
Chapter 4

Physics of the interstellar medium

Components of the interstellar medium

The description of the interstellar medium requires the consideration of several physical
components: different forms of baryonic matter, the magnetic fields, and the radiation
fields.

baryonic matter gas molecular gas
atomic gas
ionized gas

dust small, solid particles ∼< 1µm (smoke)
cosmic rays relativistic particles

radiation field

magnetic field

Thus, the interstellar medium is a complicated physical system with properties that depend
on the:

– mutual interaction of the different components of the interstellar medium,

– interaction of the interstellar medium with stars.

4.1 Gas

4.1.1 Description of a gas in thermodynamic equilibrium

The following formula are valid for a gas in thermodynamic equilibrium.

Temperature and kinetic motion of the particles. The mean kinetic energy of gas
particles is given by the temperature of the gas according to:
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The Maxwell-Boltzmann velocity distribution (Fig. 4.1) for the particles is :

fv(T ) =
n(v) dv

n
=
( m

2πkT

)3/2
e−mv

2/2kT 4πv2 dv (4.2)

81



82 CHAPTER 4. PHYSICS OF THE INTERSTELLAR MEDIUM

Maximum of n(v): vT =
√

2kT/m; mean value:
√
〈v2〉 =

√
3kT/m

Examples: vT (H, 104 K) = 12.9 km/s, vT (e−, 104 K) = 550 km/s.

Figure 4.1: Maxwell-Boltzmann velocity distribution.

Boltzmann equation for the level population of atoms and molecules:

Ni(X
n)

N1(X+n)
=
gi
g1
e−Ei/kT .

In equilibrium the level population of atoms and molecules have a “Boltzmann” distri-
bution, expressed here as population of level i with statistical weight gi and excitation
energy Ei of an ion Xn relative to the population of the ground state i = 1 of that ion.

Saha equation for the ionization degree: The Saha equation describes the gas or
plasma ionization degree in thermodynamic equilibrium

NeN1(Xn+1)

N1(Xn)
= 2

g1(Xn+1)

g1(Xn)

(
2πmekT

h2

)3/2

e−χ/kT .

The Saha equation is given for the ground states of two consecutive ionization states Xn

and Xn+1 with statistical weight g1(Xn) and g1(Xn+1). χ is the energy required to ionize
Xn from the ground state.

Planck function for the radiation field: The radiation intensity in a volume element
in thermodynamic equilibrium can be described by the Planck equation for the intensity
distribution of a perfect black body

Bν(T ) =
2hν3

c2

1

ehν/kT − 1
. (4.3)

Detailed balance: For a gas in thermodynamic equilibrium there exists a detailed bal-
ance of microscopic processes, in the sense that the rates for a given process are equal to
the rates for the inverse process. Examples for microscopic processes and inverse processes
for neutral or ionized atoms are:

collisional excitation ←→ collisional de-excitation
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line absorption ←→ spontaneous and stimulated line emission
collisional ionization ←→ 3-body recombination
photo-ionization ←→ radiative recombination

4.1.2 Description of the diffuse gas

The gas in the interstellar medium is far from a thermodynamic equilibrium. Therefore
the gas properties cannot be simply described by the temperature T . For this reason the
temperature equilibrium has to be evaluated considering individual heating and cooling
processes, which depend for example on the radiation field, the gas temperature, the level
excitation, and the ionization degree.

Radiation field. Essentially everywhere in the Universe the gas temperature Tgas is
higher than the temperature Trad of the black-body radiation from the 3 K micro-wave
background which dominates the global radiation field. On the other hand there are
various types of other radiation sources (e.g. thermal radiation of dust, stars, galaxies,
...) which can be important locally. The radiation from these discrete sources is usually
strongly diluted and the energy distribution may depart strongly from a black-body curve.
Thus, there is essentially everywhere:

Trad 6= Tgas . (4.4)

The radiation field may be described by a diluted Planck-function

Fν = W ·Bν(Trad) with e.g. W < 10−10 ,

and for many application the radiation field can even be neglected.

Particle densities. In the disk of spiral galaxies, a rough average of the mean proton
or mean baryon density is of the order

nb ≈ 1 cm−3 ,

while a dense interstellar cloud may reach a density of nb ≈ 10+6 cm−3. The density is
only nb ≈ 10−3 cm−3 in hot bubbles and in the galactic halo the value approaches the
mean density of baryons in the universe, which is nb ≈ 10−7 cm−3.

Thus, there exist the following dominant density regimes for baryons:

stars np ∼> 10+20 cm−3

diffuse matter in the galactic disk np ≈ 10−3 − 10+7 cm−3

galactic halo np < 10−3 cm−3

The Universe is made up, except for an extremely small fraction (ε � 10−24), of space
filled with diffuse matter having a very low baryon density. The density and pressure
of the interstellar medium is typically lower than what is reachable in the best vacuum
chambers in the laboratory.
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Velocity distribution of particles. Fortunately, the Maxwell velocity distribution
fv(Tgas) is still a good approximation for the diffuse gas. This simplifies very much all
calculations, because the kinetic motion of the particles is defined at a given point by a
single parameter; the gas temperature Tgas or for ionized gas the electron temperature Te.

Why is the Maxwell velocity distribution valid?
This is not obvious when considering the mean free path length of a particle 〈`〉 and the
mean time 〈t`〉 between two collisions:

〈`〉 ≈ 1/nσ 〈t`〉 ≈ 〈`〉/vT (4.5)

Atomic cross sections are of the order of σ = πr2
B, where rB = 0.53 Å is the Bohr radius;

thus σ ≈ 1Å
2

(Å = 10−8cm).

Example: The mean free path and the mean time between two collisions for an electron
in the diffuse interstellar gas in the Milky Way (particle density of n = 1 cm−3 and
temperature Tgas = 10000 K or ve = 550 km/s) are on the order:

〈`〉 ≈ 1016 cm = 670 AU 〈t`〉 ≈ 2 · 108 s = 6 yr

Note that the kinetic velocity vT of protons and ions is much lower, and therefore they
undergo much less frequently interactions with other particles, apart from many interaction
with electrons.

The Maxwell velocity distribution is only valid, because:

– the typical structures (clouds) are larger than 〈`〉,
– the typical time scale for temporal variations is longer than 〈t`〉,
– the predominant processes for the interstellar gas are the collisions between electrons

and electrons, electrons and protons, and electrons and hydrogen or helium atoms,
which are (essentially) all elastic collisions. Therefore the kinetic energy is well
exchanged and randomized between the particles.

Level population for atoms and molecules: In general the Boltzmann equation for
the energy level population is not valid in the interstellar medium because the radiation
field is strongly diluted and the radiative transition rates are far from a detailed balance.

The Boltzmann equation for the level population may still be valid for cases where the
collisional transitions rates are much higher than all radiative transitions rates (Fig. 4.2).
This occurs in high density clouds (many transitions) and for low lying levels of many
atoms, ions, and molecules with only slow downward (spontaneous) transitions. Important
examples are:

– fine-structure levels of the ground state in many atoms and ions,

– hyperfine-structure level of H i,

– rotational levels of the ground state of H2,

– rotational levels of molecules in dense molecular clouds.

For these cases, the level population is defined by the gas temperature Tgas.
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Figure 4.2: Illustration of the dominant processes for the population of energy level of
atoms and molecules.

Apart from these special cases the level population of an atom has to be calculated from
equilibrium equations which take the individual transition processes (collisional and ra-
diative) into account.

4.1.3 Ionization

The Saha equation is not valid for the gas in the interstellar medium and it must be
distinguished between two ionization regimes, photoionization and collisional ionization.

Photoionization equilibrium. Hot stars emit a lot of energetic photons (hν > 13.6 eV)
which are capable to ionize the surrounding hydrogen gas. The ionization degree at a given
location can be described by the following equilibrium (rates per volume element and time
interval):

number of photo-ionizations = number of radiative recombinations.

For hydrogen this can be written as:

NH0

∫ ∞
ν0

4πIν
hν

aν(H) dν = NeNp α(H, T ) . (4.6)

The number of ionization depends on

Γν =

∫ ∞
ν0

4πIν
hν

dν , (4.7)

which is the flux of ionizing photons ν > ν0 in [photons/cm2s] (ν0 = 3.3·1015 Hz, equivalent
to a photon energy of 13.6eV). Γν dilutes with distance d from the photon source like
∝ 1/d2 and may be further reduced by absorptions.

aν(H) is the photoionization cross section for hydrogen, given for ν > ν0 by

aν(H) ≈ 6.3 · 10−18 cm2 · (ν0/ν)3 .
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Figure 4.3: Photoionization cross section for H0, He0 and He+.

The number of radiative recombinations is described by the densities of electrons and
protons and the recombination coefficient for hydrogen:

αB(H, T ) = 2.6 · 10−13(T/104K)−0.7 cm3 s−1

Photo-ionized nebulae have always a temperature on the order 10’000 K for reasons which
will be discussed later in connection with the cooling curve.

For rough estimates on the ionization degree, the number of ionization can be simplified to
≈ NH0 ā(H) Γ, using ā(H) = 2.6 ·10−18 cm2 and αB(H, 10′000 K). This yields the following
approximation for the ionization degree

Np

NH0

≈ 10−5 Γ

Ne
, [cm−1 s] (4.8)

which is given by the ratio between the flux of ionizing photons and the electron density
Ne. The term Γ/Ne is called the ionization parameter.

Equilibrium for collisional ionization. If diffuse gas is hot enough for collisional
ionization then the ionization degree is given by the rates of the two following processes:

number of collisional ionizations = number of radiative recombinations.

This is equivalent to the rate equation for the ions Xm and Xm+1:

NeN(Xm) γe(X
m, T ) = NeN(Xm+1)α(Xm, T )

γe(X
m, T ): ionization coefficient for the ionization by electrons

α(Xm, T ): recombination coefficient

Collisional ionization and radiative recombination are both proportional to the electron
density and the equilibrium depends only on the ionization and recombination coefficients.
Therefore, one can assume for a gas in an equilibrium state (not rapidly changing with
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time):
The ionization degree of collisionally ionized gas is a function of temperature:

N(Xm+1)

N(Xm)
= funct(T ) =

γe(T )

α(T )

For example the ionization degree of hydrogen is N(H+)/N(H) ≈ 0.003, 0.09, 1.2, 14, and
83 for electron temperatures of Te = 10′000 K, 12’500 K, 15’800 K, 20’000 K and 25’100 K
respectively. A good diagnostic tool for the determination of the ionization degree of a
hot, collisionally ionized gas are the emission lines from different ionization states of Fe
(see Slide 4–1).

Recombination time scale: The equilibrium for collisional ionization or the photo-
ionization equilibrium requires a constant input of energy. For collisionally ionized regions
this energy is provided usually by shock fronts due to gas moving supersonically. In photo-
ionized regions this is the ionizing radiation. If this energy sources stops then the gas will
recombine within a typical time scale of:

trec ≈
Np

NeNp α(H, T )
≈ 4 · 1012sec

Ne [cm−3]

4.1.4 H ii-regions

We assume that all ionizing photons from a hot star are absorbed by a surrounding nebula.
Such an ionized nebula is called radiation bounded.

For such a nebula we can formulate a “global” photo-ionization equilibrium,
where the emission rate of ionizing photons ν > ν0 is equal to the number of recombinations
in the entire nebula. For a spherically symmetric, homogeneous nebula this can be written
as: ∫ ∞

ν0

Lν
hν

dν = Q(H0) =
4π

3
r3
s NeNpαB . (4.9)

Q(H0): emitted, ionizing photons [photons/s]
rs: radius of the ionized nebula
NH = Ne = Np: electron density (= proton density for a pure hydrogen nebula)
αB: recombination coefficient for all recombinations into excited levels of H i; radiative
recombinations to the ground state produce again an ionizing photon and are not counted
for the ionization equilibrium.

The radial extension of the nebula is called the Strömgren-radius rs, which follows from
the previous equation:

rs =

(
3

4π αB

Q(H0)

N2
e

)1/3

. (4.10)

The mass of the ionized matter in the ionized hydrogen nebula is (mp = proton mass):

ms =
mp

αB

Q(H0)

Ne

Table 4.1 lists Strömgren-radii for different types of hot and massive main sequence stars,
adopting a density of Np = Ne = 100 cm−3 and a temperature of T = 7500 K.
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Table 4.1: Parameters for a spherical Strömgren nebula (Ne = 100 cm−3, Te = 7500 K.

star MV T ∗ [K] log Q(H0) rs [pc]

O5 -5.6 48000 49.67 5.0
O7 -5.4 35000 48.84 2.6
B0 -4.4 30000 47.67 1.1

Photoionization of helium. Essentially the same formalism as for the hydrogen applies
also for helium. If the light source emits sufficiently hard photons, then a He+2-zone forms
close to the source until the photons with energy > 54eV are absorbed. Then follows a
surrounding He+ region by the ionization of He0 by photons with energy > 24.6eV and
further out the He0-region (see Slide 4–2).

The H i-Strömgren radius remains practically unchanged when He-ionization is in-
cluded, because each photon that ionizes He i or He ii will produce also at least one re-
combination photon which is capable to ionize hydrogen.

