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Chapter 1

Introduction

1.1 Planets and the Universe

The fact that we exist indicates that we must live in a Universe with worlds that can
harbor life. This is the basic statement of the antropic principle. We live on a terrestrial
planet in a planetary system and it seems very likely that this situation is a very favorable
one for harboring life. The properties of planetary systems and planets and the search
for signatures of life is the astronomical aspect of our quest on the origin and place of life
in the Universe. There is also an important biological aspect addressing the conditions
required that life can emerge in a system.

This lecture concentrates on the physical properties of planetary systems and the
processes which are important for the formation and evolution of planets. Another strong
focus is set on observational data which provide the basic empirical information for our
models and theories of planetary systems.

The place of the planet Earth in the Universe can roughly be described as follows.
Earth resides since 4.6 billion years in the solar system. Our sun is just a kind of normal
star among 100 billions of stars in the Milky Way, which is itself a quite normal spiral
galaxy among billions of galaxies in the observable Universe. The galaxies were essentially
born by the assembly of baryonic matter in the evolving potential wells of dark matter
concentration in an expanding Universe. This process started about 14 billion years ago
with the big bang.

Terrestrial planets consist of heavy elements. These were “cooked” from the light ele-
ments H and He originating from the big bang by nuclear processes in previous generations
of intermediate and high mass stars. Stars form through the collapse of dense, cool inter-
stellar clouds. Then they evolve due to nuclear reactions until they expel a lot of their
mass at the end of their evolution in stellar winds or stellar explosions (supernovae). This
matter, enriched in heavy elements by the nuclear processes, goes back to the interstellar
gas in the Milky Way disk and may form there again a new generation of stars.

Planets form in circumstellar disks around new-born stars. For this reasons the planet
properties depend a lot on the parent star and on the environment in which they were born.
The following diagram (Fig. 1.11) gives a very general overview on the place of planets in
the Universe, especially within the stellar evolution cycle taking place in galaxies.

1to be completed by the reader according to the discussion in the lecture
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Figure 1.1: The position of the planets within the stellar evolution cycle in galaxies and in
relation to the evolution of the baryonic matter in the Universe. ISM stands for interstellar
matter, IGM for intergalactic matter, WD for white dwarfs, and NS for neutron stars.
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1.2 The solar system

The solar system has been studied in much detail with many different types of investi-
gations ranging from geological studies, meteorite analysis, ground-based observations of
solar system bodies, visits by Astronauts on the moon, and visits to other objects with
sophisticated robotic systems. We will never be able to study extra-solar system in such
detail. The solar system is therefore a most important source of information for extra-
solar planetary systems. In particular many physical models and properties which apply
to the solar system are also valid for extra-solar systems. On the other hand the models
and theories for extra-solar system must also apply in some way to the solar system. For
this purpose the solar system provides a number of well studied examples of planets and
other objects which serve as laboratories and test cases for the interpretation of not well
understood properties of poorly observed extra-solar systems.

In this lecture we use the solar system as example for basic physical principles and for
the characterization of typical objects in planetary system. The discussion concentrates on
topics which are most relevant for extra-solar planet research. We neglect many aspects,
like surface morphologies, small scale structures, or planetary magnetism which are impor-
tant topics in solar system research but completely unconstrained for extra-solar planetary
systems because no observational data are available today and will not be available in the
near future.

Objects in the solar system

The sun dominates the solar system with its gravitational potential (> 99 % of the total
mass) and its energy generation by nuclear reactions. Beside the sun, this system contains
objects of very different size, composition and physical properties:

– sun: central star of spectral type G2V, age 4.5 Gyr, and quite normal metallicity
when compared to other stars,

– 8 planets: 4 terrestrial planets, Mercury, Venus, Earth and Mars, and 4 gas giants,
Jupiter, Saturn, Uranus and Neptune (see Slide 1.1),

– several dwarf planets: Eris, Pluto, Makemake, Haumea, Ceres, and perhaps some
more,

– moons and satellites of planets and dwarf planets,
– small bodies of the solar system including asteroids, trans-neptunion objects (TNOs),

comets, meteorites, and dust.

The objects have a characteristic distances to the sun as indicated in Figure 1.2.

Figure 1.2: Distance of solar system objects to the sun.
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Planets. There exists a well established definition for the planets in the solar system.
Planets are in orbits around the sun. They are large enough for their self-gravity to
overcome rigid body forces. Thus, planets are round except for some rotational flattening.
Further, they have cleared the neighborhood of their orbit.

Dwarf planets differ from planets because they have not cleared the neighborhood of
their orbit. Thus, they are large and round, but they are not a moon of a planet. Ceres
is the only dwarf planet in the asteroid belt because it is the only asteroid which is large
enough to be round. Pluto is the most famous dwarf planet in the Kuiper belt, but there
are others of similar size out there (Eris, Makemake, Haumea) and perhaps even more
which have not been detected yet.

Moons are in orbit around planets and dwarf planets. They can be as large as dwarf
planets. Titan and Ganymede are even larger than the planet Mercury, but they have a
smaller mass. The satellites around planets span a large range down to the size of large
rocks (R ≈ 100 m).

Asteroids are rocky bodies, located mainly in the (main) asteroid belt between Mars and
Jupiter. The largest asteroid is the dwarf planet Ceres, then comes Pallas, Vesta (Slide
1.8) and about 200 more with R > 100 km. There are much more small asteroids (Slide
1.9) down to the size of a few centimeters, which are called meteorites if they fall onto
Earth. More than 100 000 asteroids are known and it is expected that there are of the
order 1 million asteroids with a diameter of 1 km or larger. Their radius distribution
N(R), the number of asteroids per unit size interval, can be described by a power law

N(R) = N0(R0)

(
R

R0

)α
The exponent is about α = −3.5 with a normalization value of N0(10 km)/dR ≈ 1000/km.
This implies that most of the mass is in the largest bodies and most of the surface area is
in the smallest bodies. The total mass in the asteroid belt is estimated to be about 0.1 %
of the mass of the Earth ME. There are many different subgroups and types of asteroids
which are classified according to their orbits and composition.

Transneptunian objects (TNOs) are all objects in the solar system that orbit the
Sun with an average distance larger than Neptune. Pluto is the first detected TNO. In
the meantime more than thousand TNOs were found with radii in the range 20-1000 km.
TNOs are classified in different groups, like Pluto and the plutinos which are in a 2:3
resonance orbit with Neptune, Kuiper belt objects located at a distance of 30 - 55 AU and
scattered disk objects further out. It is expected that there are more than 100 000 Kuiper
belt objects with diameters larger than 100 km. The total mass of the Kuiper belt is of
the order 0.1 ME or about 100 times the mass of the asteroid belt.

Comets are icy objects which start to evaporate when they come close (d < 3 AU) to
the sun (Slide 1.11). The comet forms then a coma (extremely tenuous atmosphere) and
a tail due to the solar wind and the solar radiation pressure. Typically a bright comet has
a nucleus with a diameter of about 1 to 10 kilometers. There are about 500 short period
p < 200 yr known. Many comets where observed only once because they originate from
the very distant solar system.

Meteorites are rocks which have fallen onto Earth. They are mostly debris pieces from
collisions between asteroids but there are also meteorites which are associated to debris
from impacts of asteroids on the Moon or Mars. Stony meteorites originate from the
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mantel or crust while iron meteorites are from the core of differentiated parent bodies
(Slide 1.10). A third group are the primitive meteorites or chondrites which are condensed
directly from the solar nebula and not much changed in composition since then. Meteorites
are important because they can be analyzed in laboratories. For example, the chondrites
provide very good abundances for many elements and isotopes in the solar system.

Zodiacal dust are interplanetary particles in the ecliptic plane with a size between a
fraction of a µm to a few mm. These dust particles originate, like the larger meteorites,
from collisions but also from evaporating comets. This dust produces the zodiacal light, a
forward scattering effect near the sun, and the “gegenschein” a backward scattering effect
in the anti-solar direction (Slide 1.12). In addition the dust is heated by the solar radiation
and produces a strong emission in the mid-IR spectral region. Meteors (“Sternschnup-
pen”) are large zodiacal dust particles (mm - cm in size) which penetrate into the Earth
atmosphere, are heated up by friction and evaporate before they reach the ground.
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1.3 Short history of the detections of extra-solar planets

The development of the research field on extra-solar planets can be well illustrated with
the evolution of the known planets in the mass - separation diagram (see Slides 1.13 to
1.7). The following table gives a chronology of the most important detections.

Table 1.1: Chronology of important detections in extra-solar planet research.

year important detection or event

1992 Two planets around the pulsar PSR 1257+12 are discovered (A. Wolszczan
and D. Frail) based on the timing measurements of the periodic variation of
the pulsar’s radio pulses. It is not clear whether these planets were formed by
the supernova (SN) explosion or whether these are the remaining cores of gas
giants which lost there atmosphere/envelope due to the SN event.

1995 Detection of 51 Peg b, the first extra-solar planet around a sun like star by
M. Mayor and D. Queloz (Geneva Obs.) by measuring the periodic radial
velocity variations of the steller reflex motion. For many astronomers it was
a big surprise that there could exist Jupiter-like planets in a 4 day orbit. The
surface temperature of this planet must be T > 1000 K because of the strong
irradiation. These objects are now called “hot Jupiters”.

1999 Detection of the first transiting planet HD 209458 b. The transit confirmed
that the close-in planets have the size of gas giants. The combination of RV-
measurements and transit depth provides an estimate of the bulk density of
the planet.

2000 About 40 planets are detected with the RV-method (see Slide 1.14).

2003 The HARPS high precision RV-spectrograph starts operation at the ESO 3.6m
Telescope. This instrument is more accurate than previous instruments and
capable to search for Neptune-like planets, super-earths and even terrestrial
planets in tight orbits.

2004 The OGLE-team announced a first convincing case of a micro-lensing event
by a star-planet system. The mass ratio between the low mass star M < M�
and the planet is about 250 : 1. This yields a mass of about ≈ MJ for the
planet. The system is at the distance of a few kpc in the direction of the
lensed background star located in a dense stellar field near the center of the
Milky Way.

2005 There are about 160 RV-planets known, about 12 transiting planets, and 3
planets were seen in micro-lensing events. Most planets known are giant plan-
ets with a mass like Saturn or larger (see Slide 1.16).

2007 The SPITZER satellite determines the phase curve of the transiting hot
Jupiter HD 189733 b which allows to determine the temperature difference
between the illuminated hot and the non-illuminated cold side of the planet.
The data show further that the hottest point is offset from the sub-stellar
point indicated strong atmospheric circulation.
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2008 Direct detection of 3 planets around the A-star HR 8799 and 1 planet around
the β Pic with high contrast imaging. These are young systems with quite
luminous, still contracting planets with temperatures of about 1000 K.

2010 15 year after the detection of 51 Peg b there are about 360 RV-planets, about
110 transiting planets, 10 micro-lensing planets, 5 pulsar planets, and 5 di-
rectly imaged planets known. The detection limits for RV-planets and tran-
siting planets are pushed significantly towards terrestrial planets (Slide 1.4).

2011 First results from the Kepler-satellite are presented. This instrument surveys
about 150’000 stars for planetary transits. Kepler finds within a few months
more than 1000 planet candidates with this method. Many of the candidate
planets have radii of 2 RE or even smaller. There are also many systems with
multiple planets detected. The system Kepler-11 is the most extreme case
with 6 transiting planets.

From the compilation in Table 1.1 it becomes obvious that extra-solar planets are studied
with several different detection methods which are listed in Table 1.2. The table does not
list characterization techniques, like transit spectroscopy, which will in general follow the
initial detection. The main techniques for planet detection are currently the radial velocity
(RV) searches for reflex motion and transit searches. It is expected that in about 5 years
there will be many, of the order hundred, successful detections of planets with astrometry
and IR high contrast imaging.

Table 1.2: Planet detection methods and order of magnitude numbers for successful de-
tection until 2013 of gas giants and terrestrial planets.

method detected planets comment
giants terr.

reflex motion
radial velocity (RV) > 100 > 10 established
pulsar timing < 10 < 10 only for special systems
transit timing > 10 ≈ 10 KEPLER multiplanet systems
binary eclipse timing < 10 < 10 only for special binaries
astrometry < 10 0 great potential with GAIA

transits
transit light curves > 100 > 100 ≈ 1000 KEPLER candidates

microlensing
light curves ≈ 10 < 10 measurements not repeatable
astrometric effects 0 0 future technique

direct imaging
infrared (IR) ≈ 10 0 great potential
optical 0 0 difficult

other methods
radio waves from planets 0 0 expectations unclear
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1.4 What is a planet?

The definition of a planet in the solar system is well established. However for extra-solar
objects there exists often only very limited information and there are different kinds of
definitions for substellar objects. In the following we give some definitions.

Star: This is an object which has an extended main-sequence phase during which the
radiated energy originates from stable nuclear hydrogen burning. This phase lasts > Gyr
for low mass stars.

Substellar object: The mass of a substellar object is too low to burn hydrogen in
equilibrium because the temperature and pressure in the core do not reach high enough
values during the gravitational contraction of a low mass gas sphere. The mass limit
between stars and substellar objects is about 0.08 M�.

Brown dwarf: This is a substellar object which cannot burn hydrogen in the core but
still has some significant phase of nuclear energy generation due to deuterium- or lithium
burning. This includes objects in the mass range 0.015− 0.08 M� (15− 80 MJ).

Planets: Planets are substellar, spherical object which were formed in a circumstellar
disk.

This definition of planets is based on the formation process. According to this definition
a substellar object which formed like a star out of a gas cloud, is not a planet, even if its
mass is similar to Jupiter. On the other side there could exist deuterium-burning brown
dwarfs which were born in a disk and are called planets. Also free-floating objects, which
were formed in a circumstellar disk but where then ejected out of their circumstellar orbit
by some dynamical interaction, are also classified as planets.

An alternative definition for planets is based on the explicit mass limit, e.g. < 15MJ, for
object without nuclear burning. This definition allows a simple classification according to a
mass determination. But, this does not consider fundamental differences in the formation
process which have most likely also a very strong impact on the physical properties of the
object.

1.5 Contents and literature

Content of this lecture: Important topics covered by this lectures are:

– properties of planets of the solar system,

– detection techniques,

– interpretation of the observed extra-solar planet properties,

– difference between low mass stars, brown dwarfs, and giant planets,

– theory for the formation and evolution of extra-solar planets,

– search for life.

Textbooks on the solar system:

– Planetary Sciences. I. de Pater, J.J. Lissauer. 2001, Cambridge University Press
Comprehensive treatment of many aspects of the physics in the solar system.
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– The Solar System. T. Encrenaz, J.-P. Bibring, M. Blanc. Second edition 1995,
Springer
A good overview on the solar system.

– The Earth as a Distant Planet. M. Vázquez, E. Pallé, P. Montañés Rodriguez. 2009,
Springer
A textbook with a very special focus on Earth including a unique compilation of
Earth observations and data.

Textbooks on extra-solar planets:

– Exoplanet atmospheres. S. Seager. 2010. Princeton University Press.
Very careful and useful description of the physical processes for extra-solar planetary
atmospheres.

Review articles or collection of review articles on extra-solar planets: The
review articles provide usually more detailed and more actual information on specific
topics with the drawback that they are often more rapidly outdated than textbooks.

– Extra-solar planets. P. Cassen, T. Guillot, A. Quirrenbach, Saas-Fee Advanced
Course 31, 2006, Springer.

– Exoplanets. S. Seager (eds.) and 38 authors. 2010. University of Arizona Press.
A very good starting point for many topics in extra-solar planet research.

Textbook on special topics related to this field

– Stellar Structure and Evolution. R. Kippenhahn, A. Weigert. 1990. Springer.
The standard textbook on stellar structure.

– New Light on Dark Stars. I.N. Reid, S.L. Hawley. 2005. Springer.
A careful and comprehensive treatment of all aspects of low mass stars and brown
dwarfs.

On-line sources:

– http://www.exoplanets.eu
On-line catalog of known extra-solar planets. This source includes tools for the
selection and statistical analysis of exoplanets.

– http://adsabs.harvard.edu/abstract service.html
NASA astrophysics database system. Essentially all scientific articles on extra-solar
planets are available through this source. Many are freely available. Essentially all
articles are available from an ETH account.

– http://www.ency-astro.com/eaa/eaa/eaa/index.html
‘Encyclopedia of Astronomy and Astrophysics’
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Chapter 2

Reflex motion: masses and orbits

The mass is a most important parameter for the characterization of an astronomical object.
This is also the case for planets. For the planets in the solar system one finds with
decreasing mass: giant planets Jupiter and Saturn, the “ice” giants Neptune and Uranus,
the terrestrial planets Earth and Venus with substantial atmosphere, then Mars with only
a thin atmosphere and finally the bare, rocky planet Mercury without atmosphere. This
anti-correlation between planet mass and extent of the “gaseous” envelope may be also
common for extra-solar planets.

The orbit is another key property for a planet. The orbital distance to the star de-
fines largely its surface temperature. The orbital eccentricity, inclination, and the mutual
orbit geometries in multi-planet systems provide essential information about the dynamic
properties and evolution of a system.

All this information is available without “seeing” the planet, but by measuring the
reflex motion of the bright parent stars induced by the planets. The determination of
masses and orbits based on the reflex motion of unseen companions was introduced more
than 100 years ago for binary stars. But because planets are much less massive than
stars, the required measurement accuracy for extra-solar planetary systems is extremely
demanding and could only be realized with modern technologies. Once, detections of
the reflex motion were possible, the investigation of extra-solar planetary systems became
immediately a major new field in modern astronomy, and a substantial fraction of all
observational information on extra-solar planets available today is based on this technique.
Mass and orbit determinations via the stellar reflex motion will remain a backbone for
extra-solar planet research in the near future. Therefore we discuss these methods in much
detail.

2.1 Kepler’s laws and the stellar reflex motion

2.1.1 Kepler’s laws

Kepler formulated three generals laws for the orbits of the solar system planets based
mainly on the astrometric data from Tycho Brahe:

1. The planets move on elliptical orbits with the sun located in one of the focal points,

2. the line connecting the sun and a planet sweeps the same area in equal time intervals
(Flächensatz),

11
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3. The squares of the orbital periods of the planets are proportional to the cubes of
their semi-major axis.

Kepler’s laws follow also from the 2-body mechanics based on Newton’s theory of gravi-
tation for the limiting case M� � mP . They are therefore valid for all 2-body problems
where one body dominates in mass, for example for moons around planets. We summarize
here important implications of Kepler’s laws. The full derivations of the formula given
in this section can be found e.g. in standard textbooks on mechanics or comprehensive
physics textbooks.

Figure 2.1: Geometry of an elliptic orbit.

First Kepler law (elliptical orbits):

– The eccentricity ε characterizes the elliptic orbit 0 ≤ ε < 1. The major axis a and
minor axis b of the ellipse are related by

b = a
√

1− ε2 . (2.1)

– The location of the sun in the focal point F is offset from the ellipse center by the
distance a · ε on the major axis. The perihel rmin and aphel rmax distances are

rmin = a (1− ε) and rmax = a (1 + ε) .

– For circular orbits there is ε = 0 and a = b = rmin = rmax.

– For ε→ 1 the orbit approaches a parabola (ε = 1) which is not a closed orbit.

Second Kepler law (Flächensatz):

– The second Kepler law is equivalent to the conservation of angular momentum ~L =
mP~v × ~r

∆A =
1

2
|~x× ~v|∆t =

1

2mP
|~L|∆t ,

where ∆A is the swept area per time interval ∆t.
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– The second Kepler law can also be written as

∆A

πab
=
t− T0

P
, (2.2)

where T0 is the time of perihel passage and P the orbital period. From this rela-
tionship one can derive numerically (not analytically) the “central” orbital angle E
from the mean orbital anomaly M = E(t)− ε sinE and then the orbital phase angle
as function of time φ(t) from

tan
φ(t)

2
=

√
1 + ε

1− ε
tan

E(t)

2
where E(t)− ε sinE(t) =

2π

P
(t− T0) .

The radial distance is defined by the orbital phase angle and the eccentricity

r(φ) = a
1− ε2

1 + ε cosφ
, (2.3)

– The orbital velocity has a maximum at perihel and a minimum at aphel

vmax =
2πa

P

√
1 + ε

1− ε
and vmin =

2πa

P

√
1− ε
1 + ε

,

which becomes of course a constant orbital velocity v = 2πa/P for a circle (ε = 0).

Third Kepler law:

– The third Kepler law states that a3/P 2 = const for the solar system planets. The
constant is directly related to the mass of the sun and therefore the third Kepler law
is a most important tool for the determination of the the mass M of an astronomical
object by measuring the separation and the orbital period of a small companion
m�M :

a3

P 2
=

G

4π2
M , (2.4)

where G is the gravitational constant.

– For circular orbits the velocity vcirc is related to a and P by vcirc = 2πa/P so that
the above relation can be written as

v3
circ · P = 2πGM .

indicating that the mass of the central object can also be determined by measuring
the orbital velocity vcirc and the period P .

– The third Kepler gives also the orbital velocity of small objects around a central
mass M as function of distance. For circular orbits P = 2πa/vcirc there is

vcirc =

√
GM

a
∝
√

1

a
. (2.5)

– The third Kepler law follows also from the force equilibrium −FG = FZ for a circular
orbit, where the gravitational force is FG = −GMm/r2 and the centrifugal force
FZ = mω2r (where r = a and the angular velocity ω = 2π/P ).
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2.1.2 Generalization for a two body problem

Kepler’s laws follow from Newton’s two body problem with M1 and M2, for the special
case where M1 = M � m = M2 → 0. Kepler’s law can be generalized for the two body
problem with M2 > 0:

– The exact formula for Kepler’s third law for a 2-body system is

(a1 + a2)3

P 2
=

G

4π
(M1 +M2) . (2.6)

– The individual orbits of the two masses M1 and M2 are ellipses with eccentricity
ε and semi-major axis a1 and a2 respectively, with the center of mass at the focal
points. The total semi-major axis a of the orbit of M2 with respect to M1 is

a = a1 + a2 .

– The semi-major axis of the two ellipses behave like

M1a1 = M2a2 , (2.7)

according to the lever rule (Hebelgesetz). The radial distances and orbital velocities
behave accordingly

M1r1(φ) = M2r2(φ) and M1v1(φ) = M2v2(φ) .

2.1.3 Orbital elements

Seven quantities are necessary for the definition of the elliptic orbit of an object in a two
body system. If the orbit of one object M1 or M2 is given relative to the center of mass
then the ellipse has the semi-major axis a1 or a2 respectively. If the orbit of one object is
given relative to the position of the other object then the semi-major axis is a = a1 + a2.
One object needs to be identified for the definition of the position angle for the orientation
of the orbit, because the other object has an orbit which is offset by 180◦ in orbital phase
with respect to the first object.

Four parameter describe the elliptical orbit:

– P : Orbital period,

– ε: eccentricity of the ellipse,

– T0: time of periastron (or perihel) passage,

– a1, a2, or a: semi-major axis of the ellipse of component 1, component 2, or of one
component relative to the other component.

Three quantities describe the orientation of the elliptical orbit on the sky:

– Ω: position angle of the line of nodes for the orbital plane and a reference plane with
respect to a reference point. In the case of a solar system object this is the ecliptic
plane and the ”March” equinox. For a stellar system this is the sky plane and the
position angle with respect to N (measured from N over E).

– i: inclination of the orbital plane with respect to the reference plane (ecliptic or sky
plane)

– ω: Angle between the line of node and the periastron (or perihel) passage. For a
stellar system this can be defined e.g. by the angle from the line of node passage
with positive radial velocity (red shift).
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Figure 2.2: Illustration for the definition of the orientation of the elliptical orbit.

2.1.4 Orbital parameters for the solar system planets.

Table 2.1 gives orbital parameters for the solar system planets.

Table 2.1: Masses and orbital parameters for solar system planets. P is the orbital period,
a the semi-major axis, v the mean orbital velocity, ε the eccentricity, and i the inclination
with respect to the ecliptic plane.

planet M [MJ] P [yr] a [AU] v [km/s] ε i

Mercury 0.00017 0.241 0.387 47.9 0.206 7◦00′′

Venus 0.0026 0.670 0.723 35.0 0.007 3◦24′′

Earth 0.0031 1.00 1.00 29.8 0.017 0◦00′′

Mars 0.00034 1.88 1.52 24.1 0.093 1◦51′′

Jupiter 1.0 11.9 5.20 13.0 0.048 1◦19′′

Saturn 0.299 29.5 9.55 9.64 0.056 2◦30′′

Uranus 0.046 84.0 19.2 6.80 0.046 0◦46′′

Neptune 0.054 165. 30.1 5.43 0.009 1◦47′′

MJ = 1.90 · 1027 kg, 1 year = 365.25 days, 1 AU = 1.50 · 108 km

2.1.5 Expected reflex motion due to planets

The reflex motion of a star due to orbiting planets follow from Newton’s mechanics. The
star will circle around the center of mass of the planetary system and mirror the motion
of the planets. This motion can be measured with three different techniques:

– Radial velocity: periodic radial velocity variation of the star with respect to the
line of sight, which can be measured with high precision spectroscopy,

– Astrometric motion: periodic motion of the star around the center of mass in the
sky plane which can be measured with high precision astrometric techniques,

– Timing variation: arrival time variations of a well defined periodic signal due to
light path variations or changes in the system configurations.
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The expected motion of the sun as seen from a distance of 10 pc is shown in Slide 2.1 and
Table 2.2 gives the values induced by Jupiter and Earth. The solar motion is dominated
by the reflex motion due to Jupiter which has a period of 12 years. The typical amplitude
(radius) of the circular motion is about 0.005 AU = 7.5 · 105 km (0.001′′ at 10 pc is 0.01
AU). This orbit is comparable to the radius of the sun.

Table 2.2: Typical values for observables for the reflex motion for Jupiter-like and Earth-
like planets (mass and orbit) around a solar mass star.

observable Jupiter Earth meas. limit (2013)

radial velocity amplitude 12.8 m s−1 0.1 m s−1 ≈ 1 m s−1

astrometric amplitude d = 10 pc 500 µas 0.3 µas ≈ 1 mas
astrometric amplitude d = 100 pc 50 µas 0.03 µas ≈ 1 mas

timing residuals 2.5 s 1.5 ms depends on signal

The time dependence of the measured reflex motion provides orbital parameters like pe-
riod, eccentricity etc., while the amplitude of the observed effect is proportional to the
planet mass. If the mass of the star is known then one can estimate the mass of the
planet. The different methods provide not exactly the same information and they favor
the detection of different kinds of systems as summarized in Table 2.3.

Table 2.3: Resulting planet parameters from measurements of the reflex motion.

method mass orbit favored systems

radial velocity Mp sin i P, T0, ε, a sin i, ω shorter period planets, around bright,
quiet stars with many absorption lines

astrometry Mp P, T0, ε, a, i, ω,Ω longer period (> 1 yr) planets around
nearby stars

timing residual Mp sin i P, T0, ε, a sin i, ω measurable only for stars with well de-
fined periodic signal
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2.2 Radial velocity method

2.2.1 The radial velocity signal

With the radial velocity method one can only measure the velocity component of the star
parallel to the line of sight vr = dz/dt. We consider here the effect of one planet only. In
this case the temporal dependence of the z-component of the orbit is

z(t) = rS(t) sin(ω + φ(t)) sin i , (2.8)

where, sin i is the inclination of the orbital plane with respect to the line of sight, and ω
the orientation of the periastron phase away from the line of sight.

The resulting radial velocity signal induced by a planet follows by differentiation of
Equation 2.8, the ellipse equation, and Kepler’s 2nd law as given below:

vr(t) =
dz(t)

dt
=

2π

P

aS sin i√
1− ε2

(
ε cosω + cos(ω + φ(t)

)
(2.9)

For the observed radial velocity there is in addition a (usually) constant radial velocity of
the center of mass v0

vr(t) = v0 +K
(
ε cosω + cos(ω + φ(t)

)
with K =

2π

P

aS sin i√
1− ε2

. (2.10)

K is called the RV semi-amplitude of the stellar reflex motion which is relevant for the
determination of the planetary mass. The term in the brackets defines the shape of the
periodic radial velocity curve. The only time-dependent quantity is φ(t) as described in
Section 2.2.

The following equation provide the derivation of Equation 2.9 from Equation 2.8 using the ellipse
equation and Kepler’s 2nd law (see Section 2.2). Derivation yields:

dz

dt
= sin i

dr

dt
sin(ω + φ) + r cos(ω + φ))

dφ

dt
.

The derivation dr/dt follows from the ellipse equation r = a(1− ε2)/(1 + ε cosφ)

dr

dt
= − a(1− ε2)

(1 + cosφ)2
(−ε sinφ)

dφ

dt
=

ε sinφ

a(1− ε)2
r2
dφ

dt
.

One can replace r2 dφ/dt according to the 2nd Kepler law

r2
dφ

dt
=

2π

P
ab =

2π

P
a2
√

1− ε2

and r dφ/dt follows by dividing the Kepler law with r (ellipse equation)

dr

dt
=

2π

P
a
ε sinφ√
1− ε2

and r
dφ

dt
=

2π

P
a

1 + ε cosφ√
1− ε2

.

Inserting these two relations in dz/dt and using as a trick the following trigonometric relation

cosω = cos
(
(ω + φ)− φ

)
= cosφ cos(ω + φ) + sinφ sin(ω + φ)

yields then Equation 2.9 for the radial velocity variation.
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Mass for the planet. From the radial-velocity parameters K, P and ε follows aS , the
semi-major axis for the orbit of the star around the center of mass

aS sin i =
P

2π

√
1− εK . (2.11)

Using Kepler’s third law a3/P 2 = G(mS + mP )/4π2, a = aS + aP and mSaS = mPaP
yields the so called mass function

(mP sin i)3

(mP +mS)2
=

P

2πG
K3(1− ε2)3/2 . (2.12)

For planetary systems there is mP � mS and one can use for the mass of the planet the
approximation

mP sin i ≈
( P

2πG

)1/3
Km

2/3
S

√
1− ε2 . (2.13)

Thus one can derive the mass of the planet mP sin i from the radial velocity data provided
that the mass of the central star mS is known. Usually mS is known within an uncertainty
of a few percent. The inclination factor sin i cannot be determined with RV-data alone.

Impact of the “sin i”-factor. With the radial velocity method alone one can get the
planet mass mP only together with the unknown sin i factor for the orbit inclination. The
measured value mP sin i is therefore a lower limit value, also called minimum mass for a
planet. Thus one needs to consider that a given system could be seen almost pole-on, with
an orbit inclination close to i ≈ 0◦ or sin i→ 0. In such cases the planet mass is strongly
underestimated.

If one assumes a random orientation of the orbital planes then the distribution of
orbital inclinations is n(i) ∝ sin i. The probability to have a system within the inclination
range [0,ix] is ∫ ix

0
sin i di = 1− cos ix

Thus, only 13.4 % of all systems have i < 30◦ or sin i < 0.5 and therefore a mass which
is more than twice the measured minimum mass. 71 % of all systems have i ≥ 45◦ and
sin i > 0.71 and 50 % i ≥ 60◦ with sin i > 0.86 and the real mass of the planets is
underestimated less than about 30 % or 15 % respectively.

Convenient formulae. The formulae derived above can be expressed in convenient
units. The planet mass is:

mP [MJ ] sin i ≈ 3.5 · 10−2K[m s−1] (P [yr])1/3 (mS [M�])2/3 .

The semi-major axis a of the orbit of the planet relative to the star follows from the 3rd

Kepler law. With the approximation mP � mS and one can write

a[AU] ≈ (P [yr])2/3(mS [M�])1/3

Similarly one can express the radial velocity semi-amplitude for given system parameters:

K =
28.4 m s−1

√
1− ε2

mp[MJ ] sin i
( 1

mS [M�]

)2/3( 1

P [yr]

)1/3
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2.2.2 Examples for the radial velocity signal induced by planets

Slide 2-2 to 2-4 illustrate a few examples for measured RV-curves for extra-solar planetary
systems:

51 Peg b: Slide 2-2 shows the historical detection measurements for 51 Peg b, the first
extra-solar planets around a normal star, from Mayor and Queloz. The orbital period is
about 4.2 days and the RV-semi-amplitude 59 m/s. The scatter of the data points with
respect to the fit is 13 m/s. The measurements which were taken during many different
orbits have been folded into a phase curve.

HD 4113 system: Slide 2-3 shows the RV-measurements and the phase curve for a
longer period (529 days) planet with a very high eccentricity of ε = 0.90. In addition there
is a long term trend which points to a brown dwarf or low mass star with an orbit > 20
years. A good sampling and long term monitoring are essential to uncover the real nature
of such systems. Clearly visible are the yearly observing seasons for this object. Only
4 orbital periods (≈ 6 years) after the initial detection of RV variations the very short
periastron passage could be sampled with observation. The definition of the orbit of the
outer companion must be completed by the next generation of astronomers.

HD 40307 system: State of the art measurements of the three super-Earth system HD
40307 are shown on Slide 2-4. A measuring precision of ≈ 1 m/s is required to achieve the
detection of planets which induce RV-variation with a semi-amplitude of K = 2− 5 m/s.
Multi-planet systems like this one require many data points to reveal the very complicated
RV-pattern. From a few data points one would interpret the data just as noise induced
by the instrument or the central star. A careful analysis is required to extract finally the
correct solution.

2.3 Measurement of radial velocities

2.3.1 Science requirements.

A very high measuring precision is required for the detection of the planet induced reflex
motion of stars. The Doppler effect gives the relation between radial velocity vr and the
relative wavelength shift ∆λ/λ, which is:

vr
c

=
∆λ

λ
(2.14)

If one aims to achieve an accuracy of ∆v = ±3 m/s. then this corresponds to a measuring
precision of

±∆λ

λ
=
±∆vr
c

=
±3 m/s

300′000 km/s
= ±1 · 10−8 . (2.15)

The next generation of instruments aims at an accuracy which is another order of mag-
nitude higher. What this very demanding science requirement really means is illustrated
in Slide 2-5. The slide shows a section of the solar absorption line spectrum and picks a
single line which is then compared to the shift expected by the radial velocity variation
induced by a planet. The effect is much smaller than the line widths. It is obvious that
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the technical requirements for building such a measuring instrument are very demanding
and require sophisticated techniques.

In the following sections we introduce first the basic principles for astronomical spec-
troscopy before addressing the details of the modern RV measuring techniques.

2.3.2 Telescopes

Basic principles of a telescope We first consider the astronomical refractor to explain
the basic layout of telescopes. The astronomical refractor consists of:

– a converging (convex) objective lens or aperture lens,

– an intermediate focus with eventually a field stop,

– a collimating lens,

– a parallel beam section with an intermediate pupil,

– a converging lens (camera lens).

Figure 2.3: Basic principles of a telescope.

The following quantities are used to describe a telescope:

– f1: focal length of objective lens L1,

– f2: focal length of the collimating lens L2 (or the eyepiece),

– f3: focal length of the camera lens L3,

– y1: or D, the diameter of the entrance pupil or aperture,

– y2: diameter of the intermediate pupil,

– α: semi-angle of the field of view in the entrance pupil,

– θ: semi-angle of the field of view in the exit pupil.

