
Chapter 3

Galactic dynamics

Galactic dynamics can be divided into different regimes. First, there is the motion of the
gas and the stars in the overall galactic potential. On these large scales the stars behave
in a first approximation like test masses in a smooth potential for which collisions, near
encounters with other stars, can be neglected. The stellar dynamics and the motion of the
gas can be used to constrain the potential and the corresponding density distribution of
the different galactic components: the stars in the bulge and the disk, the gas located in
disk, and the extended dark matter halo.

Second, On small scales the motion of a star is determined by the gravitational potential
of many stars in a smooth “background” potential. Depending on the case, it must be
distinguished whether the dynamics of a star is strongly affected by individual encounters,
collisions, with other stars or not. In this context it is important to consider the difference
between collisionless systems and systems with collisions.

In this chapter we describe first simple models for smooth gravitational potentials,
the associated density distributions and the expected motion parameters and time scales.
Then we consider relaxation (collision) time scales and discuss the impact of collisions on
the dynamics.

3.1 Potential theory

In this section we describe the force field for a smooth distribution of mass. There exist
simple but powerful analytic formula with give a lot of insight on the motion of test
particles in a smooth potential. In particular, we will discuss how the density structure of
the Milky Way can be modelled. The description of this section follows the corresponding
chapter in the book “Galactic Dynamics” from Binney and Tremaine.

3.1.1 Basic equations for the potential theory

The force ~F (~x) at position ~x on a star with mass mS is generated by the space distribution
of mass ρ(~x′):

~F (~x) = mS ~g(~x) = mS G

∫

~x′ − ~x

|~x′ − ~x| ρ(~x
′) d3~x′ . (3.1)

~g(~x) is the vector gravitational field, the force per unit mass or the gravitational acceler-
ation.
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The gravitational potential Φ(~x) is defined by

Φ(~x) = −G

∫

ρ(~x′)

|~x′ − ~x|3 d
3~x′ , (3.2)

which is the integral of the mass distribution weighted by the inverse distance to the point
~x. The gradient for the inverse distance is

~gradx

( 1

|~x′ − ~x|
)

=
~x′ − ~x

|~x′ − ~x|

and therefore the gravitational field ~g(~x) can be expressed by the gravitational potential
according to

~g(~x) = − ~gradxΦ(~x) = ~gradx

(

G

∫

ρ(~x′)

|~x′ − ~x| d
3~x′

)

. (3.3)

The potential Φ(~x) is very useful because it is a scalar field which can be described and
analyzed based on equipotential surfaces. Φ contains the same information as the vector
gravitational field ~g(~x) and the acceleration ~g(~x can follows from the gradient of the
potential.

The potential energy of a system follows from an estimate of expected change in potential
energy if a small additional mass is added to the system with potential Φ(~x). If a small
increment of density δρ(~x) is added then the change in potential energy is:

δEpot =

∫

δρ(~x)Φ(~x)d3~x . (3.4)

3.1.2 Newton’s theorems

Let’s start with the simple case of spherical systems to get familiar with the mathematical
procedures. Spherical systems are particularly simple because of Newton’s theorems.

First theorem of Newton. A body inside a spherical shell experiences no net gravita-
tional force from that shell.

Second theorem of Newton. A body outside a spherical shell experiences a gravita-
tional force equal to the force of a mass point in the center of the shell with the mass of
the shell.

Figure 3.1 illustrates the proof of the first theorem. A point P inside the shell is attracted
equally strong by opposite shell section “seen” under the same solid angle dΩ. This is
obvious for radial sight lines through the center of the shell because the areas (with surface
mass m1,2) of the opposite regions are proportional to the distances squared d21,2 from point
P . Thus there is F1 = m1/d

2
1 = m2/d

2
2 = F2

This is also valid for an arbitrary “sight” line (full line) because the tilt angles θ1
and θ2 between the tangential surfaces and the cone center lines are equal on both sides.
Therefore the surface area defined by the solid angle cones are proportional to d21/cosθ1
and d22/cosθ2 and the attraction from the opposite sides is also equal.
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.

Figure 3.1: Figures for the proof of Newton’s first theorem (left) and Newton’s second
theorem (right).

Inside the shell the gravitational potential is constant because the gravitational force is
zero

~gradxΦ = −g = 0 .

The gravitational potential in the shell can be easily calculated for the central point from
a radial form of Eq. 3.2 (see also Eq. 3.9)

Φ(0) = −GM

R
, (3.5)

where M = 4πρ(r)dr is the total mass of a shell with thickness dr and R is the shell
radius.

For the proof of Newton’s second theorem a trick according to Fig. 3.1 with a special
configuration of points p1, p2, q1 and q2 is needed. We consider two concentric shells with
radius R1 and R2 and equal mass M1 = M2. Then one can write the potential for a point
p2 on the outer shell by a surface area region δΩ at point q1 of the inner shell

δΦ(~p2) = − GM

|~p2 − ~q1|
δΩ

4π
.

This potential is equal to the potential for the point p1 on the inner shell by a surface area
region of the outer shell with the same angular dimensions δΩ at point q2.

δΦ(~p1) = − GM

|~p1 − ~q2|
δΩ

4π
.

Thus, there is δΦ(~p2) = δΦ(~p1) because |~p2−~q1| = |~p1−~q2| (symmetry) and the summation
yields then that the potential due to the entire inner and outer shells are equal

Φshell 1(~p2) = Φshell 2(~p1) .

We know Φshell 2(~p1) = −GM/R2 from Eq. 3.5) and therefore this is also the result for
Φshell 1(~p2) for the potential of a point at a radius R = R2 outside a shell with R1 < R
and mass M

Φshell 1(R) = −GM

R
. (3.6)
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This outside potential of a spherical shell is equal to the potential of a point with the same
mass located at the center.

3.1.3 Equations for spherical systems

Simple equations can be derived for spherical systems using Newton’s theorems.

The gravitational force of a spherical density distribution ρ(r′) on a star mS at radius
r is determined by the mass M(r) interior to r

~F (r) = mS ~g(~x) = −GM(r)

r2
~er , (3.7)

where

M(r) = 4π

∫ r

0
ρ(r′) r′

2
dr . (3.8)

The total gravitational potential of a spherical system is the sum of the potentials of
spherical mass shells dM(r) = 4πρ(r)r2dr with r′ < r (located inside r):

Φr′<r(r) = −G

r

∫ r

0
dM(r′)

and the mass shells at r′ > r (located outside r):

Φr′>r(r) = −G

∫ ∞

r

dM(r′)

r′
,

or written alternatively

Φ(r) = −4πG
[ 1

r

∫ r

0
ρ(r′) r′

2
dr +

∫ ∞

r
ρ(r′) r′ dr

]

. (3.9)

The circular speed vc(r), which is the speed of a test particle with negligible mass mS

in a circular orbit at radius r, is an important parameter for the characterization of the
gravitational potential. The circular speed follows from the equilibrium Fg(r) = −Fc(r)
of gravitational force and centrifugal force Fc = mSv

2
c/r:

v2c (r) = r g(r) = r
dΦ

dr
=

GM(r)

r
. (3.10)

This can also be expressed with angular velocity

Ω(r) =
vc(r)

r
=

√

GM(r)

r3
.