Photo-ionization of heavy elements. For the calculation of the ionization structure of
the heavy elements additional processes (e.g. charge exchange) and the diffuse radiation
field has to be considered. Numerical calculations are required for accurate estimates.
Thereby the ionization structure depends quite importantly on the ionization structure
of helium, because the location of the He+2, He+, and He0-zones defines the radiation
spectrum in the nebula, which is strongly changed by the photoionization thresholds and
the diffuse emission produced by the recombination of helium atoms and ions.

Qualitatively, there results for the heavy elements always an ionization stratification,
with the more highly ionized species close to the radiation source and lower ionized species
further out (Slide 4–2). The highest ionization stage present in the nebula gives a qual-
itative indication of the spectral distribution (≈ radiation temperature) of the radiation
from the ionizing source.
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4.2 Dust

Interstellar dust is made of small solid particles with radius a < 1 µm similar in size to
cigarette smoke particles (nano-particles). Interstellar dust can be observed in different
ways:

– dark clouds (e.g. the coal-sack region),

– extinction and reddening, mainly in the galactic disk,

– light polarization of back-ground sources,

– strong IR emission,

– scattering of light.

4.2.1 Extinction, reddening and interstellar polarization

Extinction and reddening. The extinction (absorption and scattering) of light from
“background” sources depends strongly on wavelength. Short wavelengths (UV-light) are
very strongly absorbed and scattered (see extinction curve). For this reason the extinction
causes a reddening of the colors of “background” sources in the visual band. The extinction
curve has a strong maximum around 220 nm. This can produce in the far-UV continuum
of stars a strong absorption minimum. In the visual the extinction curve is smooth and
it is approximately a straight line in the extinction Aλ vs. 1/λ plot (Fig. 4.4). This is
equivalent to an extinction cross section which behaves like κ(λ) ≈ 1/λ.

Figure 4.4: Mean extinction curve Aλ/EB−V; the normalization in the visual is AV =
3.1 · EB−V.

The interstellar reddening of an object by dust along the line of sight is often described by
the color excess [units in magnitudes] for the filters B (blue) and V (visual = green/yellow):

EB−V = AB −AV = (B−V)− (B−V)0, (4.11)

which is equivalent to the difference between the measured color (B−V) and the initial
(intrinsic) color (B−V)0 of an object. The intrinsic color of a star can for example be
determined from its spectral type.
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The relation between the extinction (reduction of the brightness of an object) and the
color excess is:

AV ≈ 3.1 · EB−V. (4.12)

This relation holds for the dust in most regions of the Milky Way disk. For some special
star forming regions clear deviations from this relation are observed. This points to the
fact that the properties of the dust particles are there different from “normal”.

Polarization. The absorption by dust particles introduces a linear polarization of the
light from the “background” source. The polarization curve p(λ) has a broad maximum
around 5500 Å with half the maximum value around 12000 Å and 2600 Å (Fig. 4.5).
Typically, the polarization p is several % for a reddening of EB−V = 1 mag (p ≤ 9 ·
EB−V %/mag).

Figure 4.5: Wavelength dependence of the interstellar polarization.

The polarization is due to a preferred orientation of the anisotropic (oblate and prolate)
dust particles in the Galactic magnetic field. The elongated dust particles are forced by
magnetic torques to rotate with their rotation axis parallel to the magnetic field lines.
Thus, the orientation of the particles is predominantly perpendicular to the magnetic field
lines. For light with wavelengths on similar scales as the particle dimensions the absorption
will be stronger for waves with an E-vector oriented parallel to the elongated particle. It
results a polarization pQ = (I⊥ − I‖)/(I⊥ + I‖) parallel to the magnetic field. The fact,
that the polarization is strongest in the visual region indicates that particles with a size
(diameter) of about 500 nm are most efficient for producing the interstellar polarization.

The measurements of the interstellar polarization to many stars in Milky Way reveal
that the galactic magnetic field is aligned with the galactic disk in roughly azimuthal
orientation (Slide 4–3). Such measurements of the interstellar polarization direction are
very important for the investigation of the large and small scale magnetic field structure
in the Galaxy.
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4.2.2 Particle properties

Particle size. The extinction and polarization properties of the interstellar dust provide
important information on the size of dust particles (see Fig. 4.6):

– Large particles with radii a � λ absorb and scatter the light (UV-vis-IR domain)
in a wavelength-independent way. Thus, the extinction is proportional to the cross
section of the particle κ(λ� a) ≈ πa2.

– Very small particles a � λ scatter light according to the Rayleigh-scattering laws
with a cross section proportional to κ(λ� a) ∝ λ−4.

– The extinction curve is compatible with an average absorption cross section propor-
tional to κ(λ) ∝ λ−1. This indicates that there exists a broad distribution of particle
sizes in the range a ≈ 0.01 − 1 µm with a power law of roughly nS(a) ∝ a−3 (de-
tailed fits yield a power law index of −3.5) for the size distribution of the interstellar
particles).

– A large fraction of particles with sizes a ≈ 0.3 µm must be anisotropic and well
aligned perpendicular to the interstellar magnetic field in order to produce the ob-
served maximum around 0.55 µm in the interstellar polarization curve.

Figure 4.6: Dust extinction for different particles sizes.

Dust particle density. The average density of the interstellar dust particles in the
Milky Way disk can be estimated from the observed mean extinction. This extinction is
roughly 1 mag/kpc (V-band) or an optical depth of about τ ≈ 1/kpc. The most efficient
absorbers in the V-band are the particles with diameters 2a ≈ λ = 0.55 µm. We can use
for the particles along the line of sight the cross section: πa2 ≈ 2 · 10−9 cm−2. It follows
from

τ = πa2 · nS · kpc ≈ 1 (4.13)

the density of particles with sizes around a = 0.2 to 0.3 µm of about nS ≈ 1.5 ·10−13 cm−3

(this corresponds to 150 particles per km3). This is a very small dust particle density when
compared to hydrogen nH ≈ 1 cm−3. Despite this, these dust particles are dominating the
extinction in the visual region.
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The average gas to dust mass ratio is about 160 (±60) in the Milky Way disk. Thus,
about one third of the mass of the heavy elements is bound in dust particles (assuming
a metallicity of Z = 0.02). Dust and gas are quite well mixed in the interstellar medium
and therefore there exists an empirical relation between extinction and hydrogen column
density:

NH ≈ 6 · 1021EB−V mag−1 cm−2. (4.14)

Composition. The main components in interstellar space, H and He, form no solid
particles for the existing temperatures (> 5 K). For this reason, the main components of
the dust are heavy elements. For the composition of dust particles one has to distinguish
between two types of elements:

– elements, which easily condense in dust particles (refractory elements), e.g.: Al, Si,
Mg, Ca, Cr, Ti, Fe and Ni.

– elements, which are not (noble gases) or not easily bound in dust particles, e.g.: Ne,
Ar, N, O, S, Zn.

The abundance of different dust particle types can be inferred from spectroscopic signa-
tures. The observations indicate for the Milky Way disk:

mass particle type examples

60 % silicates quartz SiO2, silicates (Mg,Fe)[SiO4]
20 % organic molecules carbon-polymers
12 % graphite
4 % amorphous carbon
1 % “PAHs” poly-aromatic-hydrocarbons, e.g. benzol

Ices of different kinds, e.g. from water H2O, methane CH4, and ammonium NH3 may
condense in dense and cold molecular clouds as mantle around a dust nucleus.

Examples for spectroscopic signatures from dust particles are emission or absorption band
at the following wavelengths (see also Slide 4–4):

silicates: 9.7, 18 µm graphite: 2200 Å (?)
ice (H2O): 3.1 µm, PAH: 3.3, 6.2, 7.7, 8.7, 11.3 µm

4.2.3 Temperature and emission of the dust particles

The temperature of the dust particles depends strongly on the radiation field, and therefore
on the environment. The dust emission from the galactic discs has typically a spectral
energy distribution corresponding to a black body radiation temperature of 10− 30 K.

The dust temperature can also be significantly higher ≈ 100 − 1000 K, for example
in regions with a strong UV-visual radiation field as expected near bright stars. Above
1000 K the dust particle sublimate. The ice-mantles sublimate already for dust particle
temperatures of about 100 K.
The dust particles absorb very efficiently visual and UV-radiation because the particle
sizes are comparable to these wavelengths (see above). The emission of radiation in the
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far-IR (around 100 µm) is not efficient, because the emitting particle is much smaller
than the emitted wavelength (a dipole antenna with a length l is also not efficient in
emitting radiation with λ� l. For this reason, each absorbed UV-visual photon enhances
immediately the temperature of the absorbing particle. Then it takes some time (∼
seconds) until the particle has cooled down again by the emission of many far-IR photons
(Fig. 4.7). The absorption of an energetic photon by a small particles yields a high
particle temperature because the heat capacity is small. Thereafter, the cooling time is
relatively long, because of the small size (inefficient emission) of the particle. Thus, the ice
mantels of small particles sublimate first. The spectral energy distribution of the “thermal”
emission of a large volume of dust particles corresponds to the black-body radiation with
a temperature corresponding to the mean temperature of the dust particles.

Figure 4.7: Temperature as function of time for large (left) and small (right) dust particles
in the radiation field of a hot star

IR-galaxies. In many galaxies the interstellar dust hides large regions with embedded
sources, like clusters of young, massive stars or an active galactic nucleus. These sources
emit a lot of radiation in the visual and UV wavelength range which is first absorbed
by the surrounding dust and then re-radiated by the dust as black-body radiation in the
far-IR spectral region (Slide 4–4). For this reason these galaxies emit most of their energy
around 50 − 100 µm. Galaxies, which emit much more radiation in the IR than in the
UV-visual are called IR-galaxies. The brightest galaxies of this type (so-called ULIGs =
ultra-luminous infrared galaxies) emit more than 1012L� in the IR. They belong to the
brightest galaxies in the Universe.

4.2.4 Evolution of the interstellar dust

Dust particles form in slow and dense stellar winds. They may also form and grow in
dense clouds. Various processes erode, modify and destroy the dust particles and this
“processing” homogenizes the particle properties in a galaxy.

Condensation and grows. There are two main regimes where dust particles may form
or grow:

– stellar winds from cool stars,
– dense molecular clouds.
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The gas temperature in dense stellar winds from cool stars drops rapidly with distance
from the star. As soon as the temperature is below the dust condensation temperature T <
Tcond ≈ 1000 K dust particles will form. Because of the formation of dust, the stellar wind
becomes optically thick in the visual (and UV) range so that momentum from the radiation
field is transferred to momentum of the optical thick gas/dust (radiation pressure). The
chemical composition of the dust particles formed depends on the chemical abundances
in the stellar wind. In cool stars the most abundant molecule in the atmosphere besides
H2 is CO. For oxygen-rich stars (O>C; M-type stars) all carbon is blocked in CO and
therefore the most abundant dust particles will be silicates (Fe,Mg)SiOx. In carbon-rich
stars (C>O; C-stars) all oxygen is blocked in CO and the carbon rich particles like SiC,
amorphous carbon, graphite, PAHs, etc. are formed.

Dust particles can also form and evolve in molecular clouds if the density is high enough.
In particular the dust particles are reprocessed and therefore homogenized. Small particles
can grow, and if the temperature is low enough then ice-mantels (H2O, NH3 or CO2, CH4)
may condense around the dust

Erosion and destruction. The most important processes for the erosion and destruc-
tion of dust particles are:

– sublimation,

– absorption of high energy radiation,

– collision with fast moving (thermal) gas particles,

– collision with other dust particles.

Dust particles erode via evaporation of single atoms or molecules. This process is gradual
and starts to be significant for temperatures of T ∼> 30 K. The evaporation is also enhanced
if the particle is in a strong UV-visual radiation field. Single, energetic photons may be
able to evaporate small particles, because of the relatively strong temperature rise after a
photon absorption.

The absorption of an UV photon (λ ∼< 2000 Å) may excite an atom or molecule of the
dust particle, followed by the ejection of a component.

Collisions with thermal ions can strip off single or several atoms or molecules from the
particle. This process is certainly very important and efficient in regions with high gas
temperatures T ∼> 105 K. For this reasons the dust particles cannot survive in dense
collisionally ionized gas, like supernova remnants.

Collisions between dust particles with large relative velocities ∼> 1 km/s can lead to the
melting and evaporation of both particles. This process is of importance in dense clouds.
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4.3 Magnetic fields

Signatures from galactic magnetic fields, e.g. synchrotron emission, interstellar polariza-
tion, or Faraday-rotation, can be observed in the Milky Way and many other galaxies.

The large scale magnetic fields in disc-galaxies are aligned with the disc and follow
often the spiral structure (Slide 4–5). The origin of the magnetic fields in the Universe is
unclear. If there are seed fields present, then they can be enhanced in disc galaxies due to
the differential rotation.

Small scale structures of the magnetic field observed in the Milky Way are often
connected with high density regions (molecular clouds) or strong dynamic effects, e.g.
connected to H ii regions and supernova remnants. The magnetic fields are important for
the gas motion, because charged particles can essentially only move along the magnetic
field lines and not perpendicular to them. In addition, the magnetic fields determine the
motion of the relativistic particles (electrons and cosmic rays) in the interstellar medium.

The average magnetic field in the Milky Way has a strength of about 2 µG (1 G = 10−4 T;
magnetic flux density). The field strengths in H ii-region can be about 10 times stronger
and in molecular clouds even 100 times stronger.