Some basic principles are:

– An image of the object is formed in the focal planes. The image plate scale is defined
by the effective focal lengths f given by the F -ratio of the image forming lens L1 or
L3 and the diameter of the entrance pupil D:

f = Fx ·D . (2.16)
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– In a pupil plane the light from a distant object forms parallel rays. The information
is in the angular direction of the rays. In the case of the astronomical refractor the
collimating eyepiece refracts the light into a more or less parallel beam suited for
observation with the eye. The magnifying power m (angular magnification) of the
telescope is:

m =
f1

f2
=

tan θ

tanα
=
y1

y2
. (2.17)

– The collimated beam section between L2 and L3 is the typical location for diffraction
gratings or prisms for spectroscopy.

– The field stop in the first focal plane can be used for field selection (e.g. a spectro-
graph aperture) or for a coronagraphic mask.

– Well designed pupil and field stops can be very helpful in reducing the stray light
and the background level of an instrument.

2.3.3 Spectrographs

Equations for grating spectrographs. A diffraction grating consists of a large num-
ber of very fine, equally spaced parallel and periodic slits separated by a. The wavelets
from each slit are strongly enhanced in a few directions θn in which all the wavelets are in
phase so that constructive interference occurs. θ1 is the first order with a path difference
of λ etc. For wavelength λ the angular displacement θm is

sin θm =
m · λ
a

, (2.18)

where a is the periodic separation between the grating lines and m an integer number for
the interference order. Because θm depends on λ the light is dispersed and spectra are
formed. One should be aware that an overlap of the different orders (m − 1, m, m + 1,
etc.) can occur. The same effect is obtained for a reflection grating which has fine periodic
rulings.

Figure 2.4: Principle of a spectrograph grating.

The angular dispersion dθ/dλ of the grating follows from differentiation (determine first
dλ/dθ):

dθ

dλ
=

m

a cos θ
.
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The angular width Wθ of a monochromatic interference peak is broad for few grating lines
and it becomes narrower as the number of illuminated grating lines N increases like

Wθ =
λ

Na cos θ
.

This width can also be expressed in a wavelength width ∆λ

∆λ = Wθ
dλ

dθ
=

λ

Na cos θ
· a cos θ

m
=

λ

N m
,

or a resolving power R for a more general characterization of the diffraction limited reso-
lution of the grating

R =
λ

∆λ
= N m. (2.19)

This formula indicates that the resolving power depends only on the number of illuminated
grating lines N and the dispersion order m.

Gratings, in particular reflective gratings, are often inclined with respect to the incoming
beam by an angle i which is the angle of the grating normal to the incoming beam. The
angle θ is then defined by the interference order m and the zero order. In this case Equation
(2.18) includes the term sin i for the grating inclination:

sin θ =
m · λ
a
− sin i . (2.20)

This is called the grating equation. The resolving power is larger for inclined gratings
because more lines are illuminated for a given beam diameter

R =
λ

∆λ
=
N m

cos i
. (2.21)

The grating equation describes also how one can change the central wavelength and the
wavelength range for a given deflection angle θ by changing the tilt angle i. The following
list gives the dependence of spectrum parameters on grating properties:

– the resolving power R depends only on the number of illuminated lines and the
diffraction order

– R increases if the number of lines per mm of the grating are enhanced for a given
beam (=pupil) diameter

– R can be enhanced for a given grating by a larger illuminating beam (larger pupil)
or by tilting the grating so that the illuminated lines increase like Ni = Ni=0/ cos i

– R is substantially larger for higher diffraction orders R ∝ m (there is the restriction
that overlap of grating orders occur)

– the wavelength region for a given deflection angle can be selected by changing the
inclination i of the grating.
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2.3.4 Different types of spectrograph gratings

Simple gratings. Typical grating have about 100 − 1000 rulings/mm. This yields for
the first order diffraction spectrum and a collimated beam diameter (pupil diameter) of
1 cm a grating resolving power of R = 1000 − 10000. The first order spectrum can be
contaminated by the second order spectrum with λm=2 = λm=1/2 or higher order spectra
λm≥3. For ground based optical spectroscopy this happens for λm=1 > 660 nm, when
second order light from above the UV-cutoff λm=2 > 330 nm sets in. The second order
can be suppressed with a short wavelength cutoff filter. For example a BG430 filter cuts
all light short-wards of about 430 nm, allowing first order spectroscopy from 430 nm to
860 nm without second order contamination.
The same grating can also be used in second order with twice the resolution of the first
order. In this case one has to select for a given wavelength range the correct pass-band
filter to avoid the contamination by other orders.

Blazed gratings. Simple gratings are not very efficient since the light is distributed
to several grating orders. The efficiency of reflecting gratings can be improved by an
optimized inclination of the reflecting surfaces so that they reflect the light preferentially
in the direction of the aimed interference order. Thus the grating efficiency is optimized
for one particular wavelength or diffraction angle θb, the so-called blaze angle.

Figure 2.5: Illustration of a blazed grating and an echelle grating.

Echelle gratings. An extreme case of the blazed grating is the echelle grating. It is
strongly inclined with respect to incoming beam and more importantly it is optimized
(blazed) for high order diffraction directions, say m = 10− 100. With this type of grating
the resolving power can be strongly enhanced even if the grating is quite coarse. For
example a beam of 2 cm diameter illuminating an echelle grating with 20 lines / mm,
inclined by i = 60◦ (1/ cos i = 2) will see effectively 800 grating lines, which produce
for m ≈ 50 a spectral resolving power of R = 40′000. Of course for such a grating the
free spectral range, without overlap by neighboring pixels, is only small and of the order
∆λ ≈ λ/m. Narrow band filters are required to select one particular order.
A more elegant solution is a cross dispersion with a second low order grating or a prism
perpendicular to the dispersion of the echelle grating. In this way the individual orders
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are displaced with respect to each other and many orders of the echelle grating can be
placed on a rectangular imaging detector.

2.3.5 Technical requirements for a RV-spectrograph

The scientific requirement for measuring radial velocities with a precision of 3 m/s im-
poses very demanding technical requirements for a spectrograph. The following type of
measurement must be possible:

– a spectral resolving power R = λ/∆λ > 50′000 is required for resolving the individual
spectral lines and measure small wavelength shifts,

– a broad spectral coverage is required to cover many thousand lines for higher effi-
ciency or for achieving enough signal for a successful detection,

– a high spectrograph throughput and/or a large telescope which allows also a search
for planets around faint low mass stars or more distant stars,

– an efficient measuring and calibration strategy,

– a telescope with enough available observing time for monitoring program.

For achieving these technical requirements there are various problems and instrument
effects which must be under control. The following effects introduce shifts which can be 2
or 3 orders of magnitudes larger than the required precision of 3 m/s:

– The variation in the index of refraction of air nair with temperature or pressure
introduces strong wavelength shifts. The measured wavelengths is

λmeas = nair(P, T )λvac

where λvac is the wavelength in vacuum. A temperature change of 0.1 K or a pressure
change of 0.1 mbar introduce a wavelength shift of about 10 m/s! These large am-
plitude drifts must therefore be corrected with very high accuracy. This is achieved
with the simultaneous measurement of a calibration spectrum.

– Mechanical flexures introduced by thermal expansion or variations in mechanical
forces can cause substantial shifts of the spectrum on the detector. The typical
velocity sampling on the detector is about 1 km/s per pixel, with pixels dimensions
of about 10 - 20 µm. Thus a measured wavelength shift of 3 m/s corresponds on
the detector to a physical shift of the spectrum of about 50 nm. Any uncalibrated
instrumental flexure at this level is very harmful.

– The spectrograph illumination must be very stable. If the illumination is not fully
stable due e.g. to telescope guiding errors, then this may introduce variable illumi-
nation gradients which may cause large spurious wavelength shift. An absorption
cell in front of the spectrograph aperture or a spectrograph illumination with a fiber
are two approaches to solve this problem.

These are only the most important disturbing effects which must be considered. Other
issues are the definition of accurate wavelengths of the spectral reference (to 9 or 10 digits),
the stability of the spectral reference, detector effects like non-perfect charge transfer
efficiency and other problems.
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2.3.6 HARPS - a high precision radial velocity spectrograph

HARPS is currently the best instrument for the measurement of reflex motion of planetary
systems. HARPS is an echelle spectrograph at the ESO 3.6m telescope which was built
as dedicated planet search instrument. It can measure radial velocities to a precision of
∆RV = ±1 m/s or even a bit better.

HARPS is optimized for stability and the instrument has no moving components.
The light of a star is focussed by the telescope onto an entrance lens of an optical fiber
which guides the light to the spectrograph located in a laboratory. Using a fiber has
the advantage that it equalizes inhomogeneous illumination from the telescope due to the
many internal light reflections. Thanks to this the illumination of the spectrograph is very
homogeneous.

The HARPS spectrograph is located in a temperature controlled vacuum vessel (Slide
2.6) to minimize drifts due to temperature and air pressure variations and thermal vari-
ations in the instrument. Simultaneously with the target a second fiber is illuminated
with a Th-Ar spectral reference light source which provides a rich and accurate reference
spectrum for the calibration of each individual measurement. The spectral range covered
is 378 nm – 681 nm with a spectral resolving power of about R = ∆λ/λ = 90′000. The
resulting data format of the echelle spectrograph is shown on Slide 2-7.

The main components of HARPS are:

– one fiber head for the target at the Cassegrain focus of the ESO 3.6 m telescope,

– a second fiber input which can be fed by a ThAr emission line lamp,

– an echelle grating, 31.6 gr/mm with a blaze angle of 75◦ with dimensions of 840 ×
214× 125 mm (Slide 2-6),

– collimator mirror with a diameter of 730 mm (F = 1560 mm), which is used in triple
pass mode,

– cross disperser grism (a combination of transmission grating and prism) with 257
lines/mm,

– two 2k × 4k CCD detectors which record the echelle grating orders m = 89− 161 in
a square image plane.

The HARPS spectrograph achieves a spectral resolution (≈ 3 pixels) of about ∆λ =
0.005 nm or 50 mÅ. This allows us to measure wavelength shifts of the order 10−6 nm
provided there are a large number, say > 10′000, of narrow lines with a width of ≈ 0.02 nm
in the spectrum. The measured wavelength shift corresponds to a physical shift of the
spectrum of about 10 nm on the detector or ≈ 1/1000 of a detector pixel.

2.3.7 Stellar limitations to high-precision radial velocity

Measuring the reflex of motion of a star to a precision of ∆v ≈ ±3 m/s requires that the
stellar properties are favorable for such a measurement. The ideal target for radial velocity
measurements are bright, G or K main-sequence star (mass range 0.7− 1.2M�) with very
low magnetic activity. Of course one would like to investigate planetary systems not only
around such stars but for a broad range of systems with different stellar parameters.
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Figure 2.6: Stars in the Hertzsprung-Russell diagram and their usefulness for the radial
velocity search of planets.

Radial velocity search for different stellar types. We consider different types of
stars in the Hertzsprung-Russell diagram in Fig. 2.6 and discuss their suitability for radial
velocity searches of planets.

– G and K main-sequence stars: These are often the ideal targets for the RV-search
of planets. They have a very rich absorption spectrum and they are also sufficiently
frequent and bright for a statistically representative sample (> 500 objects). G
and K stars younger than 1 Gyr are still rotating quite fast and therefore their
atmosphere is not stable enough for very accurate measurements. We will discuss
this further below.

– F main-sequence stars: Late F-stars can be good targets like G stars but for
early F-stars the lines are quite broad and the rotational induced activity is often a
problem. Atmospheres of F-stars show quite often stellar oscillations (see Slide 2.8
for an example).

– A stars: A stars are problematic for planet searches with the RV method. Hot
stars have less absorption lines and their widths are strongly enhanced by pressure
broadening and rotation. For example the bright A stars Altair and Fomalhaut
show line broadening due to a rotation speed of vrot sin i = 240 km/s and 93 km/s
respectively. Therefore it is currently only possible to find for A stars the reflex
motion with K ∼> 30 m/s. Only giant planets with short orbital periods < 1 year
can be found around these stars.

– M type main sequence stars: Old M-stars are often objects with very stable at-
mospheres well suited for radial velocity measurements. M stars younger than about
1 Gyr are often too active (like young G and K stars) for accurate RV-searches. An
important problem is that M-dwarfs are faint in particular in the visual wavelength
range. Larger telescopes and RV-spectrographs optimized for the near-IR wave-
lengths are required to investigate better M-stars with high precision.
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– G- and K-giants: These are evolved A- and late B-stars located on the giant
branch in the HR-diagram. Because they have a rich spectrum of narrow lines they
can be used to assess planets around stars with a masses ∼> 1.5M� (what is difficult
for main sequence stars).

– Other stars: High-mass stars and luminous red giants are not suited for radial
velocity searches of planets. Hot, high mass stars and white dwarfs have only few,
broad lines. Red giants show at least strong, disturbing atmospheric oscillations (at
the 1 km/s level) if not large amplitude pulsations (> 10 km/s). It seems impossible
to measure for such star the potential reflex motion due to a planet.

Magnetic activity of late type stars. As discussed above only late type main se-
quence stars of spectral type F, G, K and M and subgiants or giants of spectral type G
and K are suited for sensitive K < 30 m/s radial velocity searches of planets.

For a RV search in the range ∆RV ≈ m/s for low mass planets one needs to address
the disturbing effects from the stellar atmosphere in more detail. All late type stars have
a convective outer envelope and they are born as rapid rotators with rotation periods of
a few days. Convective motion and fast rotation induces a dynamo effect and therefore
strong magnetic activity which is disturbing the RV measurements. With age the rotation
slows down due to the loss of rotational angular momentum via a magnetized stellar wind.
For this reason, old stars show much less activity and are therefore better targets for very
sensitive radial velocity searches. For comparison, our sun with an age of 4.6 Gyr is a
rather old and inactive star with a long rotation period of about one month. It would be
suited for the search of planets.

Disturbing effects which are introduced by magnetic activity:

– stellar rotation and spots,

– magnetic suppression of convective surface motion,

– stellar oscillations.

Figure 2.7: Schematic illustration of the disturbing effect of a spot on a rotating star on
the structure of a symmetric absorption line.

Stellar spots, like solar spots, are darker and cooler than the surrounding atmospheres.
Therefore they produce on a rotating star absorptions lines with an asymmetry on the
blue side if the spot is on the approaching side of the rotating star and an asymmetry on
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the red side if the spot is on the receding side of the star. Because the spot is cool, it will
produce a deeper absorption for low excitation lines (e.g. from neutral atoms an molecules)
while the spot absorption are less deep for high excitation lines from e.g. ionized species.
Overall, the impact is a systematic displacement of line centers which can significantly
affect the RV-measurement of a planet search program. An example for the resulting
RV-signal induced by spots is shown for α Cen B in Slide 2.9.

Convection at the surface of late type stars is suppressed slightly by magnetic activity
and the presence of stellar spot. Because the upward motion is less strong, we see less gas
with strong velocity components towards us and the average RV of the star is red-shifted.
This effect is stronger during active phases of the magnetic cycle of stars. For the sun the
magnetic activity goes up and down on a cycle with a periodicity of 11 years.

For extra-solar planet search programs these activity cycles can be very disturbing
because a very quiet star may turn suddenly into an active star and introduce much
enhanced intrinsic RV-velocity variations (see Slide 2.9). For the analysis of RV-data
it is important to check always the activity status of a star. A good activity indicator
are the Ca ii H and K lines, which have for active phases an enhanced central emission
components.

Figure 2.8: Schematic illustration of the Ca ii emission cores in active late type stars.

Stellar oscillations are induces by the convective gas motion in the envelope. Oscillations
are often quite strong for F-stars, because they are located in or close to the pulsation
instability strip in the HR-diagram. Typical periodicities of the stellar oscillation are of
the order several minutes and the induced RV-shift can be of the order 10 m/s (see Procyon
on Slide 2.8) but also much larger.

For more extended giant stars the occurrence of oscillation-like atmospheric instabilities
is more frequent. Essentially all F-giants and M-giants are pulsating stars. G and K giants
can be quite stable and they are therefore good targets for RV-search of planet around
more massive stars than the sun. Typically these giants have masses of ≈ 2 M�.
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2.3.8 Data reduction and data analysis steps

The RV-search project teams need sophisticated software tools and a good understanding
of all instrumental effects for the data reduction and analysis. The HARPS RV-data
become public one year after the observations, like all ESO data. Nonetheless, the Geneva
team reaches with their own data reduction software, which they developed over the last
decades, a significantly higher precision than other researchers using the same data but
another software. We address here some basic steps in the data reduction.

Cross-correlation technique. The RV-measurements use a cross-correlation technique
of a target spectrum with a reference spectrum of a high quality RV standard star.

For the cross-correlation the data points from the extracted echelle spectrum must be
sampled with a constant ∆RV steps, which are constant ∆ log λ steps on a logarithmic
wavelength coordinate log λ. In this way one can move the entire target spectrum by a
shift value δi with respect to the reference spectrum and determine the cross-correlation
parameter. If the two spectra match then one gets a cross-correlation peak. The exact
center of the peak is then obtained with a least square fitting procedure. The result is the
offset of the target velocity with respect to the velocity of a reference spectrum.

Barycentric correction. The obtained RV-value must be translated into a barycentric
RV, which is the RV with respect to the center of mass of the solar system. The measured
value depends on the radial motion of the observer with respect to the line of sight. This
barycentric correction is large and includes:

– the Earth motion around the center of gravity of the solar system which is 30 km/s,
or 10’000 times larger than the 3 m/s measuring goal,

– the Earth rotation which is of the order 0.3 km/s,

– the Earth motion around the center of gravity of the Earth-Moon system which is
of the order 10 m/s.

The corrections for the Earth motion can only be applied with sufficient accuracy if the
exact observing time is registered. The radial velocity correction for the Earth motion
can change in 15 minutes by more than 1 m/s. Therefore it is not good to observe during
cloudy nights because clouds may shift the central time of an exposure (half of the photons
collected), if for example the second half of a long exposure is affected by clouds.

Period and RV-orbit search. The first step in the RV-planet analysis is the search for
a strictly period RV-variations. The basic principle for a planet search is an approximation
of the measured points vi(ti) by a fit curve with a sine function:

vfit(t) = v0 +K sin
(2π

P
t+ δ

)
.

There are 4 parameters, system velocity v0, radial velocity semi-amplitude K, orbital
period P , and phase shift δ, which are varied until the best fit is obtained. Usually the
best fit is defined by the minimum of the least square parameter σ

σ2 =
1

n

n∑
i=1

|vfit(ti)− vi(ti)|2 .



30 CHAPTER 2. REFLEX MOTION: MASSES AND ORBITS

One should restrict the period search to reasonable parameter ranges. Good estimates for
the starting points are often easy to find for v0 (= mean RV value) and K (≈ 0.5vmax −
vmin), while δ must be varied in the interval [0, 2π] for each trial period. The period range
to be searched goes from about the shortest possible orbital period (e.g. 0.5 days) to
the total time span of the collected data points. Searching in the short period range is
only safe if there are also data-points which were taken within a fraction of the searched
period. Else the procedure produces good fits with very short, orbital periods which are
not well sampled by the data points. A good sampling requires that there are several well
distributed data point during at least one orbital period.

A periodogram provides the minimum σ2-value for each period for the best fitting
v0,K and δ parameters. The highest, isolated peaks should be analyzed more carefully.
There could be multiple narrow minima if data points are separated by long time intervals
without measurements. Then a periodicity of say 4 days which fits the data taken during
one week of one year and another week taken during the following year may have several
solutions separated by about 0.04 days. This happens because it is not clear whether the
two measurement campaigns are separated by 85, 90 or 95 orbital periods. Additional
data point are required to break the degeneracy.

Figure 2.9: Illustration of not well sampled RV measurements.

Similar effects happen because of natural observing gaps or observing periodicities.
With Earth-bound observations targets can typically not be observed during some seasons
when the sun is at a similar right ascension as the target, or there are monthly cycles
because the RV-program obtains only bright time near full moon, which is not demanded
by extra-galactic observers. And of course there is the daily cycle because observations
are only possible during the night. All these periodicities may cause spurious signals in
the period search procedure and aliases of the real period with data sampling patterns.

If a good sine-fit for the data points is found then one should refine the fitting with
the full RV-equation (Eq. 2.9) including the eccentricity ε and the periastron angle ω.
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2.4 Statistical properties of radial velocity planets

2.4.1 On statistical methods

Target samples: Meaningful statistical studies for radial velocity planets are only pos-
sible with well defined surveys and well-understood detection thresholds and observational
biases. A good approach is to select stars with predefined intrinsic properties, like all single
G and K dwarf stars, using one of the following sample criteria:

– a volume limited sample which includes all stars within a fixed distance,

– a magnitude limited sample which includes all stars which are brighter than a certain
limit.

In the volume limited case there are relatively less higher mass stars because they have a
lower volume density, while in the magnitude limited sample the survey volume is larger for
the brighter stars than for the fainter stars. Both approaches have some subtle advantages
and disadvantages. However, the important point is that the sample selection is well
understood. Table 2.4 give numbers for the frequency of stars for a distant limit of 10 pc
and their typical 10 pc brightness.

Table 2.4: Statistics for the stellar systems within the solar neighborhood up to a distance
of 10 pc.

object type numbers MV (spec. type)

stars (total) 342
O and B stars 0 –4.0 (B0 V)
A V stars 4 +0.6 (A0 V)
F V stars 6 +2.7 (F0 V)
G V stars 20 +4.4 (G0 V)
K V stars 44 +5.9 (K0 V)
M V stars 248 +8.8 (M0 V); +12.3 (M5 V)
G and K III giants 0 +0.7 (K0 III)
white dwarf stars 20

single stars 185
binary systems 55
multiple systems (3+) 12

brown dwarfs 15

planets 19
planetary systems 11

In many surveys there are often some less well defined selection criteria which are due to
special target properties, like:

– pulsations,

– fast rotation and high magnetic activity,

– stars in close binary systems with apparent separations of less than a few arcsec,

– early type stars (e.g. A and early F).
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Such objects are often excluded from a survey because the planet detection limits are much
worse when compared to “normal” stars. From a statistical point of view a clean sample
without special cases is easier to understand. This does not preclude a specific study on
a sample of special, say e.g. young, fast rotation stars.

Important surveys for the derivation of statistical properties of RV-planets are:

– the volume limited CORALIE and HARPS sample of F, G and K stars with about
2800 stars,

– the magnitude limited Lick, Keck and AAT survey of about 1330 F, G, K and M
stars.

The two surveys overlap with many targets in common.

Bias effects. Statistical studies can include various kinds of selection or bias effects
which may change the measured distribution of system parameters. Such effects are of-
ten unavoidable because of observational constraints, availability of sources, instrumental
effects or not considered or unknown sample properties.

For a rough assessment of statistical results the most important bias effects should be
known. For the RV-surveys important effects are:

– planets with large mass are easier to detect than planets with small mass for given
orbital parameters,

– for a given mass planet with short periods are easier to detect than planet with long
periods.

This indicates that in a distribution of measured RV-planets there could always be more,
undetected objects with longer periods or smaller mass. On the other hand, if lower mass
or longer period planet are more frequent than high mass or short period planets then
this is at least qualitatively a robust result. It is very unlikely that there exists a large
population of high mass or short period planet which was not picked up by the survey.
In order to achieve accurate and most useful scientific results a careful analysis of the
obtained results is required:

– the sample selection should be based on well-understood parameters.

– observations of a predefined sample should be completed,

– if the completion of a sample is not guaranteed, then the targets should be picked
according to a scheme which depends not on intrinsic target parameters. In this
way an incomplete data set is not affected by a preference of the observers who like
to pick the bright targets first and the faint targets later and only if time permits.
Often it is good to use a scheme according to the RA-coordinate of the targets.

– computer models of the sample are very useful to understand bias effects because
they can provide accurate corrections for known bias effects and an assessment of
the uncertainties in the final survey results.

Statistical noise. Low number statistics suffers strongly from statistical noise. Poisson
statistics can be used for many simple cases as starting point. For Poisson statistics the
uncertainty is

σ =
√
N
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where N is the number of objects in a given statistical bin. For example, if a survey has
detected N = 50 targets, then the statistical uncertainty is σ =

√
N ≈ 7 or a fractional

uncertainty of 14 %.

2.4.2 Frequency of planets

Statistical results presented in this and the following section are mainly from the review
paper of Udry and Santos (2007, Ann Rev. Astron. & Astrophys. 45, 397) and the
preprint from Mayor et al. (2011, arXiv:1109.2497v1). Because of the rapid progress in
this field many of the presented results will be outdated in a few years.

The most basic statistical quantity of planet search programs is the fraction of detected
planets for the surveyed stars.

Giant planets around late type stars. For giant planets around single late type F,
G, K main-sequence stars the RV velocity surveys find the following numbers:

– for about 1 % of the stars a close in (<0.1 AU), hot Jupiter with mP sin i > 0.1MJ

is detected,

– for about 15 % of the stars a giant planet with mP sin i > 0.1MJ out to a separation
of 5 AU is present,

– RV-surveys can not say much about the frequency of giant planets at large separation
> 5 AU, because the RV-search programs run not yet long enough for detecting
planets with periods much longer than 10 years.

These numbers are quite robust because the signal of Jupiter mass objects are relatively
easy to detect. Slide 2.10 illustrates how an extrapolation from the detected number
of plants to expected planet rates is made. For giant planets, the uncertainties in the
correction factor for non-detected systems are smaller than the statistical noise.

One may speculate about the real frequency of giant planets, including also objects with
larger separation than 5 AU. Since there seems to be no drop of planet frequency with long
periods > 3 years (see period distribution below) one can assume that the distribution
does not drop steeply just beyond P > 10 years. Thus one can assume that at least 25 %
of single, late type stars have a giant planet.

Frequency of low mass planets. It is not easy to derive estimates for the frequency of
low mass planets from RV surveys, because the samples are small and usually the detection
depends a lot on stellar properties, like intrinsic atmospheric variations and observational
limitations. For this reason the numbers derived so far should be considered cautiously.
For very stable, single G and K stars the Geneva group has estimated the occurrence rate
of low mass planets, taking bias effects into account. For this the detection probability
as function of orbital period and mass was determined in order to extrapolate from the
number of detected planets to the number of expected planets (see Slide 2.10).

– the planet/star ratio is about 0.50, counting planets in the mass range from 1 ME –
0.1 MJ and periods shorter than 100 days,

Note, that the solar system does not fulfill this selection criterion for a planetary system
with low mass planets.
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Metallicity dependence. Soon after the detection of the first extra-solar planets, it
was recognized that the host stars have on average a high metallicity. More detections of
giant planets confirmed this planet-metallicity correlation.

– the frequency of giant planets around low metallicity stars is about 5 %, where low
metallicity means the metallicity range from about 0.3 – 1.0 times the solar value.

– the frequency of giant planets is much higher for high metallicity stars, about 20 %
or even a bit higher for stars with a metallicity twice the solar value.

For the frequency of low mass planets M < 0.1 MJ , such a correlation with metallicity is
not observed.

Selecting high metallicity stars in a planet search program enhances significantly the de-
tection rate of giant planets.

Metallicity differences of stars is a well known property in our Milky Way but also other
galaxies. The variance of the stellar metallicities in the Milky Way is explained partly as
an age effect (older stars tend to have lower metallicity) and a general metallicity gradient
from the center to the outer regions of the Milky Way.

The fact that the giant planet population is different for high metallicity systems, when
compared to low metallicity systems indicates that the planet formation process must
depend on metallicity. In a high metallicity system the fraction of dust in the proto-
planetary disk may be enhanced. Another widespread effect of a high metallicity medium
is a more efficient cooling for the gas through the line emission from heavy elements. More
dust and a cooler environment could indeed have strong effects on the planet formation
process.

How many planets are there in the Universe? The numbers given above from the
RV-surveys indicate that single stars with planets are more frequent (about 2/3) than stars
without planets (about 1/3). This results holds at least for F,G,K stars. In addition one
can extrapolate the planet frequency including giant planets which are further away than
10 AU from the star, or low mass planets with periods larger than 100 days, or planets
with masses less than ME .

Our solar system does not qualify to be counted in the statistics of Slide 2.10. Jupiter
and Saturn have a period which is beyond the considered separation range and Earth and
Venus have also a too long orbit to be counted in the low mass planet statistics. Of course,
we can not use the solar system for an extrapolation of the planet frequency values, but
the solar system hints to the fact that the statistics considered above could miss a large
number of existing planets. Thus one can suspect that there are more planets than stars
in the Universe and one may now speculate about the average number of planets per star.

An interesting scientific question for the future is, whether there are stars without planets
and why they do not harbor planets.
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2.4.3 Distribution of planetary masses

Stellar companions to stars are very frequent. About 25 − 30 % of all stellar system are
binary or multiple star systems or almost every second star is part of a binary or multiple
system (see Table 2.4). The typical separation of binaries peaks around 20-50 AU, or for
periods of about 100 years.

Including planets in this companion distribution then their is a very strong bimodality.
There are many giant planet companions and many stellar companions but only few objects
with a mass in the brown dwarf regime 20 – 50 MJ . This mass range is often called the
brown dwarf desert.

Giant planets. If one considers the mass of the detected RV-planets, then there is a
well defined frequency drop-off for high mass planets mP ∼> 2 MJ (Slide 2.12). The high
mass end of the giant planet distribution can be described by

dN

dM
∝ 1

M
.

This strong drop-off is a robust result, because it is much easier to detect giant planets
with higher mass.

Ice giants and super-Earths. The RV-surveys for low mass planets are still quite
small. The largest sample of low mass planets is the HARPS-sample from the Geneva
team. Their sample shows:

– a strong peak in the mass distribution at about 2 MJ for the giant planets,

– a clear minimum in the mass distribution in the range 0.1 – 0.3 MJ ,

– another strong peak for masses 10 – 20 ME (0.03 – 0.06 MJ) comparable to Uranus
and Neptune in the solar system,

– perhaps another depression just below 10 ME ,

– a clear increase in the frequency of planets for lower masses but the gradient of the
mass distribution of low mass planets is unclear.

The minimum in the mass distribution in the range 0.1 – 0.3 MJ is at least qualitatively a
very robust results. Bias effects cannot explain the higher rates of Neptune mass planets
(ice-giants), when compared to low mass 0.1 MJ gas giants, which must indeed be quite
rare.

2.4.4 Orbital period distribution of extra-solar planets

The orbital period is another key parameter for planets. Already the first detection of 51
Peg b pointed to the fact that orbital periods of extra-solar planet may be very different
to what we have in the solar system. Indeed it became rapidly clear that 51 Peg b is just
one representative of a larger group.

Period distribution of giant planets. The period distribution of giant planets is well
known. There are the following features:

– there is a strong maximum at about 3–5 days orbital period. This group is called
the “hot” Jupiters,
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– planets with very short periods of less than 2 days are 10 times less frequent than
planets in the 3–5 day peak,

– in the range 10 – 300 days there are significantly less planets per ∆ logP interval,
than in the 4 day peak,

– at periods > 300 days the planet are more frequent up to periods of a few 1000 days
which marks the limit in the duration of the observing programs.

Period distribution of low mass planets. The statistics for low mass planets are
poor. However, one can say that the period distribution in the range 3 - 30 days is rather
flat, without a strong preference for a specific period like for the hot Jupiters.

Period-mass diagram. The period-mass diagram shows an interesting property of the
short period giant planets. Essentially all giant planets with periods < 100 days have a
mass < 2.5 MJ (Slide 2.13). There are a few exceptions, but these are planets in stellar
binary systems.

This property indicates that there is a mass selection effect for giant planet with short
periods. Only the lighter ones are pushed inwards towards the star.

2.4.5 Orbital eccentricities

The period - eccentricity diagram (slide 2.14) illustrates well the properties of the orbits
of extra-solar planets.

– Short period planets P < 10 days have circularized orbits with eccentricities ε ∼< 0.2.
For many of these planets the eccentricity is ε = 0 within the measuring uncertainties.
All planets with orbital periods P < 3 days have zero eccentricity.

– For longer periods P > 100 days the planets show a very broad eccentricity distri-
bution, with about 30 % of all planets with an eccentricity larger than ε > 0.4.

2.4.6 Planets in binary systems

Surveys of planet in binary systems are much more difficult to perform because there
is already a very strong RV-signal form the orbital motion of the binary. Some studies
have been made, but the statistics are still poor because there are many different types
of binaries. For example one may select narrow or wide binaries, binaries with stars of
equal mass or with a large mass ratio, binaries with eccentric or near circular orbits and
so on. For each class the search strategy must be adjusted and the selected sample must
be representative of a given subgroup of binary system. It is not surprising that robust
statistical data for binaries are missing. Slide 2.15 shows some examples of multi-planet
systems which illustrates the large diversity in their structure.

A rough result is that planet also exist in binary systems. About 15 % of all known
planet are in binary systems but it is not clear how many binary systems have been really
searched for planetary companions.
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2.4.7 Multiple planet systems

About 10 % of the detected systems with RV-planets have more than 1 known planet.
A few examples of these multi-planet systems are shown in Slide 2.15. In many cases
the additional planets were found because the RV fit solution for the first planet showed
systematic deviations. The statistical properties of multi-planet systems are not well
known because the selection effects are hard to define and no “clean” sample exists. A
few finding are described here.

More low mass planet systems? Just counting detected planets in multiple systems
indicates that low mass planets tend to be members in multi-planet systems. This could
be a selection because low mass planets are usually searched with many high quality
observations, which are required for a successful detection. Such high quality data are
therefore better suited to detect multiple planets in a system. On the other hand a giant
planet search program which surveys a large number of stars but only with a restricted
number of measurements per star, say 20, is more successful in detecting only the most
prominent planet in a system. Multiple planet detection would require more high quality
data per system.

Orbital period resonances? If the orbital periods of the planets are considered then
one finds many systems which are close to an orbital resonance.

Systems with planet close to orbital resonances are:

– Jupiter (PJ = 11.9 yr) and Saturn (PS = 29.5 yr) have a period ratio of 2.48 or close
to a 5 : 2 resonance,

– Gl 876 b and c have periods Pb = 30.12 days and Pc = 61.02 days with a period
ratio of 2.03 close to a 2 : 1 resonance,

– the pulsar system B 1257+12 has two planet in orbit with PB = 66.54 days and
PC = 98.22 days close to a 3 : 2 resonance.

There are many more systems where such a coincidence seems to exist. Although the sta-
tistical evidence is not strong, there are hints that at least for some systems the dynamical
evolution seems to lock some planets into resonant orbital periods. Planet migration could
explain such a behavior. If one planet moves inwards, e.g. due to angular momentum
transfer to a disk, then this may also force another planet further in to migrate because
its orbit is locked in a resonance with the migrating planet.
More data are required to assess the statistical evidence for the preference of planets in
resonant orbits.
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2.5 Astrometric detection of planets

2.5.1 The astrometric signal induced by a planet

The astrometric signal θ of the reflex motion of a star at the distance D introduced by a
planet is equivalent to the apparent angular size of the semi-major axis of the star

θ =
aS
D
≈ mP

mS

a

D
, (2.22)

where we used the relation aSmS = aPmP and the approximation aP ≈ a. With Kepler’s
3rd law one obtains:

θ =
( G

4π2

)1/3 mP

m
2/3
S

P 2/3

D
(2.23)

This can be written in convenient units like

θ = 2.9µasmP [ME ]
( 1

mS [M�]

)2/3
(P [yr])2/3

( 1

D[pc]

)
.