The potential energy of a spherical system can be calculated from the incremental
potential energy formula 3.4. For a spherical system this can be expressed as a change in
potential energy due to the small addition of density in a shell at radius r:

δEpot(r) = 4πr2δρ(r)Φ(r) ,

If we build up a whole spherical mass distribution from inside out by such small spherical
mass (density) shell increments then the final potential energy is obtained by integration:

Epot = −
∫ ∞

0
4πr2 ρ(r)

GM(r)

r
dr = −4π G

∫ ∞

0
r ρ(r)M(r)dr . (3.11)
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3.1.4 Simple spherical cases and characteristic parameters

Potential of a point mass. This is a very simple case which is often referred as a
Keplerian potential. For a point mass there is

Φ(r) = −GM

r
, and vc(r) =

√

GM

r
. (3.12)

The potential energy of a point is −∞ (or not defined).

Potential of a homogeneous sphere. Inside a homogeneous sphere with constant ρ
there is:

M(r) =
4

3
π r3ρ . (3.13)

The circular velocity increases linearly with radius

vc(r) =

√

GM(r)

r
=

√

4πGρ

3
r . (3.14)

The orbital period is then defined by the density ρ

T =
2πr

vc
=

√

3π

Gρ
(3.15)

The potential energy of a homogeneous sphere with radius a, density ρ and total mass
M = (4/3)πGρa3 follows from Eq. 3.11:

Epot = −4πGρ

∫ a

0
rM(r)dr = −16π2 Gρ2

3

∫ a

0
r4dr = −16

15
π2Gρ2 a5 = −3

5

GM2

a
.

(3.16)
The gravitational potential of homogeneous sphere with radius a is

Φ(r) = −2πGρ(a2 − 1

3
r2) for r < a , (3.17)

Φ(r) = −GM

r
for r > a . (3.18)

Gravitational radius. The size of a system is sometimes characterized by the gravita-
tional radius which is defined as ratio between mass squared divided by the total gravita-
tional energy:

rg =
GM2

|W | . (3.19)

For a homogeneous sphere, where W = −(3/5)GM2/a the corresponding gravitational
radius is rg = (5/3)a. The gravitational radius can be a convenient quantity for the
definition of the size of systems which have no sharp boundary (e.g. stellar cluster).
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The dynamical time scale. The homogeneous sphere is a useful model for an estimate
of the dynamical time scale of a system.

If a mass is released from rest in a gravitational field of a homogeneous sphere then its
equation of motion is given by the gravitational acceleration

g(r) =
d2r

dt2
= −dΦ(r)

dr
= −GM(r)

r2
= −4πGρ

3
r .

This is the equation of motion for a harmonic oscillator (ẍ = −ω2x) with oscillation
period T = (2π/ω) =

√

3π/Gρ. This is the same time as is required for a full circular
orbit (Eq. 3.15).
Thus, there is for a homogeneous sphere not only an unique circular orbital period but
also an unique free fall time tff , which is the time it takes for any particle released at rest
to fall into the center. This time is

tff =
T

4
=

√

3π

16Gρ
= 0.767 (Gρ)−1/2

The dynamical time scale is defined as

tdyn = (Gρ)−1/2 . (3.20)

This quantity is of the same order as the free-fall time, the crossing time or the orbital
time for a particle. According to our definition there is:

tdyn = 1.3 tff = 0.65 tcross = 0.33 torbit

The dynamical time scale is also a good parameter for the characterization of systems with
not to extreme density gradients, as long as ρ is replaced by the mean density ρ̄ inside the
location of the particle.

tdyn ≈ (Gρ̄)−1/2 .

This relation is therefore used for the characterization of systems like open clusters, glob-
ular clusters, bulges of galaxies, or clusters of galaxies.

The Plummer model. Plummer proposed in 1911 a spherical density model with a
“soft edge” which can be described by a simple gravitational potential

Φ(r) = − GM√
r2 + b2

. (3.21)

The corresponding density can be described by

ρ(r) =
3M

4π

b2

(r2 + b2)5/2
. (3.22)

Thus, there is a density distribution like for a homogeneous sphere for r < b without a
sharp edge but with a steep density fall off like ∝ r−5.
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3.1.5 Spherical power law density models

Many galaxies have luminosity profiles which can be fitted with power law profiles. There-
fore it seems useful to investigate spherical potentials for density distributions which can
be described by a power law of the form

ρ(r) = ρ0
(r0
r

)α
. (3.23)

The mass inside r is then

M(r) = 4π

∫ r

0
ρ(r′) r′

2
dr′ = 4πρ0r

α
0

∫ r

0
r2−αdr′ = 4πρ0r

α
0

r3−α

3− α
.

We consider only α < 3, because only for such cases the mass interior to r is finite. On
the other side the mass M(r) diverges for r → ∞ at large radii if α < 3. The models are
still useful because according to Newton’s first theorem the spherical mass shells outside
r do not affect the gravitational forces and dynamics inside r.

Thus, we can derive the circular velocity vc for the power law models and obtain

v2c (r) =
GM(r)

r
= 4πGρ0r

α
0

r2−α

3− α
. (3.24)

This is a very interesting formula which can be used for the interpretation of the flat
rotation curves observed in disk galaxies out to very large radii. The circular velocity
vc(r) is constant if α ≈ 2 or for a dark matter density distribution which behaves at radii

∼> 10 kpc like

ρdm(r) ∝
(1

r

)2
.

Two-power density models. A spherical density model combining two power laws,
one approximating the flatter central region and one approximating a steeper density fall-
off at larger radius provides more modelling possibilities. Well studied is a analytical
parameterization for which the density is described by

ρ(r) =
ρ0

(r/a)α(1 + r/a)β−α
=

ρ0
(r/a)α + (r/a)β

(3.25)

where a is a scaling radius. The α parameter is α < 3 to avoid that the mass at small
radius goes to infinity and β ≥ 3 so that the total mass remains finite for large radius.
The following cases are simple and popular solutions:

– Hernquist model with α = 1 and β = 4; this yields

ρ(r) ∝ 1

(r/a)(1 + r/a)3
, Φ(r) ∝ GM

a+ r
vc(r) =

√
GMr

b+ r
.

– Jaffe model with α = 2 and β = 4,

ρ(r) ∝ 1

(r/a)2(1 + r/a)2
, Φ(r) ∝ GM

a
ln(1 + a/r) , vc(r) =

√

GM

b+ r
.

– Navarro, Frenk and White or NFW model with α = 1 and β = 3.

ρ(r) ∝ 1

(r/a)(1 + r/a)2
, Φ(r) ∝ GM

ln(1 + r/a)

r/a
.
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3.1.6 Potentials for flattened systems

Potential of a “Toomre” disk. A simple potential for a disk was introduced by
Kuzmin in 1956 and independently by Toomre in 1963. The disk potential can be de-
scribed by

Φ(R, z) = − GM
√

R2 + (|a|+ |z|)
. (3.26)

According to Fig. 3.2 the potential at point (R,−z) is equal to a potential generated by a
mass M located at the point (0,a) or for points above the disk by a mass located at (0,-a).

Such a potential can be generated by a razor-thin disk with the surface density distri-
bution

Σ(R) =
aM

2π(R2 + a2)3/2
. (3.27)

The central surface density at R = 0 is M/2πa2 while the surface density drops for large
R like Σ(R) ≈ aM/R3. The constant a is just a scale parameter which indicates where
the surface density changes from constant to a step gradient.

.

Figure 3.2: Illustration of the parameters for Toomre’s disk.

A hybrid model between Toomre’s disk and the Plummer sphere We can now
generalize the disk model to include also a matter distribution in z-direction. This can be
achieved with a parameterization of the potential according to

Φ(R, z) = − GM
√

R2 + (a+
√
z2 + b2)2

. (3.28)

This potential has two extreme cases:
– for b = 0 the potential of a thin Toomre’s disk is obtained,

– for a = 0 and using R2 + z2 = r2 yields the spherical Plummer potential.