Charge drift velocities in the magnetic field: The magnetic fields in the Milky Way
require, that there exists a differential motion between the charged particles (electrons and
ions), i.e. there must exist electric currents. For a field strength of ≈ µG and a ionization
of 1 % (fraction of charged particles) one can write according to the first Maxwell law
rot ~B = µ0

~j the following relation between the typical length scale L = 100 pc and the
drift velocity v:

B/L ≈ µ0 · np · e · v .

(B = 1 µG, np = 0.01nH, e = 1.6 · 10−19 C and µ0 = 1.26 · 10−6 A s V−1m−1). This yields
a differential drift velocity of the charges on the order v = 10−6 cm/s. It seems obvious
that such drift velocities are possible in the interstellar medium.

Temporal evolution of magnetic fields. Existing magnetic field have a very long life
time. The magnetic field can be reduced, if the charges collide so that their relative drift
velocities are reduced. Thus, the currents ~j decay if there exists an electric resistivity η
in the medium. However, η is extremely small in the interstellar medium, and η = 0 is a
very good approximation. The result is that the magnetic fields are frozen in for the
interstellar plasma and the magnetic fields behave in the following way:

– the fields move with the plasma,

– the field strength is roughly proportional to the plasma density,

– the magnetic fields pressure ∝ B2 acts like a gas pressure,

– the B-field is stabilizing dense clouds against collapse.

The magnetic field may drift out of the highly neutral gas in molecular clouds through
a process that is called ambipolar diffusion. Neutral clouds without magnetic fields can
easily collapse and form stars.
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The differential rotation Ω(R) in disc galaxies enhances the magnetic field in azimuthal
direction. The fields in radial direction are enhanced by the α-effect in small-scale tur-
bulences. Small scale field motions get due to the Coriolis force in the rotating disk a
predominant rotation direction, so that the radial field components are enhanced. After
a few disc rotations the field strength saturates because the enhancement by the Ω − α-
dynamo is compensated by the field dissipation in magnetic reconnections.

4.4 Radiation field

The radiation field in the interstellar and intergalactic medium depends strongly on the
location. Often there exists a bright star which dominates the radiation field. Dust may
attenuate strongly for some places the visual, UV and soft (E < 1 keV) X-ray radiation.
Important is also the distribution of neutral hydrogen, because H i blocks efficiently the
ionizing far-UV radiation.

It is difficult to define an average radiation field for the interstellar gas. One possibility
is to take the radiation field at the position of the sun. This is quite a reasonable approach,
because the sun is not in a particular region of the Milky Way. Important components
of the diffuse radiation are the cosmic micro-wave background, the diffuse thermal IR
radiation from the dust in the galactic disc and the stellar light from the stars in the
Milky Way. Slide 4–6 shows the spectral distribution of the diffuse radiation field in the
solar neighborhood.

The radiation field has an important effect on the properties of the interstellar gas. The
absorption of (energetic) photons can cause the following changes:

– heating of dust particles, the evaporation of the ice mantles and the dust cores,

– photo-dissociation of molecules,

– photo-ionization of atoms and ions as discussed in Sect. 4.1.3.

The gas is heated and additional charged particles are created in all these processes so
that also the gas pressure is enhanced. Most important is the ionization of H i, because the
optical depths for the ionizing far UV radiation and the electron density depend critically
on the N(H+)/N(H0)-ratio.

4.5 Cosmic rays

Cosmic rays are high energy (relativistic) particles in the interstellar medium with

E � m0c
2 (4.15)

(m0c
2: 0.51 MeV for e−; 928 MeV for p+).

4.5.1 Properties of the cosmic rays

Energy distribution. The energy distribution of the ions (p+, α, atomic nuclei) can
be described by a power law:

J(> E) ∼ E−q with q ≈ 1.7− 2.1 , (4.16)
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where J(> E) is the flux of all particles with energy > E (Slide 4–7). The highest
measured energies are about 3 · 1020 eV (≈ 50 Joule). However, such events are very rare
≈ 1 km−2 yr−1. Note, that the particle energies reached at CERN LHC are of the order
10 TeV, that is 1013 eV. Of course the LHC produces these energies in large quantities.

Observations of cosmic rays. Cosmic rays are detected with particle detectors and
Cherenkov-telescopes, which measure essentially the products of a collision with a particle
in the Earth atmosphere. For the determination of the ion abundances of the initial
particles, one has to bring detectors into space or at least into the stratosphere.

The highly relativistic particles which penetrate into the Earth atmosphere produce in
collisions with N and O nuclei a particle shower, a cascade of hadronic particles, mainly pi-
mesons (π±, π0), but also nucleons (p,n), anti-nucleons (p̄, n̄), kaons and hyperons, which
collide again with N- and O-nuclei. The unstable particles decay via weak interaction and
they produce electrons, positrons, myons, neutrinos, and photons. The photons can also
produce matter-antimatter pairs.

The particles in the shower are often relativistic and move faster than the speed of light
in air v > c/n (n: refractive index of air) and they produce therefore a Cherenkov-light-
cone. Cherenkov telescopes on the ground (Slide 4–8) and particle detectors on the ground
(hadrons and charged particles) or underground (e.g. neutrinos) provide then information
on the direction and energy of the initial cosmic ray particle.

Elemental abundances. The elemental abundance of the cosmic rays is rather similar
to the solar abundance with two important differences (Slide 4–9). The light elements
Li, Be, B, which are very rare in the sun and the rather rare heavy elements Sc, Ti, V
have a strongly enhanced abundance, similar to the abundance of the next elements in
the periodic system of elements. The explanation is that the the abundance minima are
filled in by the spallation or fission of heavy elements, in particular of C and Fe. Because
the particles travel with relativistic speed through interstellar space, they encounter on
their path H and He nuclei, mainly in dense molecular clouds, and they lose in collisions
protons and α-particles in a kind of erosion process. These collisions produce also π-mesons
and other particles. Observationally important is the following decay of π0-mesons which
produces γ-rays with > 100 MeV which can be observed with detectors on satellites.

Cosmic rays are an important heating source for cold (≈ 30 K), dense molecular clouds,
which are dust-shielded from the radiation of stars. Similar to the Earth atmospheres, a
shower of energetic particles are created by an interaction with a cosmic ray particle. This
leads then to a temperature enhancement in the cloud.

Relativistic electrons. There exists also a component of relativistic electrons in the
cosmic rays which is however much weaker. The flux is about 100-times less than for pro-
tons. The observed energy regime for electrons is in the range 2 MeV – 1000 GeV. The elec-
trons produce due to their relativistic motion in the galactic magnetic field Synchrotron-
radiation, which can be observed easily with radio telescope.

4.5.2 Motion in the magnetic field

The motion of the charged cosmic ray particles depends on the terrestrial, interplanetary,
and interstellar magnetic field. For the velocity component v⊥ perpendicular to the mag-



98 CHAPTER 4. PHYSICS OF THE INTERSTELLAR MEDIUM

netic field B the motion is controlled by the equilibrium of Lorentz force FL and centrifugal
force FZ :

FL =
e

c
v⊥ ·B = FZ = mω2rc =

mv2
⊥

rc
. (4.17)

Thus, the particle move along circles with the cyclotron radius rc (momentum: p = mv⊥)

rc = p
c

eB
. (4.18)

For relativistic particles there is p = γmv, E = γmc2 with the Lorentz factor γ = (1 −
(v/c)2)−1/2. This yields the relativistic cyclotron radius

rc =
E

eB
oder rc[pc] = 1.08 · 10−6E[GeV]

B[µG]
(4.19)

(e = 4.8 · 10−10 g1/2 cm3/2 s−1 and 1 G = g1/2 cm−1/2 s−1).

The distribution of the directions of the cosmic rays is essentially isotropic due to the
deviation of the particle motion in the galactic magnetic field (for small energies also the
interplanetary and terrestrial magnetic fields are important). The cyclotron radius is of
the order of the Galaxy rc ≈ 105 pc for very high energies E ≈ 1011 GeV. Particles with
such energies move along a straight line and their direction of origin can be determined.
On the other hand they can also escape easily from the galactic magnetic field into the
intergalactic medium.

4.5.3 The origin of the cosmic rays

The decay of the π0-mesons, which are created by collisions of the cosmic rays with
interstellar matter, can be measured as diffuse γ-radiation in the galactic disc tracing the
dense molecular clouds. This indicates that the cosmic rays are not a local phenomenon,
but that they exist throughout the entire galactic disc.

The observed spallation (e.g. the overabundance of Li, Be, B) requires, that the
relativistic particles pass typically through a column density of matter of about 1/σ ≈
5 g cm−2 before they reach us. Based on this, the following estimates can be made:

– mean density (ISM) nH = 1 cm−3 → ρ = nHmH = 1.7 · 10−24 g cm−3

– travel distance 3 · 1024 cm = 1 Mpc ≈ 3 · 106 Lyr
– travel time ≈ 3 · 106 years

The very high particle energies of the cosmic rays are most likely produced in magnetized
shock-fronts. The particles are in these shocks mirrored back and forth (in and out) of
a fast moving gas flows having a speed of (∆v ≈ 10000 km/s). Each time the particle
is mirrored it is accelerated by ∆v. Such shock fronts are produced by supernova explo-
sions and pulsar winds. The highest energy particles may originate from extra-galactic
sources, for example quasars where shock fronts in relativistic jets are responsible for the
acceleration.
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4.6 Radiation processes

In astronomy the most important source of information is the observations of the electro-
magnetic radiation. The flux of the observed radiation

~F (x, y, λ, t)

can be determined as function of the following parameters:

– coordinates: x, y (right ascension, declination) → intensity images,

– wavelength λ → spectral energy distribution,

– time t → light curves,

– polarization, which is the orientation of the electric vector of the electro-magnetic
wave; thus the flux is a vector quantity ~F .

Physical properties of astronomical objects can be derived from this information. However,
this requires a good knowledge of the physics of the radiations processes which take place
in the interstellar medium. Important radiation process are discussed in this chapter.

4.6.1 Radiation transport

The radiative transfer equation for a sight line describes the change of the radiation
energy dI (or intensity) along the optical path ds by contributions from emission processes
and the weakening of the intensity by absorption processes:

dIν = εν ds− κνIν ds (4.20)

Iν = spectral intensity I(~r, ~n, ν, t) erg cm−2 s−1 Hz−1 sr−1

εν = emission coefficient ε(~r, ~n, ν, t) erg cm−3 s−1 Hz−1 sr−1

κν = absorption coefficient κ(~r, ν, t) cm−1

The absorption coefficient κ = σ · n includes the cross section per particle σ [cm2] and the
particle density n [cm−3]. The geometric dilution ∼ 1/d2 of the radiation energy coming
from a source is taken into account by the solid angle dependence [sr−1].
The radiation transfer equation is a first order differential equation:

dIν
ds

= εν − κνIν . (4.21)

Optical depth and source function. The transfer equation takes a particularly simple
form if we use (except for κν ≈ 0) the so-called optical depth dτν = κνds and the source
function Sν = εν/κν . The source function is often a more convenient physical quantity
than the emission coefficient, especially if the emission at a given point depends strongly
on the absorption.

The optical depth is the absorption coefficient integrated along the optical path from x0

to x:

τν(x) =

∫ x

x0
κν(s) ds . (4.22)

The point x0 is arbitrary (e.g. the location of the source or the observer), and it sets the
zero point for the optical depth scale. A medium is called to be:
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– optically thick or opaque for τν > 1,
– optically thin or transparent for τν < 1.

The photon mean free path `ν is defined by:

〈τν〉 = κν`ν = 1 or `ν =
1

κν
=

1

Nσν
. (4.23)

The mean free path is just the reciprocal of the absorption coefficient for a homogeneous
medium.

When using optical depth and source function then the transfer equation can be written
as follows:

dIν
dτν

=
εν
κν
− Iν = Sν − Iν . (4.24)

Integration gives the formal solution,

Iν e
−τν =

∫
Sν e

−τν dτ (4.25)

or expressed with the start and end values for the optical depths:

Iν(τ2) = Iν(τ1) e−(τ2−τ1) +

∫ τ2

τ1
Sν(τ) e−(τ−τ1) dτ .

Often one can adopt τ1 = 0 and Iν(τ1) = Iν(0):

Iν(τν) = Iν(0) e−τν +

∫ τν

0
Sν(τ) e−τ dτ (4.26)

Simple, but very important special cases for the description of the interstellar medium
are:

• only emission of optically thin, diffuse gas without a background source (κν =
0; Iν(0) = 0):

Iν =

∫
ενds (4.27)

• only absorption (εν = 0) of radiation of a background source Iν(0):

Iν = Iν(0) e−τν (4.28)
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4.7 Spectral lines: bound-bound radiation processes

The line emissivity ε` of an atom or molecule for a radiative decay of an upper level n
to a lower level m is described by:

ε` =

∫
ε`ν dν =

1

4π
hνnmAnmNn with ε`ν = ε` Ψ(ν) (4.29)

– Nn: density of particles in level n [cm−3]
– Anm: decay rate or transition probability for this transition [s−1] (Einstein A-coefficient)
– hνnm: energy for the radiated photon
– 1/4π: per steradian
– Ψ(ν): normalized line profile function

Ψ(ν) describes the strong frequency dependence of the emission coefficient ε`ν (and ab-
sorption coefficient κ`ν). This includes the line profile due to the intrinsic line width or
the natural line profile, the Doppler-broadening due to the kinetic motion of the particles
(Gauss-function), and the Doppler-structure of the line due to large scale motions of the
emitting gas.