Some typical values for Jupiter mass and Earth mass planets are given in Table 2.5. From
this table and Equation 2.23 the following dependencies are apparent:

– the astrometric signal decreases with the distance of the source θ ∝ 1/D, favoring
thus strongly nearby systems,

– the astrometric signal is larger for longer orbital periods θ ∝ P 2/3, or proportional
to the semi-major axis θ ∝ a,

– the signal is proportional to the mass of the planet θ ∝ mP ,

– the astrometric effect of a planet is larger for low mass star θ ∝ 1/m
3/2
S .

A strong signal is produced for nearby low mass stars, with massive giant planet on long
orbits. Very interesting is the fact that the detection bias for astrometry with respect
to orbital separation or orbital period is opposite to that of the radial velocity method.
Because the current measuring limit is about 1 mas, no planets were detected up to now
by the astrometric method. However, in the near future a precision as good as 20 µas is
expected with the GAIA satellite and ground based astrometric interferometry.

Table 2.5: Astrometric signature for different planet - star systems

mP mS a [AU] P θ(10pc) θ(100pc)

MJ M� 5.2 12 y 480 µas 48 µas
MJ M� 1.0 1.0 y 92 µas 9.2 µas
MJ M� 0.1 11.6 d 9.2 µas 0.9 µas

MJ 2.5 M� 5.2 7.5 y 190 µas 19 µas
MJ 0.4 M� 5.2 18.7 y 1200 µas 120 µas

ME M� 1.0 1.0 y 0.29 µas 0.029 µas
ME 0.4 M� 5.2 18.7 y 3.8 µas 0.38 µas
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2.5.2 Science potential of astrometry

The science goals of astrometric studies of the stellar reflex motion due to planets must
consider that many properties of extra-solar planets are already known from RV surveys.
Thus the astrometric studies should address questions which are complementary to the
results from the RV survey. Let’s assume that the next generation of instruments reaches
an astrometric precision in the 10 - 100 µas range. This allows the detection of giant
planets with orbits longer than a few years within 50 to 100 pc (see Table 2.5). In this
case the following science topics can be investigated:

– Astrometry can detect giant planets around more massive stars, magnetically active
stars, and young fast-rotating stars, which are hard to detect with the RV method.
Astrometry can therefore provide an inventory of extra-solar planets around stars of
all types.

– Planet masses mS can be easily determined for objects detected by the RV-surveys
but for which the sin i factor is not known. A few measurements are sufficient to
determine the orbit inclination.

– Many stars show long term trends in their RV-data. Astrometry can clarify the
presence of companions at large separation more easily because the astrometric signal
increases linearly with a while the RV signal scales with 1/

√
a.

– Astrometry can clarify whether multiple systems are coplanar or not. Dynamical
interactions with planet can lead to eccentric orbits and tilts between orbital planets.
Astrometry can measure the mutual inclination.

– With an astrometric orbit of the central star the position of an unseen planet can
be determined. This is a most important information for the search of a planetary
signal with high contrast imaging.

2.5.3 Astrometric motion of stars

The astrometric reflex motion of a star due to a planet is very small when compared to
other astrometric motion components, which are:

– the proper motion of the center of mass of the system which is the velocity
component projected on the sky with respect to the center of mass of the solar
system. The proper motion of a star is described by the angular motion in right
ascension µα and the angular motion in declination µδ. Typical values for the proper
motion are of the order 0.1 – 1 arcsec/yr for nearby stars (≈ 10 pc), and 10 – 100
mas for stars at about 100 pc.

– the annual parallax of a target is due to the motion of the Earth around the center
of mass of the solar system. The size of this effect is strictly related to the distance:

π[arcsec] =
1

D[pc]
,

and it is by definition 1 arcsec for a distance of 1 pc, 100 mas for 10 pc, 10 mas
for 100 pc, etc.. The shape of the annual parallactic motion is an ellipse and its
ellipticity depends on the direction of the line of sight with respect to Earth orbit
(the ecliptic plane).
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Both effects are about 2 to 3 orders of magnitudes larger than the typical signal induced
by an orbiting giant planet. Thus, one needs to measure first accurately the proper motion
and annual parallax, before one can aim for the detection of the astrometric reflex motion
due to a planet.

Slide 2.16 illustrate the different astrometric motion components for a nearby low mass
binary system: orbital motion, annual parallax, and proper motion. For a planetary
system the orbital motion will be about 2 orders of magnitudes smaller (of the order mas)
and there is in general no co-moving secondary component present which can be used as
relative reference point.

2.5.4 Projected orbital motion

Astrometric measurements provides after the correction for the proper motion and the
annual parallax the orbital motion as projected on the sky. From this one can derive the
mass of the planet mP , if the mass of the star is known and the orbital parameters P , ε,
i, ω, Ω and T0. There is no sin i ambiguity.

For the simple case of an intrinsically circular orbit the projected orbit is an ellipse and
the ratio between the projected axes x (major) and y (minor) is y/x = cos i.

For an intrinsically elliptic orbit the situation is more complicated. However, the orbital
ellipticity and the “projection ellipticity” can be disentangled because the orbital ellipticity
defines the temporal behavior of the observed motion. There remain only two solutions
with an ambiguity about the near or far side of the orbit. This ambiguity must be solved
with radial velocity measurements.

Fitting the astrometric orbits of visual binaries is a classical topic in astronomy (see e.g.
Binnendijk 1960, Properties of double stars. Univ. Pennsylvania Press). Data for plane-
tary systems face the problem that one needs to disentangle potentially the contributions
of multiple planets to the reflex motion of the star, considering correctly the noise in the
data.

2.5.5 Astrometric measurements

Astrometric measurements of the planet induced reflex motions are difficult. The mea-
suring precision reached up to know is of the order 1 mas, which is comparable to the
expected signal for an ideal (best) case of a nearby system with a giant planet with an
orbital period of several years.

Due to these restriction, no extra-solar planets have been detected purely based on as-
trometric measurements up to now. However, it was possible to measure the astrometric
reflex motion of a few stars with known RV-planets. A good example for the detection
of a planet-induced astrometric motion is the nearby star ν And. The astrometric mea-
surements for this system are shown in Slide 2.17. Thanks to many RV-data points most
orbital parameters for the “two astrometric planets” c and d were already well known.
Astrometry provided in addition the inclination sin i for the orbits and the masses of the
two planets. Of much interest for the orbit dynamics of the system is the large mutual
inclination between the two orbits of about ∆i = 30◦.
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2.5.6 Expected results from the GAIA mission

GAIA is an all-sky, astrometric satellite which will measure the astrometric parameters of
more than 109 stars, 107 galaxies, 105 quasars and 105 asteroids in the brightness range
from 6 mag to 20 mag. The GAIA satellite was successfully launched in Dec. 2013 and
the mission will last for about 5 years.

GAIA will scan the sky with a predefined, regular pattern and each object is observed
about 70 times, or about 15 times per year. It will not be possible to adjust the observing
strategy for improving the sampling of “interesting targets”.

The GAIA instrument is a continuously rotating, double telescope which projects two sky
regions separated by 120 degrees onto a huge array of more than 100 detectors with in total
of more than 1 billion detector pixels (see Slide 2.18). The instrument peformes besides
astrometry, also accurate photometry, and spectroscopy which allows stellar RV measure-
ments with a precision of about 1 km/s. The detectors read continuously the detected
signal and a powerful on board computer system, preprocesses the data, in particular it
selects and transmits only the scientifically useful data down to Earth.

The expected astrometric precision of the satellite is better than 100 µas per single ob-
servation for stars brighter than 15 mag. The end of mission precision, after 50 - 100
measurements will be at the level of 20 µas, again for stars brighter than 15 mag. Thus
GAIA is sensitive for the astrometric detection of giant planet around stars closer than
about 100 pc with orbital periods in the range 0.5 – 5 years (see Table 2.5).

The GAIA mission will have an important impact in many fields of astronomy from
solar system research, stellar astrophysics, galactic astronomy and cosmology.

The expected results for extra-solar planets are:

– many 1000 giant planets will be detected astrometrically,

– the orbits due to the reflex motion of about 500 giant planets will be measured with
high precision allowing a determination of planet masses mp with an accuracy better
than 20 %,

– for about 100 planetary systems the orbital parameters of more than one planet can
be measured and the orientation of their orbital planes can be investigated.

The GAIA detections will trigger many follow up studies using the RV method or direct
imaging for the most interesting systems.

2.5.7 Ground based interferometric astrometry

Interferometry measures the interference pattern of the light of a star collected by two
telescope separated by a distance B which is called the baseline. The exact angular
position θ of an object in the plane defined by the baseline and the line of sight can
be deduced by the external path length difference for the light reaching telescope 1 and
telescope 2.

Dext = B cos θ . (2.24)

Because a ground based interferometer rotates with respect to sky, different baseline ori-
entation can be measured and the exact position α, δ of the object be determined. With
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interferometry one obtains an interferometric wave pattern I(D) as function of the path
difference

I(D) ∝ sinD where D = Dext + (D2 −D1) +
λ

2π
φ ,

λ is the wavelength of the light, φ the phase, and D2 −D1 is the relative path difference
for the light going through telescope 1 and 2, respectively. Figure 2.10 and Slide 2.19
illustrate the basic principle for interferometric astrometry. Important components are
the two telescopes, the delay line with moving mirrors which compensate the changes of
the external path length difference because of the Earth rotation, and the wave correlation
laboratory.

Figure 2.10: Basic principle for interferometry and the double difference method used for
astrometry.

In interferometry path differences can be measured with an accuracy of a small fraction of
the phase φ, equivalent to a small fraction of the wavelength. For example, for a measuring
precision of λ/100, equivalent to the path difference of ±20 nm for IR light with λ = 2µm
the position angle θ can be measured with a precision of

∆θ = ± λ

100B
.

This yield for a 2-µm interferometer with a baseline of B = 100 m an angular precision of
20nm/100m = 10−10 or 2 · 10−10arcsec · π/(180 · 3600) = 10µas.

In reality, this measurement is very difficult. Atmospheric turbulence introduces for the
two telescopes path length variations which are larger than a wavelength. Also any varia-
tion in the path length inside the telescope and interferometer due to unstable air condi-
tions and mechanical instabilities are harmful and must be under control. The following
double difference strategy must be applied for a successful measurement of accurate as-
trometric positions:

– The astrometric position of a target is determined relative to a nearby background or
reference star located within a few tens of arcsec. This requires that interferometric
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measurements are made simultaneously for the target star and the background ref-
erence star. Instead of measuring Dext one measures the relative difference between
target and reference star

∆D = Dt −Dr = (Dt,2 −Dt,1)− (Dr,2 −Dr,1) = B(cos θt − cos θr) .

The big advantage is that both objects show the same path length variations intro-
duced by the atmosphere and the instrument.

It is complicated to perform this double difference measurements. One needs to be able to
measure the interference pattern of both stars simultaneously and correct the target inter-
ferogram “on-line” for the path length variation seen in the reference star interferometer.
The measured “phase difference” between target and reference yields then the position of
the target relative to the reference star.

PRIMA is the astrometric instrument at the VLT interferometer which is currently tested.
Unfortunately the tests showed that the laser monitoring concept for the interferometer
meteorology is not sufficient. This system should measure the differential path length vari-
ations of the light beams of the target star and the reference star in the interferometer and
the telescopes, because mechanical vibrations, air turbulence and other differential effects
between the 4 different beams must be corrected. An improved instrument monitoring
system is now build before PRIMA astrometry becomes available.
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2.6 Pulsar and transit timing

Timing studies are a third method to search for the reflex motion induced by extrasolar
planets. However, this method works only for systems which produce a measurable and
well defined periodic signals. Up to know there are only few planetary systems known for
which this method could be applied:

– for two pulsars with planets,

– for the short period, eclipsing binaries consisting of a white dwarf and low mass star.
A good example is the system HW Vir which harbors probably two circumbinary
planets.

– for planetary transit signals mainly from KEPLER light curves.

Only the pulsar planets and the transit timing method are firmly established. The binary
eclipse system require further confirmation with more data. In the following subsection
two well established examples are given.

2.6.1 Planets around the pulsar B 1257+12

The milli-second pulsar B 1257+12 is famous because the first planetary mass objects
were found around this object. Milli-second pulsars are very special astronomical objects.
Pulsars are born in supernovae as collapsed cores of the former stellar iron-core of a high
mass star which reached the Chandrasekhar mass limit and became unstable. Therefore
one can expect that the pulsar B 1257+12 has a mass of about 1.4 M� like essentially all
binary pulsars with mass determinations.

Pulsars are, very compact R ≈ 10 km, highly magnetized (stellar magnetic fields com-
pressed to small diameter), and fast rotating (angular momentum conservation!) objects.
Because the magnetic axis is usually not perfectly aligned with the rotation axis, they
accelerate electrons along the polar magnetic fields to relativistic speeds, so that the emit-
ted synchrotron radiation from the electrons emit strongly pulsed radiation with a pulse
period equal or half the orbital period for a bipolar magnetic field. Pulsars are born as
extremely hot, highly magnetized, and fast rotating objecs with a rotation period of less
than 0.1 sec and strong pulses. They slow down because the relativistic particles extract
angular momentum so that pulsars become slower and weaker with time. For example,
their pulse period doubles from 0.5 s to 1 s in a few million years. If a pulsar has slowed
down to a rotation period of several seconds then their radio emission disappears and they
are no more observable.

Pulsars can be “re-born” if they reside in close binary systems. In a compact binary
mass from the companion can flow to the pulsar via an accretion disk. This spins up a
previously “old”, cold and low magnetic field pulsar. If the pulsar’s rotation become faster
than a rotation period of 20 ms, it starts to have again an radio signal. These reborn “old”
milli-sec pulsars are therefore often found in binary systems. In some special cases the
pulsar wind can evaporate the close companion and only an old, fast rotating millisecond
pulsar is left. It’s orbital period is extremely stable, because the pulsar magnetic field is
relatively low, the pulsar wind is stable and the interior structure is settled. For some
milli-second pulsars the stability of the pulse arrival times is higher than any man-made
atomic clock with an evolution of the pulse period at a level of Ṗ /P ≈ 10−16 or a stability
of the pulse arrival times of about 1 ns over a full year.
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The main points of this milli-second pulsar story for planet research are:

– milli-second pulsars are ideal clocks for timing studies,

– planetary mass object around such systems must have survived a SN explosion in a
binary system, a strong pulsar wind, the evolution and evaporation of a companion
or they were formed during or after one of these events,

– the interpretation of properties of pulsar planets must consider their very special
nature.

On the other hand, pulsars are ideal targets for the search of planets with the timing
method. Because of the presence of planets the pulsar position oscillates around the
center of mass of the system and the pulse arrival time provides an exact position along
the line of sight relative to the center of mass. Because pulse arriving times can be
measured with a precision of about 0.01 ms any relative displacement of 0.01ms · c = 3km
becomes measurable. This means that even the reflex motion due to objects significantly
less massive than Earth can be measured.

Planets around pulsars are rare. Besides the famous system B 1257+12 only one other
pulsar B 1640-26 with a planet is known.

Properties of the B 1257+12 pulsar system: B 1257+12 is a milli-second pulsar
with a period of 6.3 ms. It was studied in more details because it showed pulse arrival
anomalies which turned out to be caused by three planetary mass objects. The measured
deviations of the barycentric pulse arriving times from a constant value are shown in Slide
2.20 together with a fit for a three planet system. The residual scatter from this fit are of
the order ±10µs. The derived parameters for the planets are:

– innermost planet P = 25.3 days, a = 0.19, ε = 0.0, mP sin i = 0.015 ME ,

– second planet P = 66.5 days, a = 0.36, ε = 0.018, mP sin i = 3.4 ME ,

– third planet P = 98.2 days, a = 0.47, ε = 0.026, mP sin i = 2.8 ME .

Note that the pulsar timing allowed in this case to find an object with the mass of the
Moon. The second and third planet are close to an interesting 2 : 3 orbital period
resonance.

2.6.2 Transit timing for KOI 875

More and more transiting planets are detected. For all these objects an accurate transit
timing can be used to search for additional unseen planets.

No transit timing variations (TTV) are expected for a single planet system. The
transits will be strictly periodic. If a second or more planets are present then the position
of the star is altered, it is not just on the other side of the center of mass C with respect
to the transiting planet. The star can be displaced from the line through the planet and
the center of mass because of other planets in the system. This means that the planet
must move a bit less or a bit more than a full orbit until the next transit occurs.

Transit timing variations are particularly large for a transiting planet with a long period,
because it moves with slower speed and any lateral displacement of the star from the
center of mass will result in a longer transit time difference.
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Figure 2.11: Geometry of transit timing variation (TTV).

A good example for the TTV effect is KOI 872. This system was noticed as Kepler
Object of Interest (KOI) because it showed eclipses with a period of about Pb = 33.6 days.
A detailed study of the transit times revealed that the transits vary in time by about
±1 hour. These deviations are introduced by a second, non-transiting planet with a mass
of about Mc = 0.37MJ and an orbital period of Pc = 57 days (see Slide 2.21). In addition
a transiting close-in planet with a radius of 1.7 RE was found. The main result of the
TTV effect are:

– KOI 872 b with a period of 33.6 days shows transit timing variations of up to ±1 hr,

– KOI 873 c, a non-transiting planet, with a period of 57 days and a mass of 0.37 MJ

is responsible for the large timing variations,

– the periodicity of the TTV provide the orbital period of planet c ,

– the mass of component c can be determined from the amplitude of the timing vari-
ations,

– the mass of the transiting planet b cannot be determined from the TTV data, however
the modelling for the dynamic stability of the system requires Mb < 6 MJ ,

– the effect of the innermost low mass planet on the transit timing are two small to
be detected in the data.

In transiting systems the TTV effect is a basic tool for the investigation of additional
planets in a system.



Chapter 3

Transits of planets: mean densities

Close-in (short period) planets have a relatively high chance to transit in front of the
star. A transit introduces a small periodic dimming of the star which is for a given star
proportional to the size of the planet. The photometric observation of transits provides
therefore the orbital period and the radius ratio between planet and star. Because the
radii of stars are quite well known, the planet radius can be derived and with the planet
mass from the radial velocity method also the mean density. Planet transits have been
detected for more than 1000 stars. Such a large sample yields important information, not
only on planet frequency and orbit properties, but also on the composition and internal
structure of different types of planets based on the mean density determinations.

In this chapter we discuss first the radius and mean density of solar system objects.
They serve again as well studied test cases. Then we describe the transit technique for
extra-solar planets and describe some important scientific results from transit observations.

3.1 The structure of solar-system planets

3.1.1 Radius, mass and mean density for planets

A rough characterization of a solar system planets, comparable to observations of extra-
solar planets, can be based on the size, the mass, and the mean (or bulk) density.

The radii of solar system planets can be derived from angular diameter measurements.
Because of their fast rotation the giant planets are flattened significantly (> 1 %). The
difference between equatorial and polar radius Re and Rp are given in Table 3.1. The
flattening f = (Re − Rp)/Re for the terrestrial planets is less than 1 %. It is useful
to express the size of a planet by its volumetric mean radius RV defined as radius of a
spherical body with the same volume.

Masses of solar system planets and large bodies can be determined from the orbits of
moons using Kepler’s third law.

From the radius R and the mass M one can calculate the mean density ρ̄ of a planet:

ρ̄ =
M

V
=

M

(4/3)π R3
. (3.1)
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Table 3.1: Giant planet data: rotation period Prot, equatorial radius Re, polar radius Rp,
volumetric mean radius RV , and flattening f = (Re −Rp)/Re.

Planet Prot Re [km] Rp [km] RV [km] f

Jupiter 9h55m 71 490 66 850 69 910 6.5 %
Saturn 10h39m 60 270 54 360 58 230 9.8 %
Uranus 17h15m 25 560 24 970 25 360 2.3 %
Neptune 16h06m 24 770 24 340 24 620 1.7 %

Table 3.2 gives mass M , radius R, and ρ for the large bodies in the solar system. A few
points are notable from Table 3.2:

– the objects with the highest density are the terrestrial planets Mercury, Venus and
Earth with ρ̄ ≈ 5.5 g cm−3, followed by Mars with ρ̄ ≈ 4 g cm−3,

– the Earth’s moon and the Galilean moons Io and Europa have intermediate densities
of about ρ̄ ≈ 3.0 to 3.5 g cm−3,

– all other large solid bodies have a density around ρ̄ ≈ 2.0 g cm−3,

– the gas planets and the sun have a low mean density of ρ̄ ≈ 0.7− 1.7 g cm−3.

The main reason for the different mean densities are the different compositions, but also
the different structure. As a very rough statement one can say, that high density objects
ρ̄ > 3.0 g cm−3 are composed of rocks and iron, intermediate density objects ρ̄ ≈ 2.0 g cm−3

contain in addition a substantial fraction of water ice, while for low density objects a
substantial part of their volume is due to H and He.

3.1.2 Composition of solar system planets

It is not easy to derive the composition of planets because one cannot look deep into their
interior. There are two very important sources of information about elemental abundances
in the solar system:

– The solar photosphere, which is considered to show representative abundances
for the convective envelope of the sun and the elemental abundances in the pre-solar
nebula.

– Carbonaceous chondrites, a special type of primitive meteorite, which were not
strongly altered by heating, melting, differentiation and other processes. Therefore,
their abundances are considered to represent well the dust particles of the early solar
system.

The abundances in the solar photosphere can be determined by the spectroscopic analysis
of the solar spectrum. This method is accurate (±10 %) for abundant elements with many
absorption lines and well determined atomic data. Abundances of H, He, noble gases, and
other volatile elements can be directly compared to heavy elements (e.g. Mg, Si, Fe). The
abundance determination is difficult for rare elements with only few spectral lines in the
solar spectrum.

The abundances of meteorites can be determined with very high accuracy with modern
laboratory techniques. Abundances of very rare elements can be determined as well as
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Table 3.2: Mean radius R, mass M and mean density ρ̄ for large solar system objects with
R > 1000 km. The mass M is given in Earth mass ME = 5.97 · 1024 kg.

Planet / moon R [km] M [ME] ρ̄ [g cm−3]

sun 696’000 333’000 1.41

planets

Mercury 2 440 0.0553 5.43
Venus 6 050 0.815 5.24
Earth 6 370 1.0 5.51
Mars 3 390 0.107 3.94
Jupiter 69 910 318. 1.33
Saturn 58 230 95.2 0.70
Uranus 25 360 14.5 1.30
Neptune 24 620 17.1 1.76

dwarf planets

Pluto 1 160 2.2 · 10−3 2.0 (?)
Eris 1 160 2.7 · 10−3 2.5 (?)

moons
Moon (E) 1 740 0.0123 3.35
Io (J) 1 820 0.0150 3.53
Europa (J) 1 560 8.0 · 10−3 3.01
Ganymede (J) 2 630 0.0248 1.94
Callisto (J) 2 410 0.0180 1.83
Titan (S) 2 580 0.0255 1.88
Triton (N) 1 350 3.6 · 10−3 2.06

values taken from en.wikipedia.org/wiki/list of Solar System objects by size.

the different isotopes for the elements. A major disadvantage is that volatile elements are
strongly depleted, most notably H, He, C, N, O, S, and the noble gases. Especially for the
elements H, C, O, S, there are strong differences between different chondritic meteorites,
depending on the individual history of the sample. Abundances of many samples must be
compared to exclude the possibility of abundances anomalies due to a special sample.

The solar and chondrite abundances form also the backbone for the determination of
the universal “cosmic” abundances of the elements (Slide 3.1). Data from other stars
and emission nebulae confirm that the abundances determined in the solar system are
representative for the whole Universe.

The mass fraction fmass of the most abundant elements is given in Table 3.3 for the
solar photosphere, chondrites, the Earth and Jupiter. The sun, like the entire Universe, is
essentially made of 98 % H and He plus about 2 % of “heavy” elements. Heavy elements
include first O, C, Ne and N, then less abundant Fe, Si, Mg, and then the other elements.
They can be explained by the stellar nucleo-synthesis theory (see also Slide 3.1). The
composition for chondritic meteorites is very different because of the strongly reduced
abundance of the volatile elements or “gases”. For the abundances of Earth and Jupiter
only the elements which contribute more than 1 % to the mass are given in Table 3.3 to
emphasize the large differences in composition between these two planets. Of course also
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Table 3.3: Abundances of the most frequent elements for the sun, chondrites, Earth and
Jupiter expressed as mass fraction fm and for the sun as atomic abundance relative to Si.

Z element sun sun Chondrite Earth Jupiter
N(X)/N(Si) fm fm fm

1 H 27200 74 % 2.0 % < 71 %
2 He 2180 24 % < < 26 %
6 C 12.1 0.40 % 3.5 % < 1 %
7 N 2.5 0.10 % 0.3 % < <
8 O 20.1 0.86 % 46.6 % 30 % 2 %

10 Ne 3.8 0.20 % < < <
11 Na 0.06 < 0.5 % < <
12 Mg 1.08 0.07 % 9.6 % 12 % <
13 Al 0.08 < 0.9 % 1 % <
14 Si 1 0.08 % 10.7 % 19 % <
16 S 0.52 0.05 % 5.2 % 1 % <
18 Ar 0.10 0.01 % < < <
20 Ca 0.06 < 0.9 % 1 % <
24 Cr 0.01 < 0.3 % < <
26 Fe 0.90 0.14 % 18.5 % 33 % <
28 Ni 0.05 < 1.1 % 2 % <

< is: < 0.01 % < 0.1 % < 1 % < 1 %

estimates for the abundances of the rare elements are available. However, these are often
inferred from abundance ratios from the sun or chondrites, because some pairs of elements
(e.g. Ni/Fe) are expected to behave very similar. Alternatively the abundance ratio Si/Fe
follows from determinations of the size of the planet core based on models for the internal
structure.

3.1.3 Differentiation: the example of Earth

Terrestrial planets were formed by the accumulation of solid bodies with elemental abun-
dances similar to (chondritic) meteorites. There are four elements which dominate:

– O - oxygen: mostly bound in silicates X-SiOx, but also other minerals like MgO,

– Fe - iron: bound in FeS, in silicates FeSiOx and other minerals, but if melted then
it accumulates as iron metal or melt,

– Si - silicon: main components of silicate rich rock, quartz (sand),

– Mg - magnesium: important constituent of silicate rich rock MgSiOx.

The interior of Earth has a temperature of a few 1000 K because of internal heating by
the decay of radioactive nuclei. This temperature is high enough that the rock/magma
and iron in the Earth interior behave like fluids on geological time scales. This means
that Earth had time for sedimentation into layers of progressively higher density towards
the center. This explains the formation of an iron core and the silicate-rich mantle.
This structure is well established based on the analysis of seismic waves. Due to the
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differentiation the surface composition is not representative for the average composition
of a planet, especially if predominant constituents have a high density and accumulate in
the center.
Thus the material composition and rough structure of Earth is:

– 33 % of the mass are Fe or iron alloys, mainly in the core,

– 67 % of rock-like material mainly based on silicates (Mg,Fe)SiOx in the mantle,

– the water H2O in the oceans contributes only 0.024 % to ME,

– the N2 and O2 in the atmosphere is only 0.0001 %.

This very simple structure description for the planet Earth is of course far from a
geological description of the inner structure of this planet. However, this is a useful
starting point for the comparison of the structure of Earth with other solar system bodies
and extra-solar planets.
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3.2 Basic equations for the structure of planets

The radial model structure of a spherical planets can be derived from three basic equations:

The hydrostatic equation

dP (r)

dr
= −g(r)ρ(r) = −GMr(r)

r2
ρ(r) , (3.2)

where P (r) is the pressure, ρ(r) the density, Mr(r) the mass inside radius r, and g(r) =
GMr(r)/r

2 the gravitational acceleration (G the gravitational constant).

The equation for mass conservation

dMr(r)

dr
= 4πr2ρ(r) . (3.3)

The equation of state (EOS) which describes the density as function of pressure,
temperature and composition:

ρ(r) = ρ(P, T, composition) . (3.4)

The EOS cannot be self-consistently derived from the above equations because the tem-
perature cannot be determined without equations for the energy generation and the energy
transport. Therefore, assumptions or prescriptions of the temperature are required. Also
the composition must be given as input parameter for the modelling.

The following boundary conditions are valid for self-gravitating sphere:

Mr(r) = 0 at r = 0 , and P (r) = 0 at r = R ,

where R is the radius of the planet. For gaseous planets there is not a well-defined outer
boundary and often the boundary condition P (R) = 1 bar (105 Pa) is used.

The modelling can be substantially simplified if the equation of state depends only on
the pressure and a predefined radius-dependent composition according to

ρ(r) = ρ(P (r), composition(r)) .

In this case the three equations can be solved iteratively and one obtains density, pressure
and composition as function of radius.

3.2.1 Central pressure for a homogeneous planet

First we consider the very simple model case of a homogeneous planet. The assumption
ρ(r) = ρ̄ is a very rough over-simplification because there are strong composition and
therefore density changes in planets and the materials may be compressible. For small
solar system bodies, the assumption of a homogeneous structure may be acceptable.

Nonetheless the central pressure P0 = P (r = 0) of a homogeneous sphere yields a first
guess on the typical pressures in planets which must be considered for the equation of
state.
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The pressure profile and the central pressure follows from an integration of the equation
for the hydrostatic equilibrium using Mr(r) = (4/3)πr3ρ̄. The pressure profile is:

P (r) = −
∫ R

r

dP

dr
dr =

∫ R

r

GMr(r)

r2
ρ̄ dr =

4πGρ̄2

3

∫ R

r
rdr =

2πGρ̄2

3
(R2 − r2) .

This can be written in the simple form

P (r) = P0

(
1− r2

R2

)
, (3.5)

with the central pressure

P0 =
2

3
πGρ̄2R2 or P0 =

3GM2

8πR4
, (3.6)

where for the second equation the ρ̄ is replaced according to Eq. 3.1.
For a given mean density ρ̄ the central pressure increases like

P0 ∝ R2 ∝M2/3 ,

and for a given mass like
P0 ∝ 1/R4 .

Table 3.4 gives P0 for several solar system objects using Eq. 3.6 and R and M from
Table 3.2. The central pressures derived with the homogeneous planet ρ̄ approximation
are already accurate within a factor of a few for the terrestrial planets. The discrepancy
is larger for the giant planets because they have a low density envelope < 1 g cm−3 and a
high density core > 10 g cm−3.

Table 3.4: Central pressures P0 calculated for homogeneous planets and based on detailed
model calculations

object R/RE M/ME P0(ρ̄) P0 model1 T0 model1

Moon 0.273 0.0123 47 kbar 45 kbar 1 800 K
Mercury 0.383 0.0553 240 kbar 400 kbar 2 000 K
Earth 1 1 1.7 Mbar 3.6 Mbar 6 000 K
Jupiter 11.0 318. 12 Mbar 80 Mbar 20 000 K

1: central pressures and temperatures from detailed modelling taken from the compilation
of de Pater and Lissauer

3.2.2 Phase diagrams

The equation of state relates the pressure, density and temperature for the different mate-
rials in a planet. For the structure equation, we need a relation for the density as function
of radius ρ(r) or as function of pressure ρ(P ). The density of a material depends on the
phase, which can be described in phase diagrams (Fig. 3.1).
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.

Figure 3.1: Generic P −T phase diagram with the different dividing lines between phases.

The triple points, dividing lines, and the different phases in the phase diagram (Figure
3.1) can be characterized as follows:

– The triple point in the low T - low P domain defines the areas for the solid, liquid,
and gas phases.

– The critical point defines the transition between the gas or liquid phase and the
super-critical fluid phase.

– Solid materials are relatively cold or under high pressure. The density of solids
varies between about ρ ≈ 1 and 10 g cm−3. Depending on the pressure the materials
can have different solid state structures (crystalline structures), with more compact
= higher density configurations under high pressure. The density changes typically
less than a factor of 2 between the different solid state structures.

– Liquid materials have a temperature above the triple point and below the critical
point. Often a liquid becomes a solid if the pressure is strongly enhanced and
it evaporates for very low pressures. The density of a liquid changes only little
(< 30 %) if pressure or temperatures are changed.

– Gas occurs for material under relatively low pressures, below the critical point or
below the triple point. If gas is further heated it dissociates and becomes an atomic
gas, which may become an ionized plasma for even higher temperatures. Gas
behaves like (ideal gas)

ρ(P ) =
P

RT
µ ,

where µ is the mean particle mass. Thus, a gas is compressible and the density
increases for a given temperature like ρ ∝ P until a critical density is reached at
which a cold gas condenses or a hot/warm gas becomes a super-critical fluid.
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– Super-critical fluids are at temperatures and pressures which are both above the
critical point. Under very high pressures a super-critical fluid goes into a solid state.
A super-critical fluid has properties of the liquid (can solve other materials) and the
gas phase. For example, a super-critical fluid fills the whole volume of a container
homogeneously and does not form a transition between a gas in the upper part and
a liquid in the lower part of the container.

Figure 3.2: Behavior of liquid/gas and a super-critical fluid in a container

In particular, super-critical fluids are compressible and their density increases if
the pressure is enhanced. The dependence ρ(P, T ) can not be described by a simple
relationship.

– Dissociation of molecules in the gas phase or the super-critical fluid phase occurs
in the temperature regime of 1000 K or a few 1000 K typically. The bindings between
the individual atoms is broken up and the gas contains only atoms.

– Ionization of atoms occurs at temperature above a few 1000 K and if the temper-
ature is further enhanced then atoms can be progressively ionized.

– Pressure ionization of solids or super-critical fluids occurs in the density regime
of the order Mbar (1011 Pa). These pressures are high enough to squeeze together
the nuclei in the material despite the Coulomb forces. The nuclear potentials start
to overlap and the electrons can move freely between the nuclei - the material is
pressure ionized. Many properties are similar to metals (e.g. electric conductivity).
Pressure-ionized materials are compressible with the approximative dependence

ρ(P ) ∝ P 1/2 .

Figure 3.3: Schematic difference for solid and pressure ionized materials.
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3.2.3 Phase diagrams for the solar system planets and moons

We discuss in this section strongly simplified (qualitative) phase diagrams for hydrogen,
water and iron in order to get the general picture about the EOS for solar system objects
(Slides 3.2 to 3.4). The diagrams include points for the central pressure and temperature
of objects, as well as lines and a few values which illustrate the run of parameters from
the center towards the surface of the highlighted objects given in red. All diagrams cover
the identical parameter space for an easy comparison. Thermodynamic parameters for
hydrogen, water and iron are given in Table 3.5.