Depending on the selection of the parameters a and b one can create a family of potentials
covering density distributions from a thin disk to a sphere. The corresponding mass
distributions for this types of potentials are described by Miyamoto and Nagai)

ρ(R, z) =
(b2M

4π
)
aR2 + (a+ 3

√
z2 + b2)(a+

√
z2 + b2)2

[R2 + (a+
√
z2 + b2)2]5/2(z2 + b2)3/2

(3.29)
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Slide 3–1 shows contour plots of this density distribution for a few parameter cases. The
case b/a ≈ 0.2 is at least qualitatively a quite good representation for a disk galaxy, while
b/a ≈ 1 resembles a S0 galaxy (e.g. Sombrero galaxy).

Potential of spheroids. Many astronomical systems are spheroidals, flattened spheres,
because of the presence of angular momentum. The evaluation of potentials for spheroids
in general is very difficult, because we have to consider the 2D or 3D density distribution
of the system.

An important simplification is possible if we consider, homoeoids, thin concentrically
nested spheroidal shells. These shells are similar to the spherical shell used for spherical
systems.

One homoeid shell is bound by an inner surface and an outer surface described by

R2

a2
+

z2

b2
= 1 and

R2

a2
+

z2

b2
= (1 + δβ)2 ,

respectively. The perpendicular distance between the two surfaces varies with position.
This happens in such a way that Newton’s first theorem can be generalized to spheroidal
(ellipsoidal) shells.

Newton’s third theorem. A mass that is inside a homoeid experiences no net gravita-
tional force from the homoeoids.

The potential theory of spheroids was further developed in order to model with high
precision the potential of the Milky Way and other galaxies. Important for these models is
Newton’s third theorem and theory of multipole expansions for the gravitational potential.
This theory is not discussed in this lecture. Some of the important results are:

– many potentials for flattened (oblate) spheroid and triaxial ellipsoids have been
derived and applied to galaxy bulges, bars, and elliptical galaxies,

– potentials of exponential galactic disks are successfully described by strongly flat-
tened spheroid using Newton’s third theorem,

– potentials for non-axisymmetric disks can be calculated using Bessel functions, and
special potential functions are used for the description of logarithmic spiral struc-
tures.

3.1.7 The potential of the Milky Way

In this subsection the potential of the Milky Way is described. In particular the density
distributions of the main mass components are given: the bulge, the disk with different
distributions for the stars and the interstellar gas, and the dark halo. The described
model is only partly derived from studies of the dynamical properties of the Milky Way.
A lot of information on the mass distribution is also derived from photometric studies. In
this description the Milky Way is an axisymmetric system given in cylindrical coordinates
R and z. The model picked for this description has the parameters of Model I in the
book of Binney & Tremaine. This is a Milky Way model with a relatively small disk
but all parameters are compatible with the available observations. Slide 3–2 shows the
equipotentials for this model as well as the different components and Slide 3–3 illustrates
the corresponding circular velocities vc(r).
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The central bulge. The bulge can be described by a oblate, spheroidal power law model
which is truncated at an outer radius rb:

ρb(R, z) = ρb0
(m

ab

)αb

e−m2/r2
b , (3.30)

with

m =
√

R2 + z2/q2b .

The parameters describe:

– ρb0 = 0.43M⊙/pc
3 is the density normalization for the bulge

– ab = 1 kpc is the size normalization of the bulge,

– qb = 0.6 describes the bulge flattening,

– αb = −1.8 is the power law index for the density distribution,

– rb is the cut-off radius for the bulge.

The galactic disk. The Milky way disk consists of the stellar disk and a gas disks.

The stellar disk is described by an exponential fall near radius RS and two exponential
laws for the vertical direction, one for the thin disk and one for the thick disks. The used
formula is

ρs(R, z) = ΣS e
−R/RS

( a0
2z0

e−|z|/z0 +
α1

2z1
e−|z|/z0

)

. (3.31)

The parameters describe:

– ΣS ≈ 1500 M⊙/pc
2 is the central surface density of the stellar disk which is not well

known except for the solar radius R0. At R0 the surface density of the stars is about
35 M⊙pc

2, while the thick disk contributes about 3 M⊙pc
2.

– RS = 2.5 kpc is the disk scale length,

– α0 = 0.9 and α1 = 0.1 are the relative normalizations of the thin and thick disk,

– z0 = 0.3 kpc is the scale hight of the thin disk,

– z0 = 1 kpc is the vertical scale hight of the thick disk.

The radial distribution of the distribution of the interstellar disk is also described with an
exponential law with a much larger scale length than for the star. However there is a hole
with a radius of about 4 kpc in the center which is considered with an exponential cut-off.
The vertical density distribution of the gas is much narrower than for the stars:

ρg(R, z) = Σg e
−R/Rg e−Rm/R 1

2zg
e−|z|/zg . (3.32)

where the parameters are:

– ΣS ≈ 500 M⊙pc
2, the surface density of the gas in the disk is not well known except

for R0 where the surface density is about ΣgR0 ≈ 12M⊙pc
2

– Rg = 4 kpc is the disk scale length for the gas (twice the value for the stellar disk),

– Rm = 4 kpc is the radius of the inner hole,

– zg = 80 pc is the scale hight of the gas disk.
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The dark halo. The dark halo can be described by a extension of the spherical two-
power-law model to an oblate geometry.

ρh(R, z) =
ρh0

(m/ah)α(1 +m/ah)β−α
(3.33)

where the flattening is described like for the bulge

m =
√

R2 + z2/q2h .

The parameters describe:

– ρh0 = 0.71M⊙/pc
3 is the density normalization for the bulge,

– ah = 3.8 kpc is the size normalization for the halo,

– qh = 0.8 is a guess for the possible flattening of the dark halo,

– αh = 2.0 and βh = 3 are the power law indices for the halo density distribution.

3.2 The motion of stars in spherical potentials

This section discusses the orbits of individual stars in a static, spherical potential. Spher-
ical potentials serve again as simple cases for the description of general principles.

3.2.1 Orbits in a static spherical potential

Spherical potentials describe very well globular cluster but less well flattened or triaxial
systems like galaxies. Nonetheless the solutions for spherical potentials serve as very
important guide for more complicated gravitational fields.

In a centrally directed gravitational field the position vector of a star is

~r = r~er

The motion of a star with a mass mS in spherical potential is defined by the radially
directed gravitational force

~F (r) = mS
d2~r

dt2
= mSg(r)~er .

Further we use that the angular momentum in a static spherical system is constant

~L = ms~r ×
d~r

dt
= const. .

This implies that the stars moves in a plane. For this reason we can use plane polar
coordinates.

Lagrange function. We introduce the Lagrange-function, which is a general formula-
tion for the equations of motions. The Lagrange-function for a star in free space is in
Cartesian coordinates

L =
mS

2
(ẋ2 + ẏ2 + ż2) ,
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and in polar coordinates

L =
mS

2
(ṙ2 + r2φ̇2 + ż2) .

The Lagrange-function for a mass mS in a spherical potential Φ(r) can then be written as

L =
mS

2
(ṙ2 + r2φ̇2)−Φ(r) . (3.34)

as in polar coordinates because we can align the spherical coordinate system always with
the orbital plane (where θ = 0).

