

Ultrafast Laser Physics

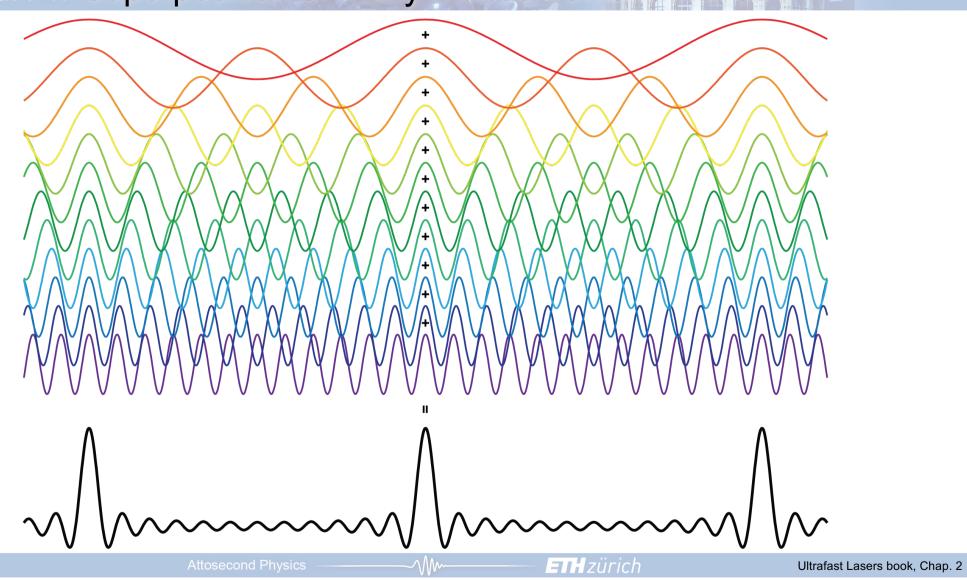
Ursula Keller / Lukas Gallmann

ETH Zurich, Physics Department, Switzerland www.attophys.ethz.ch

Linear pulse propagation

1Am

ETHzürich Superposition of many monochromatic waves



Fourier transformation

Plane wave, monochromatic

 $E(z,t) = E_0 e^{i(\omega t - kz)}$

Inverse Fourier Transformation (for every position in space)

$$E(z,t) = F^{-1}\left\{\tilde{E}(z,\omega)\right\} = \frac{1}{2\pi}\int \tilde{E}(z,\omega)e^{i\omega t}d\omega$$

$$E(t) = \tilde{E}(\omega_1) + \tilde{E}(\omega_2) + \tilde{E}(\omega_3) + \dots$$

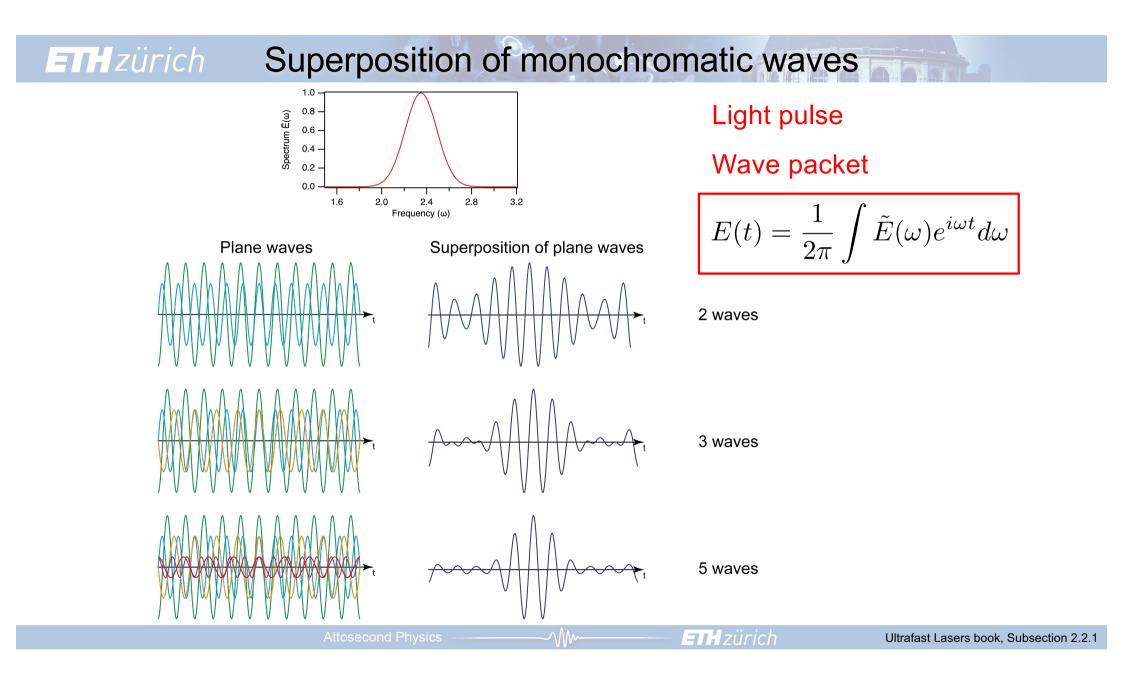
$$= \underbrace{\tilde{E}(\omega_1)}_{t} + \underbrace{\tilde{E}(\omega_2)}_{t} + \underbrace{\tilde{E}(\omega_3)}_{t} + \dots$$

$$E(t) = \frac{1}{2\pi} \int \tilde{E}(\omega) e^{i\omega t} d\omega$$

EHzürich

Fourier Transformation

$$\tilde{E}(z,\omega) \equiv F\left\{E(z,t)\right\} = \int E(z,t)e^{-i\omega t}dt$$