The line absorption depends on the intensity:∫
κ`ν Iν dν =

1

4π
hνnm I(νmn) (NmBmn −NnBnm) (4.30)

– gmBmn = gnBnm: Einstein B-coefficients
– gm, gn: statistical weights for the levels Nm,Nn (there is gm = (2Jm + 1))

This gives the line integrated absorption coefficient:

κ` =
1

4π
hνnm (NmBmn −NnBnm) =

1

4π
hνnmNmBmn

(
1− gm

gn

Nn

Nm

)
, (4.31)

where the frequency dependence is again described by the normalized profile function κ`ν =
κ` Ψ(ν). If Nn/gn > Nm/gm, which is equivalent to an inversion of the level population
(over-population with respect to the Boltzmann-distribution), then the line absorption
coefficient κ`ν becomes negative, and the radiation is amplified by stimulated emission
like in a laser.

The relations for the Einstein coefficients Anm and Bnm follow from the requirement of
detailed balance in thermodynamic equilibrium:

Anm =
2hν3

c2
Bnm and Bnm =

gm
gn
Bmn (4.32)

Detailed balance requires that the transition rates for radiative processes between two
levels (say 1 and 2) are equal:

N1B12Bν12(T ) = N2A21 +N2B21Bν12(T ) .

where we have the processes: absorption equals spontaneous and induced emission. Solving
for the Planck function and using the Boltzmann equation N1/N2 = (g1/g2) ehν12/kT gives:

Bν12(T ) =
N2A21

N1B12 −N2B21
=

A21/B21

(N1/N2)(B12/B21)− 1
=

A21/B21

g1B12/g2B21(ehν12/kT )
.
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This gives only the Planck function with the relations for the Einstein coefficients given
above.

Important case: optically thin emission line:

Iν =

∫
εν ds =

1

4π
hνnm Ψ(ν)Anm

∫
Nn ds (4.33)

The measured column density
∫
Nn ds is always an average value for the observed solid

angle. An accurate determination of the column density requires that the internal structure
of the emission region is spatially resolved.

4.7.1 Rate equations for the level population

Nn is the population of level n which is defined by all the transition rates which populate
this level

∑
mNm(Rmn + Cmn) and the rates which depopulate this level Nn

∑
m(Rnm +

Cnm). In an equilibrium state there is dN/dt = 0:

dNn

dt
=
∑
m

Nm (Rmn + Cmn)−Nn

∑
m

(Rnm + Cnm) = 0 (4.34)

Rates for radiative transitions are given by Rnm and Rmn per time interval [s−1]
(En > Em):

– Rnm = Anm +BnmIν spontaneous and induced line emission
– Rmn = BmnIν line absorption

The transition rates for spontaneous emission depends on the type of transition. In astron-
omy it is distinguished between allowed transitions, inter-combination or semi-forbidden
transitions, and forbidden transitions. In atomic physics the terms, electric dipole tran-
sitions, magnetic dipole transitions, and multipole (usually quadrupole) transitions are
used.

Typical transition rates A are:
– A ≈ 108 s−1: allowed transitions (electric dipole)
– A ≈ 102 s−1: semi-forbidden transitions (electric dipole with spin-flip)
– A ≈ 10−2 s−1: forbidden transitions (magn. dipole and electric quadrupole)
– A ≈ 10−5 s−1: forbidden fine structure transitions
– A ≈ 10−15 s−1: forbidden hyperfine structure transitions (e.g. H i)

Selection rules for dipole transitions:
For one electron atoms the selection rules are:
– ∆l = ±1 (this includes a parity change for one electron systems)
– ∆m = 0,±1.

For many electron systems the selection rules are:
– parity change
– ∆S = 0
– ∆L = 0,±1
– ∆J = 0,±1 except J = 0 to J = 0
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In higher multipole transitions the spin may change (semi-forbidden transitions) or no
parity change may be required (magnetic dipole or electric quadrupole transitions). There
is no parity change in all transitions between states with the same electron orbit configu-
rations like transitions between fine-structure levels or hyperfine-structure levels.

Rates for collisional transitions are described by Cnm and Cmn (in [s−1]). It has to
be distinguished between collisional deexcitation n→ m and collisional excitation m→ n
(En > Em):

Cnm = NsQnm und Cmn = NsQmn (4.35)

where Ns is the density of the colliding particles (often e−, p+, H, H2, etc.), and Qnm,
Qmn are the collision rates [cm3 s−1].

For collisional transitions in atoms by e− between level n and m (∆Enm = hνnm =
En − Em, n > m) there is

Cnm = Ne
1

gn

8.63 · 10−6 cm3 s−1√
T [K]

Ωnm collisional deexcitation (4.36)

Cmn = Ne
1

gm

8.63 · 10−6 cm3 s−1√
T [K]

Ωmne
−∆Enm/kT collisional excitation (4.37)

Ωnm = Ωmn are the collision strengths. Typical values for the collision strengths are of
the order ≈ 0.1 − 10, with usually only a small temperature dependence. It follows the
following relation for the opposite collisional processes between level m and n:

Cmn =
gn
gm

Cnme
−∆Enm/kT . (4.38)

4.7.2 Collisionally excited lines

2-level atom. The rate equation for a 2-level atom (or molecule) is, if we consider only
collisional processes due to free electrons e− (reasonable assumption for an ionized gas):

N1 (B12Uν +NeQ12) = N2 (B21Uν +A21 +NeQ21) (4.39)

This equation becomes even more simplified if we neglect absorption and stimulated emis-
sion. This is a good approximation for the interstellar medium because of the weak
radiation field. Typical dilution factors are W � 10−10, and there is B12Uν � NeQ12 and
B21Uν � A21 + NeQ21. This gives the following simple but very useful rate equation for
a 2-level atom:

N1NeQ12 = N2 (A21 +NeQ21), (4.40)

and with Q12 = Q21 (g2/g1)e−hν/kT (hν = ∆E21) follows the level population ratio for
a 2-level atom:

N2

N1
=
g2

g1

NeQ21 e
−hν/kT

A21 +NeQ21
=
g2

g1

e−hν/kT

A21/NeQ21 + 1
(4.41)

Low density regime: The spontaneous emission is much faster than the collisional de-
excitation NeQ21 � A21 and it follows for the level population and the line emissivity
(ε` = (1/4π)hνnmAnmNn):

N2

N1
=
g2

g1

NeQ21

A21
e−hν/kT and ε21 =

1

4π
hν21NeN1

g2

g1
Q21e

−hν21/kT (4.42)
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The line emission coefficient is then proportional to the particle density squared ε` ∝ N1Ne

(Fig. 4.8).

High density regime: Collisions are frequent and the collisional de-excitation is much
faster than the spontaneous emission NeQ21 � A21. In this case the level population
depends only on the collisions and we obtain the Boltzmann level distribution

N2

N1
=

g2

g1
e−hν/kT and ε21 =

1

4π
hν21N1

g2

g1
A21e

−hν21/kT (4.43)

The line emission is proportional to the density ε` ∝ N1 (Fig. 4.8).

Figure 4.8: Schematic behavior for emissivity per electron for a collisionally excited line
as function of the density (Nk=critical density).

The critical density Nk = A21/Q21 for a line transition defines the border line between
the high and low density regimes. When considering “real” multi-level atoms, then the
critical density is a quantity of a particular level x, for which one has to evaluate the ratio
between all line transitions and all de-populating collisional transitions

Nx,k =

∑
nAxn∑
nQxn

. (4.44)

Collisional rates due to electrons in warm (photoionized) gas T ≈ 104 K are on the order
Q21 ≈ 10−7 cm3 s−1. Rough estimates for the critical densities Nk for different types of
line transitions in a photoionized nebula (T ≈ 104 K, electron collisions dominate) are as
follows

– allowed transitions A ≈ 108 s−1 Nk ≈ 1015 cm−3

– inter-combination lines A ≈ 102 s−1 Nk ≈ 109 cm−3

– forbidden transitions A ≈ 10−2 s−1 Nk ≈ 105 cm−3

– forbidden fine structure lines A ≈ 10−5 s−1 Nk ≈ 102 cm−3
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Important example: H i – 21 cm line (1420 MHz)
The ground level of atomic hydrogen H i
has due to the non-zero nuclear spin a hy-
perfine splitting, between the parallel and
anti-parallel configurations of the spins of
the proton and the electron.

energy level diagram H i
1 2S

The parallel configuration (quantum num-
ber for the hyperfine-structure f=1, sta-
tistical weight g=2f+1=3) is energetically
slightly higher (∆E = hν ≈ 10−5 eV)
than the anti-parallel configuration (f=0,
g=1).

The transition from f = 1 to f = 0 has the following properties:

– the transition rate for spontaneous emission is extremely small A21 = 3 · 10−15 s−1

(decay time 107 year!),

– The collision frequency with other particles in the cold (T = 100 K), diffuse NH ≈
1 cm−3, partly neutral interstellar medium (electron collision dominant) is on the
order NHQ12 ≈ 10−9 s−1 (an H-atom gets a kick about every 60 years).

→ collisions define the level population and therefore the H i hyperfine structure
level population is essentially always and everywhere in the interstellar medium in the
high density regime:

N2

N1
=
g2

g1
e−hν/kT where hν/kT < 10−5 for T > 10 K (4.45)

result : N2 = 3N1 =
3

4
NH0 and ε21 cm =

1

4π
hν A21

3

4
NH0 (4.46)

Thus, 75 % of the atomic hydrogen in the Universe will be in the excited state f = 1 of
the two hyperfine structure levels. Because H is so abundant it is possible to observe the
decay f=1 → f=0, despite the very long lifetime (small transition rate) of the excited
level. In practice, the H i 21 cm line observations belong to the most important diagnostic
tool for the investigation of cool, diffuse gas in the Milky Way and other galaxies. Thereby
the measured surface brightness yields directly the column density along the line of sight∫
NH0 ds.

Temperature and density determinations. We consider a 3-level atom (or molecule)
with the following simplifications:

– no absorption or stimulated emission (induced radiation transitions),

– no transitions between level 2 and 3 (N1 � N2, N3).

Then there is:

N2

N1
=
g2

g1

e−hν21/kT

A21/NeQ21 + 1

N3

N1
=
g3

g1

e−hν31/kT

A31/NeQ31 + 1
(4.47)

→ N3

N2
=
g3

g2

A21/NeQ21 + 1

A31/NeQ31 + 1
e−h(ν31−ν21)/kT (4.48)
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If the line emissivities of two collisional excited lines differ in their temperature or density
dependence, then they can be used for determining Te and Ne in the emitting gas. For
this we use the relation between level population ratio N3/N2 and line emissivity ratio
(with εnm = (1/4π)hνnmAnmNn):

ε`31

ε`21

=
ν31A31

ν21A21

N3

N2
(4.49)

Density determination:

– ideal for ν31 − ν21 ≈ 0, → Te-dependence small,

– gas density Ne between Nk,2 and Nk,3,

– critical densities for the two transitions differ Nk,2 6= Nk,3,

– low and high density regimes: (with simplification e−h(ν31−ν21)/kT = 1)

– low density: Ne � Nk,2, Nk,3 (or: Anm/NeQnm � 1)

N3

N2
=
g3

g2

Q31/A31

Q21/A21
→ ε`3

ε`2
=
g3Q31

g2Q21
=

Ω13

Ω12
(4.50)

– high density: Ne � Nk,2, Nk,3 (or: Anm/NeQnm � 1)

N3

N2
=
g3

g2
→ ε`3

ε`2
=
g3A31

g2A21
(4.51)

– Slide 4–10 illustrates the density determination using the [O ii] and [S ii] lines.

Figure 4.9: Schematic illustration for the density determination (left) using two emission
lines with essentially identical excitation energy (right) but with different critical density
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Temperature determination:

– ideal for the temperature determination is a 3-level atom with a large difference in
the excitation energies ν31 − ν21, so that the temperature dependence for the line
ratio becomes large,

– the gas density should be for both transitions either in the low or high density regime,
Ne � Nk,2, Nk,3 or the high density regime Ne � Nk,2, Nk,3, so that the line ratio
is not strongly density dependent. For these conditions, there is:

N3

N2
= const · e−h(ν31−ν21)/kT . (4.52)

– The constant const. is for the low density regime:

for Ne → 0 const =
g3

g2

Q31/A31

Q21/A21
, (4.53)

– and for the high density regime

for Ne →∞ const =
g3

g2
(4.54)

Figure 4.10: Schematic illustration for the temperature determination (left) using two
transitions with strongly different excitation states (right) and similar critical densities.