Equation of motion. The equations of motions follow from the derivatives of the La-
grange equation

0 =
d

dt

∂L
∂ṙ

− ∂L
∂r

= mS r̈ −mSφ̇
2 −mS

dΦ

dr
, (3.35)

0 =
d

dt

∂L
∂ ˙phi

− ∂L
∂φ

=
d

dt
(msr

2dotφ) . (3.36)

The second equation is the formulation of the angular momentum conservation in polar
coordinates

L = mSr
2φ̇ = const .

With the angular momentum equation we can substitute the time derivative by the angle
derivative

d

dt
=

L2

r2
d

dφ
,

and this yields the equation of motion in the following form:

L2

r2
d

dφ

( 1

r2
dr

dφ

)

= −dΦ

dr
. (3.37)

With the substitution u=1
r a simplied form for the equation of motion is obtained:

du2

dφ2
+ u =

1

L2u2
dΦ

dr
(1/u) . (3.38)

Energy equation. We can write for a mass in a central potential the following energy
equation

Etot =
mS ṙ

2

2
+

L2

2mSr2
+Φ(r) . (3.39)

This provides very convenient formula for the motion of particles in a centrally symmetric
gravitational field.

Further we can use for a stationary gravitational potential the virial theorem

2Ekin + Epot = 0 ,

where Φ(r) = Epot for the star in the central potential.
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Effective Potential. The energy equation (3.39) shows that the radial motion can be
described as 1-dimensional motion in an effective radial potential of the form

Φeff(r) = Φ(r) +
L2

2mSr2
. (3.40)

This potential goes, except for the case L = 0, for r → 0 to infinity and for r → ∞ from
negative values to zero.

This potential has for small radii a centrifugal barrier if L 6= 0. The r-values where the
total energy is equal to the effective potential energy defines the radial range of motion:

mṙ2

2
= E − Φeff . (3.41)

The borders of this range are defined by the radius where the radial kinetic energy is zero
or where ṙ = 0. At these points the total energy is equal to the effective potential energy.
For bound orbits and L 6= 0 this equation has two roots r1 and r2 which are called the
pericenter and apocenter distances, respectively.

Figure 3.3: Radial dependence of the effective potential energy for potentials with different
angular momentum.

The different curves in Fig. 3.3 illustrate what happens if the total energy or the angular
momentum is changed in the system. A change in angular momentum is equal to a jump
to a different effective potential energy curve and a change in energy enhances or lowers
the eccentricity. A dynamical interaction between two stars changes typically both, the
total energy and the angular momentum.

The radial dependence of the effective potential energy is similar for essentially all
gravitating systems. For small separation there is the centrifugal force barrier, in the
intermediate range is the minimum of the potential energy, and for large separations the
effective potential energy towards zero.
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3.2.2 Radial and azimuthal velocity component.

The motion in r and φ can be derived from the energy equation. The equation for the
radial velocity component is

ṙ =
dr

dt
=

√

2

mS
[E − Φ(r)]− L2

m2
Sr

2
, (3.42)

with the time dependence

t(r) =

∫

dt

dr
dr =

∫

dr
√

2
mS

[E − Φ(r)]− L2

m2

S
r2

+ const. , (3.43)

and using the definition for the angular momentum L = mSr
2φ̇ or dφ = L/mSr

2dt yields
the equation for the azimuthal velocity component

φ(r) =

∫

φ

dr
dr =

∫ L
r2dr

√

2mS [E −Φ(r)]− L2

r2

+ const. . (3.44)

Figure 3.4: Typical orbit of a star in a spherical potential.

The radial period Tr is the time required for the star mS to travel from apocenter to
pericenter and back. This is:

Tr = 2

∫ r2

r1

dr
√

2
mS

[E − Φeff(r)]
. (3.45)

Similarly one can derive the azimuthal angle increase ∆φ from pericenter to apocenter
and back, which is

∆φ = 2L

∫ r2

r1

dr

r2
√

2
mS

[E − Φeff(r)]
.

The azimuthal period is then

Tφ =
2π

∆φ
Tr , (3.46)
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or the mean azimuthal speed is equal to 2π/Tφ. The orbit will only be closed if 2π/∆φ is
a rational number, what is typically not the case except for the potential of a point source
and a homogeneous sphere. The star moves therefore in general on a rosette around the
center of the spherical potential (Fig. 3.4).

3.2.3 Motion in a Kepler potential

Effective potential. The effective potential energy for a point source is

Φeff(r) = −GM

r
+

L2

2msr2
. (3.47)

The equation
dΦeff(r)

dr
=

GM

r2
− L2

msr3
= 0

provides the radius of the minimum

rmin =
L2

GMmS
(3.48)

and the corresponding minimum effective potential energy

min(Φeff(r)) = −G2M2mS

2L2
. (3.49)

The total energy is for a given angular momentum equal or larger to

Etot ≥
L2

2mSr
2
min

+Φ(rmin) =
G2M2mS

2L2
− G2M2mS

L2
= −G2M2mS

2L2
.

For Etot = min(Φeff(r)) we have a circular orbit with no radial motion component. In
this case the angular momentum energy term is half the potential energy term. This is as
predicted by the virial theorem for a system in gravitational equilibrium:

2Ekin + Epot = 0 .

The circular orbit is a minimum energy orbit for an object with a given angular momentum
moving in a spherical potential.

Orbital periodicities in a Kepler potential. The motion in a Kepler potential can
be derived from the equation of motion described in Equation 3.38.

We know from the first and third Kepler law that the orbits are closed:

Tr = Tφ

and that the orbital period or radial oscillation period is

T 2
r = 2π

a3

GM
.

The Keplerian motion has the following properties:
– the mass mS moves on closed ellipses with the point source in one focal point,

– according to the angular momentum conservation, the azimuthal velocity during an
orbit behaves like

dφ(r)

dt
∝ 1/r .
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3.2.4 Motion in the potential of a homogeneous sphere

According to Section the potential at r < a inside a sphere with radius a is

Φ(r) = −2πGρa2 +
2πGρ

3
r2 =

ω2

2
r2 + const. ,

with ω2 = 4πGρ/3. The equation of motionmS r̈ = mS(dΦ/dr) can be written in Cartesian
coordinates x = r cosφ and y = r sinφ:

ẍ = −ω2x , ẍ = −ω2y , (3.50)

with the solutions:
x = axcos(ωt+ δx) , y = aycos(ωt+ δy) . (3.51)

where ax, ay, δx and δy are arbitrary constants. The motion has the following properties:

– x and y have the the oscillation period Tr = 2π/ω,

– the oscillation phase in the x and y directions are independent,

– the mass mS moves on closed ellipses which are centered on the center of the sphere
r = 0,

– the radial period is half the orbital period, or an object completes two in-and-out
oscillations during an orbital period:

Tr =
1

2
Tφ . (3.52)

If the x- and y-oscillations are in phase, then the motion corresponds to a swing from
one side of the center to the other side and back along a straight line with a full oscilla-
tion period identical to the orbital period. However, for a radial coordinate system this
corresponds to two full oscillation rmax − 0− rmax − 0− rmax.

Figure 3.5: Qualitative illustration of the ellipse shape of a mass in a Kepler potential and
a mass inside a homogeneous sphere.

Figure 3.5 illustrates the fundamental difference between the orbits in a homogeneous
sphere and around a point source. All smooths potentials create orbits which have typically
about two radial oscillation per azimuthal period.
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3.3 Motion in axisymmetric potentials

Stars moving in the equatorial plane of an axisymmetric potential behave like stars in a
spherical potential, because one can always find a spherical gravitational potential which
induces the same gravitational force on the stars in the equatorial plane as the axisym-
metric potential. For this reason the orbits discussed in the previous chapter for spherical
potentials apply also for the stars in the equatorial plane of an axisymmetric potential.

