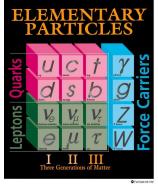
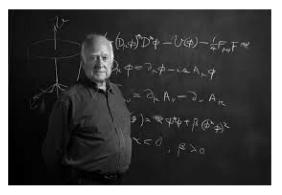
Introduction	Interaction of the charged particles with matter 0000	Data acquisition	Data analysis
00		O	O
ETTH Eidgenössische Technische Hoch: Swiss Federal Institute of Techno			ETH Institute for Particle Physics

vp.phys.ethz.ch

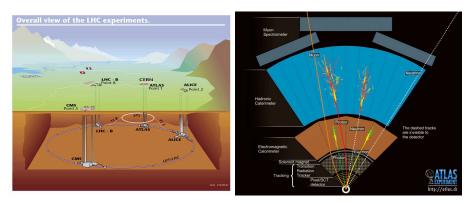

Development of a charged particle tracker with plastic scintillating ber and Geiger-mode avalanche photodiode


Kim Siang Khaw

Institute for Particle Physics, ETH Zurich

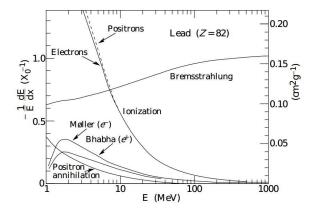
IPP ASL HS 2013 17th Oct 2013

Introduction	Interaction of the charged particles with matter	Data acquisition	Data analysis
•0			
Particle Physics			



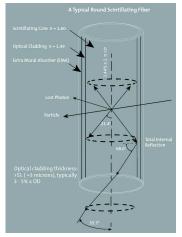
What is the Standard Model?

- Theory that describes the interactions between a family of elementary particles
- All those particles and their interactions are observed and tested to very high precision
- The final missing piece Higgs was found and confirmed last year (Nobel Prize in Physics 2013)


Introduction	Interaction of the charged particles with matter	Data analysis
00		
Particle Physics		

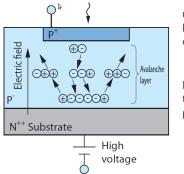
But how they did it?

- Accelerators (Atom smasher)
- Particle detectors (Charged particles, neutral particles, photon)
- Simulations of interactions of particles with detectors (GEANT4, COMSOL)
- Data Analysis (PAW, ROOT)


	Interaction of the charged particles with matter			
	0000			
Energy loss processes of electron/positron				

2 main processes of energy loss

- Ionisation (creating electron and ion pair)
- Bremsstrahlung (Interacting with the EM fields inside atom)


Basic principle of detection

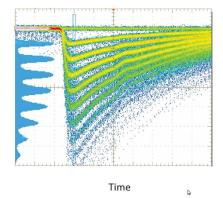
- Charged particle losses energy to the molecules inside
- Molecules are excited and drop back to the ground state by emitting photons
- Photons that are trapped inside can travel to the both ends of the fiber

Kim Siang KHAW (ETH Zurich)

Development of a charged particle tracker

	Interaction of the charged particles with matter			
	0000			
Geiger-mode avalanche photodiode (G-APD)				

Generated carriers produce new electronhole pairs while being accelerated by high electric field. Ionization


Newly generated carriers are also accelerated to produce further electron-hole pairs, and this process repeats itself. Avalanche multiplication

Gain proportional to the applied reverse bias voltage can be obtained.

Basic principle

- Photons hitting the entrance will create electron-hole pairs
- Electrons will be accelerated in electric field and repeating the process
- The electrons are detected as a current at the end

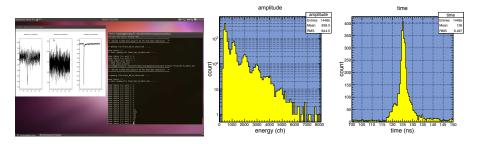
	Interaction of the charged particles with matter		Data analysis	
	0000			
Photon counting ability of MPPC				

Counting single photon

• MPPC (Hamamatsu) is an array of those G-APDs

Number of photons

- 1 Photon can hit 1 pixel which then gives a pulse
- 2 Photon can hit 2 pixels which then gives a pulse of twice the height before


	Interaction of the charged particles with matter	Data acquisition	Data analysis
		•	
DRS4			

Analog to Digital converter (Digitizer)

- Convert the signal (pulse) to a waveform
- Store them as ROOT files
- Data analysis can be done anytime later

Waveform analysis and histogramming

- Operating system will be LINUX (Ubuntu distribution)
- Terminal will be used extensively
- Determine the timing and the height of the pulse
- Cut analysis to select "goodëvents
- Decide the timing resolution, etc of the detector