Slide 4–11 illustrates the temperature determination for the [O iii] lines. This is an ideal
case because level n = 3 decays to n = 2 and produces a line in the same wavelength
range as the decay 2→ 1. For “real” emission line ratios there exists often a simultaneous
dependence on temperature and density. In addition, the derived values are only valid for
one ion and they represent some sort of average for the observed (usually inhomogeous)
emission line region of that line. For this reason, the Te and Ne determination for a
nebula should be based on all diagnostic lines available. Slide 4–12 shows the emission
line spectrum for the Orion nebula, a typical H ii region.
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4.7.3 Collisionally excited molecular lines

We consider here only the very important molecules H2 and CO as examples for the
excitation of molecules in the interstellar medium. There exist the following transitions
between different energy states of molecules:

– rotational transitions: J ′ − J ′′
energy levels of a rotator: EJ ∝ J(J + 1); ∆EJ ≈ 0.01 eV

– (ro)-vibrational transitions: ν ′ − ν ′′
energy levels of a harmonic oscillator: Eν ∝ ν + 1/2; ∆Eν ≈ 0.3 eV

– electronic transitions: n′L′ − n′′L′′
energy levels En ∝ −1/n2; ∆En ≈ 10 eV

Selection rules for the angular momentum change of a molecule due to allowed (dipole)
transitions are:
∆J = ±1 or ∆L = ±1, 0 (but not L′ = 0− L′′ = 0).

schematic energy level diagram for a 2-atomic molecule:

transition H2 CO

rotational transitions
dipole-transitions
J = 1→ 0 — 2.60 mm, A = 7.2 · 10−8s−1

J = 2→ 1 — 1.30 mm, A = 6.9 · 10−7s−1

J = 3→ 2 — 0.65 mm, A = 2.5 · 10−6s−1

quadrupole transitions
J = 2→ 0 28.2 µm, A = 2.9 · 10−11s−1 —
J = 3→ 1 17.6 µm, A = 4.8 · 10−10s−1 —

ro-vibrational transitions
dipole transitions
ν = 1→ 0, J = 1→ 0 — 4.7 µm,
ν = 2→ 0, J = 1→ 0 — 2.3 µm,
quadrupole transitions
ν = 1→ 0, J = 2→ 0 2.12 µm,
ν = 2→ 0, J = 2→ 0 µm,
electronic transitions
e.g. 1Σ+

u →1 Σ+
g UV (≈ 100 nm) A ≈ 107s−1 UV (≈ 100 nm) A ≈ 107s−1
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4.7.4 Recombination lines: excitation through recombination

A recombination process involves the collision of a free electron with an ion Xi+1 forming
together an ion Xi. After this process, the ion (electron) may be in the ground state Xi

g or
in the excited state Xi

n. The excited state can then decay to lower states by an emission of
a line photon. Alternatively it may also be possible, but very unlikely for the low density
in the interstellar medium, that the excited state is either re-ionized or deexcited by a
collision, before a recombination line photon is emitted. Slides 4–13 and 4–14 show the
levels and transitions of H i and He i, which are excited by recombination. The exited
states Xi

n and corresponding lines of an ion, which are populated by recombination, can
usually be distinguished from collisional excited lines.

There are two main recombination processes:

radiative recombination: Xi+1 + e− → Xi + hν
This is the predominant process in the interstellar medium.

3-body recombination: Xi+1 + e− + e− → Xi + +e−

This process is only important in high density gas, like stellar atmospheres, and can be
neglected for the interstellar gas, because there are two electrons involved.

Emissivity for recombination lines: The emissivity for recombination lines depends
on the recombination rate for radiative recombination, which can be described by

ε` =
1

4π
hνnm α

eff
nmNeN(X+i+1) . (4.55)

The emissivity per volume element is proportional to the density squared. The effective
recombination coefficient for a recombination line αeff

nm(Te, Ne) (units [cm3/s]) considers
the population of the upper level n through the following processes:

– recombination directly into the level n

– cascades into level n from higher levels, which are populated by recombinations

– collisional transitions into level n from other level, which were also populated by
recombinations.

The temperature dependence of the recombination lines behaves roughly like

αeff
nm(Te) ∝ 1/T . (4.56)

This can be explained by the fact, that slow electrons have a higher chance to be captured
by an ion.

Hydrogen and helium recombination lines The strongest recombination lines from
diffuse gas regions are the lines from H i. In the visual range are the Balmer-transitions
(transitions n− 2), in the near-IR the Paschen (n− 3), e.g. visible in the Orion spectrum
in Slide 4–12, and Brackett lines (n− 4) and in the far-UV the Lyman lines (n− 1).

The He i and He ii recombination lines are significantly weaker than the H i lines. One
important factor is the abundance of helium which is typically 10 times lower. In addition,
the He i energy levels are not degenerate for levels with different orbital angular momentum
and further there are different levels for the singlet (electron spins anti-parallel) and the
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triplet states (spins parallel). Due to this there are many more but rather weak He i-lines
in the spectrum (Slides 4–13 and 4–14).

Recombination lines from heavy elements are in astronomical objects again much
weaker than the H i lines mainly due to the much lower abundance of these elements.

4.7.5 Absorption lines

Absorption lines are a very important source of information for the investigation of the
interstellar medium. The atoms and ions in the diffuse gas are predominately in the ground
state, because of the low density in the ground state. For this reason the interstellar gas
produces essentially only absorptions from resonance lines. These are the absorptions by
allowed transitions from the ground states of atoms and ions.

the strongest absorption lines are the resonance lines of atomic and molecular hydrogen
H i and H2 in the far-UV between 912Å and 1215Å (see Slides 4–15 to 4–17).
For the heavy elements the strongest lines are often the doublet-transitions 2S−2P of the
isoelectronic sequences of Li, Na, and K. Some important absorption lines are:

Li-sequence Na-sequence K-sequence

C iv λλ1548,1551 Na i λλ5990,5996 Ca ii λλ3934,3968
Nv λλ1239,1243 Mg ii λλ2786,2803
Ovi λλ1032,1038 Al iii λλ1855,1863

Si iv λλ1394,1403

Line strength. The strength of the line absorption coefficient κ` is defined by atomic
parameters and the volume density of the absorbing atom (or ion) Nm in state m:

κ` =

∫
κ`ν dν =

1

c
hνnmNmBmn . (4.57)

The contribution from the stimulated emission (−NnBnm) can be neglected for most cases.
The important point in this equation is the fact that the strength of the line absorption
coefficient is proportional to the density of the absorbing particle.

The absorption coefficient is often expressed with oscillator strength fmn, a description
which comes from classical electrodynamics:

κ` =
π e2

me c
fmnNm . (4.58)

The relation between oscillator strength and Einstein B coefficient is:
fmn = (me hν/π e

2)Bmn.

The total line absorption follows through the integration of all particles along the line of
sight and considering the frequency dependence of the line profile:∫ ∫

Iνκ
`
ν(Nm) dν ds (4.59)

It is often difficult to determine from the observed line absorption the column density∫
Nm ds. This problem exists because the absorptions saturate, so that the absorption

line depths in the spectrum is far from a linear relationship to the column density. For a
meaningful interpretation a detailed analysis of the line structure is required.
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Line profile structure
The line absorption depends usually strongly on frequency (or wavelength). Different
effects play a role for the line structure:

The natural line profile. The natural line profile describes the line structure of a
transition with frequency ν0 of an atom, ion or molecule at rest. The line profile can be
described by the Lorentz profile:

ψL(ν) =
1

π

Γ/4π

(ν − ν0)2 + (Γ/4π)2
(4.60)

Γ is the transition rate, 1/Γ the life time of the two levels. The natural line width for
allowed transitions is of the order ∆λn ≈ 10−4Å (wavelength independent). The natural
line width is extremely small when compared to the Doppler effect caused by the kinetic
and dynamic motion of the gas. For this reason a pure Lorentz profile is rarely used in
astrophysics.

The Doppler profile. The Doppler profile is used for absorption lines which are weak
or have an intermediate strength. The Doppler profiles takes the kinetic motion of the
absorbing particles in the gas cloud into account:

ψD(ν) =
1

∆νD
√
π
e−(ν−ν0)2/∆ν2D (4.61)

The structure of the Doppler profile is a Gauss curve. ∆νD is the Doppler width which
follows from the velocity dispersion σv of the absorbing particle

∆νD =
σv
c
ν0 (4.62)

due to the kinetic velocity as defined by the Maxwell-Boltzmann velocity distribution. For
a given temperature the Doppler width is:

σv =

(
2kT

m

)1/2

= 12.9

(
T [K]/104

A

)1/2

km/s . (4.63)

Sometimes, the turbulent motion of the gas is included in this Doppler profiles.

The Voigt profile. The Voigt profile must be used for very strong absorption lines.
This profile considers the fact, that the line wings defined by (ν − ν0) > ∆νD decrease
faster for the Doppler profile than for the Lorentz profile. The Doppler profile falls off
exponentially, but only quadratically for the Lorentz-profile. The Voigt profile is simply
a more general line profile description which folds together the Lorentz and the Doppler
profile:

ψV (ν) =
1

∆νD
√
π

Γ

4π2

∫ ∞
−∞

e−(∆ν)2/∆ν2D

(ν − ν0 −∆ν)2 + (Γ/4π)2
d(∆ν) (4.64)

Multiple components. Often different components of a line absorption are observed
which are displaced in the spectrum. This can be due to clouds located at different
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distances and having different radial velocities. It is often hard to find out from absorption
line observations which component is closer to the observer.

Spectroscopic observations:
A high spectral resolution is required to measure with sufficient accuracy the structure of
interstellar absorption lines. The high spectral resolution requires that the background
source is bright and has intrinsically no narrow lines. Thus it is only possible to probe
with an absorption line analysis only certain line of sights towards well suited background
objects, which are:

• bright, hot stars with broad lines (fast rotators) for interstellar absorptions,

• bright quasars for intergalactic absorptions.

Line equivalent width. A very basic quantity for the characterization of an absorption
line is the equivalent width Wλ. Wλ measures the strength of a line absorption in the
spectrum Iλ. Wλ measures the area in the spectrum between the normalized flux Inλ =
Iλ/Icont and the normalized continuum flux Icont = 1 (area in units or Å or nm). Expressed
as mathematical formula:

Wλ =

∫
Linie

(1− Inλ ) dλ . (4.65)

The absorption depth at a given wavelength (or frequency) is defined by the optical depth
τ :

Wλ =

∫
(1− Inλ ) dλ =

λ2

c

∫
(1− e−τν ) dν (4.66)

while the optical depth is the absorption coefficient integrated along the line of sight:

τν =

∫
κ`ν ds (4.67)

Curve of growth

Weak lines. For weak absorption lines Inλ ∼> 0.8 the approximation 1 − e−τ ≈ τ is
applicable and the equivalent width is:

Wλ ≈
λ2

c

∫ ∫
κ`ν dν ds =

λ2

c

π e2

me c
fmn

∫
Nm ds . (4.68)

The curve of growth is for weak absorption lines in the “linear regime”. This means that
each contribution to the line absorption (column density) produces an enhancement of the
equivalent width independent of the wavelength of the absorption. This is equivalent to
the statement that the equivalent width is proportional to the column density for weak
lines (Fig. 4.11). The following relationship for λ and Wλ expressed in Å can be used:∫

Nm ds =
1.13 · 1020

λ2[Å] fnm
·Wλ[Å] (4.69)

Saturated lines. Stronger lines saturate in the Doppler core and the line can only grow
in the Doppler wings if there are more absorbing particles. The equivalent width changes
not much if the column density is enhanced because of the exponential decrease of the
absorption coefficient in the line wings. The equivalent width approaches a limiting value
which is proportional to the line width of the Doppler profile.
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In this regime, one has to consider in the line analysis, that a displaced wavelength
component, e.g. due to a cloud with different radial velocity, can produce a significant
contribution to the equivalent width, while an additional component in the line center has
no effect on the line profile.

Figure 4.11: Schematic illustration of the curve of growth for absorption lines.

Damped absorption lines. In very strong absorption lines the damping wings become
visible which grow with increasing column density. These lines are called damped absorp-
tion lines. The damped profiles are due to the natural line profile for which the absorption
coefficient decreases only quadratically with distance from the line center. Although the
line wings of the natural line profile are very weak, they are in the far line wing still
stronger than the exponentially decreasing Doppler wings and become visible for very
strong absorption lines. Lines in which the damping wings dominate are in the regime
where the equivalent width is proportional to the square of the column density:∫

Nm ds ∝W 2
λ (4.70)

Example: H i Lyα:
λ = 1215 Å, fLyα = 0.41
– for unsaturated (optically thin) lines (Wλ � 0.3 Å) there is:∫

N(H I) ds = 1.8 · 1014 cm−2 ·Wλ[Å] , (4.71)

– for damped absorptions (Wλ � 1 Å) there is:∫
N(H I) ds = 1.9 · 1018 cm−2 · (Wλ[Å])2 (4.72)
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Example: H2-molecular absorptions
H2 is a special case: Only the singlet states 1Σg with anti-parallel spins for the electrons
are stable. In additions the Pauli principle requires that the quantum states of the H2

systems are anti-symmetric (non-exchangeable).

→ there are two types of molecular hydrogen H2 depending on the relative orientation of
the nuclear spins (see Fig. 4.12):

– para-H2: nuclear spin antiparallel, J even, statistical weight J(J + 1)

– ortho-H2: nuclear spin parallel, J odd, statistical weight 3 J(J + 1)

For this reason there are no allowed dipole-transitions between the different rotation and
vibrational states of the ground level. A dipole-transition requires ∆J = ±1, but such a
transition would also require a nuclear spin flip which is not possible.

Figure 4.12: Energy level diagram for molecular hydrogen.

Electronic transitions from the ground state are possible, because the symmetry require-
ment (Pauli principle) does not apply if the principle quantum numbers of the two electrons
are different. e.g. 1Σg −1 Σu with ν ′(= 0)− ν ′′ und J ′ − J ′′(= J ′ ± 1)
These electronic transitions produce very strong H2 Lyman- und Werner bands in the far
UV.

