

Ultrafast Laser Physics

Ursula Keller / Lukas Gallmann

ETH Zurich, Physics Department, Switzerland www.attophys.ethz.ch

Chapter 10: Noise

1Am-

The microwave spectrum analyzer measures the **power spectral density**

$$S_I(\omega) \propto \left| \tilde{I}(\omega) \right|^2 = F \left\{ \operatorname{corr} \left(I(t), I(t) \right) \right\} = F \left\{ R(\tau) \right\}$$

autocorrelation function: $R(-\tau) = R(\tau)$

$$R(-\tau) \equiv \int I(t)I(t-\tau)dt = \operatorname{corr}\left(I(t), I(t)\right) \stackrel{F}{\Longrightarrow} \tilde{I}(\omega)\tilde{I}^{*}(\omega)$$

EHzürich

ETHzürich Important: mind the orders of magnitude

$$\begin{split} \tilde{I}(\omega) &= F\{I(t)\} \propto F\{|E(t)|^2\} \\ &= |E(\omega)|^2 = |F\{E(t)\}|^2 \\ &fast \text{ oscillating} \\ S_I(\omega) &= \left|\tilde{I}(\omega)\right|^2 \propto \left|F\{|E(t)|^2\}\right|^2 \end{split} \text{ True}$$

$$\left|\tilde{I}(\omega)\right|^{2} = \tilde{I}(\omega)\tilde{I}^{*}(\omega) = F\left\{\operatorname{corr}(I(t), I(t))\right\}$$

Wiener-Khinchin theorem

This is the autocorrelation function for the entire pulse train, not just a single pulse (in contrast to the intensity autocorrelation technique). I.e., time variable spans from –infinity to +infinity.

Modelocked laser without any noise

Pulses like delta-functions

$$I(t) = I_0 T \sum_{n = -\infty}^{+\infty} \delta(t - nT) \longrightarrow \tilde{I}(\omega) = F\{I(t)\} = 2\pi I_0 \sum_{n = -\infty}^{+\infty} \delta(\omega - n\omega_T)$$

For more details see: U. Keller et al., *IEEE J. Quantum.Electron.*, **25**, 280 (1989)

TH zürich

Ultrafast Lasers book, Subsection 10.3.1

Units: dB, dBm, dBc

$$dB \equiv 10 \log \frac{P_2}{P_1}$$
$$dBm \equiv 10 \log \frac{P}{1 \text{ mW}}$$

mW	dBm	
0.1 mW	-10 dBm	
1 mW	0 dBm	
10 mW	10 dBm	
100 mW	20 dBm	
1000 mW	30 dBm	
x 2	+ 3 dBm	
20 mW	13 dBm	

cond Physics	~^^///~~~	— ETHzürich

ETH zürich

Units: dB, dBm, dBc

ETH zürich

"how many dB below the carrier"

carrier is the peak of the harmonic signal

$$dB \equiv 10 \log \frac{P_2}{P_1}$$
$$dBm \equiv 10 \log \frac{P}{1 \text{ mW}}$$

mW	dBm	
0.1 mW	-10 dBm	
1 mW	0 dBm	
10 mW	10 dBm	
100 mW	20 dBm	
1000 mW	30 dBm	
x 2	+ 3 dBm	
20 mW	13 dBm	

Power in noise sidebands

- P_{sb} : power in the intensity sidebands ("two-sided" around harmonics)
- P_c : peak power of carrier

ETH zürich

f : offset frequency or noise frequency (i.e. deviation from laser harmonics)

$$\frac{P_{sb}}{P_c} = 2 \int_{nf_T + f_1}^{nf_T + f_2} \frac{P_{sb}(f)/P_c}{B} df \qquad \mbox{factor 2 because "two-sided" spectral density!}$$

E *H* zürich

Quantronix Nd:YLF -60 dBc in 1 kHz bandwidth -80 -100 -120 -140 10² 10⁵ 10⁶ 10^{3} 10^{4} 10^{7} 10^{1} Offset frequency (Hz) P_{sb} : power in the intensity sidebands

 P_c : peak power of carrier

$$\frac{P_{sb}}{P_c} = 2 \int_{nf_T + f_1}^{nf_T + f_2} \frac{P_{sb}(f)/P_c}{B} df$$

rms intensity noise or variance of intensity noise:

$$\sigma_N \left[\omega_1, \omega_2 \right] = \sqrt{\langle N^2(t) \rangle}$$
$$= \sqrt{\frac{1}{\pi} \int_{\omega_1}^{\omega_2} S_N(\omega) d\omega}$$

$$\sigma_N\left[f_1, f_2\right] = \sqrt{\frac{P_{sb}}{P_c}}$$

ETH zürich

rms intensity noise

ETHzürich

measurement system (i.e. intensity dependent transmission)

Need a chop frequency of > 100 kHz

EHzürich

Timing jitter

$$I(t) = I_0 T \sum_{n = -\infty}^{+\infty} \delta \left(t - nT - \Delta T(t) \right)$$

$$\tilde{I}_{\Delta T}(\omega) = F\left\{I_{\Delta T}(t)\right\} = -I_0 \sum_{n=-\infty}^{+\infty} in\omega_T \Delta \tilde{T}(\omega - n\omega_T)$$

$$S_{I_{\Delta T}}(\omega) = \tilde{I}_{\Delta T}(\omega) \cdot \tilde{I}_{\Delta T}^{*}(\omega) = I_{0}^{2}(-i) \cdot (+i) \sum_{n=-\infty}^{+\infty} n^{2} \omega_{T}^{2} \left[\Delta \tilde{T}(\omega - n\omega_{T}) \right]^{2}$$

$$S_I(\omega) = 4\pi^2 I_0^2 \sum_{n=-\infty}^{+\infty} \left\{ \delta(\omega - n\omega_T) + \frac{1}{4\pi^2} n^2 \omega_T^2 \left[\Delta \tilde{T}(\omega - n\omega_T) \right]^2 \right\}$$

ETHzürich

Ultrafast Lasers book, Subsection 10.3.3

60000

ETH zürich

ETHzürich

Intensity noise and timing jitter

rms and FWHM timing jitter in ps?

Example:

THzürich

 $\sigma_{\Delta T} \left[130 \,\mathrm{Hz}, 20 \,\mathrm{kHz} \right] \approx \sigma_{\Delta T} \left[130 \,\mathrm{Hz}, \infty \right] = 9 \,\mathrm{ps} \ \Rightarrow \approx 21 \,\mathrm{ps} \ \mathrm{FWHM}$

ETHzürich