
Chapter 4

Radiation from planets

We consider first basic, mostly photometric radiation parameters for solar system planets
which can be easily compared with existing or future observations of extra-solar planets.
In the next section we consider in more detail the physics of planetary atmospheres which
is important for the interpretation of the thermal or reflected spectral radiation from
planets.

4.1 Equilibrium temperature

The equilibrium temperature Teq of a planet is a theoretical parameter which assumes
that the irradiated power coming from the flux Fin from the star is equal to the thermal
back-body emission luminosity of the planet LP. The following assumptions are made for
the derivation of Teq:

– the irradiated radiation is either reflected or absorbed,

– the absorbed radiation energy is re-emitted as thermal radiation,

– there is no internal energy source,

– the planet is isothermal (same temperature on the day and night side!).

The irradiated power is:

Pin =
L�

4⇡ d2P
⇡R2

P (1�AB) , (4.1)

where L� is the luminosity of the sun, dP the separation and RP the radius of the planet,
and AB is the Bond albedo. AB is the fraction of the total irradiated energy which is
reflected and which does not contribute to the heating of the planet. A Bond albedo
AB = 1 means that all light is reflected, while AB = 0 indicates a perfectly absorbing
(black) planet. Both cases are not realistic. Expected values for the Bond albedo are in
the range AB = 0.05 to 0.95.

The luminosity of the planet, which is assumed to radiate like a black body, is

Lout = LP = 4⇡R2
p �T

4
eq , (4.2)

where � is the Stefan-Boltzmann constant and Teq the equilibrium temperature of the
planet.
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The equilibrium temperature Teq follows from Pin = Lout:

Teq =
✓
L�(1�AB)

16⇡ �

◆1/4 1p
dP

(4.3)

This indicates that Teq decreases with distance from the sun for solar system objects or
from the star for extra-solar planets. An important feature of this equations is, that it
does not depend on the radius of the irradiated body which can be as small as a dust
particle (mm-sized) or as large as a giant planet.

Temperatures for solar system planets. The equilibrium temperatures Teq for the
solar system planets is given in Table 4.1 using the indicated Bond albedos AB and the
planet separation dP = a from Table 2.1. The Table compares Teq also with the measured
ground temperature Tground for terrestrial planets and the e↵ective temperatures of the
emitted thermal radiation Te↵ . Te↵ is for Jupiter, Saturn and Neptune higher than the
equilibrium temperature, because these planets have a substantial intrinsic energy source.

Mercury is a special case because this planet has no atmosphere and only a slow rota-
tion. For this reason there are very large temperature di↵erences between the irradiated
(725 K) and the non-irradiated (100 K) hemisphere. For Mercury the assumption of an
isothermal planet is not appropriate. However, averaged over all direction the e↵ective
temperature of the emitted thermal radiation agrees quite well with the equilibrium tem-
perature.

Table 4.1: Radiation parameters for solar system planets: AB is the Bond albedo, Teq,
Tground, Te↵ the equilibrium, ground and e↵ective temperature, and LP /Pin the ratio
between thermal emission and irradiation, Lp/L� the luminosity contrast, and Fp/F�(IR)
the flux contrast at long wavelengths � � �max.

Planet AB Teq Tground Te↵ LP /Pin Lp/L� �max Fp/F�
10�10 10�6

Mercury 0.12 448 K 725/1001K 448 K 1 4.4 6.5µm 0.95
Venus 0.75 230 K 730 K 230 K 1 7.7 8.8µm 4.3
Earth 0.31 253 K 290 K 279 K 1 4.5 10.4µm 4.0
Mars 0.25 209 K 225 K 227 K 1 0.56 12.8µm 0.93
Jupiter 0.34 110 K – 124 K 1.6 21. 23.4µm 220.
Saturn 0.34 81 K – 95 K 1.9 5.0 30.5µm 110.
Uranus 0.30 59 K – 59 K 1 0.14 49.2µm 13.
Neptune 0.29 47 K – 59 K 2.5 0.14 49.2µm 13.