Temperature determination using H2 absorption lines. Collisional processes dom-
inate the level population for the lowest states of H2, because the radiative transitions are
forbidden between the rotational states. The population of the level NJ,ν = 0 are therefore
given by the Boltzmann-equation:

NJ ∝ gJ e−EJ/kT (4.73)

The observations of the strength of H2 far-UV lines yields therefore a good estimate for
the temperature in molecular clouds.
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4.8 Free-bound and free-free radiation processes

4.8.1 Recombination continuum

The electron, which is captured in a radiative recombination process, emits a photon in
particular wavelength regions, which are characteristic for the recombining atom or ion.
This radiation is well visible for the H i recombination. The recombination continuum may
also be seen for He i and He ii in high quality spectra.

The energy of the emitted photon is defined by the kinetic energy (relative to the recom-
bining ion) of the capture electron and the energy difference between the ionization energy
(usually set to zero) and the (negative) energy of the bound state into which the electron
is captured initially:

hν =
1

2
mev

2
e − χn (4.74)

For hydrogen this is χn = −Ry/n2. Recombination into level n produce according to this
equation photons with an energy of at least −χn or more. This produces characteristic
discontinuities in the spectrum of photoionized regions. The strongest case is the Balmer
jump at 3648 Å.

Figure 4.13: Wavelength dependence of the Recombination continua for a hot and a cold
emission nebula.

The emissivity for the recombination continuum can be calculated from the following
formula:

jν =
1

4π
NeN(X+m+1)

∑
n,L

∫
ve
ve σn,L(Xm−1, ve) f(ve, Te)hν(ve) dve . (4.75)

The meaning of the different terms are:

– 1/4π: considers emission in all directions

– NeN(X+m+1): density of the particles involved

–
∑
n,L: summation over all levels

–
∫
ve
f(ve, Te)dve: integration for a Maxwell distribution of electrons

– ve: number of interaction is proportional to the electron velocity

– σn,L(X+m, ve): cross section for the recombination into level n,L.
In general σ is large for small ve, thus slow electrons are more frequently captured.

– hν(ve): energy of the emitted photon

Temperature dependence: The intensity jump and the gradient of the recombination
continuum depend on the gas temperature. For low temperature the average kinetic energy
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of the captured electron is lower and more photons are emitted with an energy just above
the “jump” energy. A high temperature gas emits more photons significantly above the
jump, so that intensity jump and the gradient are smaller (Fig. 4.13).

low temperature → steep continuum and relatively strong jump
high temperature→ flat continuum and relatively small jump

4.8.2 Photoionization or photo-electric absorption

In a photo-ionization process a photon “is pulling out” and electron from an atom or ion:

X+m + hν → X+m+1 + e− (4.76)

The liberated electron has after the process a kinetic energy which is equal to that part
of the photon energy, which was beyond the ionization energy χion:

e−(Ekin) = hν − χion . (4.77)

This extra energy is in photo-ionized regions the most important energy source for the
heating of the gas.

Absorption cross section. The photo-ionization cross section aν is zero aν = 0 for
photon energies below the ionization energy of a given atomic state. The cross section
has a maximum value at the ionization energy and for higher energies the cross section
decreases typically like (see Fig. 4.3):

aν ∝ ν−3 . (4.78)

The H i ionization edge. The H i ionization edge at 912 Å, or 13.6 eV is most important
for the interaction between the radiation field and the ISM. If radiation above 13.6 eV is
present, then the gas can be ionized and become transparent for ionizing radiation. If no
radiation E > 13.6 eV is present then the gas becomes neutral and opaque for the ionizing
radiation.

The H i ionization edge defines further two types of neutral elements. Elements which have
an ionization edge below 13.6 eV and can be ionized by UV-photons with hν < 13.6 eV.
These elements are also in the neutral H i-regions often ionized, e.g.:

– C ii, Mg ii, Si ii, Ca ii, Fe ii.
Atoms with χion ≥ 13.6 eV are neutral when hydrogen is neutral, e.g.:

– He i, N i, O i, Ne i.

The absorption cross section of hydrogen and helium are small for high photon energies
hν > 100 eV, in the soft (= low energy) X-ray range. For these energies one has to consider
also photoelectric absorptions from heavy element despite their low abundance. In many
electron atoms, X-ray photons can be absorbed efficiently by inner shell electrons (K-
or L-shell). This produces discontinuities in the photoelectric absorption cross sections.
The more abundant heavy elements dominate the interstellar absorption in the soft X-ray
range due to K- and L-shell electron absorptions (Slide 4–18).

The averaged photo-electric absorption in the soft X-ray range is quite universal for neu-
tral interstellar gas. The strength of the X-ray absorptions is essentially identical for
atomic or molecular gas, or for neutral gas with dust particles.
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The photo-ionization cross section is of course strongly reduced for highly ionized gas.
Due to this, soft X-rays can also be observed for extra-galactic sources for sight lines
perpendicular to the Milky Way disk.

4.9 Free-free radiation processes or bremsstrahlung

4.9.1 Radiation from accelerated charges

Whenever a charged particle is accelerated or decelerated it emits electromagnetic radi-
ation. If this radiation is created by the interaction of fast electrons with atomic nuclei
then it is called bremsstrahlung. In atomic physics this process is called free-free emission
because the radiation corresponds to transitions between unbound states in the field of a
nucleus.

The following scheme illustrates the origin of the radiation from an accelerated charged
particle (from M.S. Longair, High Energy Astrophysics). The field lines are shown for a
particle that suffers a small acceleration ∆v. The electric field lines inside a sphere with
radius r = ct already “know” that the charge has moved, while the field lines outside
this sphere have still the configuration from before the kick. In a shell with thickness c∆t
there must be an electric field component in iφ or tangential direction. This “pulse” of
transverse electromagnetic field propagates away from the charge with speed of light and
represents the radiation from the accelerated charge (Slide 4–19).
The total power emitted from a single accelerated charge q is given by Larmor’s formula:

P =
2q2|~̇v|2

3c3
. (4.79)

This formula is valid for any form of acceleration (including charges moving in magnetic
fields).

The emitted radiation from an accelerated particle has the following properties:

– the radiated energy is proportional to P ∝ q2|~̇v|2 ,

– the radiated energy has an angle dependence like a dipole dP/dΩ ∝ sin2 θ where θ
is the polar angle with respect to the acceleration vector ,

– the radiation is polarized with electric field vector parallel to the acceleration vector

Radiation spectrum. The spectrum of the emitted radiation depends on the time
variation of the electric field. A regularly oscillating field (e.g. from a bound electron, or
from a rotating or vibrating molecule) produces a line at a given wavelength or frequency.
The frequency spread of this line, or the natural line width, is defined by the energy
uncertainty principle ∆E∆t > h/2π or if we insert the energy of the emitted photon
E = hν:

∆ν∆t >
1

2π
. (4.80)

If a charge, say an electron, is accelerated in the electric field of an ion then the radiation
pulse is extremely short. Lets assume an electron with a relative speed of vT (10 K) =
550 km/s is accelerated by an an atom with a dimension of 1 Å, then the pulse duration is
on the order 10−16 sec. This implies that the frequency (or energy) of the emitted photon
is essentially unconstrained. For this reason, the free-free radiation is essentially frequency
independent.
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4.9.2 Thermal bremsstrahlung

Bremsstrahlung or free-free emission is produced by Coulomb collisions of electrons e−

with ions (p+, He+, etc.). In these collisions, charged particles are strongly accelerated
so that radiation pulses are created. Most efficient is the acceleration of electrons in
the field of ions. The frequency spectrum of a short pulse (Fourier transformation of a
delta-function) is broad band. Thus the resulting spectrum Iν is essentially flat for low
frequencies ν and it has an exponential cut-off at the high frequency end. The exponential
cut-off is defined by the kinetic energy distribution of the electron, which is for a thermal
gas defined by the Maxwell velocity distribution, which has also an exponential cut-off.
Essentially, there can be no photons emitted with an energy higher than the kinetic energy
of the accelerated particle.

The emission coefficient has the following temperature and density dependence:

jν ∝
NiNe√
T

e−hν/kT . (4.81)

The exact formula is:

jν = 5.44 · 10−39 gff z
2
i

NiNe√
T

e−hν/kT ergcm−3 s−1Hz−1 , (4.82)

where gff(Te, zi, ν) ≈ 1− 2 is the Gaunt-factor, a quantum-mechanical correction factor to
the classical formula, zi is the charge for the ion ( = 1 for a hydrogen nebula).

The characteristic energy or wavelength for the exponential cut-off is given by −hν/kT =
1. It is:

– for T = 104 K at λ = 1.4µm (warm photo-ionized gas)

– for T = 107 K at λ = 14 Å ≈ 0.9 keV (hot collisionally ionized gas)

In total the energy radiated by bremsstrahlung is obtained through integration over all
frequencies:

εff ∝ NiNe

√
T , (4.83)

or exactly: εff = 1.43 · 10−27 z2
i 〈gff〉NiNe

√
T erg cm−3 s−1 where Ni, Ne are particle den-

sities per cm3 and Te the electron temperature. Free-free emission dominates the cooling
of collisionally ionized gas if Te > 106 K.

Free-free absorption coefficient
A gas which emits free-free radiation becomes for frequencies low enough ν < ν0 optically
thick. This fact follows from the Kirchhoff law, which defines the Planck radiation Bν(T )
as the maximum source function for a thermal gas with temperature T :

Sν =
jν
κν
≤ Bν(T ) (4.84)

The emissivity jν for the free-free radiation is for low frequencies essentially frequency-
independent, while the Planck radiation decreases for ν → 0 (with ehν/kT → 1 + hν/kT )
like:

Bν(T ) =
2hν3

c2

1

ehν/kT − 1
→ 2ν2kT

c2
(4.85)
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According to the Kirchhoff law κν = jν/Bν the free-free absorption coefficient is:

κν = jν
c2

2ν2kT
∝ NiNe

T 3/2

1

ν2
(4.86)

Thus, for high frequencies ν →∞ the free-free absorption becomes rapidly very small.

Figure 4.14: Wavelength dependence of the radio continuum from an ionized nebula.

Result (Fig 4.14):

– for high frequencies the emission is optically thin and the observed radiation flux is:

I(ν) ∝
∫
jνds ∝

∫
NiNe

e−hν/kT√
T

ds (4.87)

– for low frequencies the free-free emission is optically thick and the radiation flux is
defined by the black-body radiation with a temperature of T , thus:

I(ν) ∝ ν2 T . (4.88)

Approximation for relativistic bremsstrahlung. In collisionally ionized hot gas
T > 108 K, as observed in rich clusters of galaxies, the thermal electrons may reach
relativistic velocities vT = 55′000 km/s. For such gas a relativistic correction is necessary.
A simple formulation of this effect for the total bremsstrahlung emission is:

εff = 1.43 · 10−27 z2
i 〈gff〉NiNe

√
T (1 + 4.4 · 10−10 T [K]) erg cm−3 s−1 (4.89)

The term in brackets is the relativistic correction which is only relevant for very high
temperatures.
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4.10 Compton and Thomson scattering

In Compton scattering energy and momentum of a photon is transferred to the scattering
particle, usually an electron. This process is for the electron gas not so important, because
the hard radiation field is too weak in the interstellar space to produce any additional gas
heating via this process.

More important is the inverse effect, inverse Compton scattering. In this process
a moving electron transfers kinetic energy to the scattered photon so that the energy
distribution of the radiation is changed. This process provides an important diagnostic
tool for the investigation of the electron energies (or gas temperature) in hot gas. This is
particularly important for fully ionized gas, where no or hardly any atomic emission lines
are emitted.

Thomson scattering: For low energies, hν � mec
2 (or Eγ � 511 keV) one can use the

classical Thomson scattering cross section for photon scattering. In this case the scattering
is essentially elastic in the frame of the electron.

The total cross section is:

σe =
8π

3
r2

0 = 5.56 · 10−25 cm2 (4.90)

where r0 = e2/mec
2 is the classical electron radius.

– The scattering cross section has a angle dependence like dσ/dΩ = r2
0/2 (1 + sin2 θ).

Thus the scattering favors forward and backward scatterings.

– The scattered radiation is linearly polarized even for unpolarized incoming radi-
ation. The polarization is 100 % for right angle scatterings, with an orientation
perpendicular to the scattering plane. The polarization degree is given by:

Π =
1− cos2 θ

1 + cos2 θ
(4.91)

Thomson scattering is a dipole-type scattering process and the polarization can be under-
stood like the emission of an oscillating particle which was disturbed (accelerated) by an
oscillating radiation field.

Thomson scattering can form a significant wavelength independent opacity source for
astrophysical plasmas.

Compton scattering: In Compton scattering (photon energy hν ≈ mec
2) energy and

momentum is transferred from the photon to the electron (assumed to be at rest). The
wavelength change λ2 − λ1 for the photon in a Compton scattering (e.g. Tipler) follows
from the conservation of energy and momentum in an inelastic collision.

λ2 − λ1 =
h

mec
(1− cos θ) . (4.92)

This is equivalent to a relative photon energy loss of:

ε1 − ε2
ε2

=
ε2

mec2
(1− cos θ) (4.93)
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When averages are taken over the scattering angle θ then the net loss for the photon field,
or the energy increase for the electron gas is:

〈∆ε
ε
〉 =

hν

mec2
(4.94)

Inverse Compton scattering: Electrons with kinetic motion can also transfer energy
to photons via the Doppler effect. However, for a cold gas with slowly moving electrons,
there are equal rates for “positive” and “negative” Doppler shifts. In a hot gas, where
the electrons move fast (relativistically) there exists a second order effect (the fast moving
electrons see more photons in the direction of motion), which leads to a enhancement of
the average photon energy via electron scattering (inverse Compton scattering).