The motion of the stars located in or near the equatorial plane is an important problem
for the investigation of disk galaxies.

3.3.1 Motion in the meridional plane

We assume that the potential is symmetric with respect to the plane z = 0. Then we can
write the Lagrange equation with the following terms

L =
mS

2
(Ṙ2 +R2φ̇2 + ż2)− Φ(R, z)

The 3-dimensional motion of a star in an axisymmetric potential can be reduced to a
2-dimensional motion of a star in the R-z-plane, the meridional plane.

The equation of motion in this co-rotating plane are:

mSR̈ = −∂Φeff(R, z)

∂R
, mS z̈ = −∂Φeff(R, z)

∂z
, (3.53)

where the effective potential is

Φeff(R, z) = Φ(R, z) +
L2
z

2mSR2
(3.54)

Similar to the spherical case we can write the total energy equation, but now with an R
and a z term for the kinetic energy

Etot =
1

2mS
(p2R + p2z) + Φeff(R, z) . (3.55)

The kinetic energy of motion in the R-z-plane is

1

2mS
p(2R+p2z) = Etot − Φeff(R, z) .

Orbits in the meridional plane are restricted to the area Etot > Φeff(R, z) and one can
define contour lines or the zero velocity curves in the meridional plane where the kinetic
energy term is instantaneously zero

Φeff(R, z) = Etot .

The minimum of Φeff is in the equatorial plane z = 0 and the radial value follows from

0 =
∂Φeff

∂R
=

∂Φ

∂R
− L2

z

mSR3
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This yields the radius for a circular orbit with angular speed φ̇ which is identical to the
radius of the minimum of the effective potential. At this radial point, which is called the
guiding-center radius Rg, there is

(∂Φ

∂R

)

(Rg,0)
=

L2
z

mSR3
= mSRgφ̇

2 ,

(Lz = mSR
2φ̇). This is the condition for a circular orbit with angular speed φ̇ for a mass

located at the radius Rg, which is at the minimum of the effective potential.

Example. Slide 3-4 shows as example the contour plot and orbits for the effective po-
tential

Φeff(R, z) =
v0

2mS
ln
(R2 + z2

q2

)

+
L2
z

2mSR2
,

for v0 = 1, Lz = 0.2 and axial ratio q = 0.9 and 0.5. This represents the effective potential
for an oblate, spheroidal mass distribution like a central bulge of a disk galaxy, an elliptical
galaxy, or a dark matter halo with a constant circular velocity speed vc = const. The
effective potential energy rises strongly near R = 0 because of the “centrifugal barrier” for
the given angular momentum Lz.

The equations (3.53) for the relative motion in a co-rotating frame must be integrated
numerically. Slide 3-4 shows the calculated motion. The given results are for stars in the
same potential, same energy and same angular momentum but they still differ significantly.
This problem is called the third integral problem and it is linked in this case to the
precession of the angular momentum vector in a flattened potential.

3.3.2 Nearly circular orbits: epicycle approximation

In disk galaxies many stars are on nearly circular orbits. For this case we can simplify the
equation of motion in the co-rotating system (Eq. 3.53)

mSR̈ = −∂Φeff(R, z)

∂R
, mS z̈ = −∂Φeff(R, z)

∂z
, (3.56)

with a linearization of the corresponding effective potential at R = Rg and z = 0. We
introduce x as new variable in the radial direction

x = R−Rg

The effective potential in Eq. 3.54 can then be written as Taylor expansion:

Φeff = Φeff(Rg, 0) +
1

2

(∂2Φeff

∂2R

)

(Rg ,0)
x2 +

1

2

(∂2Φeff

∂2z

)

(Rg ,0)
z2 +O(xz2) + .... (3.57)

The first order terms are zero because Φeff(Rg, 0) is at a minimum. One can introduce
abbreviations for the second derivatives (curvature in the effective potential):

κ2(Rg) =
(∂2Φeff

∂2R

)

(Rg,0)
, and ν2(Rg) =

(∂2Φeff

∂2z

)

(Rg ,0)
.

This approximation, which is called the epicycle approximation, yields very simple,
harmonic, equations of motions for the radial x and vertical z directions:

ẍ = −κ2x , z̈ = −ν2 . (3.58)
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The two time scales are called:

– the epicycle or radial frequency κ,

– the vertical frequency ν.

These frequencies can be evaluated using Eq. 3.54 for the effective potential in a co-rotating
system

Φeff(R, z) = Φ(R, z) +
L2
z

2mSR2
.

This yields for the vertical frequency the simple relation

ν2(Rg) =
(∂2Φ

∂2z

)

(Rg ,0)
(3.59)

Solution for the epicycle frequency. There are two terms for the epicycle frequency
κ, a potential energy term and an angular momentum term

κ2(Rg) =
(∂2Φ

∂2R

)

(Rg ,0)
+

3L2
z

m2
SR

4
. (3.60)

We can now use the “global” angular velocity dependence for the circular motion at Rg

which is (using also Lz = mSRvc)

Ω2(R) =
v2c (R)

R2
=

1

R

(∂Φ

∂R

)

(Rg ,0)
=

L2
z

m2
SR

4

With this relation we can rewrite the equation for the epicycle frequency in terms of global,
“galactic”, quantities:

κ2(Rg) =
(

R
dΩ2

dR
+ 4Ω2

)

Rg

(3.61)

using d2Φ/d2R = d/dR(RΩ2) = Ω2 + R(dΩ2/dR. This relates the epicycle frequency to
the radial dependence of the angular velocity dΩ2(R)/dR.

Comparison of epicycle period and orbital period. We can now compare the
epicycle period Tr with the azimuthal orbital period Torb which are simply:

Tr =
2π

κ
and Tφ =

2π

Ω
.

There are three useful approximate cases for a comparison between orbital frequency and
epicycle frequency:

– Near the center of galaxies the circular speed vc increases linearly and Ω(R) is es-
sentially constant and therefore dΩ2/dR ≈ 0. In this case there is

κ2(Rg) ≈ 4Ω2 or κ ≈ 2Ω ,

This corresponds to the case of a homogeneous sphere where the epicycle frequency is
twice the orbital frequency, or the radial period is half the orbital period Tr = Tφ/2.
This is again the limiting case for a homogeneous sphere.
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– At large radii from the center the circular velocity falls off like (but usually less rapid)
the Kepler law. For a Kepler law there is Ω ≈ R−3/2 (using R(dΩ2(R)/dR) = −3Ω2).
This limit implies

κ2(Rg) ∼> Ω2 or κ ∼> Ω .

Thus we have the case where the radial period and orbital periods are equal or
Tr = Tφ. This is as expected for a closed Keplerian orbit.

– At most points in a typical disk galaxy the circular velocity is constant or Ω ∝ R−1/2.
For this case the formula for the epicycle frequency is

κ2 = 3Ω2 or κ ≈ 1.7Ω .

This indicates that in a disk the stars oscillate with a frequency of roughly 1.5 times
the orbital frequency.

Application for the solar neighborhood. The third case, for intermediate separa-
tions, can be evaluated in detail for the solar neighborhood. As described in Chapter 2,
we know quite well the Oort’s constants A and B from the measurement of the radial and
tangential velocities of stars in the solar neighborhood. We used the following formula for
the Oort’s constants:

A =
1

2

[Θ0

R0
−

(dΘ

dR

)

R0

]

and B = −1

2

[Θ0

R0
+

(dΘ

dR

)

R0

]

.