Table 3.5: Thermodynamic quantities of important materials for planets; melting Tmelt

and boiling temperatures Tboil and density ρ at P = 1 bar and TCP and PCP for the critical
point.

material 1 bar properties critical point
Tmelt Tboil ρ TCP PCP

H2 14 K 21 K 0.09 mg cm−3 33 K 13 bar
H2O 273 K 373 K 1.0 g cm−3 647 K 220 bar
Fe 1810 K 3130 K 7.9 g cm−3 9250 K 8.8 kbar

Hydrogen phase diagram. Hydrogen is an important constituent for the giant planets.
Because it is a light element it will be located outside the planet core which is composed
of heavier materials.

In Jupiter and Saturn hydrogen is the dominant constituent. Pressure-ionized (metal-
lic) liquid hydrogen with a density of about 4 g cm−3 at a pressure of 10 Mbar is expected
outside the central rocky/iron core. The transition to a super-critical fluid (around 1
Mbar) occurs for Jupiter at about 0.8 RJ and in Saturn at about 0.5 RS . As super-critical
fluid the hydrogen has a density of the order 0.7 g cm−3. H2 gas is only present close to
the surface (Slide 3.2).

Neptune and Uranus are also called ice-giants because a substantial fraction of their
mass is made up by icy materials, mostly H2O, but also CH4 and NH3 ice. Hydrogen as
light super-critical fluid ρ = 0.7 g cm−3 occurs outside > 0.7 RN of the ice - rock core and
extends up to the hydrogen gas atmosphere.

H2O phase diagram. Water is an important constituent in the ice giants Neptune and
Uranus and in TNOs and the moons of the giant planets. We take Europa as an example
for a “solid” icy body.

In Neptune and Uranus a zone of liquid (metallic) pressure-ionized ice in the form of
H3O+, OH− is predicted from about 0.2 to 0.7 RN . The density is about 2.5 to 5 g cm−3.
Inside of the ice zone is a rocky/iron core and outside the hydrogen envelope discussed
above.

For Europa and other solid bodies in the outer solar system, water is the lightest
material and it forms therefore the outermost layer. The internal temperature of Europa
is probably high enough that there exists an ocean of liquid water below the surface crust
of water ice. For smaller bodies than Europa the temperature might be too low for the
presence of water in liquid form.
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Fe phase diagram. Iron is the most abundant heavy material in planets and therefore
it is a main constituent in the cores of the planets. The melting temperature of iron at low
pressure is around 1500 - 2000 K and it depends a lot on the presence of other elements,
like sulfur, nickel and others. At high pressure > 1 Mbar Tmelt is enhanced to values above
4000 K.

For Earth, the largest terrestrial body in the solar system, the iron core is in a pressure-
ionized solid (metallic) phase, surrounded by a layer of liquid iron. In smaller bodies
the central pressure is not high enough for pressure ionization and the temperature is
probably too low for liquid iron. Thus, one may assume that all other terrestrial planets
and differentiated asteroids have a solid iron core. The presence or absence of liquid iron
may also explain the presence or absence of strong magnetic fields for terrestrial planets.

The giant planets have pressure-ionized cores. It is not clear whether the iron and rocky
materials in their cores are differentiated, or whether the core is too stiff for sedimentation.

Rocky materials. Much of the Fe phase diagram applies also for rocky materials. The
melting temperatures for rocks depends in a very complex way on the rock composition.
However, roughly Tmelt of rocks are comparable to iron so that one can assume that rock
is solid in terrestrial bodies. Exceptions are the largest terrestrial planets Earth (and
perhaps Venus). Another exception is Jupiter’s moon Io, for which the interior is heated
up by tidal forces. When terrestrial planets were young their internal temperature was
higher and therefore they had sufficient magma and melts for volcanic activity (e.g. Mars,
Venus and the Moon). The rock in the center of giant planets is at such high pressures
that it is in the solid pressure-ionized phase.

3.2.4 Simple approximation for the equation of state

Because the observational data for M and R of extra-solar planets are not very accurate,
a simplified treatment of the equation of state (EOS) can be chosen for an assessment of
the internal structure. According to the study of Seager et al. (2007) the EOS for different
solid and liquid materials can be described with a modified “polytropic” equation:

ρ(P ) = ρ0 + cPn , (3.7)

where ρ0 is the low pressure density of the considered material, and c and n are material
dependent parameters. The ρ(P ) curves for some important materials are shown in Slide
3.5

Equation 3.7 and the curves in Slide 3.5 indicates that the planetary material is incom-
pressible for pressures significantly below the critical pressure P < Pcrit while for P > Pcrit

the material becomes compressible or the density behaves like a polytrope ρ(P ) ≈ cPn

with n ≈ 1/2. The critical pressure is defined by Pcrit = (ρ0/c)
1/n. The curves for all

materials are similar because the underlying physical cause for the density is the balance
between gravitational forces and the Coulomb forces of the electrons and nuclei.

– At low pressures P < Pcrit the density is essentially constant ρ(P ) = ρ0, because
iron, rock, water-ice, and carbon are solid or liquid in the planets (Slide 2.15 and
2.16) and the density of the material is defined by atomic Coulomb forces (solid state
forces).
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Table 3.6: The parameters ρ0, c and n for the EOS ρ(P ) = ρ0 + cPn of important
materials (Seager et al. 2007). Pcrit indicates at which pressure the material changes from
incompressible to compressible:

material ρ0 [kg m−3] c [kg m−3 Pa−n] n Pcrit

H2O 1460 3.11 · 10−3 0.513 114 GPa
C (graphite) 2250 3.11 · 10−3 0.514 251 GPa
SiC 3220 1.72 · 10−3 0.537 479 GPa
MgSiO3 (perovskite) 4100 1.61 · 10−3 0.541 693 GPa
(Mg,Fe)SiO3 4260 1.27 · 10−3 0.549 770 GPa
Fe(α) 8300 3.49 · 10−3 0.528 1192 GPa

– At higher pressure P < Pcrit the material becomes compressible because the gravi-
tational forces are so large that the atoms are squeezed together to distances which
are smaller than the typical size of atoms. This means that the material becomes
“pressure ionized”. The electrons “float” like in a metal.

– The critical density for pressure ionization depends on the material but lies in the
range 1 - 12 Mbar (100 - 1200 GPa).

– For very high pressures P ∼> 300 Mbar the electron gas becomes degenerate. In this
state the electron density is defined by the Pauli exclusion principle. This principle
states, that fermions of a given spin can only be stacked in a momentum-location
cell of ∆p∆V = h3. This state is called ”degenerate gas” and it becomes important
for objects more massive than ≈ MJ. We will discuss this equation of state in the
next section.

For hydrogen this simple description is not applicable because the hydrogen density is
not constant at pressures < 1 Mbar, because it is in then in the phase of a compressible
super-critical fluid.

3.2.5 Interior structure of solar system planets

The interior structure of the planets can now be summarized qualitatively.

Earth and the terrestrial planets. The reference model for Earth interior is plotted
on Slide 3.6. The diagram gives the PREM density structure, and rough indications about
the pressure and temperature within Earth. The other terrestrial planets have a similar
internal structure, with an iron core and a rocky mantle. The size of the core is different for
Venus, Mars, Mercury and the Moon. Important differences are that the smaller objects
Mars, Mercury and Moon are not or much less-pressure ionized and have therefore flatter
density profiles for the iron core or the mantle, because the material is not compressed. It
is also not clear whether there is liquid iron in Venus and Mercury.

Important properties for the terrestrial planets and the Moon just based on their mean
density parameter:

– The mean density of Earth and Venus is above 5 g cm−3 because their interior is
compressed due to the high pressure.
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– Mercury is too small for significant compression and its high density is due to a large
overabundance (e.g. with respect to Earth) of iron and a correspondingly large iron
core. This property of Mercury is explained by the strong irradiation by the sun at
this small separation and the partial evaporation of silicate grains during the planet
formation process.

– The Moon has a low mean density indicating that there is only a small iron core
present. The low mean density is one important fact pointing to the formation of
the Moon by mantle material from Earth after a large collision of Earth with a
Mars-sized body.

Jupiter and Saturn. Figure 3.4 gives the structure of Jupiter and Saturn. Both planets
have first an outer region of molecular hydrogen which translates at the pressure of about 1
Mbar into metallic hydrogen. There must be a core of high density material, presumably
a layer of O, C, and N rich “ices” and then a central rocky core. From the molecular
abundances measured at the surface it is impossible to estimate the abundance of heavy
elements (Si and Fe) and the size of the central high density core.

Figure 3.4: Interior structure for Jupiter (top) and Saturn (bottom).
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Neptune and Uranus For Saturn and Jupiter one can at least assume that H and He
dominates for radii larger than > 0.15 R. The situation is more ambiguous for Uranus and
Neptune because the molecular H, He, CH4 envelope extends only down to r ≈ 0.7 R. It
is assumed, but not sure, that there is an extended region of O-, N- and C-rich materials
(ices) and then presumably a rocky core within r < 0.2 R.

Figure 3.5: Interior structure for Neptune.
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3.3 Mass - radius relation for planets

In the previous sections we have discussed in detail the internal structure of solar system
planets and the equation of state for the different materials for high pressure. Here we
repeat a few basic principles in the context of the mass - radius relationship for substellar
objects.

3.3.1 Low mass planets

For a terrestrial low mass planet, the densities of the different radial layers is given by ρ0

from Table 3.6. The radius of the planet increases then with mass just like R ∝M1/3

R =
4π

3ρ̄
M1/3 . (3.8)

The mean density ρ̄ is given by the composition. For example, a small (< ME) terrestrial
planet with ρ̄ > 4 g cm−3 must contain a substantial fraction of iron and a planet with
ρ̄ < 2.5 g cm−3 a lot of ices.

This general relationship is also a good approximation for low mass < 0.1 MJ giant
planets made of H and He, because the H and He material are not yet strongly compressed
under these conditions.

The situation is a bit more complicated for Neptune like gaseous planets. like Neptune,
with a solid core of a few ME . The radius of such objects changes quite rapidely if the mass
of the hydrogen envelope is changed. Because the gravitation is not so high, a relatively
small amount of H in gaseous form increases strongly the radius by a factor of about 1.5,
because the H-gas adds an extended low density ρ < 1 g cm−3 “envelope” around the core,
which reduces significantly the mean density from a mean core value of ρ̄ ≈ 3− 5 g cm−3

to 1− 2 g cm−3.

3.3.2 Degenerate high mass planets and brown dwarfs

Under high pressure, like in the centers of high mass (> MJ) planets, the material is
pressure ionized and therefore compressible. This state is also called electron degenerate
matter. According to the Pauli-principle two spin-1/2 particle (Fermions) cannot exist
at the same location (quantum cell dVx) in the same quantum-mechanical state. Possible
states for electrons are two spin orientations and different momenta p = mev, where the
“cell size” in momentum space is dVp = h3 (h=Planck constant).

For a degenerate gas the density of electrons can be described by the number of electrons
in momentum space

ne = 2 · 4

3π

1

h3
p3

0 , (3.9)

where p0 is the Fermi-momentum and E0 = p2
0/2me the corresponding (kinetic) Fermi-

energy. For a cold, fully degenerate electron gas all low energy (or low momentum) states
are occupied up to the Fermi-energy or Fermi-momentum:

p0 =
(3h3

8π

)1/3
n1/3
e ≈ h

2
n1/3
e . (3.10)
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For an ideal gas the pressure P is related to the kinetic energy, and therefore also the
momentum, of the gas particles, according to:

P = nkT =
2

3
n〈E〉 =

2

3
n〈 p

2

2m
〉 .

This relation is also valid for a degenerate electron gas where the mean electron energy
is related to Fermi energy by 〈E〉 = 3/5 · E0. This yields then an equation of state for
a degenerate electron gas describing the relation for the electron gas pressure and the
electron density

Pe =
2

5
ne · E0 =

( 3

8π

)2/3 h

5me
n5/3
e . (3.11)

This is essentially equivalent to the description of the high pressure regime of Table 3.6
describing the compressibility of matter at P � 100 GPa (or � Mbar)

ne ∝ ρ ∝ P 3/5 .

What happens phenomenologically? An electron degenerate material parcel with a volume
V1 is squeezed under enhanced gravitational pressure to a smaller volume V2 < V1, so that
the Fermi-momentum and the associated pressure of the electron “gas” is enhanced in
order to reach a new pressure equilibrium. In this state the gas pressure does not depend
on temperature as long as the kinetic momentum of the electrons due to the temperature
is smaller than the Fermi momentum. This is the case for all “cold” objects.

Figure 3.6: Relation between volume and Fermi momentum of electron degenerate matter
under low and high pressure P1 and P2.

The equation of state for degenerate matter has a most important effect on the mass-radius
relationship of substellar objects. In a hydrostatic equilibrium the gravitational pressure
PG is equal to the electron pressure Pe:

PG ∝
GM2

R4
∝ Pe ∝ n5/3

e ∝
(M
R3

)5/3
=
M5/3

R5
.

This yields the mass-radius relation for degenerate matter

R ∝M−1/3 . (3.12)

The exact relationship requires the consideration of the density profile through the planet,
instead of a simple consideration of a mean density. However, the relation given above
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describes roughly the functional dependence. For example a white dwarf star is an electron
degenerate “cold” objects with Mwd ≈ 103 MJ and Rwd ≈ 10−1 RJ .

The most important message is, that cold substellar object in the regime M > 3 MJ

become smaller in radius if more mass is added. The maximum radius of cold substellar
object is therefore

Rmax ≈ RJ ,

and brown dwarfs are slightly smaller than Jupiter.

Slide 3.7 and 3.8 illustrate the mass-radius relationship. Slide 3.7 is based on an
analytic result for spheres with different (homogeneous) composition. This shows that the
radius of an object depends on its composition. The curve X=0.75 is the result for a model
with 75 % of H and 25 % of He. White dwarf stars are composed of C and O and the curve
for C reaches for 1 M� the expected radius of 0.01 R� which is the same radius like for a C
rich planet-mass object with 5 ·10−5 M�. The mean density of such an electron degenerate
white dwarfs is therefore very extreme with ρ̄ approx1000 kg cm−3. Slide 3.8 illustrate
the mass-radius relation calculated for stars and substellar gaseous objects. This diagram
shows a strong break in the relation at 0.08 M�, where the nuclear hydrogen burning of
stars sets in. For stars on the main sequence the kinetic momentum of the electron pe due
to the temperature is larger than the Fermi-momentum. These stars behaves like ideal
gas spheres and the mass-radius relationship is roughly

R

R�
≈ M

R�
. (3.13)

In addition the mass-radius relationship in Slide 3.8 is less peaked in the substellar regime
when compared to the analytic solution. Detailed calculations take more accurately into
account the different phases and the internal thermal energy which is still generated due
to the ongoing contraction of brown dwarfs and giant planets.
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3.4 Transiting planets

A transits of a planet in front of its parent star occurs if the line of sight is very close to
the orbital plane. The transit probability is thereby much enhanced for planets with small
separations. The unexpected presence of hot Jupiters made transit observation after the
detection of 51 Peg b an attractive and very successful planet search technique (Slide 3.9).
Transit data form now a cornerstone for extra-solar planet research.

Transits have the following basic characteristics (see Fig. 3.7 and Slide 3.10):

– Transits occur periodically,

– the stellar intensity is reduced by an amount which is proportional to the size of the
planet,

– the planet occults during the transit different regions of the star, what may introduce
during the transit photometric and spectroscopic features due to distinct surface
structures of the star,

– during the transit some light passes through the outermost atmosphere of the planet
what may introduce measurable absorption effects and allow an investigation of the
uppermost atmosphere of the planet.

Secondary eclipses occur for most transiting planets about half an orbital period before
or after the transit. If the emission of the planet is strong and the sensitivity of the
measurement high then one can measure the drop in intensity when the planet goes into
secondary eclipse.

Orbital phase curves may also be detected, because the hemisphere facing the star is
expected to be brighter than the planet’s night side. This requires that the measuring
sensitivity is at least accurate enough for secondary eclipse observations.

Figure 3.7: Light curve features for transiting planets.
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3.4.1 Approximations for basic transit parameters

We discuss here first approximate transit parameters for planets on a circular orbit and
for central transits. This simplified treatment illustrates the basic transit properties.
More detailed derivations and dependencies of the transit parameters are described in the
following sections.

The transit depth is the fractional reduction of the stellar intensity ∆I/I due to the
planet transit. Assuming a homogeneous stellar disk and treating the planet like a black
disk yields

∆I

I
≈ R2

P

R2
S

. (3.14)

The transit depth is equal to the ratio of the cross sections of the planet to the star. This
measurement yields the absolute radius RP of the planet, if RS of the star is known. If
also the mass of the planet is known, then one gets the mean density ρ̄ of the planet, which
is a very important parameter for the planet characterization.

For a Jupiter – Sun system the transit depth is about 1 %, and for an Earth – Sun
system about 1.0 · 10−4 (see Table 3.7).

The transit duration of a planet on a circular orbit across the center of the star is

∆t ≈ P

2πa
2RS . (3.15)

where RS is the stellar radius. This is an upper limit for circular orbits because non-central
transits are shorter. This formulation defines the transit duration from the mid-ingress to
the mid-egress phase.

We can express the transit duration as fraction of the orbital period:

∆t

P
≈ RS
πa

.

Table 3.7: Transit properties of solar system planets for an “outside” observer. P is the
orbital period, ∆t the absolute and ∆t/P the relative transit duration, ∆I/I the transit
depth, ptrans the transit probability, and i the orbit inclination

planet P [yr] ∆t [hr] ∆t/P ∆I/I ptrans i

Mercury 0.241 8.1 38 · 10−4 1.2 · 10−5 1.19 % 6.33
Venus 0.615 11.0 20 · 10−4 7.6 · 10−5 0.65 % 2.16
Earth 1.000 13.0 15 · 10−4 8.4 · 10−5 0.47 % 1.65
Mars 1.880 16.0 9.7 · 10−4 2.4 · 10−5 0.31 % 1.71
Jupiter 11.86 29.6 2.9 · 10−4 1.01 % 0.089 % 0.39
Saturn 29.5 40.1 1.5 · 10−4 0.75 % 0.049 % 0.87
Uranus 84.0 57.0 0.77 · 10−4 0.135 % 0.024 % 1.09
Neptune 164.8 71.3 0.49 · 10−4 0.127 % 0.015 % 0.72
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The transit probability describes the chance that a planet shows period transits. For
systems with circular orbits a transit will occur for

a| cos i| < RS .

This condition considers only full transits and grazing transits where at least half of the
planet is in front of the star. For the integration we need to consider that all inclinations
in the range i = 90◦ ± θ are considered and this needs to be normalized to a random
distribution of orbit orientations according to:

ptrans =

∫ 90+θ
90−θ sinϑdϑ∫ 180
0 sinϑdϑ

=
− cosϑ|90+θ

90−θ
− cosϑ|180

0

= cos(90◦ − θ) ,

or with the relations for cos i follows the approximate transit probability:

ptrans ≈
RS
a
. (3.16)

3.4.2 Detailed transit geometry

The basic transit geometry, which is equivalent to the classical eclipse description of binary
stars, is illustrated in Fig. 3.8. The description for the transit is also valid for the secondary
eclipse of the planet behind the star.

Figure 3.8: Transit times.

– Four transit times or eclipses times are defined: the start and end of the ingress
phase ti and tii and the start and end of the egress phase tiii and tiv which are also
called the 1st, 2nd, 3rd and 4th contact. In addition there is of course the mid-eclipse
time tecl.



3.4. TRANSITING PLANETS 67

– For the transit duration or eclipse duration one distinguishes between the total
(transit or eclipse) phase which is the time span where at least some parts of one
object is behind the other object while the full eclipse phase is the time span where
one object is located completely in front or behind the other object.

∆ttot = tiv − ti and ∆tfull = tiii − tii
– The impact parameter b is the minimum projected distance of the center of the

two objects at mid-eclipse.

– A partial transit or a partial eclipse occur for RS − RP < b < RS + RP without
full phase ∆tfull = 0.

The transit timing can be calculated from the radii of the star RS and the planet RP and
the orbital parameters. For circular orbits we can write for the transit times relative to
mid-eclipse tecl = 0:

tiv = −ti =
P

2πa

√
(RS +RP )2 − b2 for b ≤ RS +RP (3.17)

and

tiii = −tii =
P

2πa

√
(RS −RP )2 − b2 for b ≤ RS −RP . (3.18)

The total and full transit duration are twice these values, respectively. From the full
and and total transit duration one can derive the impact parameter (square the equation
above and solve for b2, if the ratio between the radii RP /RS is known, e.g. from the transit
depths:

b2 = R2
S

(1−RP /RS)2 − (∆tfull/∆ttot)
2(1 +RP /RS)2

1− (∆tfull/∆ttot)2
. (3.19)

For a central transit there is (∆tfull/∆ttot) = (RS − RP )/(RS + RP ) and b becomes zero
as it should be.

For small planet radius RP � RS one can simplify this further and it results for the
impact parameter

b2 ≈ R2
S

(RS −RP
RS

∆ttot

∆tfull

)
Summary: With the measurement of the different eclipse times and the radius ratio one can
determine the impact parameter b and derive an accurate estimate on the orbit inclination.

For the simplified treatment given above the following approximations are used, which are
for many cases very reasonable:

– The relative trajectory of the transiting or eclipsed object is treated as a straight
line what is a good approximation for a large separation d� RS .

– The relative transverse motion is considered to be constant during the entire transit,
what is reasonable for a large separation d� RS .

– For many cases it will be possible to use circular orbits as good approximation.
If eccentricity is non-negligible then one can correct the timing-formula with the
following correction factors:

fcorr ≈
1− ε2

1± ε sinω
, (3.20)

where ± depends on whether this factor is used for the the transit or eclipse times
or whether it is used for the determination of the impact parameter b.
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3.4.3 Transit and eclipse light curve

The combined flux of the star and the planet F (t) can be described for the different phases
as the sum from the star and the planet F (t) = FS(t) + FP (t). These fluxes can vary due
to the following reasons:

– FS(t) and FP (t) are the intrinsic flux of the star and the planet which can vary with
time,

– in addition parts of the star are occulted during the transit phase which can be
described by a transit attenuation function δt(t). This yields then the observed
stellar flux

F ′S(t) = FS(t)(1− δt(t)) .

– Similarly we can describe the observed flux from the planet which is the intrinsic
flux which may be attenuated δe(t) during secondary eclipse by the star

F ′P (t) = FP (t)(1− δe(t)) .

We are not interested in the intrinsic variability of the star and normalize the total flux
to the intrinsic stellar flux:

f(t) =
F ′S(t) + F ′P (t)

FS(t)
= 1− δt(t) +

FP (t)

FS(t)
(1− δe(t)) . (3.21)

The individual terms can be characterized as follows:

– the attenuation by the transiting planet δt(t) is in Eq. 3.21 a large term of the order
1 % for a giant planet transiting a solar-type star. In many cases only this “transit”
term must be considered. Outside a transit there is δt(t) = 0.

– the intrinsic flux of the planet normalized to the stellar flux FP (t)/FS(t) is usually
a small term < 0.1 % and hard to measure. In this ratio the time dependence of the
stellar brightness can be neglected FS(t) ≈ F̄S because the relative phase effects in
the planet flux are expected to be much larger. However, strong intrinsic variability
of the star on short timescales can introduce problems with the normalization and
introduces significant uncertainties in the leading “1-term” which can be larger than
FP (t)/F̄S .

– the attenuation of the planet flux during secondary eclipse is δe(t) = 0 out of sec-
ondary eclipse and δe(t) = 1 during the full eclipse phase. Only during ingress
and egress a time dependence is expected which can be approximated with a linear
interpolation or another simple fit.



3.4. TRANSITING PLANETS 69

3.4.4 Limb darkening

It is well known from the sun that the solar disk has no uniform surface brightness. The
sun is brighter in the center and the surface brightness drops towards the limb. This effect
is universal for stars. This implies for the attenuation during a planetary transit:

– δt > R2
P /R

2
S when the planet is in front of the center of the star,

– δt < R2
P /R

2
S when the planet is in front of the outer regions of the star.

Thus the transit light curve is not just a simple trapezium defined by the transit times ti
to tiv and a constant transit depth δt, but a rounded transit curve depending on the exact
transit trajectory and the surface brightness distribution of the star. This level of detail
must be taken into account for an accurate derivation of radius ratio RP /RS .
Different limb darkening laws are used for the description of stars. A frequently used
function has the following radial dependence:

I(r)

I0
= 1− a(1− µ(r))− b(1− µ(r))2 . (3.22)

The used term µ(r) = cos θ = 1 −
√

1− (r/Rs)2 in this quadratic fit equation describes
the emissivity of the atmosphere as function of the angle θ between surface normal and
direction of the emission. For the center of the disk r = 0, there is µ = cos θ = 1 and
I(r = 0) = I0. For the limb r = RS there is µ = 0 and I(RS)/Io = 1− a− b. The emitted
intensity I(µ) is a typical result of radiative transfer calculation for stellar atmospheres.
The fit formula given above is only one of many different fit models used in the literature.

Some general properties of stellar limb darkening are:

– the limb darkening law depends on the spectral type of the star,

– for a given star the limb darkening is a function of wavelengths, for solar type stars
it is stronger for short wavelengths,

– the transit light curves provide currently the best measurements for the limb dark-
ening of stars.

Slide 3.11 shows the wavelength dependence of the limb darkening as function of wave-
length measured for the transit of HD 209458 b with the spectroscopic mode of HST.

Small scale stellar surface structure. The transit depth δt(t) is a measure of the
intensity of the hidden region on the stellar photosphere. Small scale inhomogeneities on
the stellar structure can therefore produce bumps in the transit light curve if they are
hidden by the planet on its trajectory in front of the star.

– the transit intensity is higher (the attenuation less deep) if the planet is in front of
a dark spot,

– the transit intensity is lower (more attenuation) if the planet is in front of a bright
region.

Different examples for surface structure were found in well observed transit light curves,
like for the active star HD 189733 in Slide 3.12. For extra-solar planet research it is
important to be aware of this effect so that it can be taken into account in the transit
light curve analysis.
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3.5 Observational data for transiting planets

First transit observations. The first successful transit observations were made in
1999 for HD 209458 b with a small telescope and a simple camera system by a group
led by David Charbonneau (see slide 3.09). They had a systematic program of follow-up
photometry of all close-in giant planets which were detected by the RV-method. The
detected transit depth for this object is about δt ≈ 1.5 %. The fact, that planetary
transits can be detected with simple equipment demonstrated that this technique has a
huge potential for extra-solar planet research.

3.5.1 Requirements for transit photometry.

Transit photometry requires observations with a high photometric accuracy during at
least the duration of the transit which lasts for close-in planets typically a few hours. For
different science goals the following rough photometric sensitivities ∆I/I must be achieved
(3σ detection):

– ∆I/I ≈ 1 % during several hours for the detection of transits of giant planets around
solar type stars,

– ∆I/I ≈ 10−3 during several hours for the detection of the secondary eclipse of hot
Jupiters in the mid-IR wavelength range λ > 3µm; if this is precision can be obtained
for about a full period then one can also measure the phase curve of the planet,

– ∆I/I ≈ 10−4 during several hours for the detection of the transits of terrestrial
planets around solar type stars,

– ∆I/I ≈ 10−4 during several hours in narrow band or spectroscopic mode for the
measurement of the spectral dependence of the transit depths of giant planets.

– ∆I/I ≈ 10−6 for the measurement of the transit spectrum of an Earth like planet
around a solar-type star.

Ground based observations are limited by the atmospheric turbulence which produces
photometric fluctuation at a level of about ∆I/I = 0.2 − 0.5 %. This limit depends not
on telescope size and therefore one can measure the 1 %-transits of giant planets around
bright stars ≈ 10 mag with small 10 cm telescopes, and around faint stars ≈ 20 mag with
large 8 m telescopes.

Space observations have the huge advantage that there is no disturbing atmosphere.
The achievable measuring precision is then limited by instrumental effects and the photon
noise. Systematic effects can easily reach a level of more than 0.1 % if the space telescope
is not designed for high precision photometry or if there are unforeseen disturbing effects.
On the other side it has been demonstrated with HST and the KEPLER satellite that a
precision of ∆I/I = 10−4 can be achieved, and new instruments with a higher precision
are currently built or planned.

Photon noise is a severe limit for small space instruments, because it is so expensive to
build large telescope in space. The photon noise is given according to the Poisson statistics
by

σ =
√
N

where N is the number of collected photons for the transit measurement. This means that
a 3σ measuring precision of ∆I/I = 10−4 requires about N ≈ 109 photons per hour. This
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can be achieved for about a 13 mag star with the KEPLER space telescope collecting all
photons from 400 - 900 nm.

3.5.2 Results from the transit search programs from the ground.

There are two major types of transit searches form the ground, the RV follow-up and the
wide field transit search.

RV follow-up: The follow-up search for transits of planets detected by the RV-method
is very useful. The chance of making a successful detection is quite high because the
presence of a planet and its approximate mass and therefore size is known. Further the
transit search can be well scheduled because the epoch of a possible transit follows also
from the RV curve.

Well known transiting systems which were detected by follow-up observations are:

– HD 209458 b, the first transiting extra-solar planet discovered. It is a hot Jupiter
on a 3.5 day period around a bright (mV = 7.5 mag) G0 V star. This is one of the
brightest, and best studied transiting systems (Slides 3.9, 3.11).

– HD 189733 b, a hot Jupiter on a 2.2 day period around a nearby (19.5 pc), bright
(mV = 7.7 mag) and quite active K2 V star. This is one of the brightest and best
studied transiting systems.

– HD 80606 b is a MP = 4MJ hot Jupiter planet on an P = 111 days orbit with the
extreme eccentricity of ε = 0.93 around a G5 V star. The irradiation for this planet
changes by a factor of 800 from apostron to periastron.

Wide field search for close-in planets. With small wide field cameras stars of magni-
tude 8 to 12 mag can be monitored for periodic transits by giant planets. The HAT (Slide
3.13) and WASP search programs found up to now more than 100 transiting planets. Most
of the found objects are giant planets on short orbits, the majority with P = 2 to 5 days.
The found planets tend to have large radii, between 1.1 to 1.3 RJ . Such large radii are
not expected for intrinsically cold (=old) giant planets. The large radii are suspected to
be induced by the strong irradiation and possibly also by tidal effect. Large, giant planets
on short orbits are of course the most easy objects to detect and therefore this sample is
strongly biased in this direction.

The transit search surveys confirms strongly the predominance of orbital periods of
3− 5 days for giant planets. This must be a particularly stable configuration.

The search for transits around M-stars is a very interesting variant for ground-based planet
searches. Because the radii of M-stars are only 0.1 to 0.4 R� transits of smaller planets
produce a transit signal of more than 0.1 %. A well known example for a successful
transit detection of GJ 1214 b, a Neptune-sized planet with RP = 2.7RE on a 1.6 day
orbit. Because the star is a M4.5 V star with a mass of 0.15 M�, and only a radius of
0.21 R� also a Neptune sized planets is detectable from the ground. The mean density of
this planet is 1.9 g/cm3 again similar to the ice giants in the solar system. The equilibrium
temperature is about 450 K.
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3.5.3 Result from the follow-up observation with space telescopes

Space telescopes are the ideal follow-up instruments for transit and secondary eclipse ob-
servations. Because these instrument are in space a higher precision than with ground
based observations is achievable. Follow-up observations provide successful measurements
because the best observing epoch can be selected and the very valuable observing time
can be invested optimally. Most important follow-up space instruments for transit mea-
surements are HST and SPITZER. Some results from these observations will be discussed
in the section on hot jupiters.

HST follow-up. A few examples of HST transit observations are shown in Slides 3.9,
3.11, 3.12. Key characteristics of HST transit observations are:

– HST achieves the highest quality transit data with low resolution spectroscopy in
the visual. This mode provides transit light curves for the 300 - 900 nm range which
an accuracy up to 10−4.

– HST is with 2.5 m diameter a large space telescope which can also observe planetary
transits for fainter stars.

– HST is a versatile observatory with many different observing modes from the far-UV
to the near-IR.

– A disadvantage of HST is the high pressure factor for observing time. Therefore one
needs to have a very strong science case to obtain observing time.

– Because HST orbits Earth in about 2 hours the transit observations are always
interrupted. During each orbit the spacecraft goes from the night side to the day
side and after an integration of about 1 hour there is always a gap of one hour. The
day - night changes introduce also strong thermal effects which cause difficulties for
accurate photometric measurements.

SPITZER follow up . Two typical results from SPITZER secondary eclipse and phase
curve observations will be discussed in chapter on hot jupiters. Key characteristics of the
SPITZER spacecraft are:

– The SPITZER spacecraft is an 85 cm telescope which provides photometric mea-
surements in the mid-IR, at wavelength of about 3.6 µm, and 4.5 µm, 5.8 µm, and
8 µm and longer wavelength. After the consumption of the cryogen the two short
wave channels 3.6 µm, and 4.5 µm can still be used for transit studies.

– the expected planet signal is large in the SPITZER range and therefore relatively
easy to detect,

– SPITZER is located at the Lagrange point 4 what allows uninterrupted observations
during several hours.

– a big disadvantage of SPITZER is, that it was not designed for high precision pho-
tometry. Despite this it reaches a rather good sensitivity but requires many instru-
mental corrections which induce quite large uncertainties.

The most important results are the measurements of the thermal emission from close-in
planets via secondary eclipse observations and even phase curve measurements. This will
be discussed in the Section on hot jupiters.



3.5. OBSERVATIONAL DATA FOR TRANSITING PLANETS 73

3.5.4 The KEPLER satellite mission

The KEPLER satellite produced with a systematic transit search a scientific revolution for
the study of statistical properties of extra-solar planets. It found more than 2000 planet
candidates most of which will be confirmed in the coming years. Thanks to this mission
we have now a good understanding on the statistics of planets with periods of less than
about 1 year.
The key characteristics of the KEPLER mission are:

– KEPLER is a modified Schmidt telescope with a entrance corrector lens of 0.95 m
aperture and a 1.4 m diameter f/1 primary mirror,

– the instrument has a large field of view of 10.5◦ × 10.5◦ or 115 square degrees,

– the satellite is located on an Earth trailing orbit and can therefore point continuously
at the same sky region in the constellations Cygnus and Lyra (see Slide 3.15),

– the detector system monitors the brightness of about 150’000 main sequence stars
in the brightness range 11 – 15 mag,

– the system is sensitive enough to detect a single transit of an Earth-sized planet
(∆I/I ≈ 10−4) in front of a 12 mag G2 V star.

– KEPLER is working now without major interruptions since May 2009 or more than
1400 days.

Confirmation of planet candidates. The main problem of the KEPLER mission is
the verification of transit candidates. There are many variable stars in the field which
produce photometric signals which look like transits. Several test must be applied to
verify the presence of a real planet transit:

– the transit signal must be periodic,

– the light curve should look like a transit,

– the photo-center should remain stable between transit and out-of transit phases, to
exclude the presence of blended background or foreground target, e.g. an eclipsing
binary, which may introduce a transit like disturbance (so called false positive),

– a mass determination using the RV-method or transit timing variation measurements
can confirm the presence of a planetary mass object.

