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INTRODUCTION
Muonium
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Muonium (Mu)

 Hydrogen-like atom consisting of μ+ and e-.

 1/9 of Hydrogen mass, lifetime = 2.2 μs.

 Main decay channel :

 Pure leptonic system governed by QED.
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Motivation

Development of new sources for the next generation Mu 
experiments, with the following requirements:

 High vacuum yield

 Small emission velocities (down to cryogenic temperature)

 Long term stability

An improved Mu source leads to:

 Better result for lepton flavor violation experiment

 More precise test of bound state QED (proton radius puzzle)

 More precise extraction of fundamental constants (mμ, α)
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This talk



Silica Porous Material
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ETHZ Slow Positron Beam
(Will be moved from CERN to ETHZ)

Source Ps (e+e-) Mu (μ+e-)

Silica Powder 10% 10%

Silica Porous Material 30-40% 30-40% (?)

[P.Crivelli et al. Phys Rev A81, 052703 (2010)]

Mu and Positronium (Ps) have similar formation mechanisms and yields in vacuum:

Based on this analogy, we thought 
that Silica Porous material could 
produce Mu more efficiently. 
(preselected using the ETHZ slow 
positron beam)



Muonium Production

 μ+ with 2-30 keV of energy is implanted into the sample.

 μ+ slows down and stops in the porous bulk material.

 Mu is formed in the porous bulk material.

 Mu drifts to the pore’s wall and is ejected into

the pore  with energy of a few eV.

 Mu diffuses and is thermalized

in the pores.

 Mu can reach the surface and 

exit into vacuum. 
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EXPERIMENTAL SETUP
μE4 beam and LEμSR spectrometer
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 Experiment was done at Paul 
Scherrer Institute (PSI) using µE4 beam.
 It is the low energy muon beam (0-30 keV)

with the highest intensity in the world.
(3000 s-1 on the sample)

PSI Proton Accelerator

µE4
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PRINCIPLES OF THE EXPERIMENT
μSR Technique
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 Monitor the evolution of μ spin after implantation, under 
external magnetic field. (Larmor precession frequency,  
ω = γB, γ is gyromagnetic ratio, γμ = 13.6 kHz/G and γMu = 
1.40 MHz/G  ωMu = 103 ωμ for same B)

 Decay positron emitted preferentially in the direction of 
muon spin, due to the parity violation of weak interaction.
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Positron Shielding Technique (PST)
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 μ/Mu that decays inside the Porous Silica will have its positron shielded   
by the material behind the sample.
 In case of zero emission into vacuum, exponential time distributions are 

expected for both detectors.
 In case of emission into vacuum, there is a deviation from exponential  

distribution for forward detector. (Position dependent of detection 
efficiency)
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Summary of the techniques
From μSR Technique, we can extract

 the residual fraction of μ that do not convert to Mu.

 the fraction of Mu which do not depolarize.

 the depolarization rates of μ and Mu in the samples.

From Positron Shielding Technique, we can extract

 the fraction of Mu emitted into vacuum.

We can then cross check the consistency of the data.
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ANALYSIS
μSR Spectra
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 Time Spectra 

T = 250 K, B = 100 G T = 250 K, B = 6 G
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Fraction of μ and Mu
Fraction of μ and Mu (Fμ+ ,FMu) are given by the fitted amplitudes. The total 

amplitude, Atot = 0.27 was measured from the reference sample of Silica 
Suprasil.                                          (singlet and Ms=0 triplet do not contribute)
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Mu formation fraction = 1 - Fμ+ = 45% and temperature independent.
(Notice that Fμ++FMu≠1 ! This is due to the fast depolarization of Mu 
due to spin exchange collisions.)
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Forward-Backward Asymmetry (AFB)
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In case of 0% Mu emission,
AFB (t) = constant
For non-zero Mu emission,
AFB (t) ≠ constant
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 With the help of GEANT4, we simulated the cases of 0% and 100% Mu vacuum 
emission at different temperatures. 0% is corresponding to Silica Suprasil sample 
where no emission into vacuum is expected.

 By introducing a free parameter which is the fraction of Mu emitted into vacuum, we 
fitted the data according to the temperatures. 
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Extraction of Mu Vacuum Emission
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Results from Positron Shielding Technique. No systematic errors are included at 
the moment. Mu vacuum emission is proportional to the temperature.

E = 14 keV E = 19 keV + Data (T = 250 K)
-- Simulation (T = 250 K)

The shapes are well reproduced
by the simulations.0% emission (Silica Suprasil)

0% emission (Silica Suprasil)

26.3 % emission
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Preliminary Results
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Comparison of results from μSR and positron shielding techniques.

Notice that values from PST are always higher compared to μSR Technique. This is due to the 
emission of depolarized Mu into vacuum that could not be extracted using μSR technique. 
Also, higher implantation energy leads to higher fraction of depolarized Mu.
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Conclusions and Outlook
 Mu formation in Silica Porous Material is 45% per 

implanted μ+, independent on temperature.

 Mu emission in vacuum is as high as 25% per 
implanted μ+, at 250 K. (a factor of 2 better than 
other sources.)

 First measurement of Mu emission in vacuum at 
low temperature. (10% even at 100 K)

 Temperature dependent of Mu vacuum emission is 
under investigation  study of diffusion.
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Backup
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If both spectra are exponential decay,
i.e. in case of 0% Mu emission,
F(t) = F0 exp(-t/τμ) , B(t) = B0 exp(-t/τμ)
AFB = (F0 - B0)/(F0 + B0) = constant
For non-zero Mu emission,
F(t) = F0 exp(-t/τμ) + e(t),
AFB AFB (t) ≠ constant
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