1: 725 K is for the irradiated hemisphere and 100 K for the “night” hemisphere. For the
sun the adopted temperature is Te↵ = 5800 K.
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Greenhouse e↵ect for terrestrial planets. For the planets Earth and Venus the
ground temperature Tground is a significantly higher than Teq due to the greenhouse e↵ect.

Figure 4.1: Energy flow diagram for the greenhouse e↵ect on Earth.

In the greenhouse e↵ect (e.g. for Earth) the visual light from the sun penetrates through
the atmosphere down to the surface and heats e�ciently the ground. However, the ther-
mal IR-radiation from the ground can only escape in certain spectral windows without
strong molecular absorptions (H2O, CO2), while the rest is absorbed in the atmosphere.
Energy transport from the warm/hot ground to higher cold layers occurs therefore through
convection and radiation until the thermal radiation can escape to space. Teq represents
the temperature of the atmospheric layers from which the thermal radiation can escape.
Therefore, the ground temperature is higher than Teq. The e↵ect is stronger on Venus
because of its much thicker atmosphere (90 bar) when compared to Earth (1 bar).
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4.2 Thermal radiation from planets

Intrinsic energy for the giant planets. Table 4.1 gives the ratio between irradiated
power Pin and the total thermal emission LP which can be deduced from the equilibrium
and e↵ective temperatures according to

LP

Pin
=

⇣Te↵

Teq

⌘4
.

A ratio > 1 for Jupiter, Saturn, and Neptune indicates that these planets emit significantly
more energy than they receive from the sun. This can be explained by the ongoing con-
traction, and di↵erentiation, of these three planets. For Uranus, it is expected that there is
also a small intrinsic flux but only at a level of about 5� 10 % of the irradiated flux. This
e↵ect is hard to measure due to uncertainties in the e↵ective temperature determination.
The presence of the internal energy source indicates that the central temperature of the
giant planets is of the order ⇡ 100000 K. Intrinsic energy sources can be neglected for the
terrestrial planets in the solar system.

Black body radiation. The spectral intensity of the thermal radiation of an object at
temperature T can be described by the Planck or the black body intensity spectrum:

B(T,�) =
2hc2

�5

1

ehc/�kT � 1
, (4.4)

where h, k and c are Planck constant, Boltzmann constant and speed of light. The Planck
intensity is given in unit of e.g. [J m�2 sr�1 s�1 µm�1] or [erg cm�2 sr�1 s�1 Å�1]).
Black body radiation is isotropic so that the black body flux through a unit surface area
is ⇡B(T,�). It is assumed that the properties of the black body radiation are known and
we remind here only some important facts:

– the black body spectrum can also be expressed as function of frequency

B(T, ⌫) =
2h⌫3

c2
1

eh⌫/kT � 1
,

– conversion between B(T, ⌫) and B(T,�) must use the factor d⌫ = �c/�2d�,

– the peak of the black body spectrum Bmax(T,�) is according to the Wien law at the
wavelength:

�max =
2.9mm

T [K]
, (4.5)

which is at 10 µm for a planet with T = 290 K (⇡ Earth),

– for low frequency or long wavelengths the Planck radiation can be approximated by:

B(T, ⌫) =
2⌫2

c2
kT or B(T,�) =

2c

�4
kT , (4.6)

– the total luminosity of the spherical black body (planet) with radius R and e↵ective
temperature Te↵ is

LP = 4⇡R2
P �T 4

e↵ , (4.7)

where � is the Stefan-Boltzmann constant (identical to Equation 4.2 except that Te↵

is used instead of Teq which does not account for intrinsic energy sources).
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Thermal luminosity and flux contrast between planet and sun. The thermal
luminosity LP of an irradiated planet without intrinsic energy source is given by Equations
4.1 or 4.2. This can be expressed as thermal luminosity contrast Cth between the planet
and the sun

LP

L�
=

R2
P

R2
�

T 4
eq

T 4
�

=
R2

P

d2P

1

4
(1�AB) . (4.8)

For solar system planets this ratio is very small, of the order 10�9 to 10�11 (see Table 4.1).
Equation 4.8 for the luminosity contrast is also valid for extra-solar systems. For hot

Jupiters the ratio LP /L� is much larger than for solar system planets.