Basic detection statistics. The following numbers were derived based on 16 months
of Kepler measurements (Batalha et al. 2013, ApJS 204, 24):

– about 190’000 stellar light-curves were measured, about 130’000 during the entire
period,

– about 5000 stars show periodic, transit like light curves,

– about 2300 viable planet transit candidates were identified,

– about 400 systems show transits from multiple planets, giving about 900 detected
planet candidates in multiple systems,

– about 200 planets are firmly confirmed with mass determinations and many more
will follow in the coming years,

– the richest system found so far is Kepler-11 with 6 transiting planets (Slides 3.17
and 3.18).



74 CHAPTER 3. TRANSITS OF PLANETS: MEAN DENSITIES

3.5.5 Main results from the KEPLER mission

The Kepler mission is not yet completed and only preliminary results are available. How-
ever, they give already a very good impression about statistical properties of extra-solar
planets with RP > 2 RE and P < 50 days (see Howard et al. 2012, ApJS 201, 15).

Frequency of extra-solar planets. The frequency of extra-solar planet can be esti-
mated taking into account the transit probability ptrans which is a function of stellar radius
and orbital separation. A study selecting planets with P < 50 days and RP > 2 RE (the
sample of easy to detect short period, “large” planets) obtained the following planet to
star ratios NP /NS (see Slide 3.19 and 3.20):

– there are about NP /NS = 0.18 planets per star with Rp > 2RE and P < 50 days.

– and about NP /NS = 0.01 giant planet per star with P < 50 days,

– planets with small radii are much more frequent indicating that Earth-sized planets
RP ≈ 1 RE and a period P < 50 days could be present around every third or second
star or even more frequently.

Note, that our solar system with its 8 planets is a system which does not qualify to be
counted in this sample (P < 50 days). The RV-results from the HARPS instrument are
in agreement with these statistics from KEPLER.

Period distribution. The period distribution of planets follows from the transit detec-
tion rates, taking the strong period dependence of the transit probability into account.
For long periods the number of detections gets small and the correction factors large.
Therefore, the KEPLER transit survey provides good results for planets on orbits with
short periods but not for planet with orbits > 1 year. The main findings are (see Slide
3.20):

– planets with very short periods P < 2 days are very rare, less than 0.1 % of all stars
have such a planet,

– hot Jupiters (RP > 8 RE) with P < 10 days occur around 0.5 % of all stars, and the
same number applies also for the period range P = 10− 50 days.

– There is, like in the RV-data, a pile up of Jupiters around P = 3 − 5 days and a
clear minimum for P = 5− 10 days.

– planets with radii intermediate between Neptune and Jupiter RP = 4 − 8 RE have
essentially the same frequency and period dependence like the giant planets, but
there lacks the clear period minimum at P = 5− 10 days in the distribution.

– small planets RP = 2−4 RE have a similar frequency for very short periods P = 2−4
days like giant planets, but they are 5 to 10 times more frequent than giant planets
for P > 10 days.

Frequency of planets for different stellar types. The KEPLER sample is large
enough to investigate the planet occurrence as function of stellar type. In Slide 3.21 the
results are plotted for planets with RP > 2 RE and P < 50 days. The main points are:

– for small planets, RP = 2 − 4 RE , there is a very strong dependence of the planet
occurrence with stellar type with a planet to star ratio NP /NS ≈ 0.25 for K and
early M dwarfs (1 Neptune-sized planet with P < 50 days per 4 stars)
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– for G-stars (the majority of the objects in the KEPLER sample) the derived planet
to star ratios for small planets RP = 2 − 4 RE is about NP /NS ≈ 0.15, and for F
stars about NP /NS ≈ 0.10.

– larger planets RP > 4 RE show no preference for stellar types, they seem to occur
with equal ratios NP /NS ≈ 0.02 around F, K, G, and M dwarfs.

Multiple planets. Thanks to the many multi-planet detections by KEPLER one can
investigate the properties of multiple systems. First of all, systems with multiple transiting
planets are frequent among the 1405 stars with transits (Fabricki et al. 2013, ApJ 768,
14):

– for 1044 stars (74 %) only one transiting planet was detected,

– for 242 stars (17 %) transits of two planets were detected,

– 85 stars (6 %) show transits of three planets,

– 25 stars (1.8 %) show four planets with transits,

– 8 stars (0.6 %) show five planets,

– 1 star shows six planets (Kepler-11).

These are of course only lower limits since the analysis of more data and more studies will
reveal more transiting planets. Form these statistics one can infer:

– systems with multiple transiting systems are frequent, indicating first that multiple
planetary systems are frequent and second that the orbits are often close to coplanar,

– for close-in Jupiters there are essentially no additional second planet with transits
found indicating that there is rarely a second co-planar planet in these systems (see
Slide 3.22),

– in systems with multiple transiting planets the innermost planet tends to be a small
planet (Slide 3.22),

– period ratios between planets are larger than Pout/Pin > 1.25 defining an observa-
tional limit for the “planet packing” density (Slide 3.23).

– planets are typically not in orbital resonance, but they prefer period ratios which are
just a bit larger than 3:2 or 2:1 and avoid ratios just below this value (Slide 3.23).
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3.6 The empirical mass-radius relation for planets

Transiting planets with radius determinations and mass determination can be used for
empirical mass radius MP −RP and radius-density RP − ρ̄ diagrams. Such diagrams are
shown in Slide 3.24. Ground-based data provide mainly a sample of giant planets with
short periods while KEPLER provides data for smaller planets.

For the giant planets the masses are determined with the RV method. Masses for some
KEPLER planets are derived based on transit timing variations (see Section 3.6. Errors in
the mass and radius determinations are small for the giant planets while the errors for the
masses for low mass planets are quite large. Additional, but smaller error sources are the
uncertainties in the mass and radius estimates for the host stars. The sample was devided
into lower mass planets MP < 150 ME = 0.5 MJ and higher mass planets MP > 0.5 MJ .
There is also a systematic difference between planets with higher and lower incident flux,
where the border line is just the median irradiation value. This median value corresponds
to an irradiation per unit area which is 800 times stronger than for Earth.

The following properties for the mass MP , radius RP and mean density ρ̄ can be derived
from the diagrams in Slide 3.24:

– giant planets with masses > 100 ME have without exception radii in the range RP =
10− 20 RE = 1− 2 RJ ,

– the strongly irradiated giant planet have clearly a larger radius,

– lower mass planets MP < 150 ME show a strong radius-mass dependence which can
be described roughly by the relation

RP
RE
≈
(MP

ME

)0.5
,

– the scatter around this curve is large since there are 10 ME planets with small radii
RP ≈ 1.5 RE and such with large radii RP ≈ 6 RE ,

– strongly irradiated Neptune-mass planets tend to be small,

– the density for giant planets increases from about ρ̄ = 0.3 g/cm3 at MP ≈ 0.3 MJ to
ρ̄ = 10 g/cm3 for MP ≈ 10 MJ ,

– for low mass planets there is a huge spread in density which can be as low as ρ̄ ≈
0.4 g/cm3 or as high as ρ̄ = 10 g/cm3 for planets with MP = 10 ME

– clearly, the strongly irradiated low mass planet are the ones with very high densities.

Interpretation. The available data can be interpreted as follows. Giant planets become
not larger with higher mass because their matter is simply more compressed if the pressure
increases. The enhanced radii due to strong irradiation is an important process for close-in
planets. Lower mass planets show a strong variety of densities. This might point to the
fact that irradiation and evaporation has a strong impact on these planets. Low mass
planets with mean densities of ρ̄ ≈ 10 g/cm−3 could be large rocky / iron cores which
have lost their lower density H envelope. Of course it would be interesting to compare the
currently available data with planets at larger distances, which are only slightly affected
by irradiation. This may be possible in the future.



Chapter 4

Radiation from planets

We consider first basic, mostly photometric radiation parameters for solar system planets
which can be easily compared with existing or future observations of extra-solar planets.
In the next section we consider in more detail the physics of planetary atmospheres which
is important for the interpretation of the thermal or reflected spectral radiation from
planets.

4.1 Equilibrium temperature

The equilibrium temperature Teq of a planet is a theoretical parameter which assumes that
the irradiated flux Fin from the star is equal to the thermal back-body emission luminosity
of the planet Lout. The following assumptions are made for the derivation of Teq:

– the irradiated radiation is either reflected or absorbed,

– the absorbed radiation energy is re-emitted as thermal radiation,

– there is no internal energy source,

– the planet is isothermal (same temperature on the day and night side!).

The irradiated flux is:

Fin =
L�

4π d2
P

πR2
P (1−AB) , (4.1)

where L� is the luminosity of the sun, dP the separation and RP the radius of the planet,
and AB is the Bond albedo. AB is the fraction of the total irradiated energy which is
reflected and which does not contribute to the heating of the planet. A Bond albedo
AB = 1 means that all light is reflected, while AB = 0 indicates a perfectly absorbing
(black) planet. Both cases are not realistic. Expected values for the Bond albedo are in
the range AB = 0.05 to 0.95.

The luminosity of the planet, which is assumed to radiate like a black body, is

Lout = LP = 4π R2
p σT

4
eq , (4.2)

where σ is the Stefan-Boltzmann constant and Teq the equilibrium temperature of the
planet.

The equilibrium temperature Teq follows from Fin = Lout:

Teq =

(
L�(1−AB)

16π σ

)1/4 1√
dP

(4.3)
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This indicates that Teq decreases with distance from the sun for solar system objects or
from the star for extra-solar planets. An important feature of this equations is, that it
does not depend on the radius of the irradiated body which can be as small as a dust
particle (mm-sized) or as large as a giant planet.

Temperatures for solar system planets. The equilibrium temperatures Teq for the
solar system planets is given in Table 4.1 using the indicated Bond albedos AB and the
planet separation dP = a from Table 2.1. The Table compares Teq also with the measured
ground temperature Tground for terrestrial planets and the effective temperatures of the
emitted thermal radiation Teff . Teff is for Jupiter, Saturn and Neptune higher than the
equilibrium temperature, because these planets have a substantial intrinsic energy source.

Mercury is a special case because this planet has no atmosphere and only a slow rota-
tion. For this reason there are very large temperature differences between the irradiated
(725 K) and the non-irradiated (100 K) hemisphere. For Mercury the assumption of an
isothermal planet is not appropriate. However, averaged over all direction the effective
temperature of the emitted thermal radiation agrees quite well with the equilibrium tem-
perature.

Table 4.1: Radiation parameters for solar system planets: AB is the Bond albedo, Teq,
Tground, Teff the equilibrium, ground and effective temperature, and LP /Fin the flux ratio
between thermal emission and irradiation, Lp/L� the luminosity contrast, and Fp/F�(IR)
the flux contrast at long wavelengths λ� λmax.

Planet AB Teq Tground Teff Lth/Fin Lp/L� λmax Fp/F�
10−10 10−6

Mercury 0.12 448 K 725/1001K 448 K 1 4.4 6.5µm 0.95
Venus 0.75 328 K 730 K 328 K 1 7.7 8.8µm 4.3
Earth 0.31 279 K 290 K 279 K 1 4.5 10.4µm 4.0
Mars 0.25 227 K 225 K 227 K 1 0.56 12.8µm 0.93
Jupiter 0.34 110 K – 124 K 1.6 21. 23.4µm 220.
Saturn 0.34 81 K – 95 K 1.9 5.0 30.5µm 110.
Uranus 0.30 59 K – 59 K 1 0.14 49.2µm 13.
Neptune 0.29 47 K – 59 K 2.5 0.14 49.2µm 13.

1: 725 K is for the irradiated hemisphere and 100 K for the “night” hemisphere. For the
sun the adopted temperature is Teff = 5800 K.
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Greenhouse effect for terrestrial planets. For the planets Earth and Venus the
ground temperature Tground is a significantly higher than Teq due to the greenhouse effect.

Figure 4.1: Energy flow diagram for the greenhouse effect on Earth.

In the greenhouse effect (e.g. for Earth) the visual light from the sun penetrates through
the atmosphere down to the surface and heats efficiently the ground. However, the thermal
IR-radiation from the ground can only escape in certain spectral windows without strong
molecular absorptions (H2O, CO2), while the rest is absorbed in the atmosphere (see Slide
4.1). Energy transport from the warm/hot ground to higher cold layers occurs therefore
through convection and radiation until the thermal radiation can escape to space. Teq

represents the temperature of the atmospheric layers from which the thermal radiation
can escape. Therefore, the ground temperature is higher than Teq. The effect is stronger
on Venus because of its much thicker atmosphere (90 bar) when compared to Earth (1
bar).
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4.2 Thermal radiation from planets

Intrinsic energy for the giant planets. Table 4.1 gives the ratio between flux irradi-
ation Fin and the total thermal emission LP which can be deduced from the equilibrium
and effective temperatures according to

LP
Fin

=
(Teff

Teq

)4
.

A ratio > 1 for Jupiter, Saturn, and Neptune indicates that these planets emit significantly
more energy than they receive from the sun. This can be explained by the ongoing con-
traction, and differentiation, of these three planets. For Uranus, it is expected that there is
also a small intrinsic flux but only at a level of about 5− 10 % of the irradiated flux. This
effect is hard to measure due to uncertainties in the effective temperature determination.
The presence of the internal energy source indicates that the central temperature of the
giant planets is of the order ≈ 10′000 K. Intrinsic energy sources can be neglected for the
terrestrial planets in the solar system.

Black body radiation. The spectral intensity of the thermal radiation of an object at
temperature T can be described by the Planck or the black body intensity spectrum:

B(T, λ) =
2hc2

λ5

1

ehc/λkT − 1
, (4.4)

where h, k and c are Planck constant, Boltzmann constant and speed of light. The Planck
intensity is given in unit of e.g. [J m−2 sr−1 s−1 µm−1] or [erg cm−2 sr−1 s−1 Å−1]).
Black body radiation is isotropic so that the black body flux through a unit surface area
is πB(T, λ). It is assumed that the properties of the black body radiation are known and
we remind here only some important facts:

– the black body spectrum can also be expressed as function of frequency

B(T, ν) =
2hν3

c2

1

ehν/kT − 1
,

– conversion between B(T, ν) and B(T, λ) must use the factor dν = −c/λ2dλ,

– the peak of the black body spectrum Bmax(T, λ) is according to the Wien law at the
wavelength:

λmax =
2.9mm

T [K]
, (4.5)

which is at 10 µm for a planet with T = 290 K (≈ Earth),

– for low frequency or long wavelengths the Planck radiation can be approximated by
the Rayleigh-Jeans law:

B(T, ν) =
2ν2

c2
kT or B(T, λ) =

2c

λ4
kT , (4.6)

– the total luminosity of the spherical black body (planet) with radius R and effective
temperature Teff is

LP = 4πR2
P σT

4
eff , (4.7)

where σ is the Stefan-Boltzmann constant (identical to Equation 4.2 except that Teff

is used instead of Teq which does not account for intrinsic energy sources).
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Thermal luminosity and flux contrast between planet and sun. The thermal
luminosity LP of an irradiated planet without intrinsic energy source is given by Equations
4.1 or 4.2. This can be expressed as thermal luminosity contrast Cth between the planet
and the sun

LP
L�

=
R2
P

R2
�

T 4
eq

T 4
�

=
R2
P

d2
P

1

4
(1−AB) . (4.8)

For solar system planets this ratio is very small, of the order 10−9 to 10−11 (see Table 4.1).
Equation 4.8 for the luminosity contrast is also valid for extra-solar systems. For hot

Jupiters the ratio LP /L� is much larger than for solar system planets.

The flux contrast as function of wavelength is important for observational studies. For
long wavelengths, in the Rayleigh-Jeans part of the Planck function of the planet, one can
use equation 4.6 which yields:

FP (λ� λmax)

F�(λ)
=
R2
P

R2
�

Teq

T�
. (4.9)

The factor for the temperature ratio between planet and sun (or star) Teq/T� is of the
order ≈ 10 − 100. Thus the flux contrast at long wavelengths λ � λmax is several or-
ders of magnitudes (103 − 106) larger than the total luminosity contrast (see Table 4.1).
On the other hand, the planet to star flux contrast at short wavelengths λ < λmax de-
creases rapidly to very small values because the thermal radiation of the planet drops-off
exponentially. At short wavelengths the scattered light will therefore dominate.
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4.3 Reflection from planets

Reflection by a Lambert surface. A Lambert surface is used as reference in many
technical and scientific studies on reflectivities. A Lambert surface reflects all incident
light and the surface brightness is the same for all viewing angles. However, for viewing
directions with an angle θ with respect to the surface normal the apparent reflecting area
and therefore also the reflected flux is reduced ∝ cos θ. Thus the reflected intensity ILam

of a flat Lambert surface per unit solid angle is

ILam(θ) = Fi
cos θ

π
for 0◦ ≤ θ < 90◦ (4.10)

where Fi is the incident flux onto the considered surface. Thereby, the reflection from a
Lambert surface does not depend on the direction of the irradiation. A sheet of white
paper, a with screen or a white wall are close to a Lambert surface.

Figure 4.2: Reflection from a Lambert surface.

The factor 1/π in Equation 4.10 is the normalization factor because energy conservation
requires that the reflected intensity ILam integrated over all direction is equal to Fi∫ 2π

0

∫ π/2

−π/2
ILam(θ) sin θ dθ dφ =

∫ 2π

0

∫ π/2

0
Fi

cos θ

π
sin θdθdφ = Fi .

An observer at a distance D (much larger than the linear dimension of the surface area)
measures a reflected flux FLam per unit area of

FLam(θ) =
ILam(θ)

D2
=
Fi cos θ

πD2

Normal retro-reflection of a Lambert disk irradiated by the sun. Based on the
reflection law for a Lambert surface we can derive the normal retro-reflection (= normal
irradiation and normal reflection) of solar light by a round Lambert disk with radius Rdisk

at the distance ddisk from the sun:

Fdisk(λ, θ = 0) =
Fi(λ)

πD2
=

L�(λ)

4πd2
disk

πR2
disk

1

πD2
,

where Fi is replaced by the explicit formula for the sunlight intercepted by the Lambert
disk.
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Geometric albedo for solar system planets. The geometric albedo Ag(λ) is the
spectral reflectivity of a planet at zero phase angle α = 0 (full phase) relative to the
reflectivity of a Lambert disk with the same cross section as the planet

Ag(λ) =
FP (λ)

Fdisk(λ)
. (4.11)

Thus, the geometric albedo of a planet can be determined by measuring the magnitude
of that planet at opposition (normal retro-reflection), which is then compared to the
calculated reflection of a Lambert disk with the same cross section.
It is convenient to express the theoretically reflected flux from a Lambert disk relative
to the flux of the sun measured from Earth F�(λ) = L�(λ)/4πd2

E (where dE = 1 AU),
because this ratio is independent of wavelength:

R =
Fdisk

F�
=
d2

E

D2

R2
disk

d2
disk

. (4.12)

Opposition α = 0◦ occurs for the outer planets almost every year. Because the phase
angles for the giant planets is never really large, α ∼< 12◦ for Jupiter, ∼< 5◦, and less for
Uranus and Neptune, one can correct for the small deviations for an “ideal” geometric
albedo measurement.

Example Jupiter: As example we calculate with Equation 4.12 the case for Jupiter for
which the distance to Earth at opposition is D = 5.2− 1 AU, Rdisk = RJ = 69910 km and
ddisk = dJ = 5.2 AU with 1 AU = 1.5108 km. The ratio between the flux of a Lambert
disk with a cross section equivalent to Jupiter and the solar flux is

R =
Fdisk

F�
= 4.55 · 10−10 or mdisk −m� = −2.5 logR = 23.36 ,

where the result is also given as magnitude difference. The apparent V-band magnitude for
the sun is m�(V) = −26.74 mag and for Jupiter at opposition about mJ(V) = −2.70 mag.
This yields an opposition contrast of mJ −m� = 24.04 mag or about ∆m = 0.7 mag more
than expected for a Lambertian disk. The geometric albedo of Jupiter is this magnitude
difference ∆m expressed as ratio Ag = 10−0.4·∆m = 0.52 in good agreement with available
literature values.

Figure 4.3: Typical constellation for the geometric albedo measurement of Jupiter or
another outer planet.
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Table 4.2: Reflection properties of solar system planets: geometric albedos for the V-band
and the IR, phase integral q and calculated spherical albedos. The last columns give the
factor R2

p/d
2
p and the flux contrast for the scattered light at quadrature phase assuming

f(90◦) = 0.3.

planet Ag(V ) Ag(IR) q As(V ) As(IR) AB R2
p/d

2
p FP /F�

10−10 10−10

Mercury 0.142 0.48 0.07 0.12 18. 0.77
Venus 0.67 0.75 31. 6.2
Earth 0.367 0.31 18. 2.0
Mars 0.170 0.25 2.2 0.11
Jupiter 0.52 0.27 1.25 0.65 0.34 0.34 77. 12.
Saturn 0.47 0.24 1.40 0.66 0.34 0.34 16. 2.3
Uranus 0.51 0.21 1.40 0.71 0.29 0.30 0.78 0.12
Neptune 0.41 0.25 1.25 0.51 0.31 0.29 0.29 0.036

Geometric albedo of a Lambert sphere. It is important to note that a Lambert
sphere has a geometric albedo of Ag = 2/3. The surface brightness of a Lambert disk of
normalized radius R = 1 is constant over the whole disk and one can write for the normal
retro-reflection (θ = 0):

Idisk(r) =
Fi
π

and

∫ 1

0
Idisk(r) 2πr dr = 2Fi

∫ 1

0
rdr = Fi

A sphere (not a disk) at zero phase angle has a surface brightness distribution with a limb
darkening which behaves for the normalized radius 0 ≤ r ≤ 1 like

Isph(r) = Fi
cos θ′(r)

π
= Fi

√
1− r2

π
.

Figure 4.4: Schematic difference of the geometric albedo of a Lambert disk and a Lambert
sphere.
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The angle θ′ is the angle of incidence with respect to the surface normal which depends
on the radial distance r = sin θ′ measured from the center of the illuminated hemisphere
(apparent disk). The sub-solar point reflects like a disk (surface brightness Fi/π) but the
irradiation of the more an more inclined surface towards the limb results in a reduced
back-scattering because the strongest scattering occurs along the surface normal.

Integration for a fully illuminated Lambert sphere yields:∫ 1

0
Isph(r) 2πr dr = 2Fi

∫ 1

0
r
√

1− r2 dr = 2Fi
(
−(1− r2)3/2

3

)∣∣∣1
0

=
2

3
Fi .

A Lambert sphere reflects only 2/3 of the light for phase angle α = 0 when compared to
a Lambert disk because a substantial fraction of light is scattered into direction α > π/2
what does not occur for an illuminated disk. Lambert disk and Lambert sphere scatter
both all light and have a Bond albedo (or spherical albedo) of AB = 1 but the angular
distribution of the scattered light is different.

It is not surprising that the solar system planets have geometric albedos Ag ∼< 0.7
when considering the case of the perfectly reflecting Lambert sphere. Averaged over all
wavelengths the Ag should be smaller (about 2/3) than the Bond albedo AB. This is
roughly the case for Venus and Mars (see Table 4.2).

For Earth and the giant planets the situation is different. The geometric albedo in the
visual is higher than the Bond albedo Ag(V) > AB. This indicates that the geometric
albedo must be low at other wavelengths, what is the case for the IR wavelength regime
because of molecular absorption by H2O for Earth and CH4 for the giant planets (see
Slides 4.1 and 4.3).

Spherical albedo and Bond albedo. The spherical albedo As(λ) gives the reflection in
all direction and not only the normal retro-reflection as measured for the geometric albedo
Ag(λ). The spherical albedo is required for an accurate derivation of the Bond albedo AB.
AB, which is used for energy budget calculations, is the flux weighted wavelength average
of the spherical albedo:

AB =

∫∞
0 Fi(λ)As(λ) dλ∫∞

0 Fi(λ)dλ
. (4.13)

With a scattering model of a planet it is easy to calculate the geometric albedo and
spherical albedo. Observationally, one needs to know the scattering in all direction, what
is a very difficult to achieve. For example, the reflection f(α) of Earth for a phase angle
α = 90◦ will be different if mainly the white polar regions are seen from a polar direction
when compared to the dark oceans as seen from equatorial directions.

One simple way to address the problem of the reflection into different directions is the
phase integral q defined by

q = 2

∫ π

0

Fref(α)

Fref(α = 0)
sinαdα ,

where Fref(α) is a rotationally symmetric phase angle dependence of the reflected radiation
normalized to the geometric albedo Fref(α = 0) = Ag. With this definition the phase
integral, geometric albedo, and spherical albedo are related by

As = Ag q . (4.14)
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It should be noted that this approach is only a first order approximation which is formally
only correct for rotationally symmetric reflection from planets.

The phase integral q for special cases is:

– q = 1 for a Lambert disk,

– q = 3/2 for a Lambert sphere,

– q = 4 for (a theoretical) isotropically scattering body.

Some values of the phase integral for solar system planets are given in Table 4.2.

Reflectivity phase curves. The phase angle dependence of the reflected radiation from
a planet is important for the analysis of observations. In general, planets are not observed
at phase angle α = 0◦. For example, the inner planets, Mercury and Venus, are behind
the sun for α = 0◦, and extra-solar planets are behind “their star”. With direct imaging
of extra-solar planets only data in the range 30◦ < α < 150◦ can probably be obtained in
the near future. For this reason one needs to study the reflectivity phase curves Fref(α)
or the phase dependence of the reflection normalized to the geometric albedo:

f(α) =
Fref(α)

Fref(α = 0)
. (4.15)

Phase curve for a Lambert sphere. The phase curve for a Lambert sphere can
be derived analytically by integrating the cos θ reflection law of the visible part of the
illuminated sphere as function of phase angle α. The solution is:

f(α) =
1

π
(sinα+ (π − α) cosα) . (4.16)

The phase curve for a Lambert sphere is plotted in Slide 4.4.

Flux contrast for reflecting extra-solar planets. Equation 4.12 is also valid for a
very distant observer outside of the solar system or for the observations of extra-solar
planets from Earth. In this case the distance of the observer to the central star dstar

(which was dE for an Earth-based observer looking at a solar system planet) and the
distance from the planet to the observer D are equal and very large dstar = D � 1 AU.
Thus the contrast of a reflecting planet Cref with respect to its illuminating star is

Cref =
FP

Fstar
= Ag(λ)f(α)

R2
P

d2
P

, (4.17)

where Ag(λ) is the geometric albedo and f(α) a normalized phase function as described
by Equation 4.15 which takes into account that the reflected light depends on the angle
star - planet - observer. Table 4.2 gives the factors R2

P /d
2
P for the solar system planets

and also estimates for the contrast of the reflected light for a phase angle α = 90◦.



4.4. ATMOSPHERES OF SOLAR SYSTEM PLANETS 87

4.4 Atmospheres of solar system planets

For spectroscopic studies of planets one needs to understand the net emission of the
radiation from the surface or the atmosphere. Radiative transfer in planetary atmosphere
is therefore a very important topic for the analysis of solar system objects but also for
direct observations of extra-solar planets. In this section we discuss some basic properties
of planetary atmospheres.

4.4.1 Hydrostatic structure of atmospheres

The planet structure equation from Section 3.2 apply also for planetary atmospheres. One
can often make the following simplifications:

– the atmosphere can be calculated in a plane-parallel geometry considering only a
vertical or height dependence z,

– the vertical dependence of the gravitational acceleration can often be neglected for
the pressure range 10 bar – 0.01 bar and one can just use g(z) = g(z = 0) = g(R) =
g = GMP /R

2
P .

– the equation of state can be described by the ideal gas law

P (ρ) =
ρkT

µ
or ρ(P ) =

µP

kT
,

where µ is the mean particle mass (in [kg] or [g]),

– a mean particle mass which is constant with height µ(z) = µ can often be used in a
first approximation,

– a temperature which is constant with height T (z) = T can often be used as first
approximation.

Pressure structure. The differential equation for the pressure gradient is:

dP (z)

dz
= −g(z)ρ(z) = −g(z)

µ(z)P (z)

kT (z)

which yields the general solution:

P (z) = P0e
−
∫ z
0

1/HP (z)dz with HP (z) =
kT (z)

g(z)µ(z)
.

For a homogeneous, isothermal atmosphere and g(z) = g, µ(z) = µ a simple exponential
pressure law is obtained

P (z) = P0 e
−z/HP with HP =

kT

gµ
, (4.18)

where HP is the pressure scale height. This is the vertical length scale over which the
pressure decreases by a factor e−1 = 0.368.
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Density structure. Very similar equations apply for the density structure and one
obtains for an homogeneous, isothermal atmosphere a density structure equivalent to the
pressure:

ρ(z) = ρ0 e
−z/Hρ with Hρ =

kT

gµ
. (4.19)

where Hρ is the density scale height and ρ0 the density at the reference point z0 = 0. In
the simple case described here the pressure and density scale heights are identical:

HP = Hρ = H .

Table 4.3: Basic atmospheric parameters for planets with atmospheres and Titan.

object Tground Pground Teff µ/µH g H dT/dz|ad vesc

[bar] [m s−2] [km] [K/km] [km s−1]

Mercury 10−14 448 K 3.7 4.4
Venus 730 K 92 328 K 44 8.9 6.9 10.4
Earth 288 K 1.01 263 K 28 9.8 8.4 11.2
Mars 215 K 0.006 227 K 44 3.7 11. 5.0
Jupiter 124 K 2.3 23.1 19. 1.9 59.5
Saturn 95 K 2.3 9.0 38. 0.84 35.5
Uranus 59 K 2.3 8.7 24. 0.85 21.3
Neptune 59 K 2.3 11.0 19. 0.86 23.5

Titan 93 K 1.46 80 K 28 1.4 17. 2.6

Scale heights for planets. The equation for the scale height indicate the following
relationships:

– The scale height depends on the atmospheric properties. For a planet with given
radius Rp and bulk density ρ̄ (or mass) the scale height is proportional to the at-
mospheric temperature H ∝ T and inverse proportional to the mean particle mass
H ∝ 1/µ,

– The scale height depends for given atmospheric temperature and composition on
the planet properties. The scale height is inverse proportional to the surface gravity
H ∝ 1/g = R2

P /GMP ∝ 1/Rpρ̄.

The scale height can be particularly large for hot planets, with a hydrogen atmosphere
and a small gravitational acceleration (large radius and low mean density).

For solar system planets the scale heights are given in Table 4.3. H was calculated
with the indicated Teff and mean particle mass µ/µH. The scale heights are in a narrow
range of 5 – 40 km. From the composition, one would expect much smaller scale heights
for the terrestrial planets when compared to giant planets because of the much larger
particle mass (≈ 30 in terrestrial planets but only 2.3 in giant planets). But this effect is
compensated by the higher atmosphere temperature and lower gravity for the terrestrial
planets.
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Column density. The column density Σ(z0) gives the total density of gas per unit area
above a certain height z0 (e.g. defined as z0 = 0). Σ(z0) is an important quantity for
the calculation of the optical depth. Since the density drop-off with height is exponential
Σ(z0) for is proportional to the density at ρ(z0) = ρ0

Σ(z0) = ρ0

∫ ∞
0

e−z/H dz = −ρ0He
−z/H |∞0 = ρ0H .

This can be directly linked to the pressure

Σ(P0) =
µP0

kT
H =

P0

g
. (4.20)

All solar system planets have a gravitational acceleration at the surface of the order g ≈
10 m s−2. Thus for order of magnitude estimates one can use a surface density of Σ(1bar) ≈
1kg cm−2.

Chemical composition for atmospheres of solar system planets An important
input parameter for the analysis of atmospheres is their composition which is given in
Table 4.4. We will discuss later the interpretation of these abundances.

Table 4.4: Abundances by mass of the most important chemical spezies for solar system
objects.

object dominant secondary minor
molecule constituents constituents

Venus 96.5 % CO2 3.5 % N2 0.01 % SO2

Earth 78.1 % N2 20.1 % O2 0.93 % Ar, 0.03 % CO2

Mars 95.3 % CO2 2.7 % N2 1.6 % Ar, 0.27 % N2

Jupiter 85 % H2 15 % He 0.24 % CH4

Saturn 94 % H2 6 % He 0.3 % CH4

Uranus 85 % H2 15 % He 1 % CH4

Neptune 85 % H2 15 % He 1 % CH4

Titan 92 % N2 4 % CH4, 4 % Ar
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4.4.2 Thermal structure of planetary atmospheres

The vertical structure of planetary atmospheres can be characterized by their thermal
structure which depends on the heating processes and energy transport mechanisms. For
our discussion of these processes we take the Earth atmosphere as a guideline. The atmo-
spheric temperature profile is used as basis to distinguish different atmospheric layers.
The vertical structure of Earth atmosphere is illustrated in Figure 4.5 and described in
Table 4.5.

Figure 4.5: Vertical structure of Earth atmosphere.

Heating processes. There are the following important heating processes for planetary
atmospheres. Starting from the top to the bottom of the atmosphere these are:

– Ionization. Neutral atoms in the high atmosphere absorb easily the solar far-
UV radiation. Each ionization by a photon with energy hν above the ionization
energy hν0 of an atom will produce an energetic electron with the “excess energy”
∆E = h(ν − ν0). Ionization is only important in the uppermost thermosphere,
because further down there will be no ionizing photons left (see Slide 2.23).

– Particle radiation and plasma processes related to the planet magnetosphere can
contribute to the heating of the upper atmosphere. For Earth, the impact of these
effects depends a lot on the solar activity cycle and the associated enhancement of
solar mass ejections and magnetic storms.

– Photodissociation of molecules by UV-photons is an important heating process in
the stratosphere. In the Earth atmosphere the main processes are the dissociation
of O3 and O2. Below the stratosphere there are no UV-photons left (see Slide 4.5).

– Light absorption. The optical and near-IR light gets absorbed in the troposphere
at pressure levels around 1 – 10 bar. At these pressures collision induced absorption
sets in, and the density of absorbing molecules becomes high enough for significant
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Table 4.5: Parameters and boundaries of the different atmospheric layers in the Earth
atmosphere

layer or z [km] T [K] P [bar] comment
boundary

troposphere 0–12 290–215 1–0.1 heated by the surface, with a
decreasing temperature gradient
due to convection

tropopause 12 215 0.1 vertical temperature minimum
and upper limit of the convection
layer

stratosphere 12–50 215–270 0.1–10−3 temperature increases due to ab-
sorption of UV radiation by O3

stratopause 50 270 10−4 intermediate temperature maxi-
mum

mesosphere 50–85 270–190 10−4–10−6 decrease in temperature due to
the lack of heating processes

mesopause 85 190 10−7 absolute temperature minimum
in the atmosphere

turbopause 100 200 10−8 below this level the composition
is quite homogeneous, above it
the particles are stratified ac-
cording to their weight

thermosphere 85–500 190–1000 10−7–10−10 the gas is heated due to ioniza-
tion by solar far-UV photons

exobase ∼ 500 1000 ≈ 10−11 above this limit particles can es-
cape, the height changes with so-
lar activity

exosphere ∼> 500 ∼> 1000 < 10−11 composed mainly of H and He
particles which escape to space

absorption of optical/near-IR light. The absorbed photon energy is converted first
into intrinsic rotational or vibrational energy of the molecule, which is then trans-
ferred to thermal motion of the gas.

– Surface heating. The optical and near-IR light of the star can also be absorbed
by the ground surface which is heated up. This provides a hot bottom for terrestrial
objects.

