charge
- Signal: two same-sign leptons and two jets with large rapseparation and large inv. Mass
- First observation: 5.5 σ (obs), 5.7 σ (exp) fid. cross section in agreement with SM pred. of ~ 4 fb
- Stringent limits on aQGCs and doubly-charged Higgs prod.

Top quark production

- Recent example from the rich harvesting of top-quark events
- Precise measurements of differential cross sections, as functions of many kin. observables
- Comparisons to modern MC generators

Top quark production

- Recent example from the rich harvesting of top-quark events
- Precise measurements of differential cross sections, as functions of many kin. observables
- Comparisons to modern MC generators

35.8 fb⁻¹ (13 TeV)

Data

Stat POWHEG P8 NNLO QCD+NLO EW

Sys

stat

POWHEG H++

600

700 800

p_{_}(t_{_}) [GeV]

CMS

e/u+jets Preliminary parton level

Evidence for tZq prod.

- Rare SM process (~120 fb)
- Sensitive to t-Z coupling, FCNCs, triple WWZ coupling
- Signal: 3 leptons and at least 2 jets

Evidence for tZq prod.

- Rare SM process (~120 fb)
- Sensitive to t-Z coupling, FCNCs, triple WWZ coupling
- Signal: 3 leptons and at least 2 jets
- Evidence: 3.7 σ (obs), 3.1 σ (exp)

Just released for TOP2017

4 top quarks production

CCMS unit returns

- Even rarer SM process (~10 fb)
- Sensitive to ttH coupling, enhancement in many BSM models
- Signal: 2 same-sign or at least 3 leptons
 - jet multiplicty and flavour enhance signal sensitivity
 - nice "spin-off" of a BSM search

4 top quarks production

 $g_{\sim}0000000$

 $g \sim 0000000$

- Even rarer SM process (~10 fb)
- Sensitive to ttH coupling, enhancement in many BSM models
- Signal: 2 same-sign or at least 3 leptons
 - jet multiplicty and flavour enhance signal sensitivity
 - nice "spin-off" of a BSM search
- 1.6 σ significance, meas. cross section agrees with SM pred.

Intermezzo:

Top in p-Pb Collisions

Submitted to PRD last week!

- First observation of top quark production in proton-nucleus collisions
- Signal: 1 isolated lepton (el, mu) and at least 4 jets
- 710 signal events, significance above 5 σ
- Cross section 45 ± 8 nb, consistent with pQCD predictions

- Branching ratio = 6.3%, best channel to establish coupling of Higgs boson to fermions
- Final states: $\tau_h \tau_h$, $e\tau_h$, $\mu \tau_h$, $e\mu \rightarrow$ Significance of 4.9 σ observed (4.7 σ expected) using 13 TeV data
- Combination with 7 and 8 TeV data: 5.9 σ obs. (5.9 σ exp.) and μ = 0.98 \pm 0.18

- Branching ratio = 6.3%, best channel to establish coupling of Higgs boson to fermions
- Final states: $\tau_h \tau_h$, $e\tau_h$, $\mu \tau_h$, $e\mu \rightarrow$ Significance of 4.9 σ observed (4.7 σ expected) using 13 TeV data
- Combination with 7 and 8 TeV data: 5.9 σ obs. (5.9 σ exp.) and μ = 0.98 \pm 0.18

- Branching ratio = 6.3%, best channel to establish coupling of Higgs boson to fermions
- Final states: $\tau_h \tau_h$, $e\tau_h$, $\mu \tau_h$, $e\mu \rightarrow$ Significance of 4.9 σ observed (4.7 σ expected) using 13 TeV data
- Combination with 7 and 8 TeV data: 5.9 σ obs. (5.9 σ exp.) and μ = 0.98 \pm 0.18

First direct observation by a single experiment of H coupling to fermions!

Observed before in CMS+ATLAS combination

First direct observation of H coupling to leptons and to fermions of the 3rd generation!

