

Ultrafast Laser Physics

Ursula Keller / Lukas Gallmann

ETH Zurich, Physics Department, Switzerland www.attophys.ethz.ch

Chapter 10: Noise

1Mm

The microwave spectrum analyzer measures the **power spectral density**

$$
S_I(\omega) \propto \left| \tilde{I}(\omega) \right|^2 = F \left\{ \text{corr} \left(I(t), I(t) \right) \right\} = F \left\{ R(\tau) \right\}
$$

autocorrelation function: $R(-\tau) = R(\tau)$

$$
R(-\tau) \equiv \int I(t)I(t-\tau)dt = \text{corr}\left(I(t), I(t)\right) \stackrel{F}{\Longrightarrow} \tilde{I}(\omega)\tilde{I}^*(\omega)
$$

∧Mn

ETHzürich

Ultrafast Lasers book, Subsection 10.3.1

ETH zürich Important: mind the orders of magnitude

$$
\tilde{I}(\omega) = F\{I(t)\} \propto F\{\frac{|E(t)|^2}{\sum_{\text{slowly varying}}}\}
$$
\n
$$
\neq |E(\omega)|^2 = |F\{E(t)\}|^2
$$
\n
$$
S_I(\omega) = \left|\tilde{I}(\omega)\right|^2 \propto \left|F\{|E(t)|^2\}\right|^2
$$
\n
$$
\xrightarrow{\text{fast oscillating}} \frac{\frac{1}{\frac{1}{\omega}}}{\frac{1}{\omega}} \sim \sqrt{\frac{1}{\omega}}
$$
\n
$$
\text{The}
$$

$$
\left|\tilde{I}(\omega)\right|^2 = \tilde{I}(\omega)\tilde{I}^*(\omega) = F\left\{\text{corr}(I(t), I(t))\right\}
$$

Wiener-Khinchin theorem

This is the autocorrelation function for the entire pulse train, not just a single pulse (in contrast to the intensity autocorrelation technique). I.e., time variable spans from –infinity to +infinity.

Modelocked laser without any noise

Pulses like delta-functions

$$
I(t) = I_0 T \sum_{n = -\infty}^{+\infty} \delta(t - nT) \longrightarrow \tilde{I}(\omega) = F\{I(t)\} = 2\pi I_0 \sum_{n = -\infty}^{+\infty} \delta(\omega - n\omega_T)
$$

For more details see: U. Keller et al., *IEEE J. Quantum.Electron.*, **25**, 280 (1989)

ETHzürich

Ultrafast Lasers book, Subsection 10.3.1

Units: dB, dBm, dBc

 $\sqrt{M_{\rm W}}$

$$
dB \equiv 10 \log \frac{P_2}{P_1}
$$

dBm
$$
\equiv 10 \log \frac{P}{1 \text{ mW}}
$$

ETHzürich

ETHzürich

Units: dB, dBm, dBc

nAm

$$
dB \equiv 10 \log \frac{P_2}{P_1}
$$

$$
dBm \equiv 10 \log \frac{P}{1 \text{ mW}}
$$

dBc "how many dB below the carrier"

carrier is the peak of the harmonic signal

Power in noise sidebands

- P_{sb} : power in the intensity sidebands ("two-sided" around harmonics) P_c : peak power of carrier
- peak power of carrier

ETHzürich

f : offset frequency or noise frequency (i.e. deviation from laser harmonics)

nMn

$$
\frac{P_{sb}}{P_c} = 2\int_{nf_T + f_1}^{nf_T + f_2} \frac{P_{sb}(f)/P_c}{B} df \qquad \text{factor 2 because ``two-sided''} \qquad \text{spectral density!}
$$

Quantronix Nd:YLF -60 dBc in 1 kHz bandwidth -80 -100 -120 -140 10^2 $10³$ $10⁴$ $10⁵$ $10⁶$ 10^7 10^1 Offset frequency (Hz)

ETHzürich

rms intensity noise

 \sqrt{M}

P_{sb}: power in the intensity sidebands *Pc* : peak power of carrier

$$
\frac{P_{sb}}{P_c} = 2 \int_{nf_T + f_1}^{nf_T + f_2} \frac{P_{sb}(f)/P_c}{B} df
$$

rms intensity noise or variance of intensity noise:

$$
\sigma_N [\omega_1, \omega_2] = \sqrt{\langle N^2(t) \rangle}
$$

$$
= \sqrt{\frac{1}{\pi} \int_{\omega_1}^{\omega_2} S_N(\omega) d\omega}
$$

$$
\sigma_N\left[f_1,f_2\right] = \sqrt{\frac{P_{sb}}{P_c}}
$$

measurement system (i.e. intensity dependent transmission)

 \sqrt{M}

Attosecond Physics

へハハ

Need a chop frequency of > 100 kHz

Attosecond Physics

Timing jitter

$$
I(t) = I_0 T \sum_{n = -\infty}^{+\infty} \delta(t - nT - \Delta T(t))
$$

$$
\tilde{I}_{\Delta T}(\omega) = F\left\{I_{\Delta T}(t)\right\} = -I_0 \sum_{n=-\infty}^{+\infty} in\omega_T \Delta \tilde{T}(\omega - n\omega_T)
$$

$$
S_{I_{\Delta T}}(\omega) = \tilde{I}_{\Delta T}(\omega) \cdot \tilde{I}_{\Delta T}^*(\omega) = I_0^2(-i) \cdot (+i) \sum_{n=-\infty}^{+\infty} n^2 \omega_T^2 \left[\Delta \tilde{T}(\omega - n\omega_T) \right]^2
$$

$$
S_I(\omega) = 4\pi^2 I_0^2 \sum_{n=-\infty}^{+\infty} \left\{ \delta(\omega - n\omega_T) + \frac{1}{4\pi^2} n^2 \omega_T^2 \left[\Delta \tilde{T}(\omega - n\omega_T) \right]^2 \right\}
$$

 \sqrt{M}

Ultrafast Lasers book, Subsection 10.3.3

 $\sqrt{2}$

 \sqrt{a}

ETHzürich

ETHzürich

Intensity noise and timing jitter

rms and FWHM timing jitter in ps?

$$
\tau_{\Delta T} = \sqrt{8 \ln 2} \,\sigma_{\Delta T} = 2.355 \cdot \sigma_{\Delta T}
$$

ETHzürich

Example:

ETH zürich

 $\sigma_{\Delta T}$ [130 Hz, 20 kHz] $\approx \sigma_{\Delta T}$ [130 Hz, ∞] = 9 ps $\Rightarrow \approx 21$ ps FWHM

<u>-vMm</u>

Attosecond Physics