The flux contrast as function of wavelength is important for observational studies. For
long wavelengths, in the Rayleigh-Jeans part of the Planck function of the planet, one can
use equation 4.6 which yields:

FP (� � �max)

F�(�)
=

R2
P

R2
�

Teq

T�
. (4.9)

The factor for the temperature ratio between planet and sun (or star) Teq/T� is of the
order ⇡ 10 � 100. Thus the flux contrast at long wavelengths � � �max is several or-
ders of magnitudes (103 � 106) larger than the total luminosity contrast (see Table 4.1).
On the other hand, the planet to star flux contrast at short wavelengths � < �max de-
creases rapidly to very small values because the thermal radiation of the planet drops-o↵
exponentially. At short wavelengths the scattered light will therefore dominate.
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4.3 Reflection from planets

Reflection by a Lambert surface. A Lambert surface is used as reference in many
technical and scientific studies on reflectivities. A Lambert surface reflects all incident
light and the surface brightness is the same for all viewing angles. However, for viewing
directions with an angle ✓ with respect to the surface normal the apparent reflecting area
and therefore also the reflected flux is reduced / cos ✓. Thus the reflected intensity ILam
of a flat Lambert surface per unit solid angle is

ILam(✓) = Fi
cos ✓

⇡
for 0�  ✓ < 90� (4.10)

where Fi is the incident flux onto the considered surface. Thereby, the reflection from a
Lambert surface does not depend on the direction of the irradiation. A sheet of white
paper, a with screen or a white wall are close to a Lambert surface.

Figure 4.2: Reflection from a Lambert surface.

The factor 1/⇡ in Equation 4.10 is the normalization factor because energy conservation
requires that the reflected intensity ILam integrated over all direction is equal to Fi

Z 2⇡

0

Z ⇡/2

�⇡/2
ILam(✓) sin ✓ d✓ d� =

Z 2⇡

0

Z ⇡/2

0
Fi

cos ✓

⇡
sin ✓d✓d� = Fi .

An observer at a distance D (much larger than the linear dimension of the surface area)
measures a reflected flux FLam per unit area of

FLam(✓) =
ILam(✓)

D2
=

Fi cos ✓

⇡D2

Normal retro-reflection of a Lambert disk irradiated by the sun. Based on the
reflection law for a Lambert surface we can derive the normal retro-reflection (= normal
irradiation and normal reflection) of solar light by a round Lambert disk with radius Rdisk

at the distance ddisk from the sun:

Fdisk(�, ✓ = 0) =
Fi(�)

⇡D2
=

L�(�)

4⇡d2disk
⇡R2

disk

1

⇡D2
,

where Fi is replaced by the explicit formula for the sunlight intercepted by the Lambert
disk.
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Geometric albedo for solar system planets. The geometric albedo Ag(�) is the
spectral reflectivity of a planet at zero phase angle ↵ = 0 (full phase) relative to the
reflectivity of a Lambert disk with the same cross section as the planet

Ag(�) =
FP (�)

Fdisk(�)
. (4.11)

Thus, the geometric albedo of a planet can be determined by measuring the magnitude
of that planet at opposition (normal retro-reflection), which is then compared to the
calculated reflection of a Lambert disk with the same cross section.
It is convenient to express the theoretically reflected flux from a Lambert disk relative
to the flux of the sun measured from Earth F�(�) = L�(�)/4⇡d2E (where dE = 1 AU),
because this ratio is independent of wavelength:

R =
Fdisk

F�
=

d2E
D2

R2
disk

d2disk
. (4.12)

Opposition ↵ = 0� occurs for the outer planets almost every year. Because the phase
angles for the giant planets is never really large, ↵ ⇠< 12� for Jupiter, ⇠< 5�, and less for
Uranus and Neptune, one can correct for the small deviations for an “ideal” geometric
albedo measurement.