– Internal energy. Gas giants are still contracting and therefore they have a steady
upward energy flow which heats the troposphere from below.
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Energy transport processes. The three major energy transport mechanisms for plan-
etary atmosphere are radiation, convection and conduction. Usually one process dominates
for the definition of the temperature structure in the atmospheres.

– Convection is the energy transport by vertical gas flows. It only sets in if the condi-
tions for convection are favorable. There must be a dense gas and a fast temperature
decrease with height for convection. All solar system planets show convection in their
troposphere because the upper tropospheric layers cool efficiently by radiation, while
the low troposphere is strongly heated by internal energy or irradiation (see Slide
4.6). Convection is discussed in detail in the following section.

– Radiation energy transport is important for optically thin atmospheric layers. Op-
tical light from the sun (central star) is efficiently deposited in the lower troposphere
while UV light is absorbed in the upper atmosphere. Thermal radiation emitted in
the IR wavelength band can easily escape from the upper troposphere and all layer
above causing always a cooling. Deep in the troposphere the emission of IR-light
is not efficient, because the gas is optically thick in the IR range and the radiation
energy is essentially “trapped”.

– Conduction is the energy transport by collision between particles. Conduction is
the mechanism which transfers the energy from a hot surface to the gas because
the surface particles have a high kinetic motion. Conduction is also the process
which transports the energy in the thermosphere and exosphere. Because of the
large mean free path length between collisions (∆s ∼> H) these outermost layers are
homogeneous in temperature.

Temperature structure for solar system planets.

– The giant planets show also a troposphere and a tropopause with a temperature
between 50 and 100 K. The stratosphere reaches a temperature of 150 K. The heating
is due to photochemical absorption by haze (photo-chemical smog), while the cooling
is mainly due to emission lines of C2H2 (acetylene) and C2H6 (ethane). Above comes
the thermosphere where the temperature reaches about 800 – 1200 K. There is no
well defined mesosphere for the giant planets.

– Venus has a troposphere which extends up to the tropopause at 70 km where the
pressure is about 0.1 bar and which marks also the top of the cloud layers. Above
this follows a constant temperature region up to about 100 km. Further above there
exists a strong difference between a 300 K thermosphere on the day side and a much
colder, only 100 K so-called cryosphere, on the night side. The temperature in the
thermosphere is relatively low because CO2 is a molecule which can efficiently cool
the higher atmosphere.

– Mars has only a very thin atmosphere, lacking the density of “normal tropospheres
and stratospheres”. Thus, the temperature decreases from the surface temperature
of about 220 K to 120 K above 50 km. The temperature increases then above 120
km to about 160 K. Mars has like Venus “no really hot” thermosphere because of
the efficient CO2 cooling.
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4.4.3 Tropospheric Convection

Convection is the energy transport by gas flows and it is a dominant energy transport
process in the troposphere. Convection will occur if the following conditions are fulfilled

– a gas parcel, which is slightly hotter, and therefore slightly less dense and lighter
than its surroundings will start to rise,

– the ambient pressure decreases and the parcel expands, and cools adiabatically (heat
transfer to the surroundings can be neglected),

– if the parcel is, after some upwards motion and adiabatic expansion (and cooling),
still hotter and less dense than the surroundings then it will continue to rise in a
convective flow.

Convection stops if the parcel is after some upward motion colder and denser than the sur-
roundings. The condition for convection is determined by the relation of two temperature
gradients:

– the adiabatic temperature gradient dT/dz|ad, which follows from the first law of
thermodynamics (see below),

– the surrounding atmospheric temperature gradient dT/dz|atmos which is determined
by all heating, cooling and energy transport processes.

If the adiabatic temperature gradient is shallower than the atmospheric temperature gra-
dient

−dT
dz

∣∣∣
ad
< −dT

dz

∣∣∣
atmos

(4.21)

then the atmosphere is unstable with respect to convection and convection will set in. The
above relation is often also given with a different sign dT/dz|ad > dT/dz|atmos. Equation
4.21 is equivalent to the following statements:

– convection may occur if the temperature decreases fast with height,

– convection does not occur if the temperature is almost constant with height or when
the temperature rises with height.

Figure 4.6: Temperature gradients which are stable or unstable with respect to convection.
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Derivation of the adiabatic lapse rate. The adiabatic temperature gradient or adi-
abatic lapse rate follows from the first law of thermodynamics which describes energy
conservation:

dU = dQ− dW .

The change in internal energy dU of a gas is equal to the change in thermal energy (added
or lost) of the gas dQ and the work done by or put into the system dW . The following
relations are valid:

– dQ = 0: there is not heat exchange to the surroundings in an adiabatic expansion
or compression process,

– dU = mcV dT = m(cP −Rs) dT = mcp dT −mRs dT describes the change in internal
energy, where m is the mass of the gas parcel, cV and cP the specific heat capacities
at constant volume and constant pressure, and R is the specific gas constant,

– dW = P dV = mRs dT − (m/ρ) dP is the work put into the gas by compression or
done by the gas by expansion. In addition there is P dV = mRs dT − (m/ρ) dP ,
which follows from P dV + dP V = mRs dT , the total derivative of the ideal gas law
PV = mRsT , and V = m/ρ.

Now we can rewrite the energy equation

dU = mcp dT −mRs dT = −mRs dT + (m/ρ) dP = −dW

and obtain the adiabatic temperature-pressure gradient

dT

dP
=

1

ρcp

which yields with the hydrostatic pressure law dP = −gρ dz the adiabatic lapse rate as
final result

dT

dz
= − g

cp
. (4.22)

This lapse rate is valid for a dry atmosphere where no condensation occurs.

Lapse rates for Earth atmosphere. For the Earth the adiabatic lapse rate is about
−10 K/km. If condensation occurs then the “moist” adiabatic lapse rate should be used
which is slightly different with a value of −5 K/km. The average atmospheric lapse rate
is −6.5 K/km. This means:

– the Earth atmosphere is stable against convection, if no condensation occurs and
the dry adiabatic lapse rate applies,

– the Earth atmosphere is unstable if condensation occurs and convection will take
place as soon as the moist lapse rate is appropriate,

– cloud formation and condensation are closely connected to convection.
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Convection in other solar system planets. All solar system planets with a substan-
tial atmosphere have a troposphere where convection dominates. Convection is a very
efficient mechanism for transporting energy whenever the temperature gradient is super-
adiabatic (temperature decreases faster than the adiabatic temperature gradient). This
places a firm limit how fast the temperature increases with depth in planetary atmospheres.

The troposphere extends in all solar system planets from > 1 bar to a pressure level
of about 0.1 bar (see Slide 4.6). This is the range where most of the thermal radiation
is escaping from the planetary atmosphere. The main heat source due to the absorption
of stellar radiation (and the internal heat for the giant planets) is below the troposphere.
Thus, the troposphere is characterized by a strong heat source at the bottom and strong
radiation losses at the top which leads naturally to the observed “convective” temperature
structure.

4.4.4 Atmospheric escape

Particle escape from an atmosphere involves three steps. First a gas particles must be
transported from the lower to the upper atmosphere. Then the particles must be trans-
formed from an atmospheric gas particle, usually molecules, to neutral or ionized atoms
which can then in a third step be accelerated to high speed and escape.

The basic process for escape is thermal or hydrostatic escape, where particles in the
high atmosphere have thermal velocities which are large enough for escape. In addition
the density must be low enough that the particle does not collide on its escape trajectory.

The escape velocity vesc for a particle is reached if its kinetic energy is equal to its
potential energy (the energy required to leave the planet):

1

2
mv2

esc =
mMPG

RP
(4.23)

which yields:

vesc =

√
2GMP

RP
. (4.24)

Figure 4.7: Schematic shape of the Maxwell-Boltzmann velocity distribution function.
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The particle velocity for a gas in thermal equilibrium can be described by the Maxwell-
Boltzmann velocity distribution which gives the number of particles per velocity bin dv

n(v)dv =
4n√
π

( m

2kT

)3/2
v2e−mv

2/2kTdv ,

where m is the particle mass, and n the total number density of particles and T the
temperature of the gas.

We may use the most likely velocity v̄ of this distribution for an estimate on the particle
velocity:

v̄ =

√
2kT

m
(4.25)

For T one should use the temperature of the thermosphere which is for giant planets and
Earth around T ≈ 1000 K. The velocity distribution for large velocities decays exponen-
tially. This means that in a gas there are always a small fraction of particles with velocities
which are a factor of a few higher than v̄. If always a small fraction of particles of a certain
kind can escape then after some time (millions or billions of years) a substantial amount
of particles may escape.

Considering the formulas for vesc and v̄ one can easily derive the following dependencies:

– light particles, in particular hydrogen, escape much easier than heavy particles such
as C, N, or O. This explains why Venus, Earth and Mars have essentially no H gas
but still CO2, N2, O2 gas made of the elements C, N, or O.

– a planet with high escape velocity (essentially a planet with a large mass) can keep
much better an atmosphere. This explains why the Earth has an atmosphere and
the moon has none.

– A planet with a cold exosphere will have lower thermal velocities and keep more
easily an atmosphere. This may explain why the strongly irradiated planet Mercury
has no atmosphere while Titan has one.

4.4.5 Evolution of the chemical composition of planetary atmospheres

The giant planets have a composition which is close to the solar composition. Hydrogen
and helium dominate strongly. Atmospheres with substantial amounts of hydrogen are
called “reducing atmospheres”. They contain a lot of methane CH4, ammonia NH3, and
also water vapor H2O and hydrogen sulfide H2S are expected. But essentially only CH4

and NH3 were detected while the other constituents are expected to be trapped in the
deeper layers. Not much evolution in composition seems to have been taken place for the
solar system giants since their initial formation. The situation is very different for the
atmosphere of terrestrial planets.

Primitive and secondary atmospheres of terrestrial planets. The atmospheres
of the terrestrial planets evolved strongly in the past. If Earth ever had a H and He rich
atmosphere then it was lost completely. Also Ne is strongly underabundant indicating that
it never existed in large quantities in Earth’s atmosphere or that it was lost during a very
early epoch. Therefore, it is assumed that all volatile elements in the Earth atmosphere
originate from volcanic processes and outgassing. This provides, as observed, the elements
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H, C, N, O, and S but not the noble gases He and Ne. Ar is quite abundant in the
atmosphere of Earth because of the radioactive decay of 40K.

For a given elemental composition we may expect abundances as expected from chemi-
cal equilibrium. The following reactions are important for the composition of the terrestrial
planets:

CH4 + H2O ↔ CO + 3H2

2NH3 ↔ N2 + 3H2 (4.26)

CO + H2O ↔ CO2 + H2

The escape of hydrogen shifts the equilibrium to the right and this can explain the
predominance of CO2 and N2 in Venus, Mars and Titan.

In the Earth atmosphere there is a significant lack of CO2. Carbon dioxide is dissolved in
the water oceans and blocked as calcium carbonate CaCO3 as rock. Volcanic outgassing
brings then partly the CO2 back into the atmospheres.

The abundance of O2 in the Earth atmosphere is mainly due to photosynthesis of
green plants. According to chemical equilibrium O2 would disappear rapidly (on geological
atmospheres) through oxidation from the atmosphere. This non-equilibrium chemistry is
an important signature of life on Earth.

4.5 Spectra of substellar objects

4.5.1 New spectral types

M-type main sequence stars were for about a century the lowest mass objects known
outside the solar system. The first substellar object, GD 165B, was detected in 1988. At
that time it was a “strange” companion to a white dwarf star. The revolution came around
1997 after the development of instruments with large and sensitive IR array detector. Near-
IR sky surveys, like 2MASS (2-micron all sky survey), found nearby very cool objects.
Many of the new objects have a spectrum like GD 165B which changed its status from
a strange object to a prototype of the new class of brown dwarfs. New spectral classes
based on red and near-IR spectra had to be introduced for extending the standard spectral
sequence of stellar objects. Dominant absorptions are molecular bands from H2O water
vapor and CH4 methane, which are key features for the definition of the new spectral types
L, T. Up to now (2013) many hundred L and T dwarfs were detected. The introduction
of another class for even cooler objects, the Y dwarfs, is currently discussed.

We provide here a brief characterization of the spectral classes for low mass objects.
Slide 4.7 and 4.8 show the transistion of spectral features from M- to L- and T-type objects
in the 700 – 900 nm range and in the near-IR respectively. Table 4.6 summarizes some
key properties of these systems.

Spectral class M: Many bright stars are of spectral type M, like e.g. α Sco or α Ori,
but these are all evolved high or intermediate mass giant stars. M-stars are red objects
indicating that they must be cool < 4000 K. No M-star on the main-sequence is visible to
the naked eye, because they are too faint and emit their radiation mainly in the near-IR
range.
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Their spectral classification was traditionally based in the visual wavelength range.
The red spectrum of M-stars is dominated by molecular bands of TiO. These absorption
become stronger for cooler objects providing a well established scheme for the association
of spectral types to surface temperatures. The TiO-band at 705 nm is an important
spectral feature for the classification of M-stars. Other absorptions, like CaH or VO, are
used to refine the classification.

Spectral type L: The spectral type L describes objects with strong H2O absorptions in
the near-IR, strong resonance lines of the alkali atoms NaI, KI, RbI and CsI, absorptions
form metal-hydrates CrH and FeH. The warmer (early) L dwarfs show still the TiO like
the M-stars but their strength decreases rapidely with decreasing photospheric tempera-
ture. The water vapour absorptions of L-stars are difficult to observe with ground-based
observations because the same absorptions are present in the Earth atmosphere and they
often prevent accurate measurements in the corresponding spectral bands. Typical tem-
peratures for spectral type L are in the range 1300 to 2000 K.

Spectral type T: T-dwarfs have a surface temperature of about 700 to 1300 K and are
characterized by strong absorptions of methane in the near-IR. They emit a lot of light in
a few band between 1 and 1.6 µm, because the CH4-bands block the emission of radiation
from the photosphere efficiently around 1.1 and 1.4 µm and in the range between 1.7 -
3.5 µm. T-dwarf are therefore blue objects in the colors J - H, J - K, and J - M. This is
one of the reasons why they were initially not found because according to their IR-colors
they looked like “uninteresting” blue background stars.

Table 4.6: Characteristics of the spectral types for low mass objects.

spectral
type

V–K J–K T [K] spectral features

M0 3.9 0.8 3800 weak TiO (e.g. 705 nm), CaH, ...
M5 6.0 0.9 2800 strong TiO, ...
M9 7.5 0.9 2400 strong TiO, FeH (870 nm), weak H2O(near-IR)

L2 1.3 2200 strong H2O (near-IR), KI, CrH, weak TiO
L8 1.8 1500 strong H2O, FeH, CrH, ...

T2 0.8 1200 CH4, H2O, ...
T6 –0.2 900 strong CH4

Y <700

according to Kirkpatrick, 2005, Annu.Rev.Astron.Astrophys.,43,195



Chapter 5

Hot jupiters

Close-in giant planets, which are also called hot jupiters, form a group of well studied extra-
solar planets. They are relatively easy to detect with the radial velocity or the transit
method and their mass, radius, and orbital parameters are well known. With additional,
more precise measuring methods, more information can be obtained and it is now possible
to compare physical models of planets with observations of at least some prototype objects.
This is particularly interesting, because hot Jupiter have system parameters, which differ
strongly from what we know from solar system objects. In this chapter we address a few
key findings about hot jupiters.

5.1 Origin and evolution of close-in planets

5.1.1 Inward migration

The detection of 51 Peg b and other giant planets in very close orbits was unexpected.
According to planet formation theories it is not possible that a planet forms at such a
location. Circumstellar gas close to a star, is far to hot to form a compact body or to be
accreted by a compact body, ie a planet core, to build up an extended envelope. Therefore,
there must exist processes which lead to the migration of giant planets from their birth
place at a separation > 1 AU to their current position at dp ≈ 0.1 AU. Two migration
scenarios are often discussed in the literature: disk migration and dynamical interactions.

Disk migration: For disk migration it is assumed that a newly formed planet is in-
teracting with the planet-forming gas disk. The planet opens a gap in the disk and may
transfers angular momentum to the disk gas outside the gap. This leads to a reduced
inflow of gas. On the other side the angular momentum loss of the planet produces an
inward drift and the accretion of lower angular momentum gas from inside the disk gap.
Such scenarios were calculated and several detailed models were described.

Disk migration is a well established scenario which will be active in protoplanetary
disk. However it is unclear whether this leads only to small or also to strong changes in
orbital separation. It is also not clear how this process could stop the migrating planet
from falling into the star.

Disk migration would lead to close-in planets with nearly circular orbits and small
obliquities between planet orbit and stellar rotation axis. It is possible to explain some of

99
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the close-in planets with this disk migration, but certainly not those with highly eccentric
orbits or planets on orbits “counter-rotating” with respect to the stellar rotation.

Dynamical interaction. Dynamical interactions are expected to occur in young plan-
etary systems. It is well known from the solar system that the “normal” planet formation
process in a protoplanetary disk produces initially many asteroids and proto-planets. A
large number of planets circling around a star have not enough space to remain on stable
orbits without mutual gravitational interaction. This must lead to an evolution of the
planet configuration. It is well possible for planetary system with an initial configuration
similar our solar system that they went through a violent dynamical re-organization. For
example if the orbital separation between Jupiter and Saturn would be smaller, then this
could lead to a two-body interaction. A possible outcome is, that Saturn loses a lot of an-
gular momentum and enters a shorter period, highly elliptical orbit around the sun which
evolves then through tidal interaction with the sun into a tight circular orbit. Jupiter
would then acquire more angular momentum and obtain a longer period orbit.

Several observational facts support such a planet interaction scenario:

– The radial velocity surveys show that the typical close-in planet are lower mass giant
planets ∼< MJ . If there is a second planet further out in the system then this second
planet is typically more massive (see Slide 2.13).

– Many giant planets with rather short periods P < 3 years have highly eccentric
orbits (Slide 2.14). They may have gone through an interaction event but they do
not interact enough with the central star or other planets to evolve rapidly towards
a tight, circular orbit.

– The Kepler satellite found for transiting hot jupiters essentially no second transit-
ing planet. This indicates that systems with hot jupiter have a different orbital
configuration than the many systems with multi-planet transits (Section 3).

– With the Rossiter-McLaughlin effect it was demonstrated that hot Jupiter have often
orbital orientations which are not aligned with the stellar rotation. For example the
orbit of the planet can be retrograde with respect to the stellar rotation. This is
probably the strongest argument for the dynamical interaction scenario and not
explainable with disk migration. Observations of the Rossiter-McLaughlin effect are
described in the next paragraph.

5.1.2 Rossiter-McLaughlin effect

For a rotating star the obscuration of a surface region by the planet during transit produces
a small RV-effect. Because the planet reduces the signal from one side the rotationally
broadened line becomes asymmetric and a net RV effect result. About 100 years ago this
effect was described for the first time for binary stars by Rossiter and McLaughlin.

For extra-solar planet the impact of the Rossiter-McLaughlin (RM) effect on the RV is of
the order

∆vRM =
R2
P

R2
S

vrot sin i .

For a rotation velocity of vrot sin i = 1 km/s the effect of a Jupiter-sized planet is at the
level of 10 m/s (see Slide 5.1 for an example).
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Figure 5.1: Illustration of the Rossiter-McLaughlin effect.

Depending on the mutual orientation of stellar rotation with respect to the orbital rotation
the RV-excursion due to the transit attenuation looks different:

– For the same orientation of the stellar rotation and the orbital motion of the planet
(or mutual inclination orbit - rotation io−r ≈ 0◦) the approaching hemisphere is first
attenuated by the planet and then the receding hemisphere. It results a RV-excursion
which shows first a redshift (positive deviation) and then a blueshift.

– For a counter-rotating planet with respect to the stellar rotation (mutual inclination
io−r ≈ 180◦) the RV-excursion during the transit is first blue-shifted (negative) and
then redshifted.

– For a stellar rotation which is inclined with respect to the orbital rotation of the
planet the situation is more complicated. In this case we might have an inclined
view onto the stellar rotation. The shape of the RV-excursion depends then on the
orientation of the stellar rotation, the mutual inclination between planet orbit and
stellar rotation and the impact parameter b. Thus the transit may occur mainly in
front of the approaching or the receding hemisphere. In general there is a trend that
the RV-excursion becomes more blue-shifted during the transit if io−r < 90◦ and
more red-shifted if io−r > 90◦.

The Rossiter-McLaughlin effect can be measured like a RV-measurement for the determi-
nation of the reflex motion. Of course the sampling of measurements must be particularly
high during the eclipse phase for a detection of the RV-excursions (see Slide 5.1).
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5.1.3 Evolution of close-in planets

Not much is known about the evolution of close-in planets. It is likely that there exists
an evolution from longer orbital periods to shorter orbital periods. From the period
distribution, one can distinguish three regimes for the orbital period.

– Close-in planets with a period > 10 days are often on (highly) elliptical orbits which
may result from previous dynamical effects. The evolution into short period circular
orbits can be induced or at least accelerated by gravitational interaction with a
second planet or a binary companion star located further out in the system. An
alternative is the tidal interaction with the star, which damps the orbital eccentricity
while reducing the orbital separation.

– Many close-in planets “pile-up” in the period-distribution between P = 3− 5 days.
This must be a more stable configuration. It is unclear how stable such orbits are
but they could be stable for several Gyr. If this is true, then the lifetime of a close-in
planet is terminated by the stellar radius evolution, which slowly expands during its
main-sequence life-time.

– Systems with periods shorter than 2 days are very rare. This suggests that planets
on such tight orbits are rapidly spiraling into the star. The most likely reason is that
the planet induces strong tidal effects on the star which break the orbital motion.
It is unclear how long the time scale for such an infall is. Estimates range from 10
Myr to 1 Gyr for a close-in giant planet with a period of 2 days.

Unfortunately, the physical processes responsible for the orbit evolution are not well un-
derstood yet. One key issue is, that it is difficult to determine the age of the parent stars
for an observational estimate of the typical time scales for different evolutionary processes.

5.2 Atmospheres of hot jupiters

With very high precision measurements of transit light curves and secondary eclipse depths
it is possible to probe spectral features from the atmosphere of hot jupiters. This is useful
for a better understanding of planetary atmospheres. However, one must also consider
the special conditions for hot jupiters. For example, it is well known that the strong
irradiation from the star is responsible for enhanced planet radii (Slide 3-24).

5.2.1 Secondary eclipse amplitude

If the secondary eclipse of the planet by the star can be detected then one can measure the
intrinsic brightness FP (te) of the planet for the eclipse phase. FP (te) is equivalent to the
drop in brightness due to the eclipse (see Fig. 3.7). With secondary eclipse detections one
measures really the photons from the planet. This is strictly speaking a direct detection
of the planet. The secondary eclipse depth can be used for the following measurements:

– for the reflected light the secondary eclipse gives the geometric albedo of the planet
FP (te) = Ag,

– for the thermal light the secondary eclipse provides the opposition brightness, or the
brightness FP (α) for phase angle α = 0◦ which is equivalent to the brightness of the
illuminated atmosphere,
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– during secondary eclipse only the light from the star is seen. If the system is fainter
during secondary eclipse than before and after the transit (Fig. 3.7) then one can
also measure the brightness of the “backside” of the planet FP (tt) or FP (180◦).

– particularly interesting are secondary eclipse measurements for different wavelengths
because this provides the spectral energy distribution for the planet.

– if even the phase curve of the planet is detected IP (t) or IP (α) then one can inves-
tigate the surface brightness of the planet as function of longitude.

Spectral energy distribution for planets: If the spectral energy distribution (SED)
of the planet can be attributed to the thermal radiation then one can compare the relative
secondary eclipse signal with Planck-curves for the star and the planet and derive the
temperature of the illuminated hemisphere. As discussed in Sect. 2.4 the flux ratio
between planet and star is:

FP
FS

=
R2
P

R2
S

Bλ(TP )

Bλ(TS)
. (5.1)

For hot Jupiters, TP > 1000 K, and mid-IR wavelengths in the Rayleigh-Jeans tail of the
Planck spectrum λ� λmax this reduces to

FP (λ� λmax)

FS
=
R2
P

R2
S

TP
TS

.

The planet SED gives the temperature on the illuminated and eventually also for the
“backside” of the planet.

Spectral analysis: In recent years a lot of effort has been put into the analysis of the
spectral dependence of the secondary eclipse depths in order to find spectral features of
hot jupiters in the infrared spectral range. Most of these studies are based on data from
the SPITZER satellite. The analysis is very difficult, because this instrument was not
designed for high precision photometry. Slide 5.2 shows an example of such observations.
The detections of various spectral features have been reported, but often these claims
remained controversial. It is expected that future infrared satellites, like the JWST, will
provide a break-through in this field.

Phase curves: The measurement of phase curves is also very interesting. The analysis
of HD 189733 b revealed an offset between the substellar point and the hottest spot on the
illuminated hemisphere (Slide 5.3). This indicates that some kind of gas circulation must
be present. The offset angle provides strong constraints on the time-scales for atmospheric
cooling and atmospheric circulation. From the measured offset in HD 189733 b it was
possible to estimate the speed of the atmospheric flows which must be close to the sound
speed or supersonic. Because it was also possible to measure the temperature difference
between the illuminated and non-illuminated side of the planet, one can construct already
quite realistic models about the heat transfer from the illuminated hemisphere to the night
side and the overall energy budgets.
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5.2.2 Transit spectroscopy

The transit depth may depend on wavelength because the uppermost atmosphere of the
transiting planet absorbs the light from the star for certain wavelength more efficiently
than for others. This means that the measured transit radius or the size of the planet’s
dark silhouette depends on wavelength.

Figure 5.2: Geometry for transit spectroscopy.

The same method can be used with higher spectral resolution. Because some light from
the star passes during the transit through the uppermost atmosphere certain wavelength
may be absorbed stronger than others because they coincide with a strong line or band
absorption from the planetary atmosphere. This method has the potential to provide
atomic and molecular abundances for the uppermost atmosphere of extra-solar planets.

The strength of this effect is given by the cross-section of the partly transparent up-
per atmosphere. Giant planets with a large scale height are the best candidates for the
detection of spectroscopic transmission features. An estimate for the differential atmo-
spheric absorption can be obtained from the circumference of the planetary disk times the
atmospheric scale height:

δatm = 2πRP
kTP
µg

1

R2
S

.

Hot, giant planets with a mass like Saturn (low surface gravity = large scale height) are
the best targets for such transit spectroscopy.

It is quite difficult with current instrumentation to measure the transit spectrum or
the spectral dependence of the effective radius for the planet transit. The result of a
study for HD 189733 b is shown in Slide 5.4. The derived transit spectrum is featureless,
with a small but steady decrease in effective radius of about 1 % from the UV to the red
spectral range. This wavelength dependence can be explained by Rayleigh scattering from
molecules and/or photochemical haze in the uppermost layers of the atmosphere, which
absorb blue light (400 nm) more efficiently than red light (700 nm).



Chapter 6

Direct imaging of extra-solar
planets

Direct imaging for extra-solar planets means that emission from the planet can be spatially
resolved from the emission of the bright central star. The two key requirements for a
detection of extra-solar planets are

– a high contrast,

– a high spatial resolution.

A good example is the detection of the planetary system around the star HR 8799 (see
Slide 6.1).

If a successful detection is achieved then the observation may provide the following infor-
mation for extra-solar planets:

– the apparent brightness of a planet as function of time and spectral pass band,

– from the IR-brightness one can determine the spectral energy distribution of the
thermal emission and derive the surface temperature,

– from the intensity and polarization of the reflected light one can derive albedos and
surface scattering properties,

– variability studies give indications about phase effects, seasonal effect, rotational
effects and weather changes,

– a spectral analysis allows to gain information about the atmosphere or surface com-
position, and one may also search for biosignatures.

In principle the direct imaging can also be used to measure the reflex motion of the star
and derive the mass of the planet if the astrometric precision of the instrument is good
enough.

6.1 Science requirements

Depending on the planet type and the science goals the instrument must achieve different
requirements. We distinguish three cases:

– young planets for which the thermal radiation produced by self-contraction is the
dominant energy source,

105
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– the thermal radiation of old planets for which the irradiated and reprocessed energy
from the central host star is the main energy source; old just means that internal
energy sources are not dominant,

– the reflected light of planets.

Thermal radiation from young planets. Newly formed planet will be hot because of
the potential energy which is transformed during the formation and contraction phase into
thermal energy. In general the evolution of the thermal luminosity is a function of planet
mass and age (as will be discussed in a following chapter). An approximate description is

LP (MP , t) [L�] ≈ 10 (MP [MJ ])2 1

t[yr]
for t > 1 Myr .

The luminosity of a planet LP shows roughly an exponential decay and LP is larger for
higher mass planets. The luminosity evolution goes together with a radius and surface
temperature evolution, and the planet to star luminosity contrast is given by:

Cyoung =
LP (MP , t)
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=
R2
P (MP , t)

R2
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T 4
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T 4
S

.

For long wavelengths, in the Rayleigh-Jeans limit, the flux contrast is

Cyoung(λ� λmax) =
LP (MP , t)

LS
=
R2
P (MP , t)

R2
S

TP (MP , t)

TS
.

The brightness and temperature of young planets are independent of the separation dP
and the luminosity of the star LS . Therefore, young hot planets at large separation
are relatively easy to detect, like in the case of the HR 8799 system. Also, a young
contracting giant planet around a low mass star would be an easy target for direct imaging.
Unfortunately, there are not many young stellar systems in the solar neighborhood which
may harbor young, bright, self-contracting planets.

Thermal radiation from irradiated planets. The energy emitted by the thermal
radiation of an old planet is assumed to be equal to the irradiated energy. Thus one
can neglect internal energy sources. For planets with T < 1000 K the maximum of the
thermal radiation is in the mid- or far-infrared spectral region. The contrast between
planet and sun was already derived for solar system objects in Section 4.2. The contrast
is less extreme for the Rayleigh-Jeans part of the Planck-spectrum of the planet at long
wavelengths in the mid-IR or far-IR:

Cold(λ� λmax) =
FP (λ� λmax)

FS
=
R2
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)2 (RS
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,

where we have used the following relation for the equilibrium temperature

Teq =
(1−AB

4

)1/4(RS
dP

)1/2
TS .

For shorter wavelength λ < λmax there is an exponential drop-off of the planet brightness
and the detection becomes very difficult. The flux ratio at long wavelength in the Rayleigh-
Jeans regime depends on 1/

√
dP . The peak of the Planck curve moves also like λmax ∝
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1/
√
dP . Thus at shorter wavelength there is a good chance to pick-up the shorter period

planets. Thus, the detection of the thermal emission of irradiated planets requires high
contrast capabilities and high spatial resolution. For a planet with Teq ≈ 300 K (in the
habitable zone) one needs to observe in the mid-IR to far-IR range at wavelength of about
5 µm or longer.

Reflected radiation from planets. The reflected light is according to Section 4.3

Cref =
FP

Fstar
= Ag(λ)f(α)

R2
P

d2
P

.

The reflected light from a planets depends strongly on the separation Cref ∝ 1/d2
P . Further

there are also the phase dependence described by f(α) and the spectral dependence of the
reflectivity or geometric albedo Ag(λ) which need to be considered.

Figure 6.1: Contrast as function of wavelength for young and old planets.

Typical planet to star contrast ratios for a system at 10 pc. Table 6.1 recalls
some values from Section 4 for a solar system analog at 10 pc. The contrast is for a given
system configuration independent of the distance D but the apparent separation behave
like ∝ 1/D and the flux of the star and the planet like ∝ 1/D2.

Table 6.1: Rough estimates for the expected contrast for Earth-like and Jupiter-like extra-
solar planets and Earth-sized and Jupiter-sized young, hot planets.

planet separation at
10 pc

Cref Cnear−IR Cfar−IR

“old planets”
exo-Earth 0.1 arcsec 2 · 10−10 2 · 10−10 4 · 10−6

exo-Jupiter 0.52 arcsec 1 · 10−9 1 · 10−9 2 · 10−4

“young, hot planets”
1000 K, RE 0.1 arcsec 2 · 10−10 5 · 10−6 1 · 10−5

1000 K, RJ 0.52 arcsec 1 · 10−9 5 · 10−4 1 · 10−3
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For stars with low luminosity the planet to star contrast is less extreme for a self-
luminating, young planet. For “old” planets around low luminosity stars the contrast
depends mainly on the separation and is therefore like for bright stars if the separation
is the same. However, planets with the same surface temperature like Earth will have a
smaller separation and therefore the contrast is more favourable for a detection.

Requirements on the telescope size from the spatial resolution. The angular
separation of a planet is equal to dP /D, where D is the distance to a planetary system.
For a planet at 1 AU the angular separation is only 0.1 arcsec for a system at 10 pc
and only 0.01 arcsec at 100 pc. Of course planets further out, at 10 AU, or 100 AU will
have a correspondingly larger angular separation. In any case a high angular separation
is desirable to resolve also the inner regions of planetary systems.

There is the fundamental diffraction limit for the spatial resolution of a telescope θ =,
which is given by the observing wavelength and the diameter of the telescope

θ = λ/D . (6.1)

The inner working angle (IWA) of a high contrast imager is then the minimum angular
separation at which a faint object can be detected near a bright star θIWA ≈ 2 (λ/D). The
factor 2 applies for the best high contrast instruments available today. Many instruments
are not optimized for this task and then this factor is 3 or 5 with a correspondingly
larger IWA. Table 6.2 gives some examples for existing and future telescopes for the inner
working angle just considering wavelengths and telescope sizes. This table shows that the
VLT has in principle enough spatial resolution to search for scattered light at 0.6 µm of a
Sun-Earth analog out to a distance of 30 pc, while for the thermal radiation at 5 µm the
object must be closer than 4 pc to be resolved from the hot star. However there are only
4 solar type stars within this distance. Therefore a 38 m telescope is required to find the
thermal radiation of an Sun-Earth analog within 10 pc.

Table 6.2: Inner working angle (IWA) in milli-arcsec [mas] for different telescopes and
wavelengths λ.

telescope D IWA 2 λ/D
0.6 µm 1.6 µm 5 µm 10 µm

HST 2.5 m 96 mas 260 mas
JWST 6.5 m 100 mas 310 mas 620 mas
VLT 8 m 30 mas 80 mas 250 mas 500 mas
E-ELT 38 m 6.3 mas 17 mas 53 mas 105 mas
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The requirements on contrast and separation for the detection of an extra-solar Earth-like
planet or a Jupiter-like object are shown in Fig. 6.2. The inner working angle of the
telescopes given in Table 6.2.

Figure 6.2: Contrast vs. separation for Earth-Sun and Jupiter-Sun analogs and young,
self contracting planets at 10 pc.
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6.2 High contrast instrumentation

The science requirements for the direct imaging put very strong constraints on the planet
to star contrast and the spatial resolution to be achieved by a “planet finder” instrument.
Several key techniques needs to be used which differ a bit whether an instrument is used
in space or on the ground.

Current “planet finder” instruments on the ground use the following basic concept to
achieve the detection goal (Slide 6.2):

– a large telescope which provides a high spatial resolution,

– a powerful adaptive optics systems which corrects the wavefront distortions (the
seeing) introduced by Earth atmosphere,

– a stellar coronagraph which suppresses the light from the very bright host star,

– differential detection techniques which disentangles efficiently the light from the
planet from the residual light from the bright host star.