- Branching ratio = 6.3%, best channel to establish coupling of Higgs boson to fermions
- Final states: $\tau_h \tau_h$, $e\tau_h$, $\mu \tau_h$, $e\mu \rightarrow$ Significance of 4.9 σ observed (4.7 σ expected) using 13 TeV data
- Combination with 7 and 8 TeV data: 5.9 σ obs. (5.9 σ exp.) and μ = 0.98 \pm 0.18

First direct observation by a single experiment of H coupling to fermions!

Observed before in CMS+ATLAS combination

First direct observation of H coupling to leptons and to fermions of the 3rd generation!

CMS-PAS-HIG-16

- BR = 58%, but large backgrounds, not yet observed
- Production of ZH and WH is studied, with Z \rightarrow ee, $\mu\mu$, $\nu\nu$ and W \rightarrow e ν , $\mu\nu$
- Significance of 3.3σ obs. (2.8σ exp.) using 13TeV data
- Combination with 7 and 8 TeV data: 3.8σ obs. (3.8σ exp.)

25/9/2017

SPC

- BR = 58%, but large backgrounds, not yet observed
- Production of ZH and WH is studied, with Z \rightarrow ee, $\mu\mu$, $\nu\nu$ and W \rightarrow e ν , $\mu\nu$
- Significance of 3.3σ obs. (2.8σ exp.) using 13TeV data
- Combination with 7 and 8 TeV data: 3.8σ obs. (3.8σ exp.)

- Submitted to PLB last week!
- BR = 58%, but large backgrounds, not yet observed
- Production of ZH and WH is studied, with Z \rightarrow ee, $\mu\mu$, $\nu\nu$ and W \rightarrow e ν , $\mu\nu$
- Significance of 3.3σ obs. (2.8σ exp.) using 13TeV data
- Combination with 7 and 8 TeV data: 3.8σ obs. (3.8σ exp.)

• First search for incl. $gg \rightarrow H \rightarrow bb$ in boosted topology!

- was considered impossible.... Because of overwhelming QCD bckg.
- Higgs p_T > 450 GeV, reconstructed as single fat jet
 - Using state-of-the-art boosted jet substructure and dedicated b-tagging techniques

• First search for incl. $gg \rightarrow H \rightarrow bb$ in boosted topology!

- was considered impossible.... Because of overwhelming QCD bckg.
- Higgs p_T > 450 GeV, reconstructed as single fat jet
 - Using state-of-the-art boosted jet substructure and dedicated b-tagging techniques
- Z → bb as control: Significance of 5.1σ obs, first obs. in single-jet topology
- H ightarrow bb at 1.5 σ consistent with SM expectations

Higgs "differential"

CCMS Interview

- Entering the Higgs precision physics era
- explore new regions of phase space (also in view of systematics...)
- explore Higgs production differentially, eg. at large p_T
 - "precision" vs "sensitivity"

Search for $HH \rightarrow b\bar{b} \gamma\gamma$

- Study H self coupling in gluon fusion events very low SM cross section, difficult
- May be enhanced due to anomalous couplings, or new particles produced directly or in loops

m

SPC

25/9/2017

Search for $HH \rightarrow b\bar{b} \gamma\gamma$

- Study H self coupling in gluon fusion events very low SM cross section, difficult
- May be enhanced due to anomalous couplings, or new particles produced directly or in loops
- Two-dimensional fits in M_{γγ} and M_{jj} invariant masses
- Observed (expected) 95% CL limits on cross section ~ 19.2 (16.5) x SM cross section
 - Best limits at LHC so far
- Limits on $\kappa_{\lambda} = \lambda_{\rm HHH} / \lambda_{\rm HHH}^{\rm SM}$ and $\kappa_{\rm t} = y_{\rm t} / y_{\rm t}^{\rm SM}$ and on radions & KK-gravitons in Warped ED model

1111

- Broad program: 23 SUSY searches completed with full 2016 CMS dataset
- several already submitted to journals
- Probing different models: inclusive production, strong and electroweak production, and 3rd generation sparticles (stops, staus), high ΔM, compressed, ...