Example Jupiter: As example we calculate with Equation 4.12 the case for Jupiter for
which the distance to Earth at opposition is D = 5.2� 1 AU, Rdisk = RJ = 69910 km and
ddisk = dJ = 5.2 AU with 1AU = 1.5108 km. The ratio between the flux of a Lambert
disk with a cross section equivalent to Jupiter and the solar flux is

R =
Fdisk

F�
= 4.55 · 10�10 or mdisk �m� = �2.5 logR = 23.36 ,

where the result is also given as magnitude di↵erence. The apparent V-band magnitude for
the sun is m�(V) = �26.74 mag and for Jupiter at opposition about mJ(V) = �2.70 mag.
This yields an opposition contrast of mJ �m� = 24.04 mag or about �m = 0.7 mag more
than expected for a Lambertian disk. The geometric albedo of Jupiter is this magnitude
di↵erence �m expressed as ratio Ag = 10�0.4·�m = 0.52 in good agreement with available
literature values.

Figure 4.3: Typical constellation for the geometric albedo measurement of Jupiter or
another outer planet.
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Table 4.2: Reflection properties of solar system planets: geometric albedos for the V-band
and the IR, phase integral q and calculated spherical albedos. The last columns give the
factor R2

p/d
2
p and the flux contrast for the scattered light at quadrature phase assuming

f(90�) = 0.3.

planet Ag(V ) Ag(IR) q As(V ) As(IR) AB R2
p/d

2
p FP /F�

10�10 10�10

Mercury 0.142 0.48 0.07 0.12 18. 0.77
Venus 0.67 0.75 31. 6.2
Earth 0.367 0.31 18. 2.0
Mars 0.170 0.25 2.2 0.11
Jupiter 0.52 0.27 1.25 0.65 0.34 0.34 77. 12.
Saturn 0.47 0.24 1.40 0.66 0.34 0.34 16. 2.3
Uranus 0.51 0.21 1.40 0.71 0.29 0.30 0.78 0.12
Neptune 0.41 0.25 1.25 0.51 0.31 0.29 0.29 0.036

Geometric albedo of a Lambert sphere. It is important to note that a Lambert
sphere has a geometric albedo of Ag = 2/3. The surface brightness of a Lambert disk of
normalized radius R = 1 is constant over the whole disk and one can write for the normal
retro-reflection (✓ = 0):

Idisk(r) =
Fi

⇡
and

Z 1

0
Idisk(r) 2⇡r dr = 2Fi

Z 1

0
rdr = Fi

A sphere (not a disk) at zero phase angle has a surface brightness distribution with a limb
darkening which behaves for the normalized radius 0  r  1 like

Isph(r) = Fi
cos ✓0(r)

⇡
= Fi

p
1� r2

⇡
.

Figure 4.4: Schematic di↵erence of the geometric albedo of a Lambert disk and a Lambert
sphere.
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The angle ✓0 is the angle of incidence with respect to the surface normal which depends
on the radial distance r = sin ✓0 measured from the center of the illuminated hemisphere
(apparent disk). The sub-solar point reflects like a disk (surface brightness Fi/⇡) but the
irradiation of the more an more inclined surface towards the limb results in a reduced
back-scattering because the strongest scattering occurs along the surface normal.

Integration for a fully illuminated Lambert sphere yields:

Z 1

0
Isph(r) 2⇡r dr = 2Fi

Z 1

0
r
p
1� r2 dr = 2Fi

⇣
�(1� r2)3/2

3

⌘���
1

0
=

2

3
Fi .

A Lambert sphere reflects only 2/3 of the light for phase angle ↵ = 0 when compared to
a Lambert disk because a substantial fraction of light is scattered into direction ↵ > ⇡/2
what does not occur for an illuminated disk. Lambert disk and Lambert sphere scatter
both all light and have a Bond albedo (or spherical albedo) of AB = 1 but the angular
distribution of the scattered light is di↵erent.