For a space instrument the concept is quite similar, except that the wavefront distortions
from the atmosphere does not need to be corrected. Despite this, still a slow adaptive
optics systems might be required to corrected for wavefront corrections due to aberrations
introduced by the instrument. The following paragraphs discuss in more detail the different
techniques.

Figure 6.3: Illustration of the wave-front aberrations introduced by the atmospheric tur-
bulence.

Atmospheric turbulence and seeing. Atmospheric turbulence produces cells of dif-
ferent size scales ranging from about 0.01 m to 100 m. The cells have a distribution of
temperatures and therefore also of densities with corresponding differences in the refrac-
tive indices. The irregular refraction produces for astronomical sources tilted wavefronts
and light rays which deviate from a strictly straight line (Fig. 6.3). These phenomena are
summarized under the term “astronomical seeing”.

The seeing has the following effects (Slides 3.44 and 3.45):

– the images of point sources are split up into speckles,
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Table 6.3: Characteristic parameters of the atmosphere which are relevant for seeing
corrections with an adaptive optics system.

parameter definition dependencies typical values

Fried diameter of an atmospheric ∝ λ6/5 r0 ≈ 0.2 m (R-band)

parameter r0 cell producing a phase ∝ am−3/5

error of 1 rad

coherence time interval for phase ∝ λ6/5 τ0 = 1− 7 ms (R-band)

time τ0 variation of 1 rad ∝ am3/5 τ0 = 4− 20 ms (near-IR)
≈ r0/vWind

isoplanatic angular distance with ∝ 0.3r0/(h · am) few arcsec for R-band,
angle Θ0 phase error less than 1 rad few tens arcsec in near-IR

seeing width of the PSF ≈ λ/r0 λ = 1 µm, r0 = 0.3 m,

FWHMs of a point source ∝ λ−1/5 FWHMs = 0.69′′

diffraction width of the diffraction ≈ λ/D λ = 1 µm, D = 8 m,
limit limited PSF FWHM = 0.026′′

am: airmass, h: height of the turbulent layer,

– the number of speckles N increases for more turbulent atmospheres (smaller cell
scale r0) and larger telescope diameter D like N ∝ D2/r2

0,

– the angular size of the speckles is determined roughly by the diffraction limit of the
telescope (∼ λ/D),

– the speckle pattern changes rapidly with time τ0 (within ms),

– in long exposures the changing speckle pattern results in a blurred image and the
angular diameter of a point source is ≈ λ/r0. The blurred point source image is
called the seeing disk,

– the source brightness shows scintillation.

6.2.1 Adaptive Optics

The goal of an Adaptive Optics (AO) system is the correction of the wavefront defor-
mations introduced by the atmosphere and the instrument. AO can provide diffraction
limited ground-based observations.

The basic concept of adaptive optics consists of a wavefront sensor (WFS) which measures
the wavefront distortions, a fast real-time computer (RTC) which calculates the corrections
to be applied by deformable mirrors (DM) to the light beam coming from the telescope
(see Fig. 6.7). The wavefront analysis and corrections are usually carried out in the pupil
planes.
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Figure 6.4: Block diagram for an adaptive optics system.

Basic requirements of the AO system are:

– the availability of a light source suitable for a wave-front analysis,

– measurement of the wave-front distortion with a wave front sensor (WFS) with a
precision of about 1/20 λ,

– correction for the wave front distortion with deformable mirrors or other active
optical components to a level of about 1/20 λ,

– good correction for atmospheric seeing requires corrections for the wavefront distor-
tion on a spatial scale of about the Fried parameter r0 with a speed of about the
coherence time τ0.

Strehl ratio. The Strehl ratio S is a measure for the performance of an AO system.
The Strehl ratio is the peak intensity of the AO corrected point source relative to the peak
intensity of a perfect, only diffraction limited PSF. The Strehl ratio can be related to the
residual (rms) wave front aberrations σ (after the wave front correction):

S = exp−2 (2πσ)2 (6.2)

where σ is in units of the wavelengths of the radiation considered. For a good AO system
with S > 0.67 the aberrations are at a level of σ < λ/14. To achieve this performance for
λ = 1 µm means that the residual wavefront aberrations are less than 70 nm rms.

The requirements on the AO system are much more demanding for large telescopes and
shorter wavelengths. For the same AO performance or Strehl ratio the number of required
sub-apertures increases like ∝ D2 and ∝ λ−6/5.



6.2. HIGH CONTRAST INSTRUMENTATION 113

Wave front sensor. A wave front sensor measures the tilt of the wave-front for sub-
apertures in the pupil plane. A perfectly plane wave would show no angular gradient or
tilt over the entire pupil. Most popular devices are the Shack-Hartmann wavefront sensor
and the Pyramid wavefront sensor. We discuss here only the Shack-Hartmann sensors in
more detail.

In a Shack-Hartmann wavefront sensor the pupil is divided into many sub-
apertures using a micro-lens array which forms for each sub-aperture a point on a detector
(Fig. 6.5). A wavefront with a local tilt (or gradient) induces then an ∆x,∆y shift of the
point on the detector which is proportional to the wavefront gradient.

Figure 6.5: Principle of a Shack-Hartmann wave-front sensor.

For a good AO correction the Shack-Hartmann wave-front sensor should be able to mea-
sure the point offsets ∆x,∆y for each r0-sub-aperture every ≈ 1 ms. One should note
that enough photons must be collected per sub-aperture and exposure to determine the
centroids.

Deformable mirrors The wave front correctors must compensate for the measured
wavefront deformations to a precision of about 1/10 − 1/20 λ for many sub-apertures
within about a millisec. Essentially all wave front correctors are based on the deformable
mirror concept. Important parameters of deformable mirrors are:

– the number of actuators which should match the number of atmospheric cells as
defined by the Fried parameter in front of the telescope pupil (about 40 x 40 for a
8 m telescope),

– the actuator spacing which defines the size of the system,

– the dynamic range of the actuators defining the maximum wavefront correction,

– the response time.

Different types of deformable mirrors are used including ≈ 5−30 cm mirrors fixed to piezo
actuators with a spacing of a few mm, ≈ 1 cm sized micro-electro-mechanical devices with
an actuator spacing of about 0.1 mm, or m-sized secondary mirrors of telescopes with
magnetic actuators (like in loud speakers) with a spacing of several cm.
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AO guide star. For the analysis of the wavefront deformations a light source is required
which passes through the same atmosphere area as the target. For high contrast imaging
of planets and circumstellar material the central host star is in principle an ideal light
sources for the wave front analysis, because it is usually bright and ideally located in the
middle of the target field. Using the central stars provides a good AO correction for a field
of view of the size of the isoplanatic angle Θ0 (Table 6.3). This choice sets the limit that
the star must be bright enough to provide a star center measurement per sub-aperture
and AO-loop period (≈ coherence time τ0). For extreme-AO systems with sub-aperture
of 20 cm diameter this guide star limit is about 10 mag.

6.2.2 Stellar coronagraphs

The basic concept of coronagraphy was introduced by B. Lyot around 1930 for observations
of the weak emission from the corona of the sun. Since that time, the concept has evolved to
stellar applications. Stellar coronagraphy strongly differs from solar coronagraphy because
the central source is point-like and includes therefore a strong diffraction pattern.

A stellar coronagraph is a starlight suppression device designed to reduce the on-axis
starlight as much as possible. The basic concept of a Lyot coronagraph consists of

– an amplitude mask, the so-called Lyot mask, in the image plane to block the central
(on-axis) star,

– a pupil mask, the so-called Lyot stop, in a pupil plane located after the Lyot stop.

Figure 6.6: Principle of a Lyot coronagraph.

The principle of the coronagraph can be understood by using Fourier optics, which
relates the distribution of light in the image and pupil planes via Fourier transformations.
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A simple round telescope pupil (or aperture) is described by a hat-function f(r) = 1
for r < D/2 and f(r) = 0 for r > D/2 produces an light wave amplitude dependence
of a Bessel function ∝ 2J1(r)/r which is the 2-dimensional equivalent for the diffraction
pattern of a slit I(x) ∝ sinx/x. The intensity distribution in the image plane is given by

I(r) = I0

(2J1(r)

r

)2
,

describing the typical diffraction pattern consisting of a prominent central peak and many
so-called diffraction rings. The PSF of a telescope with a central obscuration due to the
secondary mirror differs not much from the simple unobscured pupil case. The central
narrow peak is mainly due to light wave interferences of the outermost region of the pupil
aperture.

The Lyot mask blocks now the central region of the focal plane. This provides a light
distribution in the following pupil planes which is quite different from the input pupil.
Instead of a uniform distribution inside the geometric aperture, the residual light is mainly
located just inside and outside the nominal border of the relayed pupil.

The action of the Lyot stop is to reject the bright regions at the rim of the pupil suppressing
the light in the strong low order diffraction rings.

An off-axis object missing the central opaque field mask, in our example the planet, is
re-image in the final detector plane. In addition the relay pupil illumination by the planet
light is still smooth and the Lyot pupil mask does not attenuate much of the light of the
planet. The final image will then provide the point-like planet with a strongly reduced
contribution from the central host star.

The stellar point source can be reduced to ≈ 1 % with a Lyot coronagraph and even
better for more sophisticated systems. In the real world there are always quite substantial
phase aberrations in the light wave due to the non-perfect system or the not perfectly cor-
rected atmospheric turbulence which introduces a light halo with an integrated fractional
intensity of the order 1− S, where S is the Strehl ratio achieved by the optical system at
the position of the focal plane (Lyot) mask.

6.2.3 Differential imaging

The non-perfect correction of the atmosphere by the AO-system produces a residual,
strongly variable speckle halo in the coronagraphic image. In addition there are quasi-
static speckles which originate from aberrations in the instrument. For the currently
available AO-systems and instruments there remains a halo of light from the bright host
star in the final coronagraphic image. Typically, this background is (much) stronger than
the expected signal of an extra-solar planet. For this reason one needs to apply differential
imaging technique to extract the target signal. There are several types of differential
techniques which are used or will be offered in new instruments.

Subtraction of the static or quasi-static instrumental features is sufficient for the detection
of a target signal which is stronger than the variable, residual speckle halo from the
atmospheric turbulence in the final focal plane image.

– PSF-subtraction is a very basic technique were the PSF-structure including all
fixed instrumental features are subtracted from an observation using a PSF of a
reference star. What remains after the subtraction is a difference image in which
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faint sources in the surrounding of a bright star may be detectable. The reference
star should have similar properties (brightness, color) as the target star and its PSF
should be taken with exactly the same instrument configuration.

– Angular differential imaging is a more sophisticated version of the PSF sub-
traction. Observations of the target are taken with different sky orientations, where
the sky orientation is rotated with a rotation of the telescope with respect to the
sky, or with a rotation of the incoming beam with respect to the instrument. In
the image plane the instrumental features remain stable while an off-center target
moves. Subtraction corrects then well for instrumental effects while the signal from
the target are preserved (see Slide 6.5).

If the signal of a faint companion or other circumstellar target is lower than the variable
speckle halo then the correction of the static or quasi-static instrumental pattern is not
sufficient. In this case one needs to distinguish between photons from the target and the
bright star based on the physical properties of the photons.

– Spectral differential imaging is one way to search for planets, e.g. by the search
of molecular absorption features which are present in the planet spectrum but not in
the spectrum of the star. Young giant planets exhibit strong methane bands in the
1.0 µm - 1.7 µm region which are well suited for differential measurements. Slide 6.6
(left) shows the spectrum of a brown dwarf and of Saturn which illustrates the CH4

bands which are expected to be also present in many young giant planets. Observa-
tions taken in two filters, one in the absorption band and one outside the absorption
band, will therefore allow to search for a differential signal due to the presence of a
cold objects which has molecular bands. If both images are taken simultaneously,
with a double imaging system, then even the variable speckle pattern can be sub-
tracted (Slide 6.7). An alternative is the use of an integral field spectrograph which
takes spectra for each point in the field of view and which can then be searched for
spectral features from a planet.

– Polarimetric differential imaging is a differential method for the search of scat-
tered light from planets (Slide 6.6, right), or from the dust in circumstellar disks.
Because the integrated light from the central star is unpolarized it produces no dif-
ferential signal while the scattering from a planet or a circumstellar dust disk will
produce a differential polarization signal.
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6.3 The SPHERE “VLT planet finder”

Many high contrast instrument are currently built or available at major observatories.
Competitive high contrast observations require large telescopes, good AO systems, and
sophisticated differential techniques. The high contrast instrument currently available at
the ESO VLT is NACO, an AO system with a high order deformable mirror with about 400
actuators, coronagraphs, and several instrument modes, including imaging, spectroscopy
and polarimetry.

SPHERE Project overview. SPHERE is the abbreviation for the Spectro-Polarimetric
High contrast REsearch project. SPHERE has been build during the past years and is
currently tested for the installation and use at the VLT telescope next year as a 2nd gen-
eration high contrast instrument (Slide 6.8). The goal of the SPHERE instrument, is the
discovery and study of extra-solar planets orbiting nearby stars by direct imaging of their
circumstellar environment. The scientific requirements are very demanding because new
planet detection will only be possible if the instrument achieves:

– a very large contrast between host star and planet, larger than 12.5m or more than
105 in flux ratio,

– the high contrast must be achieved at a very small angular separation of 0.1′′−0.5′′,
inside the seeing halo.

SPHERE has different focal plane instruments for the detection of young and evolved
planetary systems. Young planets are still contracting and therefore “hot” (≈ 1000 K)
and they emit a lot of thermal radiation in the IR which will be measured with differential
imaging and integral field spectroscopy in the near-IR. Evolved planets are “cold” and
their main emission is reflected stellar light which will be investigated with the differential
polarimeter ZIMPOL (Zurich Imaging Polarimeter) in the visible.

The main components of the SPHERE experiment are (Fig. 6.7):

– an 8.2 m VLT telescope providing a diffraction limited resolution of 20 mas at 0.8 µm
and 40 mas at 1.6 µm,

– an extreme AO system providing a high Strehl ratio,

– two coronagraphic systems which block the light from the bright host star, one
coronagraph is installed in the near-IR science arm, the other in the visible science
arm,

– three differential imagers: IRDIS, the infrared dual imaging spectrograph, IFS a
near-IR integral field unit, and ZIMPOL, a visual (500 - 900 nm) high precision
imaging polarimeter.
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Figure 6.7: Block diagram for the SPHERE VLT “planet finder” instrument.

The SPHERE AO system. The SPHERE AO system is a so called extreme AO
system for high Strehl ratio (S = 0.85 in H-band). A bright star, brighter than R = 10m,
is required for the AO guide star, in order to provide enough light for the very accurate
wave front sensing. Key properties for the AO system are:

– Strehl ratio of S ≈ 0.5 in the visible (600 nm) and S ≈ 0.85 in the H-band.

– a good suppression of diffraction and halo stray light out to a radius of about 0.3′′

in the R-band and 0.5′′ in the H-band.

Technical properties of the individual AO components (Slide 6.9):

– fast, 1.2 kHz, tip-tilt mirror for the correction of the overall gradients in the wave-
fronts,

– fast, 1.2 kHz, deformable mirror with 41×41 actuator for the correction of the small
scale wave front aberrations,

– a slow, 0.1 Hz movable pupil tilt mirror which corrects for slow pupil shifts due to
the tracking by the telescope,

– a 10 Hz tip-tilt plate which corrects for the differential effects like atmospheric dis-
persion between the visible path of the WFS and the infrared science path,

– a 40 × 40 lenslet Shack-Hartmann wavefront sensor covering the wavelength range
from 0.45 to 0.96 µm using a 240×240 pixel electron multiplying CCD which achieves
a temporal sampling of > 1.2 kHz with a read-out noise smaller than 1 e−,

– a differential tip-tilt camera which measures offsets of the IR-beam with respect to
the visible beam.
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Despite the very good AO correction the “typical” planet signal will still be fainter than
the variable Speckle halo from the central star. For this reason differential measuring
methods are required to compensate for the “speckle noise”. Most dangerous are system-
atic instrumental speckles which drift in a uncontrolled way. For this reason the SPHERE
system is optimized for stability and it will be located on the Nasmyth platform.

Slide 6.10 shows the different stages of the stellar point spread function (PSF) for
SPHERE: the initial seeing PSF, the AO-corrected PSF-peak with a low and high contrast
representation, and finally the coronagraphic PSF which serves as input for the differential
imaging instruments.

ZIMPOL imaging polarimetry A very high precision is required with imaging po-
larimetry to detect a faint, point-like polarization signal of a planet in the residual seeing
halo of a bright star. Aperture polarimetry reached already decades ago a very high pre-
cision better than 10−5 based on fast polarization modulators and a lock-in or photon
counting detector.

A similar precision can be achieved with array detectors using the ZIMPOL technique.
ZIMPOL (Zurich IMaging POLarimeter) uses also a fast polarization modulator and a
special CCD camera performing the on-chip demodulation of the modulated signal. The
fast modulator, e.g. a ferroelectric liquid crystal working at a modulation frequency of 1
kHz, and a polarizer converts the polarization signal into a fractional modulation of the
intensity signal. This intensity modulation is converted back into a polarization signal
by a special ZIMPOL CCD camera which measures for each active pixel the intensity
difference between the two modulation states (Slide 3.40). For this every second row of
the CCD is masked so that charge packages created in the unmasked row during one half
of the modulation cycle are shifted for the second half of the cycle to the next masked
row, which is used as temporary buffer storage (the CCD can be equipped with cylindrical
micro-lenses which focus the light onto the open CCD rows). After many thousands of
modulation periods the CCD is read out within about one second. The sum of the two
images is proportional to the intensity while the normalized difference is the polarization
degree of one Stokes component. Because the measurement is fully differential, systematic
error sources are reduced to a very low level. Key advantages of this technique are:

– images for the two opposite polarization modes are recorded practically simultane-
ously (the modulation is faster than seeing variations),

– both images are recorded with the same pixels,

– there are only very small differential aberrations between the images for the two
opposite polarizations due to the atmosphere or the telescope / instrument.

ZIMPOL is equipped, besides the polarimetric optics, with coronagraphs, exchangable
filters, and calibration optics for the 520 nm – 880 nm range. The detector image scale
provides one pixel per 7 mas, or about 140× 140 ≈ 20000 pixels per arcsec2 for the search
of point-like sources with a resolution of 15 mas at 600 nm.



120 CHAPTER 6. DIRECT IMAGING OF EXTRA-SOLAR PLANETS



Chapter 7

Planet formation

The observations indicate that planets form in circumstellar disks around young stars.
Therefore planet formation is strongly linked to the star formation process which we
describe in the introductory section of this chapter. In addition we discuss basic properties
of interstellar and circumstellar material and then we treat circumstellar disks and the
planet formation within disks.

7.1 Star formation

7.1.1 Components in the interstellar medium

Molecular clouds are a basic prerequisite for star formation because gravitational collapse
of diffuse gas to stars occurs only in dense, cold clouds. Molecular clouds are located in the
mid-plane of the Milky Way disk. The different types of gas components of the interstellar
medium (ISM) are listed in Table 7.1.

Table 7.1: Components of the interstellar medium (ISM) in the Milky Way disc.

T [K] N(H)[cm−3] gas type main particles

1. 10− 100 103 − 106 molecular clouds H2, dust, CO, ...
2. 100− 1000 ≈ 1− 10 diffuse atomic gas H0, dust, C+, e−, N0, O0,

...
3. ≈ 10000 10− 104 H ii-regions H+, e−, dust, X+i, ...
4. ≈ 10000 ≈ 0.1 diffuse, photo-ionized

gas
H+, e−, dust, X+i, ...

5. ∼> 106 ≈ 10−3 diffuse, collisionally ion-
ized gas

H+, e−, X+i, ...

Pressure equilibrium. The diffuse cold (100 K), warm (10’000 K) and hot components
(106 K) are in rough pressure equilibrium

pISM = nkT
p

k
= nT ≈ 1000 [K/cm3] . (7.1)
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Cold, warm and hot phases. The interstellar gas exists predominantly in three tem-
perature regimes:

– cold gas with T < 1000 K,

– warm gas with T ≈ 10′000− 50′000 K,

– hot gas with T > 106 K.

The existence of these three phases is due to the cooling function Λ(T ) for astrophysical
gas. Gas radiates due to the conversion of thermal energy via particle collisions into
radiation energy which escapes from the region. The cooling is proportional to the particle
density squared, because two particles are required for a collision. The cooling rate is

C = n2Λ(T )

which is given e.g. in [erg/cm3s] for the energy lost per unit volume and time. Most
efficient cooling mechanisms are:

– emission of CO molecular lines for cold molecular clouds and far-IR atomic fine-
structure lines from C II and O I for cold atomic gas,

– emission of nebular lines from ionized atoms, like O II, N II, S II, O III, C IV and
others for warm gas,

– bremsstrahlung for the hot gas.

Figure 7.1: Specific cooling function and the predominant cooling and heating processes.

The heating of the gas can be due to very different processes. For certain temperature
and density regimes there are the following predominant heating processes:

– collisions by cosmic rays, photodissociations of molecules, and gas turbulence for
cold, dense gas, and photo-ionization for cold, diffuse (UV-transparent) gas,

– photo-ionization by stellar UV radiation for warm gas,

– adiabatic shocks from supersonic gas motions for hot gas.
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Important heating processes per volume element are proportional to the particle density
∝ nH. H is the heating function which depends on the gas temperature and density and
the incident energy in the form of radiation or gas motions from outside the gas region.
For a rough pressure and temperature equilibrium we can write:

nH = n2Λ(T ) and p = nkT

or with n = H/Λ(T )
Λ(T )

T
=
kH

p
. (7.2)

Temperature equilibria are reached for a broad range of heating conditions around ≈
10 − 1000 K for cold gas, ≈ 10′000 − 100′000 K for warm gas and > 106 K for hot gas,
because for these temperature regions the specific cooling rate Λ(T )/T has a positive
gradient (see Fig. 7.1).

A positive gradient is required, because if the heating and the gas temperature is slightly
enhanced, then also the cooling must be more efficient, so that the gas temperature remains
in an equilibrium. On the other hand the cooling must be less efficient for less heating
and lower temperatures, so that the gas temperature remains close to the initial state.

If the gradient of Λ(T )/T is negative, then the cooling is less efficient for a slightly enhanced
heating and the gas starts to heat up. Contrary if the heating is slightly lower, then the
cooling becomes more efficient and the gas starts to cool down.

Distribution of the different gas components. The diffuse atomic gas and the
collisionally ionized hot gas (components 2 and 5 in Table 7.1) fill most of the space in
the Milky Way disk, while the molecular gas and the cool atomic gas (components 1 and
2) make up about 90 % of the baryonic mass.

The molecular clouds and H II regions (components 2 and 3) are overdense regions in the
interstellar medium. Molecular clouds are the locations where star formation can occur.
They are localized in the mid-plane of the galactic disk, preferentially but not exclusively
in the spiral arms. High mass stars > 20 M�, which are newly formed in molecular clouds,
are very hot and they emit enough UV radiation to ionize their parent cloud. In this way
the bright H II regions, like the Orion nebula, are formed. In external galaxies the H II
regions trace often nicely the star forming regions located along the spiral arms.

7.1.2 Molecular clouds.

Molecular clouds are overdense regions in the Milky way disk made of molecular H2, CO
and dust predominantly. Because they are dense, their dust and gas is self-shielding the
cloud from stellar optical and UV-light from the outside. Because of this, the molecular
clouds can not be seen in the visual except for the fact that they obscure the object
behind the cloud. The best way to see molecular clouds are CO line observations at
λ = 2.6 mm in the radio range (see Slide 7.1). The dark irregular bands of absorption in
the Milky Way are due to these absorbing clouds. The following types of molecular clouds
are distinguished:

– Bok globules are small, isolated, gravitational bound molecular clouds of ∼< 100 M�
in which at most a few stars are born,
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– molecular clouds have masses of 103 − 104 M� distributed in irregular structures
with dimensions of ≈ 10 pc consisting of clumps, filaments bubbles and containing
usually hundreds of new-born stars,

– giant molecular clouds are just larger than normal molecular clouds with a total
mass in the range 105 − 107 M�, dimensions up to 100 pc, and thousands of young
stars.

Molecular clouds in the solar neighborhood. The sun resides in a hot (106 K), low
density bubble with a diameter of ≈ 50 pc. The nearest star forming clouds are located
at about 140 pc and because of their proximity they are important regions for detailed
investigations of the star and planet formation process (see slide 7.2). Well studied regions
are:

– The Taurus molecular cloud at a distance of about 140 pc is a large, about 30 pc
wide, loose association of many molecular cores with a total mass of about ≈ 104 M�
and several hundred young stars. Because of its proximity there are many well known
prototype objects, like T Tau or AB Aur in this star forming region.

– The ρ Oph cloud at a distance of 130 pc has a denser gas concentration than Taurus
with a main core and several additional smaller clouds and about 500 young stars
with an average age of about 0.2 Myr. The total gas mass is about ≈ 104 M�.

– the Orion molecular cloud complex has a distance of about 400 pc and a diame-
ter of 30 pc. Orion is the nearest high mass star forming region with in total about
10’000 young stars with an age less than 15 Myr. The Orion molecular cloud com-
plex includes the Orion nebula M42 (H II region), reflection nebulae, dark nebulae
(Horsehead nebula), an OB associations mainly located in the Belt and Sword of
the Orion constellation. The Orion nebula is ionized by the brightest star in the
Trapezium cluster (see Slide 7.3).

7.1.3 Elements of star formation

Stars form in dense, molecular clouds. If regions in clouds become dense enough then they
may collapse and form under their own gravitational attraction a sphere which evolves
into a star. The star formation process is very complex involving many different physical
phenomena like the interaction of gas with radiation, hydrodynamics, magnetic fields, gas
chemistry, dust grain evolution, gravitation and more.

Key parameters of the gas must be strongly changed for a transition from a cloud to a
star:

– the density of a cloud must be enhanced from ∼ 10−20 g cm−3 to about 1 g cm−3 in
a star,

– the specific angular momentum (per unit mass) of the gas must be lowered from
∼ 1022 cm2s−1 to about ∼ 1020 cm2s−1 for a binary system or ∼ 1017 cm2s−1 for a
single star with a planetary system,

– and the magnetic energy per unit mass must be lowered from about ∼ 1011 erg g−1

to about ∼ 10 erg g−1.

Thus, star formation means that the gas is strongly compressed by self-gravity, that it
must loose essential all its angular momentum by fragmentation and magnetic breaking,
and it must be strongly de-magnetized by processes like ambipolar diffusion.
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Gravitational equilibrium and Jeans mass. Because molecular clouds live for long
times there must exist, besides an equilibrium for the temperature and the pressure,
also a hydrostatic equilibrium. The virial theorem is valid for systems in a gravitational
equilibrium.

2Ekin + Epot = 0 (7.3)

If we consider a homogeneous (constant density) and isothermal cloud then we can write
for the kinetic (or thermal) energy Ekin = Etherm = 3kTM/2µ. This yields for the virial
theorem:

2 · 3

2

k

µ
T M − 3

5

GM2

R
= 0 (7.4)

This can be rearranged into kT/µ = GM/5R. The third power of this equation and
inserting the mean density of a homogeneous sphere (ρ = 3M/4π R3) provides an estimate
for the equilibrium density or equilibrium mass for a given gas temperature T . These
quantities are called Jeans-mass

MJ =
(375

4π

)1/2 ( k

Gµ
T
)3/2 1

ρ1/2
.

or Jeans-density

ρJ =
375

4π

( k

Gµ
T
)3 1

M2

Example: The Jeans-density for M = M�, T = 10 K and µ = 2.7 is ρJ ≈ 7 · 10−19 g cm−3

equivalent to a particle density (H2) of 2 · 105 cm−3.

The Jeans mass gives for a fixed cloud temperature and density the minimum mass required
for being in gravitational equilibrium. The Jeans mass is smaller for cold, high density
clouds. Similarly, the Jeans density describes for a given cloud mass and temperature
the minimum density which must be achieved to be in a gravitational equilibrium. The
density can be rather low for high mass, cool clouds.

The Jeans-density and Jeans-mass are parameters for an interstellar cloud in a gravita-
tional equilibrium. However it is not clear whether this equilibrium state is stable or
whether already a small disturbance yields a collapse to a star or an expansion and diffu-
sion of the cloud.

For a closed box model the cloud remains in a hydrostatic equilibrium. If the cloud
is slightly compressed then the liberated potential (or gravitational) energy is converted
into thermal energy, which enhances the gas pressure and the system goes back into the
equilibrium state.

Contraction by radiation. A contraction is possible if energy is radiated away. If
contraction occurs then potential energy is converted into kinetic energy ∆Ekin = −∆Epot

and if part of this thermal (or kinetic) energy is radiated away then the system can find
a more compact quasi-equilibrium configuration. According to the virial theorem half of
the liberated potential energy must be radiated away, while the other half is converted
into thermal energy

Lcloud = −1

2
∆Epot and ∆Ekin = −1

2
∆Epot. (7.5)
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The contraction speed depends on the radiation or cooling time-scale:

τcooling ≈
3

2
nkT

1

n2Λ
=

3

2

kT

nΛ
.

The cooling time scales becomes shorter during the collapse because the particle density
increases steadily.

– the contraction is rapid in the optically thin case, because then the radiation can
escape from the entire cloud volume,

– the contraction is slow if the cloud is optically thick, because the radiation can
only escape from the surface.

The virial theorem requires that the cloud temperature raises during contraction if not
radiation is emitted. Thus, contracting clouds heat up. But, because warmer gas emits
more efficiently (as long as it is below T < 1000 K) for higher temperatures (see Fig. 7.1),
the luminosity and therefore the loss of radiation energy of the contracting object becomes
higher until the fast contraction changes into a slow quasi-static contraction when the cloud
becomes optically thick.

Stabilization mechanisms must exist for self-gravitating clouds because else all existing
clouds would collapse in a short timescale. Mechanisms which can stabilize a cloud against
collapse are:

– cloud heating processes, like radiation from external stars, cosmic rays, magneto-
hydrodynamic turbulence and waves, which enhance the gas temperature and the
gas pressure so that the cloud expands,

– angular momentum conservations may inhibit collapse because of enhanced cen-
trifugal forces for more compact and therefore more rapidly rotating clouds,

– magnetic fields, if there are ions in the molecular cloud so that the magnetic
fields are frozen into the plasma and contraction enhances the magnetic pressure
like pmagn ∝ B2

0/r
2
cloud.

Star formation is complicated because so many different processes play a role and from
observations it is often hard to get detailed information about the cloud geometry, heating
processes, specific angular momentum, and magnetic properties of a gas. A few important
aspects of star formation follow from the stabilizing processes discussed above.

Star formation feedback is the influence of new-born stars on their environment. Young
stars have strong outflows and emit energetic radiation which both can heat the surround-
ing cloud and stop the star formation process. On the other hand, this heating produces
over-pressurized bubbles, like the Orion nebula (Slide 4.3), which expand and which may
compress the adjacent gas and trigger the collapse of a cloud. Depending on the details
positive or negative feedback occurs and there is strong observational evidence that both
mechanisms occur. However, many aspects of the star formation feedback are still unclear.

Fragmentation is linked to the Jeans mass. If a cloud contracts isothermally (loss of
energy through radiation) then the density increases and the Jeans mass becomes smaller
like MJ ∝ 1/

√
ρ. Thus, a large contracting cloud can decay in smaller clouds so that

many stars are formed simultaneously in a big cloud complex. Typically there are many
low mass stars formed M < 1 M� but only a few high mass stars M > 1 M�.
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.

Figure 7.2: Schematic illustration of the fragmentation process.

The specific angular momentum of the gas in a molecular cloud is very large when
compared to a contracted proto-stellar clouds. Therefore the angular momentum barrier
inhibits a global contraction of a cloud. However, if subunits can collapse into proto-stars
then the global angular momentum with respect to the entire cloud is preserved as motion
of the proto-stars around the center of gravity. The remaining specific angular momentum
of the gas with respect to the individual proto-stellar cloud unit is then much smaller. The
angular momentum barrier is a second important aspect in favor of cloud fragmentation
and the quasi-simultaneous formation of many stars from big molecular cloud.

Proto-stellar disks and binaries are a further result of the angular momentum conser-
vation. A contracting pre-stellar cloud core needs still to get rid of angular momentum.
Angular momentum transfer via magneto-hydrodynamic processes helps to transport an-
gular momentum away from the contracting cloud.

Another option is the formation of a binary star or a circumstellar disk. Both are
configurations which can “store” more angular momentum than a rapidly rotating star.

Figure 7.3: Schematic illustration of ambipolar diffusion.

Ambipolar diffusion can solve the problem of the magnetic field pressure. A contracting
cloud with charged particles contracts also the galactic magnetic field and will therefore
“feel” soon the magnetic pressure which acts against further contraction. The magnetic
field can move out of a neutral molecular clouds by the so-called ambipolar diffusion.
This leaves in the end compact, demagnetized, cloud cores. The fact that stars form
predominantly in dense, cool, neutral clouds could be due to the lack of magnetic pressure.
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7.1.4 Initial mass function

Collapsing interstellar clouds form stars in the mass range from 0.1 to 100 M�. The initial
mass function (IMF) describes the mass distribution for the formed stars. According to
the classical work of Salpeter (1955), this distribution can be described for stars of about
solar mass and above with a potential law of the form:

dNS

dM
∝M−2.35 for M > M� . (7.6)

This relation is often given as a logarithmic power law of the form

dNS

d logM
∝M−1.35 because

dNS

dM
=

dNS

d logM

d logM

dM
=

1

M

dNS

d logM
.

This is equivalent to a linear fit with slope −1.35 in logM -logNS diagram (Figure 7.4).
This law indicates, that the number of newly formed stars with a mass between 1 and 2
M� is about 20 times larger than the stars with masses between 10 and 20 M�. If we
consider the gas mass of the molecular cloud, then about twice as much gas ends up in
stars between 1 and 2 M� when compared to stars with masses between 10 and 20 M�.
The initial mass function seems to be valid for many regions in the Universe, for the star
formation in small molecular clouds, larger cloud complexes, and the largest star forming
regions in the local Universe. Up to now no star forming regions have been found for
which the Salpeter IMF is a bad description.

For low mass stars the mass distribution shows a turn over. Since M-stars M < 0.5 M�
have a main-sequence life time which is longer than the age of the universe we can just
use as first approximation the frequency of stars with different spectral types as rough
description for the IMF of low mass stars (see also Table 2.4). This distribution shows a
maximum in the range of M3V to M5V stars. Thus the mass distribution has a turn-over
at a mass of about 0.4 M� followed by a rapid drop-off towards substellar objects. The
minimum is around 0.01 M� or 10 MJ at the lower end of the brown dwarf regime. This
is the so-called “brown dwarf desert”. In the planet regime the frequency of object starts
to raise again strongly towards lower masses at least down to ME as demonstrated by the
planet transit statistics from the Kepler satellite.