- Broad program: 23 SUSY searches completed with full 2016 CMS dataset
- several already submitted to journals
- Probing different models: inclusive production, strong and electroweak production, and 3rd generation sparticles (stops, staus), high ΔM, compressed, ...
- Recent highlight: "EWK combination"

-	Signal topology					
Search	WZ	WH	ZŽ	ZH	HH	
1ℓ 2b		\checkmark				
4b					\checkmark	
2ℓ on-Z	\checkmark		\checkmark	\checkmark		
2ℓ soft	\checkmark					
2ℓ SS, $\geq 3\ell$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$H(\gamma\gamma)$		\checkmark		\checkmark	\checkmark	

- Broad program: 23 SUSY searches completed with full 2016 CMS dataset
- several already submitted to journals
- Probing different models: inclusive production, strong and electroweak production, and 3rd generation sparticles (stops, staus), high ΔM , compressed, ...
- Recent highlight: "EWK combination"

SUSY limits in a nutshell:

- Gluinos > ~2 TeV
- Stops > ~1 TeV
- EWKinos > ~0.5 TeV

Searches (2)

SUSY limits in a nutshell:

- Gluinos > ~2 TeV
- Stops > ~1 TeV
- EWKinos > ~0.5 TeV

Other searches for exotics:

 Some focus on boosted topologies (eg. X decaying to pairs of W/Z/H/tops)

43

Searches (2)

SUSY limits in a nutshell:

- Gluinos > ~2 TeV
- Stops > ~1 TeV
- EWKinos > ~0.5 TeV

Other searches for exotics:

- Some focus on boosted topologies (eg. X decaying to pairs of W/Z/H/tops)
- Also focus on combining searches targeting **DM** (the "mono-X" class)

New Results for LHCP & EPS

RPH-13-008: Precision lifetime measurements of h hadrons reconstructed in final states with a I/Psi meson HIN-16-021: Pseudorapidity distributions of charged hadrons in proton-lead collisions at 5.02 and 8.16 TeV SMP-16-018: Measurement of electroweak production of two jets in association with a Z boson in proton-proton collisions at sqrt(s) = 13 TeV SMP-16-019: Measurement of ZZ production in association with iets and search for electroweak production of two iets in association with a Z boson in proton-proton collisions at 13 TeV and 8 TeV SMP-17-004: Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state at a center-of-mass energy of 13 TeV HIG-17-001: Search for lepton flavour violating decays of the Higgs boson to et and µt at 13 TeV HIG-17-005: Search for production of a Higgs boson and a single top quark in multileptonyfinal states HIG-16-040: Measurements of properties of the Higgs boson in the diphoton decay channel with the full 2016 data set HIG-16-043: Observation of the SM Higgs boson decaying to a pair of τ leptons at 13 TeV TOP-17-005: Measurement of the top quark pair-production in association with a W or Z boson at 13 TeV EXO-17-001: Search for light vector resonances decaying to a quark pairproduced in association with a jet EXO-16-004: Search for stopped long-lived particles produced in pp collisions at 13 TeV EXO-16-045: Search for heavy neutrinos and W bosons with right-handed couplings at 13 TeV EXO-16-048: Search for new physics in final states with an energetic jet.or a hadronically decaying W or 2 b EX0-16-052: Search for Dark Matter, Invisible Hig

~40 new results released for LHCP 2017 & EPS-HEP 2017 Made possible by excellent performance of the detector! More data are needed to settle the open questions ...