With vc = Θ and RΩ = vc we can write:

A = −1

2
R
dΩ

dR
and B = −

(

Ω+
1

2
R
dΩ

dR

)

The circular angular velocity is Ω = A+B while the epicycle frequency is

κ2 = −4B(A−B) = −4BΩ

which yield the ratio between epicycle frequency and orbital period for the solar neigh-
borhood

κ0
Ω0

= 2

√

−B

A−B
≈ 1.3± 0.1 . (3.62)

The result is obtained for the typical values for the Oort’s constants A ≈ +15 km/(s kpc)
and B ≈ −12 km/(s kpc). This means that the sun makes about 1.3 oscillations in radial
directions within one orbit around the galactic center.
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3.3.3 Density waves and resonances in disks

In the previous subsection we have introduced the following quantities for stars with almost
circular orbits in disk galaxies:

– Tr: the epicycle or radial period for the in-and-out motion in radial direction,

– ∆φ: the azimuthal angle increase during the epicycle period,

– Ωr = 2π/Tr: the radial oscillation frequency,

– Ωφ = ∆φ/Tr: the corresponding azimuthal oscillation frequency,

– Ω = 2π/T : the orbital frequency or orbital angular velocity where T is the time for
a full orbit around the galaxy center.

We now describe the motion of the stars in a frame which is rotating with some special
angular velocity. The following quantities are defined in this system:

– ΩP : angular velocity (or pattern speed) for the selected rotating frame,

– φp = φ − Ωpt: the azimuthal angle in the rotating reference system which changes
with time,

– ∆φp = ∆φ − ΩpTr: the azimuthal angle increase in the rotating system for one
epicycle period.

On can always choose an angular velocity Ωp for a rotating coordinate system in which
the orbits are closed or ∆φP/Tr = (n/m)Ωr. This follows from the definition of ∆φp

Ωp =
∆φ

Tr
− n

m
Ωr . (3.63)

For orbits close to circular orbits we can approximate ∆φ/Tr = Ωφ ≈ Ω and κ ≈ Ωr and
write

Ωp = Ω− n

m
κ . (3.64)

Figure 3.6 illustrates the appearance of an orbit with κ/Ωr ≈ 1.5 in rotating frames with
different m and n.

Figure 3.6: Closed orbits with different n and m in a rotating system.
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In general, Ω − nκ/m is a function of radius, and no unique pattern speed Ωp can be
defined to close the orbits at all radii. Slide 3-5 shows curves for Ω− nκ/m for the Milky
Way (model 1).

However, it was first noticed by Lindblad that the curve for Ω− κ/2 is relatively constant
for a wide range of galactic radii. A constant curve Ω− κ/2 would mean that in a frame
rotating at Ωp all orbits would be ellipses, which are nested for a broad range of R. They
would look like the ellipses shown in Slide 3-6. If stars move predominantly along these
ellipses then they would create a bar-like pattern, which is stationary in a rotating
frame. In a fixed frame this would then look like a density wave rotating with a pattern
speed Ωp

In a real galaxy Ω − nκ/m depends on radius. Therefore, independent of the selected
Ωp, most orbits will not be exactly closed. The orientations at different radii will drift at
slightly different speeds, and the pattern will twist, and might look like a spiral pattern
(see Slide 3-6). This type of kinematic density waves, produce a non-axisymmetric disk
pattern and an exact calculation of stellar orbits needs to take this into account.
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3.4 Two-body interactions and system relaxation

Up to now we have assumed that collisions, ie the interaction between individual stars,
can be neglected. This is a reasonable assumption for galactic dynamics. We discuss now
cases where such collisions between stars play an important role.

A star within a more or less homogeneous distribution of other stars “feels” the gravita-
tional force of all these stars. The force F = ΣFi of all stars i in a given solid angle (see
Fig. 3.7) behaves as follows:

– the force induced by an individual star is Fi ∼ 1/r2i and decreases with distance,

– the volume and therefore the number of stars in a fractional distance interval, e.g.
[r − r/2, r + r/2] increases like ∼ r3,

– the total force on the sample star is dominated by the more distant stars.

Figure 3.7: On the force induced by near and distant stars in a homogeneous distribution.

Therefore it is reasonable to assume that stars are smoothly accelerated by the force field
that is generated by the Milky Way as a whole. In the following we investigate more
quantitatively this simpflication and consider cases where this approximation is no more
valid.

3.4.1 Two-body interaction

We consider an individual star, called the the subject star, and investigate how much its
velocity is disturbed by encounters with other stars, called two-body interactions, during
the crossing through a system like a galaxy, or a star cluster. Thus we calculate the
expected deflection of the trajectory of the subject star from the path it would have in the
smooth overall potential. For our estimate we assume that all stars have the same mass
mS .

The velocity deflection δ~v induced by a two-body interaction can be simplified, if we
consider only weak (distant) encounters which introduce small velocity deflections |δ~v|/v ≪
1. Further it is assumed that the field star is stationary during the encounter. The
velocity deflection follows then the perpendicular force F⊥ of the field star induced onto
the subject star which is moving with velocity v along an essentially straight line with
impact parameter b (Fig. 3.8).
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.

Figure 3.8: Geometry for an estimate of the deflection by a star-star interaction.

If both stars have the same mass, then the perpendicular force induced on the subject star
is:

F⊥ ≈ Gm2
S

b2 + x2
cosθ =

Gm2
Sb

(b2 + x2)3/2
, (3.65)

using the trigonometric relation cosθ = b/r = b/
√
b2 + r2. The coordinate along the

trajectory x can be expressed by the time and the velocity of the subject star x = v · t so
that

F⊥ ≈ Gm2
S

b

[

1 +
(vt

b

)2]−3/2
.

According to Newton’s law the acceleration or change in velocity ~̇v = ~F/mS is the time
integral of the acting force, or

δv ≈
∫ +∞

−∞
F⊥ dt =

GmS

b2

∫ +∞

−∞

1

[1 + (vt/b)2]−3/2
dt (3.66)

The integral is equal to 2b/v and the deflection is

δv ≈ 2GmS

bv
. (3.67)

This equation can be interpreted as follows:

– δv is proportional to the acceleration at closest approach GmS/b
2 times a charac-

teristic duration of the acceleration 2b/v,

– the derived approximative value is only valid for δv ≪ v or for an impact parameter
larger than

b ≫ GmS/v
2 = 900AU

(mS/M⊙)

(v/(km/s))2
.

As next step we estimate the number of encounters of the subject star in a stellar system
for the impact parameter range [b, b + db]. We ue an estimate for the surface density of
field stars

Σstars ≈
N

πR2
,
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where N is the total number of stars and R the radius of the considered system, e.g. the
stellar cluster or galaxy. The subject star will have during one crossing of the system the
following number of encounters

δn =
N

πR2
2πbdb =

2N

R2
bdb . (3.68)

with impact parameter between b and b+ db. Each such encounter produces a deflection
δ~v to the subject star, but these deflections are randomly oriented and their mean will be
zero. But the mean-square change will not be zero and after one crossing. The squared
velocity deflection (change) for an impact parameter intervall db will be:

Σ δv2 db ≈ δv2δn db =
(2GmS

bv

)2 2N

R2
bdb . (3.69)

Now, we have to take into account all impact parameters by integrating from bmin to bmax

∆v2 =

∫ bmax

bmin

Σ δv2 db = 8N
(GmS

Rv

)2
lnb

∣

∣

∣

bmax

bmin

. (3.70)

The logarithm term can be written as

lnΛ = ln bmax − ln bmin .