Without going into details the mean amplification of photon energies per scattering is

〈∆ε
ε
〉 =

4

3
(
v

c
)2 =

4kTe
mec2

, (4.95)

where 〈mev
2〉/2 = 3kTe/2 was used for the kinetic motion of the electrons.

Comptonization: As a result we get the equation which describes the energy exchange
between the radiation field and the electron gas through Compton collisions. The energy
change of the radiation field is:

∆ε

ε
= − hν

mec2
+

4kTe
mec2

(4.96)

This equation defines the conditions under which energy is transferred to and from the
photon field:

– if hν = 4kTe, then there is no energy transfer

– if hν > 4kTe, then energy is transferred from a hard radiation field to the cool gas

– if hν < 4kTe, then energy is transferred from hot gas to the radiation field .

Due to the large distance to high energy sources (AGN, X-ray binary stars) the hard
radiation field is always strongly diluted. Therefore the first and second cases are not
important for the interstellar medium.
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4.11 Temperature equilibrium

The gas in the interstellar space is far from a thermodynamic equilibrium. For this reason
the equilibrium temperature at a given position depends on various heating and cooling
processes. Detailed computations are required to estimate the equilibrium temperature.

4.11.1 Heating function H for neutral and photo-ionized gas

Important processes for the gas heating in molecular clouds are collisions by cosmic rays
(relativistic particles) and the photo-dissociation of molecules. Photoionization by radi-
ation from stars and other UV sources is the dominant heating process for the atomic,
diffuse gas and the photo-ionized gas.

Shocks due to supersonic gas motions can in addition heat the gas to high temperatures.
In shocks the dynamic energy of a gas cloud is converted into kinetic (internal) energy
of the gas. Supersonic gas flows are produced by stellar winds and supernova explosions.
The heating by shocks depends strongly on time and the location and is therefore difficult
to describe accurately.

Important heating processes are:

– photo-ionization: hν + Xm → Xm+1 + e−(Ekin).
The heating per volume element is given by the number of ionizations multiplied by
the extra photon energy above the ionization threshold:

H = NH0

∫ ∞
ν0

Γν h(ν − ν0) aνdν . (4.97)

– photo-dissociation: hν + XY → X(Ekin) + Y(E′kin)

– photo-electric absorption by dust: hν + dust→ dust′ + e−(Ekin)

– collisions with cosmic ray particles: Pcr +X → Pcr + Y1(Ekin) + . . .+ e−(Ekin) + . . .

A heating process produces particles with a kinetic energy (� 3kT/2) and therefore it
contributes to the heating of the gas. In each microscopic heating process, one particle
takes part. The energy originates from remote sources (e.g. stellar radiation or relativistic
particles), which is converted into kinetic energy of the gas:
the heating per unit volume (cm3) is proportional to the particle density n:

heating = n ·H (4.98)

As a first approximation the heating H does not depend on gas parameters, like T or n.
However, H depends on the intensity of the radiation field or of the cosmic rays.
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4.11.2 Cooling of the gas

The cooling of the gas is mainly due to line emission. Bremsstrahlung (free-free radiation)
is the dominant cooling process for gas with very high temperatures T > 106 K. Important
cooling processes are:

– collisionally excited lines: e−(Ekin) +Xm
g → Xm

i → Xm
g + hν

– Bremsstrahlung: e−(Ekin) +Xm → e−(E′kin) + hν

Less important gas cooling processes are the thermal emission by dust particles (con-
tributes in particular in molecular clouds to the cooling) and thermal conduction (in
regions with strong temperature gradients like shocks).

The basic process for the cooling by line emission is, that an atom or molecule is put
into an excited state by a collision with another gas particle (e.g. by an electron), from
where it returns to the ground state through the emission of a photon.

kinetic energy of the gas → inner energy of the particle
→ emission of a line photon (hν)

Bremsstrahlung is emitted by charged gas particles which are accelerated or decelerated
by collisions with other gas particles. Also in this process kinetic energy of the gas is
transformed into radiation energy.

Radiation energy is produced in all important gas cooling processes by the collision of two
particles, thus:
the cooling is proportional to the particle density squared n2:

cooling = n2 · Λ(T ) (4.99)

4.11.3 The cooling function Λ(T )

The cooling of the gas depends strongly on the temperature of the gas. For this reason
the efficiency of the gas cooling is described by the cooling function Λ(T ). In addition
there exists also some dependence of the cooling on the elemental abundances which are
important in special cases (e.g. early universe or supernova remnants). Since the elemental
abundances are rather homogeneous in the Universe the abundance effects can often be
neglected.

An efficient cooling requires:

– an abundant particle (e.g. hydrogen H, C, N, O, CO),

– with an excited state having an excitation energy χ within the range of the kinetic
energy of the gas particles, thus χ ≈ kT ,

– and an excited state with a decay time shorter than the typical time interval to the
next collision which may de-excite collisionally the particle (this would convert the
excitation energy back to kinetic energy).

Order of magnitude values for collisional rates γ are:

– γ ≈ 10−11cm3s−1 for collisions between neutral particles

– γ ≈ 10−9cm3s−1 for collisions between a charged and a neutral particle

– γ ≈ 10−7cm3s−1 for collisions between charged particles

The collisions per second [s−1] and particle are n · γ.
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Important emission lines for the gas cooling.

T < 1’000 K
The most abundant particle in molecular clouds is H2. But the gas cooling by H2 is very
inefficient due to the symmetry of this particle and there exists no fast decay from excited
rotational levels of H2 (A2→0 = 3 · 10−11s−1). For this reason the main process for the
cooling in molecular clouds is the emission of photons by rotational transitions of CO (see
Slide 4–20). The lowest transitions are:

CO 2.6 mm, J = 1→ 0, A ≈ 10−2 s−1

CO 1.3 mm, J = 2→ 1 A ≈ 10−2 s−1

The cooling of cold, atomic gas is mainly due to lines from fine structure transitions
emitted in the far IR, e.g.:

O i 63.2 µm, 3P, J = 1→ 2, A = 9 · 10−5 s−1

O i 145.5 µm, 3P, J = 0→ 1, A = 2 · 10−5 s−1

C ii 157.7 µm, 2P, J = 3/2→ 1/2, A = 2 · 10−6 s−1

T = 1’000 – 30’000 K
Gas with neutral hydrogen H i can cool through the excitation of H i and the emission of
Lyman lines e.g.:

H i Lyα λ1215Å, n = 2→ 1, A = 5 · 108 s−1

This process is only efficient for gas with high temperature because the excitation energy is
rather high for the first excited state n = 2: χ = 10.6eV = 1.7 · 10−11erg → e−χ/kT ≈
e−105K/T .

Often, hydrogen is highly ionized and therefore the cooling trough neutral hydrogen can
be very in-efficient. Efficient for the cooling are different nebular lines from ions which are
abundant in ionized nebulae (Slide 4–21). Dependent on the ionization degree of the gas
the following lines are important coolants:

C iii] [1907],1909 Å, 3Po →1S, A ≈ [0.01], 100 s−1

C iv 1548,1551 Å, 2Po →2S, A ≈ 3 · 108 s−1

[N ii] 6548,6583 Å, 3S→1D, A ≈ 10−3 s−1

[O ii] 3726,3728 Å, 4S→2D, A ≈ 10−4 s−1

[O iii] 4959,5007 Å, 3S→1D, A ≈ 10−2 s−1

Ovi 1032,1038 Å, 2Po →2S, A ≈ 4 · 108 s−1

[S ii] 6716,6731 Å, 4S→2D, A ≈ 10−3 s−1

T = 30’000 – 107 K
Hot (collisionally ionized) gas emits many lines from different, highly ionized atoms. Strong
lines are e.g. from ions of the H and He iso-electronic sequences (Slide 4–22), like Ovii
and Oviii or from the many ionization states of iron (Fex – Fexxvi).

T > 106 K
Bremsstrahlung contributes always to the cooling of an ionized gas. At very high tem-
perature, essentially all atoms are fully ionized and line radiation is no more possible.
Bremsstrahlung is for this case the dominating gas cooling process. The cooling, equiva-
lent to the radiation emitted by Bremsstrahlung is proportional to

√
T . For fully ionized

gas with solar abundances the emitted luminosity per volume element is given by

LBS = 2 · 10−27n2
e

√
T ergcm−3s−1 . (4.100)
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Table 4.2: Summary of the most important heating and cooling processes.

gas type heating cooling

molecular clouds cosmic rays molecular lines, CO, H2O

cold, neutral gas UV radiation (stars) fine structure lines, C ii, O i

warm, neutral gas UV radiation (stars, AGN) Lyα, nebular lines, [O i], [S ii]

photo-ionized gas UV radiation (stars, AGN) Lyα, [O ii], [N ii], [O iii]

collisionally ionized gas shocks X-ray lines, bremsstrahlung

Strongly simplified, it can be said that the temperature equilibrium for the diffuse gas in
the interstellar medium is determined by:

n2 · Λ(T ) = n ·H and n · Λ(T ) = H ≈ const. (4.101)

The “cosmic” cooling curve. The gas cooling processes are always the same for diffuse
gas and one can describe the cooling with an universal cooling curve (Fig. 4.15). This curve
illustrates the energy loss by gas cooling processes and it is given in units of [energy cm3/s].
The cooling curves has a major maximum around 105 K where the cooling by atomic lines
is most efficient and a smaller bump around 300-1000 K where molecules and atomic fine
structure lines are efficient. There is a minimum around 107 K where all atoms are fully
ionized so that no line emission is possible.

Figure 4.15: Schematic illustration of the cooling curve.



126 CHAPTER 4. PHYSICS OF THE INTERSTELLAR MEDIUM

Table 4.3: Characteristic cooling time scales.

gas type n [cm−3] T [K] Λ [erg cm3 s−1] τth

molecular gas 105 50 10−26 7 · 106 s ≈ 80 d
diffuse, ionized gas 10−1 104 10−24 1.4 · 1013 s ≈ 4 · 105 J
H ii-region 103 104 10−24 1.4 · 109 s ≈ 40 J
SN-remnant 10 106 2 · 10−23 7 · 1011 s ≈ 2 · 104 J
coll.ionized gas 10−3 107 10−23 see exercise

4.11.4 Cooling time scale

The cooling time scale for the diffuse gas, which is the time required for the cooling of a
gas cloud if the heating is switched off, can be roughly estimated from the cooling function
according to:

τth =
U

n2Λ(T )
≈ nkT

n2Λ(T )
=

kT

nΛ(T )
(4.102)

(U: kinetic energy (inner energy) of the gas in cm−3). As first approximation one may
approximate Λ(T ) ∝ T . Thus the cooling time scale behaves (very roughly) like τth ≈ 1/n.
Thus:
high density gas cools rapidly, while diffuse, low density gas cools slowly.

Figure 4.16: The spezific cooling curve Λ(T )/T .

4.11.5 Equilibrium temperatures.

For the Milky Way disk it can be assumed that there exists a very rough pressure equi-
librium for the diffuse Gas. Thus a hydrostatic stratification of the gas can be assumed
in the direction perpendicular to the disk. In addition we can adopt the (simplified) law
for the temperature equilibrium: n · Λ(T ) = H ≈ const. Based on this we obtain the
following, very rough relation between gas pressure, temperature and cooling function:

p = nkT = kT
H

Λ(T )
= const. (4.103)
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The “specific” cooling function Λ(T )/T ∝ 1/p is drawn in Fig. 4.16. There exist for a
given gas pressure different intersections with the “specific” cooling curve Λ(T )/T . At
these intersections the gas temperatur could be in an equilibrium state. However, the
temperature equilibrium is only stable for intersections where the gradient of the “specific”
cooling curve is positive. For intersections with curve sections having a negative gradient
the equilibrium is not stable.

stable equilibrium: (d(Λ(T )/T )/dT > 0),
if the temperature is slightly disturbed then the temperature will go back to the equilibrium
point:

– increase of T → increase of Λ(T )/T → more cooling
– decrease of T → decrease of Λ(T )/T → less cooling

unstable equilibrium: (d(Λ(T )/T )/dT < 0),
after a small temperature disturbance the temperature T will drift away from the equilib-
rium point:

– increase of T → decrease of Λ(T )/T → less cooling
– decrease of T → increase of Λ(T )/T → additional cooling

The “specific” cooling curve has two stable temperature regimes with a positive gradient.
Due to this, there exist two predominant temperatures for the interstellar gas:
cold gas T< 100 K and warm gas T≈ 10000 K

Hot T > 105 K gas cannot exist in a stable temperature equilibrium (theoretically). But
the cooling time scale for hot gas is often so long (because of the low density), that it can
survive for a very long time. Diffuse, hot gas T > 106 K is therefore the third type of
interstellar gas which is frequently present.

The observed parameters of the dominant interstellar components in the Milky Way can
be plotted in a density-temperature diagram (Fig. 4.17).

Figure 4.17: Parameters for dominant interstellar components.