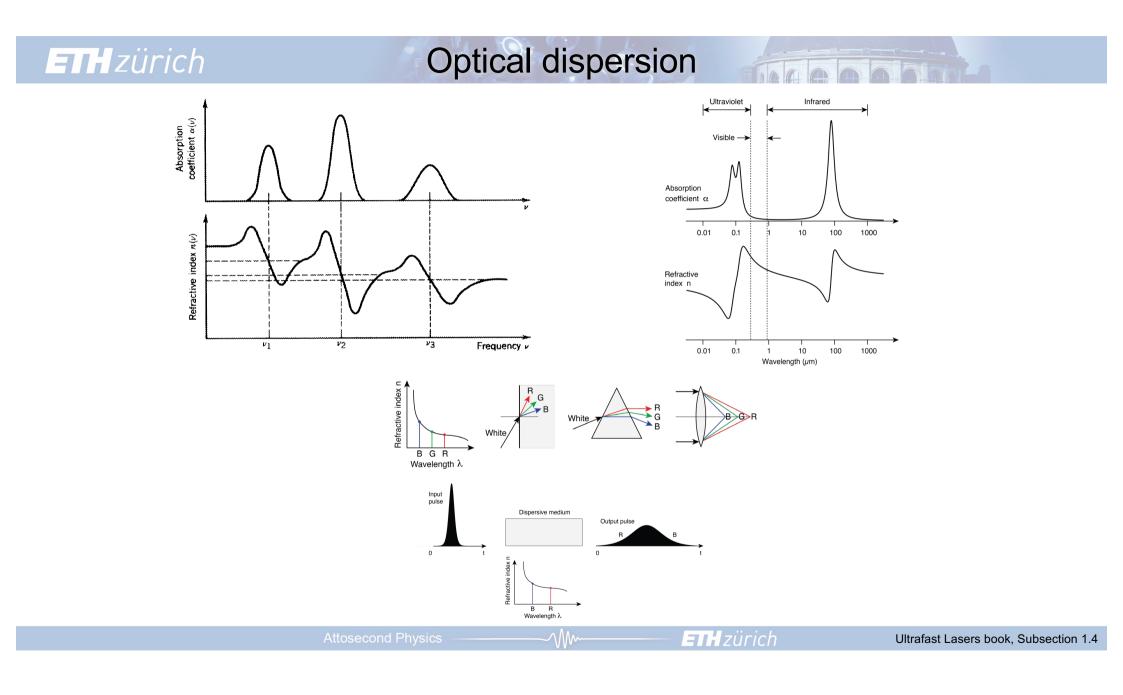
ETH zürich

Monochromatic plane wave

$$E(z,t) = E_0 e^{i(\omega t - k_n z)}$$

	Vacuum	Dispersive material
Frequency	ν	ν
Period	$T = 1/\nu$	$T = 1/\nu$
Phase velocity	$v_p = c$	$v_p = c_n = c/n$
Wave number	$k = \frac{\omega}{c}$	$k_n = \frac{\omega}{v_p} = \frac{\omega}{c}n = kn$
	$k = \frac{2\pi}{\lambda}$	$k_n = \frac{2\pi}{\lambda_n} = kn$
Wavelength	λ	$\lambda_n = \frac{\lambda}{n}$

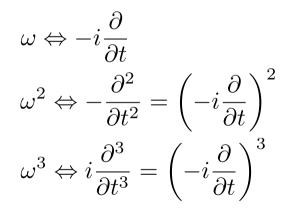
ETHzürich



Helmholtz equation

$E(z,t) = E_0 e^{i(\omega t - kz)}$

Fourier transformation $\tilde{E}(z,\omega) \equiv F\left\{E(z,t)\right\} = \int E(z,t)e^{-i\omega t}dt$ $E(z,t) = F^{-1}\left\{\tilde{E}(z,\omega)\right\} = \frac{1}{2\pi}\int \tilde{E}(z,\omega)e^{i\omega t}d\omega$