The maximum impact parameter is of the order bmax ≈ R, the smallest, where the small
deflection approximation is still valid, is bmin ≈ 2GmS/v

2. These are only approximate
values with an uncertainty of a factor of a few. For this reason we can write

lnΛ = ln
( R

bmin

)

+ ln(ǫ1/ǫ2) .

In most systems R ≫ bmin and the typical ratio is R/bmin ≫ 104 while the uncertainty
term ǫ1/ǫ2 is much smaller, of the order of a few. This term can therefore be neglected
with respect to the first term. Thus, the parameter Λ is approximately

Λ ≈ Rv2

2GmS
≈ N ,

where we already used the next approximation for the typical stellar velocity v.

The encounters between the subject star and the field stars produce a diffusion of the
star’s velocity which is different from an acceleration induced by a smooth, large scale
potential. This velocity diffusion is called two-body relaxation, because it is the result
of a large number of mostly weak two-body interactions.

The typical speed v of the a field star can be approximated by the circular velocity of a
star at radius R (at the edge) of the system

v2 ≈ GNmS

R
.

Equation 3.70 can be simplified with this velocity to

∆v2

v2
≈ 8 lnΛ

N
, (3.71)
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The subject stars makes typically many crossings until the velocity ~v changes by roughly
∆v2. The number of crossings nrelax required for a change of the velocity by a value
comparable to v is then

nrelax ≈ N

8 lnΛ
≈ N

8 lnN
.

3.4.2 Relaxation time

The relaxation time is defined as trelax = nrelaxtcross, where the crossing time is tcross = R/v.
Using all the approximations from above we can express the relaxation time by the number
of stars and the crossing time

trelax ≈ 0.1N

lnN
tcross . (3.72)

Thus the relaxation time exceeds the crossing time in a self-gravitating system for N ∼> 40.

After the relaxation time the orbit of a (subject) star is changed significantly by all the
small kicks induced by other stars, so that its velocity is now different than from the what
one would expect in a smooth potential.

Table 3.1: Typical characteristic parameters for stellar systems

system R N tcross trelax tlifetime

clusters of galaxies 1 Mpc 1000 1 Gyr 14 Gyr 10 Gyr
galaxies 10 kpc 1011 100 Myr ≫ 100 Gyr 10 Gyr
central pc of galaxies 1 pc 106 104 yr 100 Myr 10 Gyr
globular clusters 10 pc 105 105 yr 100 Myr 10 Gyr
open clusters 10 pc 100 1 Myr 10 Myr 100 Myr

Table 3.1 gives typical numbers for the different stellar systems using these approximations.
The numbers show that the relaxation times are extremely long for galaxies. Therefore
they can be treated as collision-less systems. Important to notice is, that the dynamics of
stars in galaxies preserve at least partly information from past eventes.

On the other side there are the stellar clusters. Globular clusters relax in about 100 Myr
and open clusters on a very short timescale of about 1 Myr. Their dynamics is dominated
by relaxation and the star motions are rapidely randomized. For this reason it is often
not possible to extract the past history of clusters from dynamical studies.

3.4.3 The dynamical evolution of stellar clusters

Galactic stellar clusters have a very short relaxation time. A disturbance of their dynamics
is therefore rapidely randomized. In addition, galactic stellar clusters are also quite fragile
and disolve rapidely, typically within about 300 Myr. On the other side there are the
globular clusters which have survived more than 10 Gyr. For these systems we have only
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little information about their formation history and all signatures from the formation
process in the stellar dynamics has been washed out.

Some important dynamical processes for the evolution of stellar cluster can be infered
from their current properties:

For globular clusters, we know that
– they have a long life time of 10 Gyr or more,

– they have typically N ≈ 105 to 106 stars,

– many globular clusters show a dense core and a low density halo,

– there are often “hard binary systems” in the center.

For galactic open cluster, we know that
– they have typically 100 - 1000 star members,

– they disolve in about 300 Myr,

– they show often a mass segregation with more massive stars in the center and lower
mass stars further out.

In the following we discuss a few processes in stellar dynamics which influence the evolution
of stellar clusters.

Cluster formation. We discuss the formation of a stellar cluster, considering a very
young population of N stars which is still embedded in the gas cloud out of which the
stars were formed. We define the total embedded stellar mass of the cluster Mecl and use
mS as mean stellar mass

mS =
Mecl

N
.

Further we can define a fractional star-formation efficiency ǫ, the fraction of the total mass
of the initial gas cloud Mcloud which ends up in newly formed stars

ǫ =
Mecl

Mecl +Mgas
.

Here Mgas is the gas left over from the star-formation process (Mcloud = Mecl + Mgas).
Usually it is very difficult to determine observationally the mass of the remaining gas after
the end of the star formation process. For this reason the existing “typical” fractional star
formation efficiency parameter is very uncertain. A value in the range

0.2 ∼< ǫ ∼< 0.4

is often quoted. This means that less than half of the mass of a collapsing cloud ends up
in stars. This is a strong hint that the star formation in a collapsing cloud is terminated
by the newly formed stars: this is called feedback effect in star formation. Energetic
processes are responsible for the termination of the star formation:

– the production of turbulence by the outflows from circumstellar disk around newly
forming stars ,

– photoionization and heating by the energetic radiation produced by the gas accretion
processes of protostellar sources or the UV radiation from the hot photosphere of
young, massive stars,

– shocks created by the stellar winds of young stars,

– shocks from supernova explosions of very massive, short lived stars.
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Feedback: instantaneous gas removal. We can estimate what happens if there is
an embedded cluster of protostars where the gas is removed in a short time by energetic
stellar processes.

We assume that the embedded, proto-stellar cluster is in a dynamical equilibrium state
what is a reasonable assumption for a 10 Myr young cluster (see Table 3.1). Then the
total energy (or binding energy) is

Eecl = −GM2
init

rinit
+

1

2
Minitσ

2
init (3.73)

where σinit is the velocity dispersion which can be written for a virialized system Epot +
2Ekin = 0 as

σ2 =
GM

r
. (3.74)

A virialized systems relates also the binding energy and the potential energy

E = −1

2
Epot .

The initial mass is Minit = Mecl + Mgas and this quantity can be the same as the total
mass of the collapsing cloud Minit = Mcloud. The formalism is also valid for later stages
where already some gas is lost, so that Minit < Mcloud and Mgas(t) < Mgas(t = 0).

If energetic processes remove instantaneously the gas then the total mass of the cluster is
changed from Minit to Mafter = Mecl which includes only the total mass of the stars. The
instantaneous gas removal does not change instantaneously the radial distribution rinit and
the kinetic motion σinit of the stars. The total binding energy of the cluster immediately
after the gas removal is then

Eafter = −GM2
after

rinit
+

1

2
Mafterσ

2
init = −1

2

GM2
after

rinit
. (3.75)

The cluster evolves now with a timescale of the order of the relaxation time scale to a
new equilibrium state. If we assume that the mass Mcl = Mafter and energy Ecl = Eafter

are conserved during this phase then the new equilibrium state can be described by a new
radius rcl and a new velocity dispersion σcl

Ecl = −GM2
cl

rcl
+

1

2
Mclσ

2
cl . (3.76)

The resulting cluster radius follows from Ecl = Eafter where

Eafter = −GMafter

rinit

(

Mafter −
1

2
Minit

)

and with the relations from above Minit = Mcl +Mgas we obtain

rcl
rinit

=
1

2

Mcl

Mcl −Minit/2
=

Mcl

Mcl −Mgas
. (3.77)

This equation implies that the cluster radius goes to ∞, or becomes unbound
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– for Mgas → Mcl, or if the removed gas contains equal or more mass than the stellar
mass of the cluster,

– this is potentially the case for inefficient star formation when the fractional star
formation efficiency ǫ ≤ 0.5 is low and a lot of gas is still present in in the newly
formed clusters.