chair production as a function of kinematic event variables at 13 TeV

rcn for Higgs boson pair production in the final state containing two photons and two bottom quarks at 13 TeV HIG-16-043: Observation of the SM scalar boson decaying to a pair of τ leptons with the CMS experiment at the LHC HIG-16-021: Higgs to WW measurements at 13 TeV with 2015 and 2016 data SUS-16-052: Search for supersymmetry in events with at least one soft lepton, low jet multiplicity, and missing transverse momentum at 13 TeV SUS-17-004: Search for electroweak production of charginos and neutralinos at 13 TeV SUS-17-003: Search for pair production of tau sleptons in all-hadronic final state EXO-17-002: Search for excited states of light and heavy flavor guarks in the v + jet final state at 13 TeV EXO-16-046: Search for new physics with dijet angular distributions in proton-proton collisions at 13 TeV and constraints on dark matter and other models EXO-16-051: Search for dark matter in final states with a top quark and missing transverse momentum using new hadronic top quark tagging techniques EXO-17-004: Search for long-lived particles that stop in the CMS detector and decay to muons B2G-17-009: Search for a singly produced vector-like quark B decaying to a b quark and a Higgs boson in a fully hadronic final state using boosted topologies B2G-17-005: Search for heavy resonances decaying into a Z boson and a vector boson in the vv qq final state B2G-16-025: Search for pair production of excited top quarks in the lepton+jets final state PPS-17-001: Evidence for proton-tagged, central semi-exclusive production of high-mass muon pairs at 13 TeV with the CMS-TOTEM Precision Proton Spectrometer FTR-16-002: Projected performance of Higgs analyses at the HL-LHC for ECFA 2016

G. Dissertori / FTH7

Summary and Outlook

- The EYETS installations went well
 - We encountered some problems with the new pixel detector but are taking good data and expect to do excellent physics with it

Summary and Outlook

- The EYETS installations went well
 - We encountered some problems with the new pixel detector but are taking good data and expect to do excellent physics with it
- Physics results continue to be excellent with much exciting analyses ahead for the 2016 data and with the new data from 2017

Summary and Outlook

- The EYETS installations went well
 - We encountered some problems with the new pixel detector but are taking good data and expect to do excellent physics with it
- Physics results continue to be excellent with much exciting analyses ahead for the 2016 data and with the new data from 2017
- The collaboration is handling well the "pile-up" of tasks:
 - Data Analysis
 - Efficient data taking, with the related challenges of new detector subsystems and the running at high luminosity (Trigger, DAQ, computing & SW)
 - Preparation of Phase-2 Upgrade Documents

Thank you for your attention!

Phase 2 Upgrades

- The CMS Phase II Upgrade is a major construction effort
 - Complexity is very high; CMS continues to do bold projects with high potential physics payoff
- Four major TDRs:
 - Tracker (submitted, recently reviewed by LHCC)
 - Barrel Calorimeter (submitted)
 - Muon Detectors (submitted)
 - Endcap Calorimeter (end of Nov)
- Three Interim Design Documents:
 - Trigger (submitted)
 - DAQ/HLT (submitted)
 - Common Infrastructure Upgrade and Logistics of work during LS3
- A Conceptual Design document of precision timing, Oct. 30
- Much R&D, design, prototyping, and preproduction work ongoing

2017 Data Taking Overview

Pixel Detector: Commissioning, Timing, Operations

- Pixel detector commissioning is complex many parameters to be optimized
 - Threshold, gain, timing, bias voltage, ...
- Subtle timing optimization was required to achieve optimal efficiency for all layers
 - L1 chip is faster than chip for other layers, but clock is common for L1 & L2 (historical reasons)
- Operational procedures had to be developed and optimized
 - Periodic reprogramming / power cycling mainly to cure SEUs in a small FE chip (TBM) that organizes module readout, now done automatically and taking few seconds
 - Periodic resets of L1 readout chips to mitigate dynamic inefficiency