It is not surprising that the solar system planets have geometric albedos Ag ⇠< 0.7
when considering the case of the perfectly reflecting Lambert sphere. Averaged over all
wavelengths the Ag should be smaller (about 2/3) than the Bond albedo AB. This is
roughly the case for Venus and Mars (see Table 4.2).

For Earth and the giant planets the situation is di↵erent. The geometric albedo in the
visual is higher than the Bond albedo Ag(V) > AB. This indicates that the geometric
albedo must be low at other wavelengths, what is the case for the IR wavelength regime
because of molecular absorption by H2O for Earth and CH4 for the giant planets.

Spherical albedo and Bond albedo. The spherical albedo As(�) gives the reflection in
all direction and not only the normal retro-reflection as measured for the geometric albedo
Ag(�). The spherical albedo is required for an accurate derivation of the Bond albedo AB.
AB, which is used for energy budget calculations, is the flux weighted wavelength average
of the spherical albedo:

AB =

R1
0 Fi(�)As(�) d�R1

0 Fi(�)d�
. (4.13)

With a scattering model of a planet it is easy to calculate the geometric albedo and
spherical albedo. Observationally, one needs to know the scattering in all direction, what
is a very di�cult to achieve. For example, the reflection f(↵) of Earth for a phase angle
↵ = 90� will be di↵erent if mainly the white polar regions are seen from a polar direction
when compared to the dark oceans as seen from equatorial directions.

One simple way to address the problem of the reflection into di↵erent directions is the
phase integral q defined by

q = 2
Z ⇡

0

Fref(↵)

Fref(↵ = 0)
sin↵ d↵ ,

where Fref(↵) is a rotationally symmetric phase angle dependence of the reflected radiation
normalized to the geometric albedo Fref(↵ = 0) = Ag. With this definition the phase
integral, geometric albedo, and spherical albedo are related by

As = Ag q . (4.14)
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It should be noted that this approach is only a first order approximation which is formally
only correct for rotationally symmetric reflection from planets.

The phase integral q for special cases is:

– q = 1 for a Lambert disk,

– q = 3/2 for a Lambert sphere,

– q = 4 for (a theoretical) isotropically scattering body.

Some values of the phase integral for solar system planets are given in Table 4.2.

Reflectivity phase curves. The phase angle dependence of the reflected radiation from
a planet is important for the analysis of observations. In general, planets are not observed
at phase angle ↵ = 0�. For example, the inner planets, Mercury and Venus, are behind
the sun for ↵ = 0�, and extra-solar planets are behind “their star”. With direct imaging
of extra-solar planets only data in the range 30� < ↵ < 150� can probably be obtained in
the near future. For this reason one needs to study the reflectivity phase curves Fref(↵)
or the phase dependence of the reflection normalized to the geometric albedo:

f(↵) =
Fref(↵)

Fref(↵ = 0)
. (4.15)

Phase curve for a Lambert sphere. The phase curve for a Lambert sphere can
be derived analytically by integrating the cos ✓ reflection law of the visible part of the
illuminated sphere as function of phase angle ↵. The solution is:

f(↵) =
1

⇡
(sin↵+ (⇡ � ↵) cos↵) . (4.16)

Flux contrast for reflecting extra-solar planets. Equation 4.12 is also valid for a
very distant observer outside of the solar system or for the observations of extra-solar
planets from Earth. In this case the distance of the observer to the central star dstar
(which was dE for an Earth-based observer looking at a solar system planet) and the
distance from the planet to the observer D are equal and very large dstar = D � 1 AU.
Thus the contrast of a reflecting planet Cref with respect to its illuminating star is

Cref =
FP

Fstar
= Ag(�)f(↵)

R2
P

d2P
, (4.17)

where Ag(�) is the geometric albedo and f(↵) a normalized phase function as described
by Equation 4.15 which takes into account that the reflected light depends on the angle
star - planet - observer. Table 4.2 gives the factors R2

P /d
2
P for the solar system planets

and also estimates for the contrast of the reflected light for a phase angle ↵ = 90�.