Figure 7.4: Schematic illustration of the initial mass function for stellar and substellar
objects.
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Considering the complex physics involved in the star formation process it is surprising
that the initial mass function is such an universal law which seems to be valid everywhere
in the Universe. There must be one essential process which dominates the outcome of the
stellar mass distribution. This could be the fragmentation process. Further it seems to
be clear that there are different regimes of formation between stars and planets. The low
frequency of substellar object in the mass range 0.01 - 0.1 M� indicates that such objects
are not easily formed via the normal star forming process, perhaps because the formation
of small fragments or their survival in molecular clouds is rather unlikely. On the other
side the planets are very frequent but seem to form predominantly around stars.

This indicates that there exists a bimodal formation mechanism of hydrostatic astro-
nomical objects.

– stars are formed by the collapse and fragmentation of clouds,

– planets are the result of a formation process in circumstellar disks.

7.1.5 Types of proto-stars

There are different phases in the star formation process, from a collapsing cloud, to a
pre-stellar core, to a proto-star, and a pre-main sequence star. Some of these phases have
specific observational characteristics in the spectral energy distribution (SED). The SED
show the signatures of the following components:

– the Planck-spectrum of the main energy source, with its characteristic peak flux
wavelength for the temperature of the object,

– an infrared excess, if optical to near-IR radiation is absorbed by the circumstellar
material and re-radiated at longer wavelength,

– an UV-visual excess because of energetic processes due to gas accretion onto the
star,

– emission lines if the energetic processes are strong enough to dissociate and ionize
gas.

Figure 7.5: Schematic illustration of the spectral energy distribution for the different types
of young stellar objects.
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According to the presence and characteristics of these features different types of young
stellar objects are distinguished:

– Class 0: The SED peaks in the far-IR or sub-mm part of the spectrum near 100 µm
(30 K), with no flux in the near-IR. These are the dense, pre-stellar cloud cores.

– Class I: They have a flat or rising SED from about 1 µm towards longer wavelengths
indicating that a hot source (≈ 1000 K) is still embedded in a cloud, so that most
radiation from the young stellar object is absorbed and re-radiated as IR-emission
by the circumstellar dust.

– Class II: They have falling SED into the mid-IR and the underlying objects have
the characteristics of so-called classical T Tauri stars or Herbig Ae/Be stars. They
exhibit strong emission lines and often a strong UV excess from the accretion process.
These are the systems with extended circumstellar disks which are strongly irradiated
by the central proto-star.

– Class III: These are pre-main-sequence stars with little or no excess in the IR, but
with still some weak emission lines due to gas accretion. One of the subgroups of
this class are the weak-lined T Tauri stars.

Class II and Class III objects can be placed into the Hertzsprung-Russell diagram if the
temperature and luminosity are corrected for the contribution from the accretion processes.
Compared to normal, main-sequence stars the Class II and Class III objects are located
above the main sequence. These object evolve then “down” to the main-sequence (see
Slide 7.4).

The pre-main-sequence time scale, which describes the quasi-static contraction of a
young star follows from the Virial theorem. The Virial theorem requires that half of the
potential energy gained by the gravitational contraction is radiated away as described by

τKH ≈
Epot

L
≈ GM2

RL
. (7.7)

This time-scale is also called the Kelvin-Helmholtz timescale. For solar parameters there
is τKH ≈ 30 Myr. Pre-main sequence stars start as relatively large ≈ 3 R� and luminous
objects ≈ 10 L� with correspondingly shorter time-scales.
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7.2 Circumstellar disks

Before 1980 there existed only indirect evidence about the presence of circumstellar disk
around young stars. In the 1980’s collimated outflows, so-called jets, could be clearly
associated with young stars (Slide 7.5). Jets are a well known phenomenon of accretion
disks in active galactic nuclei and binaries were mass flows from one component through
an accretion disk onto the companion.

Direct imaging of accretion disk became only possible with high resolution observations
using HST. Edge-on disks could be imaged in nearby star forming regions and in Orion
one could see the dark, light absorbing silhouettes of dusty disks in front of the extended
nebular region (Slide 7.6 and 7.7). Thanks to coronagraphs on HST and ground based AO
instruments with high contrast capabilities it is now possible to take images in scattered
light for face-on proto-planetary disks. Some of the best images of such images were taken
by our ETH group (Slide 7.8). Well resolved images of the gas in proto-planetary disks
are now also possible in the mm-wavelength range using the new ALMA interferometer.

Another type of disk was discovered with the first far-IR satellites. It was recognized
that many (10 %) A-stars exhibit an infrared excess. β Pic is the prototype of these stars
and it shows a disk of dust, similar to the zodiacal dust disk in the solar system (Slide
7.9). The dust in these disk is due to colliding solid bodies (e.g. asteroid and meteoroids)
or evaporating material from comets. Such disk are frequent around young stars and they
are signposts of the early evolution of a planetary system.

All these data show, that disks are an important feature in the star and planet forma-
tion process.

7.2.1 Constraints on the proto-planetary disk of the solar system

We can use the solar system to infer some limits on the angular momentum and the mass
of the circumstellar disk which formed “our” planetary system.

Angular momentum. The angular momentum budget of the solar system can be split
into the angular momentum of the sun and the angular momentum of the planets.
The angular momentum of the Sun can be calculated as for a rotating, spherically sym-
metric sphere

LS =

∫
V

(~r × (~ω × ρ(r)~r))dV = kM�R
2
�ω� = 3 · 1048g cm2 s−1

where k = 0.1 accounts for the radial density distribution ρ(r) of the sun (k = 2/5 for
homogeneous sphere), and ω� = 2.9 · 10−6s−1 = 2π/25 days is the angular velocity of the
solar rotation.
This can be compared to the angular momentum of Jupiter, which is

LJ = aJ
1

2
MJvJ = MJ

√
GM�aJ = 2 · 1050g cm2 s−1 .

The total angular momentum of Jupiter is almost 100 times larger than for the sun. For
the specific angular momentum the contrast is even more dramatic with the material in
the planets having about 105 times more specific angular momentum than the gas in the
sun. Thus there must exist an efficient process which can segregate angular momentum
during the formation of the solar system.
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Mass distribution. The sun contains more than 99 % of the mass of the solar system.
We can deduce how much mass was present in the circumstellar disk for the formation of
the planets. A rough budget for the gas mass and the mass of heavy elements is given in
Table 7.2. This budget provides

– the mass of the heavy elements present now in the planetary system,

– an estimate on the total gas mass available in the pre-solar nebula for planet forma-
tion, if the dust to gas ratio was md/mg ≈ 0.01.

– a comparison with the gas mass and heavy element mass of the sun.

Table 7.2: “Minimum mass limit” for the circumstellar disk required for the formation of
the planetary system.

total mass budget heavy element (h.e.) budget

mass of the sun 2 · 1033 g 1 % h.e. in the sun 2 · 1031 g
mass of giant planets 3 · 1030 g 10 % h.e. in giant planets 3 · 1029 g
mass of terr. bodies 3 · 1028 g 100 % h.e. in terr. bodies 3 · 1028 g

h.e. in all planets 3.3 · 1029 g

mass required for planets
for mg/md = 100

3.3 · 1031 g

Table 7.2 indicates that the heavy elements in the solar system are predominantly > 98 %
located in the sun. The required gas and dust mass for the formation of the planets was
about 1 % of the mass of the sun. This quantity if often called the “minimum mass solar
nebula”. Thus, the required reservoir of mass for the planet formation was small when
compared to the mass required for the sun. A disk mass of about 1 % of the mass of
the central star is in rough agreement with the mass estimates from observations of disks
around young stars.

For our model we distribute the 0.01 M� minimum mass for the solar proto-planetary disk
in rotationally symmetric uniformly annuli. In radial direction we adopt the distribution
of the heavy element mass of the current planetary system times the gas to dust ratio
mg/md. This yields a disk with a surface density distribution of gas according to

Σ = 2 · 103
( r

AU

)−3/2
g cm−2

extending roughly from the orbit of Venus to the orbit of Neptune. At a separation of
1 AU this disk would consist in vertical direction of about 20 g of dust per cm2.

Disk description. For an initial discussion the description of circumstellar disks can be
simplified with several reasonable assumptions:

– the disk is considered to be rotationally symmetric and symmetric with respect to
the disk plane and can be described in an r-z-coordinate system,

– the vertical structure is given by the hydrostatic equilibrium

dP

dz
= −ρ(r, z)gz (7.8)
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– the gas in the disk is assumed to move in quasi-Keplerian orbits and the specific
angular momentum of the disk gas is (using ω =

√
GMS/r3)

`(r) = r2ω =
√
GMSr .

– for thin, low mass disks the gz gravity component is defined by the central star
and there is (tan θ = z/r ≈ sin θ)

gz =
GMS

r2
sin θ =

GMS

r3
z = ω2z

– if the vertical density structure for the thin disk is isothermal P ∝ ρkT/µ = ρc2
s,

where cs is the sound speed then the hydrostatic equilibrium becomes:

dρ

dz
= −ρω

2

c2
s

z

with the solution
ρ(r, z) = ρ0e

−z2/2h2(r) , (7.9)

where h(r) = cs(r)/ω(r) is the vertical scale height and ρ0 = ρ(r, z = 0).

– The surface density

Σ(r) =

∫ +∞

−∞
ρ(r, z) dz (7.10)

is used to describe the radial structure of the disk.

7.2.2 Accretion disks

A disk is active, if it is transferring mass onto the star. This means that mass must flow
inwards in radial direction. This is only possible if this gas loses potential energy and
angular momentum by some processes. Potential energy can be converted into heat and
radiated away. The angular momentum is either redistributed to the outer regions of the
disk or lost by a rotational (magnetically confined) mass outflow.

Energy budget. The general energy budget for accretion disks is defined by the follow-
ing quantities.

– the energy source for the accretion disk is the potential energy of the in-flowing gas:

∆Epot =
GMSṀ

RS
. (7.11)

– a stationary accretion disk is in a gravitational equilibrium state and the virial
theorem is applicable

2Ekin + Epot = 0 .

– The virial theorem requires that half of the potential energy released by the in-
flowing gas is transformed into kinetic energy Ekin which consists mainly of orbital
motion but includes also the heating of the gas

∆Ekin =
1

2
∆Epot ,
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while the other half of the potential energy of the in-flowing gas must be expelled
from the system by radiation or energetic gas outflows. If radiation dominates then
the luminosity of the disk is

Ldisk =
1

2
∆Epot =

1

2

GMSṀ

RS
. (7.12)

– In the boundary layer between disk and star the gas in Keplerian motion must be
decelerated to the surface velocity (rotation) of the star. In this process most of the
orbital energy of the gas is released in complicated energetic processes. We may lump
everything together into a term which stands for the boundary layer luminosity:

L∗ = ∆Ekin =
1

2
∆Epot =

1

2

GMSṀ

RS
.

– Most of the energy of the accretion disk is released at the inner boundary, 75 % of
the energy is released within r < 2 RS

With the accretion formula 7.11 the following accretion luminosities are obtained when
considering both, the radiated energy from the disk and the energy released in the bound-
ary layer.

Lacc[L�] = 0.35
MS [M�] Ṁ [10−8M�/yr]

RS [R�]

An accretion disk may be called active if Lacc ∼> LS and passive if Lacc � LS . In the first
case the disk structure is defined by the accretion flow, while in the second case the disk
structure depends strongly on the irradiation from the star.

Geometric structure of accretion disks. The continuity equation of an accretion
disk can be written as:

r
∂Σ

∂t
+

∂

∂r
(rΣvr) = 0 , (7.13)

where vr is the radial drift velocity with vr < 0 describing inflows.

Similarly one can write the equation for the conservation of angular momentum:

r
∂

∂t
(Σ · r2ω) +

∂

∂r
(rΣvr · r2ω) =

1

2π

∂G

∂r
(7.14)

where G describes the torques (angular momentum transport) for example due to drag or
viscosity effects described by ν. G is

G = 2πr · νΣr
dω

dr
· r ,

where 2πr is the circumference, νΣr dω/dr are the viscous forces and r the length of the
lever arm.
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Stationary accretion disk. For a stationary accretion disk the ∂/∂t-terms in the con-
tinuity equation and the angular momentum equation are zero.

There will be a constant mass flow through the disk:

Ṁ =
dM

dr
= −2πrΣ(r)vr(r) . (7.15)

Similarly the angular momentum transport will be time-independent

Σr3ωvr = νΣr3dω

dr
+ const.

The constant can be evaluated for a good guess of the boundary conditions. It seems
reasonable to assume that the disk gas will be decelerated at the inner boundary r∗ ∼> RS
(see Fig. 7.6), so that there is a radius without differential rotation dω/dr = 0 (and shear
forces).

Figure 7.6: Schematic illustration of the angular velocity of the accreting gas from the
star to the outer disk region.

The resulting integration constant is (for νΣr3 dω/dr|r∗ = 0)

const. ∝ Σr3
∗ω∗vr∗ = −Ṁ

2π
r2
∗ω∗ = −Ṁ

2π
r2
∗

√
GMS

r3
∗

.

With some algebraic transformation one obtains the radial surface density distribution

νΣ =
Ṁ

3π

(
1−

√
r∗
r

)
. (7.16)

Thus, the surface density distribution away from the boundary layer is defined by the
microscopic “viscosity” parameter ν(r)

Σ(r) ∝ 1

ν(r)
.

This indicates that the surface density for a given mass accretion rate is high for radii with
low viscosity and the other way round. Thus, the disk-accretion process is self-regulating,
because a higher density will for most conditions enhance the viscosity and as a result
reduce the surface density.
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Temperature and brightness structure of accretion disks. On can derive a disk
temperature profile using the simple assumption that the loss in potential energy of the
in-falling gas is converted locally (at a given r) into heat and radiated way according to

D(r) =
1

4πr
G
dω

dr
=

9

4
νΣω2

For a disk radiating like a blackbody D(r) = σT 4(r) and considering that the disk radiates
on both sides gives the disk surface temperature distribution as function of radius:

T 4
disk(r) =

3GMS

8πσ

Ṁ

r3

(
1−

√
r∗
r

)
. (7.17)

It is important to note that for r � r∗ away from the boundary layer

– the surface temperature drops with radius like Tdisk(r) ∝ r−3/4 and the temperature
profile does not depend on the viscosity ν,

– the disk brightness and surface brightness is proportional to the mass accretion rate
Ṁ .

Figure 7.7: Spectral energy distribution of an accretion disk.

Spectral energy distribution for accretion disks. The spectral energy distribution
SED) of an accretion disk follows from the integration of the emission from the inner
radius to the outer radius

Fλ ∝
∫ rout

rin

2πr Bλ(T (r)) dr . (7.18)

At long wavelength λ� hc/kT (rout) the SED has the Rayleigh-Jeans slope of

λFλ ∝ λ−3 .

At short wavelength there is the exponential drop defined by the hottest disk region at
the inner boundary

λFλ ∝
e−hc/λkT (rin)

λ−4
.

The middle wavelength region can be evaluated by numerical integration of Eq. (7.18).
There is also an elegant analytical solution which yields

λFλ ∝ λ−4/3 .

The shape of the resulting SED is shown schematically in Fig. 7.7. The SED looks like a
stretched black-body curve. Accreting circumstellar disks produce an infrared excess but
with a declining SED in the IR spectral region.
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Energetic processes in accretion disks. One should not forget that the SED of
an accretion disk comes together with an equally strong emission L∗ ≈ Ldisk from the
boundary layer. Because the involved process are very energetic, the boundary layer
emission is strong in the UV wavelength range, extending up to the X-ray regime, while the
contribution to the IR is relatively small (small emission region). The following processes
may play an important role (see also Fig. 7.8):

– magnetic fields from the central star are so strong that they disrupt the accretion
disk at a distance of about 0.1 AU,

– this boundary layer is approximately at the distance, where the Keplerian angular
velocity of the disk is equal to the stellar angular velocity,

– the gas from the disk will follow the magnetic field lines and falls through accretion
columns onto the star,

– hot spots, emitting far-UV and X-ray radiation, are produced where the gas hits the
stellar photosphere.

– The gas in the vicinity of the star and the innermost part of the accretion disk will
be ionized by the energetic processes. Strong emission lines like Hα, Ca II and others
are produced in this region.

– The gas is accelerated along the open field lines from the star and the disk in a
rotating wind, which carries away a lot of angular momentum. The outflow will
be collimated by the magnetic field at a radius where the velocity of the rotating
magnetic field line approaches the speed of light. This produces the strong jets
observed in many systems.

Figure 7.8: Schematic illustration of energetic processes taking place in accretion disks.

7.2.3 Passive circumstellar accretion disks

A disk is passive if its accretion luminosity is smaller than the irradiated energy from the
star. This condition is valid for accretion rates

Ṁ ∼< 10−8M�yr−1

Classical T Tauri stars have accretion rates which are about 0.1 to 10 times this value.
Thus, the irradiation becomes dominant for the T Tauri stars with low accretion rates.
Weak-line T Tauri stars are all in the regime were irradiation dominates.
The structure of an irradiated disk depends a lot on details as illustrated for a so-called
transition disk (disk with inner hole) in Fig. 7.9. Important aspects are:
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– The radiation from the star decreases like ∝ LS/r2 due to geometric dilution,

– the irradiation at a given radius of the disk depends on the disk flaring, the disk
height to radius factor, which can be written as:

h(r)

r
∝ rβ .

For β = −1 the disk is flat, for β = 0 it is an annulus with a fixed surface slope and
for β > 0, the disk is flared.

– The disk opacity is dominated by the dust particles at the surface of the disk, which
shield the mid-plane from radiation which is therefore colder than the surface,

– the dust in the innermost region of the disk (small r) may be evaporated by the
energetic radiation from the star,

– regions of enhanced irradiation, e.g. the inner disk rim, have enhanced temperatures
and expand vertically, creating shaded disk regions.

Figure 7.9: Schematic illustration of the disk irradiation in passive disks.

Imaging of proto-planetary disk is currently a research field in very rapid evolution. First
images of the scattered light of the central star, scattered by the dust in the surface layer of
the disk have been taken by our ETH group for separations as small as 0.1 arcsec from the
star. This corresponds for objects in nearby star-forming regions to physical separations
of about 15 AU, or close enough to see the expected planet-forming region. Indeed we
see interesting structures, like inner holes, gaps, and spiral structures which could be due
to young planets or planets in formation (see Slide 7.8). We have high expectations for
the SPHERE/VLT instrument which should be the ideal apparatus for even sharper and
deeper disk images.

Also new is the ALMA mm/sum-mm telescope which can trace the gas and the thermal
emission of the cold dust for the same disks with similar resolution as the images shown
in Slide 7.8. It will take only a few year until we have much improved knowledge about
planet-forming disks.
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7.3 Planet formation

The formation of planets occurs in the circumstellar disks around new-born stars. The
formation of terrestrial planets, probably also for giant planets, requires growth of particles
in a stepwise process from micron-sized dust grains to large planets with diameters up to
100’000 km. The mutual interaction between these particles and between the particles
and the gas in the disk depends strongly on the particle size:

– dust particles with r � cm are strongly coupled to the gas,

– “rocks” are objects on the meter scale and their dynamics is determined by gas
drag and Keplerian orbits,

– “planetesimals” are bodies ∼> 1 km up to < 1000 km in radius which are essen-
tially decoupled from the gas. Planetesimals are large enough to grow from smaller
entities via gravitational attraction.

– “terrestrial planets” are big enough to collect all objects in there vicinity by
gravitational attraction and they may become the dominant object in their orbital
region.

– “giant planets” which may form if a planet core becomes large enough to accrete
gas from the disk.

7.3.1 The formation of planetesimals

Aerodynamic drag forces. Aerodynamic drag forces are important for the description
of the dust motion in a gaseous disk. The drag forces are given by

FD = −CD · πa2 · 1

2
ρv2 , (7.19)

where CD is the drag coefficient, πa2 the dust particle cross section, and ρv2/2 the kinetic
energy (describing the transfer of momentum from the gas to the particle per unit time)
of the gas moving with a velocity v relative to the particle.

Small particles: The drag coefficient CD for small particles ( ∼< 1 mm), which are
smaller than the mean free path of the gas molecules, is defined by the mean thermal
velocity vth = (8/π)1/2 cs of the gas particles:

CD =
8

3

vth

v

and the resulting drag forces are:

FD = −4π

3
vth · a2 ρv = −vth · ρv ·

m

aρd
(7.20)

where we used the relation m = (4/3)πa3ρd for the dust particle.

The friction time scale tfric is a key quantity describing the interaction of a solid particles
with the gas. The friction time scale indicates the time scale on which the aerodynamic
drag leads to a change of order unity in the relative motion between a solid object and
the gas

tfric =
mv

|FD|
. (7.21)
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For small particles the friction time scale is

tfric = aρd ·
1

vthρ
, (7.22)

where the first term is the radius and density of the dust particles which is divided by the
kinetic velocity of the gas particles and the gas density.

Two quantities are not expected to change much from disk to disk: the dust particle
density is of the order ρ ≈ g/cm3 and the kinetic velocity of gas particles in the disk is of
the order v̄th ≈ km/s (≈ 100 K). Thus the friction time scale for small particles behaves
like:

tfric[s] =
a [µm]

ρ [10−9g/cm−3]

ρd [1 g/cm−3]

vth [km/s]
.

This formula indicates that the dust particle moves with the gas

– if the dust particles are small (< mm),

– if the gas density is high > 10−11g/cm−3].

A gas density of the order 10−9g/cm−3 is a reasonable value for the mid-plane of a propto-
planetary disk. The friction time scale becomes long, tfric ∼> years, for densities of about
10−12g/cm−3 and cm-sized particles.

Large particles: The drag coefficient CD for larger particles is defined by the Stokes
drag or the (molecular) viscosity ν in the gas. The Reynolds number

Re =
2av

ν

is a dimensionless parameter which describes the flow characteristics (e.g. Re < 1 laminar
flow) and ν ≈ 10−5cm2 s−1 for gases. The drag coefficient can be expressed as a piecewise
function:

– CD = 24 Re−1 for Re < 1,

– CD = 24 Re−0.6 for 1 < Re < 800,

– CD = 0.44 for Re > 800.

Example: The Reynolds number of a rock with a radius > 10 cm will therefore always
be larger than Re > 106 for velocities larger than 1 m/s. Thus the drag force is given by
Equation 7.19 with CD = 0.44. The resulting friction time scale is:

tfrict =
m

0.44 · πa2 · 1
2ρ v

=
18ρda

ρv

where ρd ≈ 3g/cm3. The friction time scale for large particles written in convenient units
is:

tfric[s] = 18 · 106 a [m]

ρ [10−9g/cm−3]

ρd [1 g/cm−3]

v [km/s]
.

Thus, we obtain that the friction time scale of a rock moving with v = 1 km/s is of the
order years. This rough calculation clearly shows that rocks do not couple well to the gas.
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Dust settling. All particles above or below the disk mid-plane will be accelerated grav-
itationally towards z = 0 according to

|Fgrav| = mgz = m
GMS

r3
z = mω2z .

The drag forces counteract, for small particles according to Equation 7.20

|FD| = vth · ρv ·
m

aρd
.

The settling speed follows from |Fgrav| = |FD|

vsettle =
( ω2

vth

)ρd
ρ
a z .

For a = 10 µm size particles the settling speed is of the order cm/s only and the settling
time from a height z = 1 AU becomes

tsettle =
|z|
vsettle

≈ 104yr .

These equations and numbers indicate the following basic aspects of dust settling:

– micron-sized and smaller particles cannot settle in a gaseous disk during the expected
disk lifetime,

– if there are turbulent motions then also particles in the range r ≈ 1− 100µm do not
settle,

– mm and cm - sized particles are the ideal particles for settling in the mid-plane.
They will move with a speed of about 1 m/s towards the mid-plane within about
100 years.

– m-sized rocks do not couple to the gas and they will oscillate around the mid-plane
for quite some time.

Current planet formation models indicate that the settling of the mm-sized particles to
the disk mid-plane is an important first step for the efficient particle growths towards
planetesimals.

Coagulation. Small particles must grow by coagulation. It is clear that this process
can only be efficient if the particle density is high. The best place for coagulation is the
disk mid-plane when some dust has settled. Larger bodies may move faster than the gas
in the disk (see below). In this case fast growth is possible because faster moving small
grains may stick to larger bodies like for hailstones in a ice/water cloud in the Earths
atmosphere. This is just speculation, as we have almost no information about this process
in proto-planetary disks. According to current ideas it seems:

– that small icy dust grain can stick together easily if they collide with small relative
velocities forming in this way particles larger than 1 cm.

– object may grow fast to sizes beyond 1 m if they are immersed in a flow of gas full
of small icy particles, which may build up a large “ice/snow” ball.

It is clear that coagulation is an important step for the formation of planetesimals. How-
ever we have no secure data about how this process works in proto-planetary disks.
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Planetesimal growth by collisions. The collisions of two solid bodies can be divided
into two main categories:

– Collisional growth of the larger body through accretion of a small body where
most of the mass of the impactor becomes part of the final body. One may distin-
guish between impacts which leave the solid structure of the large body essentially
unchanged and impacts which break up (shatter) the target object, which then re-
assembles gravitationally like a rubble pile. In both cases small fragments may be
lost but overall there is a net growth.

– Collisional erosion of a body by the impact of smaller body occurs if the impactor
is just deflected and some fragments of the initial bodies are also lost, so that there
is a net reduction of the mass. One may speak of a catastrophic destruction of
the target into many small objects if the largest fragment is smaller than half the
mass of the initial target.

It is clear that impacts of relatively small objects with small velocities are ideal for the
growth of planetesimals, while impacts of fast and large objects tend to lead to the erosion
or even destruction of a body.

For small objects ( ∼< 10 m) growth or destruction depends a lot on the material strength.
The material strength for rocks are about 10 times higher than for icy objects. Thus icy
objects can be destroyed more easily in a catastrophic event. On the other side, they
are the better targets for “absorbing” low energy impactors. Rocks may just undergo a
collision which deflects the impactor while losing some fragments and some mass.

For larger objects ∼> 1 km the growth or destruction depends on the gravitation. An
object can only be destroyed if the kinetic energy of the impactor (with velocity v and
mass m) is of the order or larger than the gravitational energy of the target with mass M
and radius R:

1

2
mv2 ∼>

GM2

R
.

This relation indicates:

– it is much harder to destroy a high mass objects for a given mass ratio m/M and
relative velocity v,

– for high mass objects the typical mass ratio between impactor and target is smaller,
and therefore the probability for destruction decreases rapidly with mass.

Radial drifts in a gas disk. In the discussion on accretion disks we made the simpli-
fication that the gas is moving essentially with Keplerian speed vK on Keplerian orbits:
This is not fully the case for a gas disk, because the gas particles feels a positive gas
pressure gradient with radius dP/dr > 0. This is equivalent to a reduced gravitational
acceleration and therefore the azimuthal gas velocity is slower than the Keplerian velocity.

vgas = vK(1− ε) .

Depending on the particle size this effect has the following consequences:

– Dust particles < 1 cm are strongly coupled to the gas and they move therefore
together with the gas and there is no differential radial drift between dust and gas.
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– objects in the sizes equal or larger than 1 m “do not feel” the gas pressure gradient
and they move therefore with Keplerian velocity vK which is faster than the gas.
Therefore they encounter a head-wind. This produces for ≈ 1 m sized objects a
substantial radial drift towards the star. The effect on the tangential velocity seems
to be small ε < 0.01, but it is strong enough to induced an inward drift of > 10 m/s.
Therefore the typical accretion time scale for meter-sized objects is very short, of
the order 1000 years or less.

– Larger bodies > 100 m will have a slower radial drift because the friction time scales
is proportional to the size of the objects tfrict ∝ a. Therefore large bodies of > 100 m
are not rapidly removed from the disk but they may still migrate slowly through the
disk.

According to this the radial drift is largest and most critical for meter-sized bodies. The
growth of bodies from cm-size to km-size must be fast and efficient to overcome the removal
of solid bodies from the disk.

7.3.2 Formation of terrestrial planets

Once planetesimals have formed in large numbers there must be a strong evolution towards
a few large planet-sized objects which dominate the system. For example, if the Earth
formed from 5 km sized objects then it is composed of ≈ 109 of these. This means, that
the transformation from planetesimals to proto-planets must be an efficient process.

We can calculate the collision rate, the number of collisions per unit time, of a large body
with radius R passing through a region with a high density n of small objects moving with
typical velocity v.

1

tcoll
= πR2 nv .

The collision rate increases with density (of course) and with the relative velocity v. This
formula does not take into account the gravitational focussing effect which can enhance
the collision rate for small v.

Figure 7.10: Schematic illustration of the gravitational focussing in the rest frame of the
more massive object.

Gravitational focussing. Gravitational focussing is a process which helps to increase
the accumulation of mass onto a large object. We consider the angular momentum con-
servation and the energy conservation of the potential impactor with respect to the large
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matter collecting object (see Fig. 7.10). The initial angular momentum and energy of a
potential impactor are:

L = bv and E =
1

2
mv2 ,

where b is the impact parameters and m the mass of the small object. This must be equal
to the angular momentum and energy at closest approach or minimum separation r0 with
velocity v0:

L0 = r0v0 and E0 =
1

2
mv2

0 −
GMm

r0
.

Because the angular momentum is conserved the minimum separation is r0 = bv/v0 (or
v0 = bv/r0) and with the energy conservation E = E0 we obtain:

1

2
mv2 =

1

2

b2

r2
0

mv2 − GMm

r0
.

We can now replace the minimum separation with the radius R of the accreting large
object. A potential impactor will hit the planetesimal if the impact parameter is smaller
than

b2 = R2
(
1 +

2GM

Rv2

)
= R2

(
1 +

v2
esc

v2

)
. (7.23)

This indicates that the cross section for collecting smaller objects by gravitational attrac-
tion is significantly enhanced with respect to the object size πR2, if the relative velocities
of the potential impactors are small, say smaller than the escape velocity vesc.

For example the escape velocity for Earth is 11 km/s. Thus Earth is capable to sweep
up all objects with a relative velocity less than 100 m/s out to an impact parameter of
b ≈ REvesc/v ≈ 100RE which is beyond the orbit of the moon. For Pluto, which has a
mass of only 0.2 ME , the escape velocity is less, about 1 km/s. However, one can expect a
smaller velocity dispersion so far out in the solar system and therefore the average impact
parameter has a similar value as for Earth.

Oligarchic growth. Due to the gravitational focussing the more massive object grow
faster than small objects. After some time only a few object, the so-called “oligarchs”,
dominate because they have swept up a large fraction of objects along their orbits. The
time scale of this process depends on many details. Important aspects are:

– If orbital eccentricities of the proto-planet and the planetesimals are small then the
relative velocities are small and the gravitational collection of bodies by a proto-
planet is very efficient. However, the proptoplanet can then only collect bodies
along a relatively narrow circular strip and its growth is limited by this.

– If orbital eccentricities of the proto-planet or the planetesimals are larger then the
relative velocities will be higher and the gravitational accumulation will be less ef-
ficient. On the other side, the proto-planet can sweep up much more planetesimals
in a wider radial range in the disk and grow to a bigger planet in the end.

– A particularly favorable case can occur, if there is still some gas in the disk which
introduces a migration of the proto-planet and the planetesimals. Because the radial
drift speed depends on mass (smaller planetesimals move faster in), the collection of
planetesimals by a planet may be particularly efficient.
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The growth of proto-planets is expected to be fast in the beginning and after 105 to 106

years the initial many billions of small km-sized planetesimals will be reduced to the order
of millions with about 100 dominating proto-planets. It may then take 107 or 108 years
to reduce further the population of planetesimals and the stabilization into a planetary
system with 5 to 15 planets. Slide 7.10 shows some snap-shots of a simulation for the
formation of proto-planets from planetesimals.

The proto-planet growth is much faster for short periods objects because it takes certainly
more than 10 to 100 orbits to collect the planetesimals along a circular orbit. Since the
orbital time scales for large separation planets a > 30 AU is about 2 orders of magnitude
longer the growths “out there” is expected to be correspondingly slower.

Of course, if a strong gravitational instability event between two giant planets takes place
then the outcome will not be a system with 5-15 planets on quasi-circular or low eccen-
tricity orbits but only an outer and inner giant planet on eccentric orbits.

If the mass in the planetesimals becomes smaller than the mass in the proto-planets then
the oligarchic growth will stop because there is simply no significant mass left for further
growth.

7.3.3 Gas giant formation

Two theoretical models are put forward for the giant planet formation, the core accretion
model and the disk instability model.

The core accretion model assumes that the core of a giant planet forms like a terrestrial
planet as outlined in the previous section. The key requirements for growth beyond a
planet core are:

– the core must become massive enough to hold a bound atmosphere of hydrogen and
helium gas,

– the core must form fast, before all gas in the disk has been accreted or is dispersed.

These requirement imply that the formation of giant planets via core accretion is most
effective at disk radii where a lot of material can be collected and where the time scale
for accretion is short. An attractive region are disks regions with a separation of about
10 AU around solar mass stars due to the following reasons:

– the ice-line, which is at a separation where water-ice particles in the disk start to
evaporate, is around rice ≈ 3 − 5 AU for solar type stars. Inside rice there will be
much less solid material available and the particles are probably not “sticky”. This
is not ideal for the fast formation of planetary cores.

– The available mass for planet formation decreases for smaller radii in the disk. This
is true despite the fact that the surface density is expected to increase with smaller
radius ∝ 1/r3/2 while the mass per unit annulus width behaves like ∆r ∝ 1/r1/2.
But, at small separation the size of the gravitational potential well of a proto-planet
with given mass is smaller RHill ∝ r so that less mass is available for the planet
formation.

– At large disk radii r > 30 AU the time scale for the accumulation of planetesimals
in a proto-planet becomes too long because this time scale is proportional to the
orbital period.
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A strong argument in favor of the core accretion model is the strong positive correlation
between planet occurrence rate and host star metallicity obtained by the radial velocity
planet surveys. A high metallicity in the disk means a lot of solid material and therefore
a fast planet core formation by the accretion of planetesimals.

The disk instability model is based on the assumption that the disk can collapse
locally under its own gravitation and form a compact gas sphere which evolves into a
giant planet. The process is not much different from the formation of stars in a gas cloud.
The condition that a gravitational instability occurs in a disk is often described by the
Toomre Q parameter (introduced for galactic disks) which must be small:

Q =
csω

πGΣ
< Qcrit ≈ 1 .

One should note that the sound speed cs gives essentially the gas temperature cs =
(kT/µ)1/2. A small Q parameter, a necessary condition for collapse is possible for the
following cases:

– if the surface density Σ of the disk is high (= high disk self-gravity),

– if the temperature (sound-speed) and therefore the gas pressure is small, what can
be achieved if the disk is optically thin for the emission of thermal radiation,

– if the angular velocity is small, because this is equivalent to a small specific angular
momentum with respect to the center of the collapsing disk region.

Models for giant planet formation via disk instabilities indicate that this process could
happen in massive disks at large separations > 30 AU from the central star. The recent
detection of the 4 giant planets in the system HR 8799 at separations of 15, 24, 38 and
68 AU strongly supports the disk instability model. Core accretion is expected to be not
efficient enough for the formation of at least the outermost two planets.