Pixel Data Losses

- ~4% of delivered data lost due to pixel downtime
- ~4% of delivered data lost due to pixel data certification
- Both types of losses have gone down to a negligible level
- 2-3% of delivered data lost due to dead time
 - 1.3% dead time due to ROC reset; now decreased to 0.7%
- 1-2% dead time due to mitigation of SEUs; now decreased, need high inst. luminosity to quantify

G. Dissertori / ETHZ

Pixel Upgrade:

- Baseline L = $2x10^{34}$ cm⁻²sec⁻¹ with 25ns BX \rightarrow 50 pileup (50PU) with very small efficiency loss
- Tolerate L = $2x10^{34}$ cm⁻²sec⁻¹ with **50ns** BX \rightarrow 100 pileup **(100PU)** with reduced performance
- Survive Integrated Luminosity of 500 fb⁻¹
- Same detector concept: higher rate readout, data link and DAQ w/ less material forward
- More Robust tracking : 4 hit coverage; 3 layers/2 disks to 4 layers / 3 disks (can compensate point losses in strips)
- •Inner layer closer to beam \rightarrow Better primary and secondary vertex resolution

CCMS (remain a constrained)

- BR = 58%, but large backgrounds, not yet observed
- Production of ZH and WH is studied, with Z \rightarrow ee, $\mu\mu$, $\nu\nu$ and W \rightarrow e ν , $\mu\nu$
- 0-lepton, 1-lepton, 2-lepton channels
- Signal extraction from combined fit to signal & control regions (BDT discriminant, b-tagging variable CMVA_{min})
- Significance of 3.3σ obs. (2.8σ exp.) using 13TeV data
- Combination with 7 & 8 TeV data: 3.8σ obs. (3.8σ exp.)

25/9/2017

$m_{\rm H} = 125 {\rm GeV}$	Significance	Significance	Signal strength	
	expected	observed	observed	
Run 1	2.5	2.1	$0.89^{+0.44}_{-0.42}$	
Run 2	2.8	3.3	$1.19_{-0.38}^{+0.40}$	
combined	3.8	3.8	$1.06^{+0.31}_{-0.29}$	

- Search for lepton flavour violating decays of the Higgs boson to $e\tau$ and $\mu\tau$
- Previous 2.4σ hint in H→μτ in Run1 data (*Phys. Lett. B* 749 (2015) 337) not confirmed with 13 TeV data (2016)
 - stringent limits set on branching fractions, in few per cent range

Another intermezzo:

Systematic uncertainties

- To be taken note of: already now we are often hitting the "systematics wall"
- Some examples:

overall ATLAS-CMS Higgs combination

 $\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07} \text{ (stat) } ^{+0.04}_{-0.04} \text{ (expt) } ^{+0.03}_{-0.03} \text{ (thbgd)} ^{+0.07}_{-0.06} \text{ (thsig)}$

$$H \rightarrow ZZ \rightarrow 4\ell$$
 decay ch
 $.05 \stackrel{+0.15}{_{-0.14}}$ (stat) $\stackrel{+0.11}{_{-0.09}}$ (syst)

Higgs to tau tau:

 $1.09^{+0.15}_{-0.15}$ (stat) $^{+0.16}_{-0.15}$ (syst) $^{+0.10}_{-0.08}$ (theo) $^{+0.13}_{-0.12}$ (bin-by-bin).

Higgs to bb (VHbb) :

$$\mu = 1.19^{+0.21}_{-0.20}({
m stat.})^{+0.34}_{-0.32}({
m syst.})$$

Broad program: 23 SUSY searches completed with full 2016 CMS dataset, with several already submitted to journals

- Probing different models (inclusive production, strong and electroweak production, and 3rd generation sparticles (stops)
- Different final states (with leptons, photons, jets) and analysis techniques

Searches

Most sensitive analysis (expected)

Top Charge Asymmetry

https://arxiv.org/abs/1709.05327

Data taking efficiency per fill

2017 CMS Datataking Efficiency per Fill (online) [pp]