Since, the inferred fractional star formation rate is low ǫ < 0.5, and there are many gas-
less clusters observed there must be alternatives to the instantaneous gas removal model.
Instantaneous gas removal would lead to the destruction of many galactic clusters, but
this did not happen for all the known stellar clusters in our Milky Way.

Feedback: continuous removal of gas. One can talk of a continuous mass loss if the
time scale for gas removable is much longer than the relaxation time or the cluster crossing
time:

τgas ≫ τcross .

In this case the cluster adjusts its dynamics continously according to the virial equilibrium.
The increase of the cluster radius can then be described as a result of small (infinitesimal)
mass removals:

rinit + δr

rinit
=

Minit − δMgas

Minit − δMgas − δMgas
. (3.78)

which can be written as
r + dr

r
=

M − dM

M − 2dM
,

We search now for the formula for the relative radius increase of the cluster because of a
small mass loss. Useful formulae are obtained by rearranging

(dr

r
+1

)

(M − 2dM) = M − dM or
dr

r
(M − 2dM) = −(M − 2dM) +M − dM = dM .

Since the radius increases for a reduced mass we can write

dr

r

M − 2dM

M
= −dM

M
or

dr

r
= −dM

M

( M

M − 2dM

)

For slow mass loss, there is |dM | ≪ M . and we can approximate

dr

r
≈ −dM

M
. (3.79)

Integration yields ln(rcl/rinit) = −ln(Mcl/Minit) or

rcl
rinit

=
Minit

Mcl
=

Mecl +Mgas

Mcl
=

1

ǫ
. (3.80)

If the mass-loss is slow, then one can have a low fractional star formation efficiency (say
0.2) and loose a lot of gas (80 %) from the initial cloud mass and still end up with a bound
cluster. The radius of the cluster expands like 1/ǫ. For example, if 80 % of the mass is
lost by a continous gas removal then the initial radius of the cluster expands by a factor
of 5.

The conclusion is that with a slow mass loss, which allows a continuous re-virialization of
the cluster dynamics, the mass loss causes less expansion and a more likely survival of a
cluster compared to an instantaneous mass loss.
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Mass segregation and core-formation. A cluster contains stars with a range of
masses. The interactions of stars in a cluster induces, like in the kinetic gas theory,
an evolution towards equipartition:

– in two-body interactions, the more massive stars transfer a significant amount of
their large kinetic energy m1v

2
1/2 to less massive stars i, until m1v

2
1 ≈ miv

2
i ,

– this leads in a self-gravitating star clusters to a mass segregation, the more massive
stars have less specific (per unit mass) kinetic energy and sink towards the cluster
center, while less massive stars gain kinetic energy and diffuse outwards to larger
radii.

The concentration of massive stars towards the center would just continue and lead to a
core collapse. A relatively small number of massive stars concentrate in a very compact
cluster core while the halo expands. This evolution would lead to a singularity if hard
binaries would not counteract to this process.

Compact binary stars. Binary stars can transfer a lot of energy to a dense stellar
system by dynamic interactions. We consider here only a simple energy argument.

A virialized system has a binding energy of

Ecl ≈ −GM2

Rcl
≈ −GN2m2

S

Rcl
.

We can compare this to the binding energy of a binary star which is

Ebin ≈ −Gm2
S

a

where a is the orbital separation (semi-major axis).

If the binary is sufficiently compact then its binding energy (negative total energy) is equal
to the total binding energy of the entire cluster. The corresponding binary separation is

aeq ≈ Rcl

N2
. (3.81)

This separation corresponds to

– aeq ≈ 2 AU for a open cluster with 1000 stars and a radius of 10 pc,

– aeq ≈ 10−4 AU (or 0.1 R⊙) for a globular cluster with 105 stars and 10 pc radius.

This comparison shows that compact binaries, also called hard binaries, can stabilize a
stellar cluster against collapse. Interaction of a hard binary star with a single star can
transfer orbital energy of the binary to the third star, which gains then kinetic energy and
moves outward in the cluster. This interaction reduces of course the separation and the
total energy of the binary. However, a compact binary can have more binding energy than
an entire open cluster. Such binary star interactions act against the cluster core collapse
due to two-body interactions and equipartition. Of course, the binaries become more and
more compact with time and they may even merge. This scenario can also explain the
presence of the blue stragglers in the HR-diagram of clusters.

In globular cluster several hard binaries are required to stabilize the system. With X-
ray observations such hard binaries were indeed found in several globular clusters. There
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are cases with about 10 or even more such binaries in one globular cluster. These X-ray
binaries have characteristics of low mass X-ray binaries, which are composed of a neutron
star and a companion, often a white dwarfs, in a very compact orbit with an orbital
period of about an hour. Thus the orbital separation is indeed very small, of the order
10−3 AU, or even less. Several such binaries are capable to stabilize a globular cluster
against collapse of the compact core.

Evaporation. The stars in the cluster halo can escape from a cluster if the encounters
with other stars transfer enough energy so that they can escape from the system. For
this a star must reach a velocity above the escape speed ve(r) or its total energy must
become positive:

Ekin + Epot =
1

2
mSv

2(r) +mSΦ(r) > 0 .

or
v(r) > ve(r) =

√

2Φ(r) .

This can be generalized to an expression v2e(~x) = −2Φ(~x) so that we can write a general
mean-squared escape velocity for a system with a density ρ(~x) according to

〈v2e〉 =
∫

ρ(~x)v2e(~x) d~x
∫

ρ(~x) d~x
= −2

∫

ρ(~x)Φ(~x) d~x

M
= −4

Epot

M

According to the virial theorem 2Ekin + Epot = 0, where Ekin is the total kinetic energy
M〈v2〉/2, the root mean squared (rms) escape speed is just twice the rms speed:

〈v2e〉 = 2〈v2〉 .

We may assume that the velocity distribution behaves in a collisionally dominated system
(t > trelax like a Maxwellian distribution, where a fraction of about γ = 0.7 % of particles
have a velocity which is v > 2〈v〉. Thus we can assume that the two-body interaction
removes about a fraction γ of stars by evaporation every relaxation time:

dN

dt
= − γN

trelax
= − N

tevap
.

Thus the evaporation time is of the order

tevap =
trelax
γ

≈ 140 trelax .

Thus any system with an age comparable to τ ≈ trelax will have lost a substantial fraction of
its stars. If we use the characteristic relaxation time scale for open cluster trelax ≈ 10 Myr
then we obtain an evaporation time scale of the order 1.5 Gyr. This is of the same order
of magnitude, although a bit higher, than the estimated typical age of stellar cluster of
about t ≈ 0.3 Gyr.

Most likely, there exist additional processes, which accelerates the evaporation of open
clusters in the galactic disk. A possible process it the gravitational interaction of clusters
with molecular clouds which enhances the stellar velocity dispersion in the cluster and
shortens the evaporation time scale.
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