The diagram in Fig. 4.17 illustrates the following:

– the gas exists predominately in 3 temperature regimes (cold, warm and hot)

– there exists, very roughly, a pressure equilibrium (n ·T ≈ 1000K/cm3) for the diffuse
gas in the Milky Way
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4.12 Dynamics of the interstellar gas

The interstellar matter is not static but moves always and everywhere around. This gas
motions is caused by various processes which induce typical gas velocities as follows:

– galactic rotation v ≈ 200 km/s

– peculiar motion of galaxies v ≈ 500 km/s

– speed of stellar winds v ≈ 20− 3000 km/s

– ejection velocity of supernova explosions v ≈ 10000 km/s,

– outflows (broad absorption lines) from active galactic nuclei v ≈ 10000 km/s.

The gas velocities are very often much larger than the sound velocity of the gas v � vs.
For this reason many important hydrodynamical processes in the interstellar medium are
due to supersonic flows which produce non-linear effects, in particular shocks.

4.12.1 Basic equations for the gas dynamics

For a simple description of gas-dynamical processes in the interstellar medium one can of-
ten start for first useful estimates with strongly simplified equations based on the following
assumptions:

– ~B = 0 no magnetic field :
Neglecting magnetic fields simplifies the treatment of hydrodynamic processes enor-
mously. However, neglecting magnetic fields can be a very critical choice because
many hydrodynamic problems may not be understood without magnetic fields.
Sometimes it is useful to assume at least that the magnetic field moves with the
gas (it is frozen in) and that the field adds just another pressure term ∼ B2/8π.

– ~E = 0 no electric fields :
This is a very good approximation because charged particles e−, p+ are abundant
and they can move freely.

– viscosity η = 0 :
A very good approximation due to the low density.

– no hydrodynamic coupling between matter and radiation field (no radiation pressure)

The equation of motion:

ρ
d~v

dt
= ρ

(
∂~v

∂t
+ ~v grad~v

)
= − ~gradp− ρ ~gradΦ , (4.104)

and the equation for the conservation of mass:

dρ

dt
=
∂ρ

∂t
+ ~v ~gradρ = −ρdiv~v (4.105)

where ~v is the gas velocity, p the pressure, ρ the density and Φ the gravitational potential.
Further there is:

– d/dt: the time-derivative in the co-moving coordinate system
→ Lagrange-system,
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– ∂/∂t: the partial time-derivative for a fixed point in space
→ Euler-system.

The variables are:

velocity field ~v(xi, t) density ρ(xi, t)
gas pressure p(xi, t) gravitational potential Φ(xi, t)

These equations alone cannot be solved because there are more variables than equations.
This means that some of the functions must be known, for example the gravitational
potential Φ or the local energy balance which requires knowledge on the heating and
cooling processes.

Energy conservation:

The energy conservation can in general not be expressed as local differential equation,
because the heating depends on the interaction with the distant surroundings, e.g the
heating by the absorption of ionizing UV-radiation from stars or the heating by collisions
with relativistic cosmic ray particles. Two useful simplifications for first order estimates
are:

– Adiabatic hydrodynamics: It is assumed, that the energy is conserved locally.
This means, that the heating and cooling of the gas is neglected. This is a quite
reasonable simplifying assumption for regions with very low densities and long time
scales for cooling (e.g. hot, collisionally ionized, diffuse gas).

– Isothermal hydrodynamics: In this case a constant temperature is adopted for
the gas, e.g. 10’000 K for photo-ionized gas or 100 K for neutral gas. In this approach
it is assumed, that the heating due to compression or the cooling due to expansion
is compensated immediately by enhanced or reduced radiative cooling. Thus, there
is no local energy conservation in this case. This approximation is useful for regions
with high gas density where the radiative cooling is very efficient.

Gravitation

For the gravitation the Poisson equation is used:

∆Φ = 4πGρ(xi, t) (4.106)

The solution of this equation depends very much on the geometric scale for the distribution
of the mass with respect to the size of the gas structure studied.

relatively simple: The gas-dynamics is solved in a pre-defined and constant gravita-
tional potential, e.g. the motion of the gas in the potential of a
galaxy.

very difficult: The gas-dynamics for a “self-gravitating gas” is very delicate, be-
cause gradΦ has a dynamic (non-linear) component and small in-
homogeneities in the density distribution can grow to large grav-
itational instabilities for the gas. An important example for this
non-linear behavior is the collapse of a gas cloud in a star forming
region.
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4.12.2 Shocks

The sound velocity vs defines the propagation velocity of a pressure waves. If there exist
supersonic flows v > vs, then hydrodynamic effects occur at a given location without
a “preceding warning”. This will produce strong discontinuities in the gas parameters,
so-called shocks.

Sound velocity. The square of the sound velocity vs is defined in compressible media by
the density derivative d/dρ of the pressure p:

v2
s =

dp

dρ
(4.107)

The adiabatic sound velocity for adiabatic gas p = (p0/ρ0) ·ργ is given by (for an ideal
gas):

v2
s =

dp

dρ
= γ

p0

ρ0
ργ−1 = γ

p

ρ
=

5

3

kT

mT
(4.108)

γ = 5/3 for ionized and atomic gas; γ < 5/3 else
mT = mean particle mass (e.g. mT ≈ 0.5mp for ionized H-gas)

The isothermal sound velocity for isothermal gas p = ρ · kT/mT :

v2
s =

dp

dρ
=
p

ρ
=
kT

mT
(4.109)

The sound velocity is of the same order as the mean (mass weighted) kinetic velocity of the
particles (∼ protons in ionized gas). Rough estimates for the sound velocity are: vs ≈ 1,
10, and 100 km/s for temperature of T = 100, 104, and 106 K, respectively.

Conservation laws for idealized shocks. The hydrodynamic conservation laws can be
used for the description of basic properties of shocks, without studying the complicating
processes taking place at the shock fronts. For this we consider one-dimensional flows
with a shock front. The parameters p1, ρ1, and v1, stand for the pressure, density, and gas
velocity in front of the shock front p2, ρ2, and v2 after the shock front. The gas velocities
v1 and v2 are expressed relative to the velocity of the shock front which is set equal to
zero.

Figure 4.18: Illustration of shock parameters.
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The so-called Rankine-Hugoniot conditions are:

– based on the mass conservation: ρ1 v1 = ρ2 v2

– based on the equation of motion: p1 + ρ1 v
2
1 = p2 + ρ2 v

2
2

In addition we have to consider also the energy budget. The energy budget depends on
the treatment for the energy loss due to radiative cooling.

Isothermal shocks. The isothermal shock is a simple model case, in which one assumes
that the temperature is identical before and after the shock:

T1 = T2 (4.110)

This assumption requires an extremely efficient cooling, in order to radiate away (instead of
heating up the gas) all the energy produced by the work due to the shock. The isothermal
shock can be a useful approximation for shocks in high density gas, where the cooling is
very efficient. It is also necessary that the gas is optically thin so that the energy can be
radiated away.

With the isothermal sound velocity v2
s = p/ρ the equations can be solved with the following

algebra:
p1︸︷︷︸
ρ1 v2s

+ρ1 v
2
1 = p2︸︷︷︸

ρ2 v2s

+ρ2v
2
2 (4.111)

and:

v2
s (ρ1 − ρ2) = v2

2ρ2︸ ︷︷ ︸
v21ρ

2
1/ρ2

−v2
1ρ1 = v2

1

ρ1

ρ2
(ρ1 − ρ2) . (4.112)

The result is:
ρ2

ρ1
=
v2

1

v2
s

= M2 , (4.113)

whereM is the Mach number for the gas flow in front of the shock (in the coordinate system
of the shock). For an outside observer this is the Mach number for the shock velocity in
the pre-shock medium. The compression or the density jump in an isothermal shock
is proportional to the square of the Mach number. The Mach number for shocks
in the interstellar medium is often very high, e.g. M ≈ 100 − 1000 for supernovae. The
compression is under isothermal conditions very high, on the order ρ2/ρ1 = 104 − 106.

Further there is:
ρ2

ρ1
=
v1

v2
=
v2

1

v2
s

→ v2
s = v1 · v2 , (4.114)

which is equivalent to the statement, that the velocity of the post-shock gas is smaller
than the sound velocity in the coordinate system of the shock front.

An illustrative description for an isothermal shock is a snow-plough, which piles all
material up and carries it away.
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Adiabatic shocks. In an adiabatic shock the energy is conserved locally and the work
done by the shock front is put into the heating of the post shock gas. The adiabatic shock
is a good approximation for very thin gas, where the cooling is not efficient.

For adiabatic shocks we have another equation, besides the Rankine-Hugoniot conditions,
which describes the total energy flow through the shock front:

v2

(
1

2
ρ2v

2
2 + U2

)
− v1

(
1

2
ρ1v

2
1 + U1

)
= v1p1 − v2p2 (4.115)

where ρv2/2 is the kinetic energy of the gas, U = p/(γ − 1) the inner energy of the gas,
and the term on the right side is the work due to the pressure change at the shock front
d/dt(p ·A∆x) = d/dt(FA∆x).

With the Rankine-Hugoniot conditions and a lot of algebra for the case M � 1 there is:

ρ2

ρ1
≈ γ + 1

γ − 1
→ ρ2

ρ1
≈ 4 for γ =

5

3
(4.116)

The density jump is a factor 4 for an adiabatic shock of an ideal gas.

The temperature after the shock follows from the gas equation and the equation of
motion:

T2 =
mH

k

p2

ρ2
and

p2

ρ2
=

p1

ρ2︸︷︷︸
=0 für p1�p2

+
ρ1

ρ2︸︷︷︸
1/4

v2
1 − v2

2︸︷︷︸
v21 ρ

2
1/ρ

2
2=v21/16

(4.117)

This gives the result:

T2 ≈
3

16

mH

k
v2

1 = 1.4 · 107 K

(
v1

100 km/s

)2

(4.118)

Thus the temperature of the post-shock gas in an adiabatic shock is typically on the order
106 − 108 K.

More realistic shocks. Observations of shocks show a combination of both cases, the
adiabatic and the isothermal shock. The temperature can reach near the shock front
a very high temperature and the adiabatic approximation is not bad. Correspondingly
one has then a density jump which is not far from the factor 4. Further away from the
front in the post-shock region the gas has sufficient time to cool and it approaches more
the parameters for gas in an isothermal shock. This means that the gas cools down and
becomes quite dense and may be visible as so-called “radiative shock”.

Magnetic fields may also play a role in shocks. Especially, the B-field may be responsi-
ble for a magnetic pressure term which can be significant or even a dominant contribution
to the total pressure in shocks which are dense and behave like isothermal shocks. Thus,
the compression for shocks in dense gas with magnetic fields may be significantly smaller
than in isothermal shocks due to the magnetic pressure.
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.

Figure 4.19: Schematic structure for a more realistic shock model.

4.12.3 Example: supernova shells

The velocity and the kinetic energy of a supernova shell is immediately after the explosion
enormous:

vSN ≈ 15000 km/s und Ekin ≈ 4 · 1050 erg (4.119)

This corresponds to the radiation energy which is delivered by our Sun in 3.5 · 109 years.

first phase: free expansion

The first phase is characterized by:

– essentially a gas motion in free space (vacuum) → free expansion,

– last until the swept-up mass of the interstellar medium is comparable to the mass of
the supernova shell.

An estimate on the swept-up mass may be based on the mean mass density in the Milky
Way disc ρ = 1.6 · 10−24 g cm−3 (corresponds to a particle density of nH = 1 cm−3).
A sphere of diffuse gas with a mass comparable to the supernova shell with a mass of
MSN ≈ 1 M� has a radius of:

4π r3

3
ρ = MSN → r = 2 pc ≈ 6 Lj . (4.120)

The free expansion phase last with an expansion velocity of 15000 km/s = c/20 about:

t =
r

v
= 120 years . (4.121)

second phase: adiabatic shock

The density of the supernova-shell is in this phase still relatively small, because not much
ISM has been swept-up. Due to the low density the radiative cooling is relatively unim-
portant and the shock can be approximated by adiabatic conditions:

– The velocity of the pre-shock gas is for a distant observer equal to zero. However,
the velocity is relative to the shock front on the order 10’000 km/s.
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– The post-shock gas moves with a velocity of 2500 km/s relative to the shock. For
an outside observer the velocity of the post-shock gas is 7500 km/s.

– The density inside the shock is about 4 times higher than the density of the ISM,
but the temperature is extremely high > 107 K. Thus in this phase a hot, tenuous
bubble is formed.

– This phase lasts about 100-1000 years and the shell radius grows to r = 1− 10 pc

Figure 4.20: Structure of a spherical, adiabatic shock from a supernova shell.

Third phase: isothermal shock

This last phase is characterized by the fact that the supernova shell has accumulated a lot
of interstellar material and there will be an isothermal or radiative shock.

– the shock velocity has decreased to ∼ 100− 3000 km/s

– there is a huge density jump ρ2/ρ1 = M2 ≈ 104 − 106 like for a snow-plough.

The velocity evolution, or the deceleration of the supernova shell can be roughly de-
scribed by the momentum conservations, considering a spherical shell of gas moving into
a thin surrounding gas.

MSN vSN ≈ (MSN +mism) vshock because mism ∝ r3 thus vshock ∝ 1

r3
. (4.122)

This equation describes very roughly the shock velocity vshock and the radius of the su-
pernova shell r which can both be used to make estimates on the age of the supernova
shell.