$\boxed{\frac{\partial^2}{\partial z^2}E(z,t) - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}E(z,t) = \mu_0 \frac{\partial^2}{\partial t^2}P(z,t)}$		
$\frac{\partial^2}{\partial t^2} \Leftrightarrow -\omega^2$		
$\boxed{\frac{\partial^2 \tilde{E}(z,\omega)}{\partial z^2} + \frac{\omega^2}{c^2} \tilde{E}(z,\omega) = -\mu_0 \omega^2 \tilde{P}(z,\omega)}$		
$\tilde{P}(z,\omega) = \chi(\omega)\varepsilon_0\tilde{E}(z,\omega) = [\varepsilon(\omega) - 1]\varepsilon_0\tilde{E}(z,\omega)$		
$k_n(\omega) = \frac{\omega}{c} n(\omega)$		
$\frac{\partial^2 \tilde{E}(z,\omega)}{\partial z^2} + \left[k_n(\omega)\right]^2 \tilde{E}(z,\omega) = 0$		

$$\tilde{E}(z,\omega) = \tilde{E}_0^+(\omega)e^{-ik_n(\omega)z} + \tilde{E}_0^-(\omega)e^{ik_n(\omega)z}$$

Ultrafast Lasers book, Subsection 2.2.2

Analogy to the Schrödinger equation

Helmholtz equation:

ETHzürich

Wave equation in the spectral domain

$$\frac{\partial^2 \tilde{E}(z,\omega)}{\partial z^2} + \left[k_n(\omega)\right]^2 \tilde{E}(z,\omega) = 0$$

Time independent Schrödinger equation:

free particle

$$\frac{\partial^2 \psi}{\partial x^2} + k^2 \psi = 0$$

particle in a potential field

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{2m}{\hbar^2} \left[E - E_p(x) \right] \psi = 0$$

ETHzürich Dispersion for quantum mechanical particles

 $E = \frac{p^2}{2m}$

Photon in vacuum:

Photon in medium:

Free electron:

Electron in conduction band:

Phonon in 1-dimensional lattice:

 $E = cp \iff \omega(k) = ck$ $E = c_n p_n \quad \Leftrightarrow \quad \omega(k) = c_n k_n$

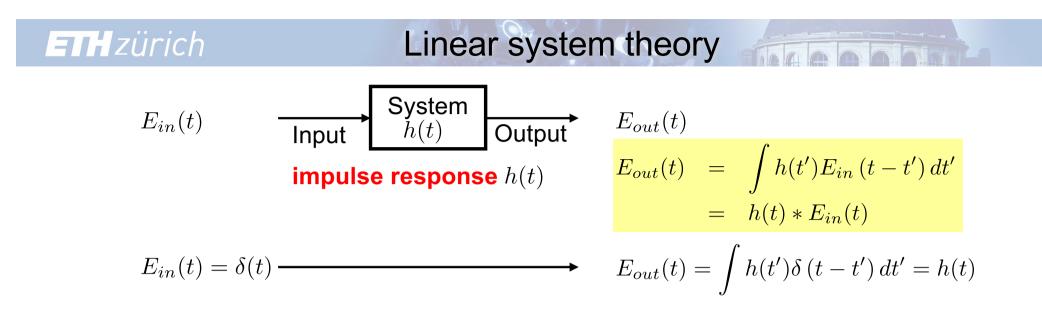
$$v_g\left(\pm k_{\max}\right) = 0$$

 $\omega(k) = 2\sqrt{k}$

-k_{max}

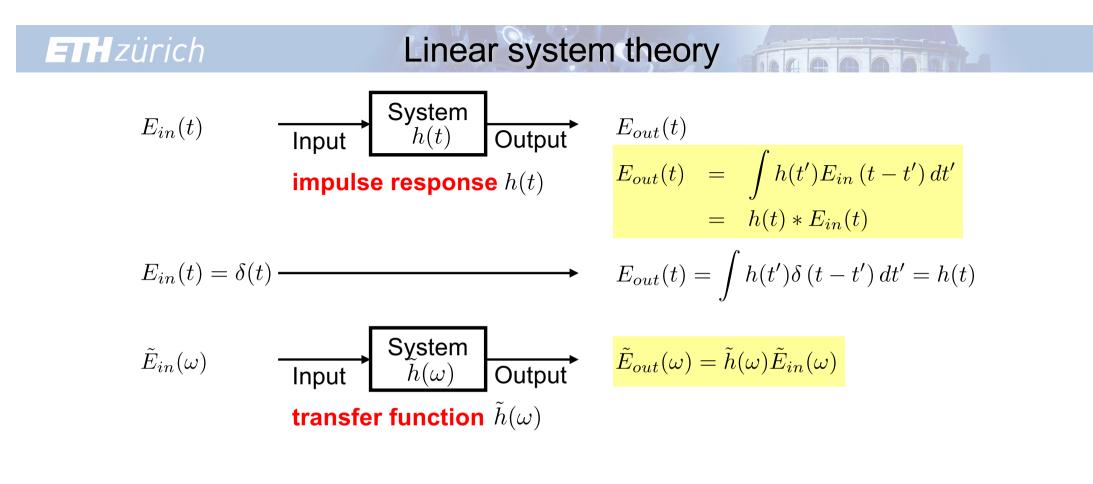
k_{max}

 $\left|rac{eta}{M}\sin\left(rac{1}{2}|m{k}|a
ight)
ight.$

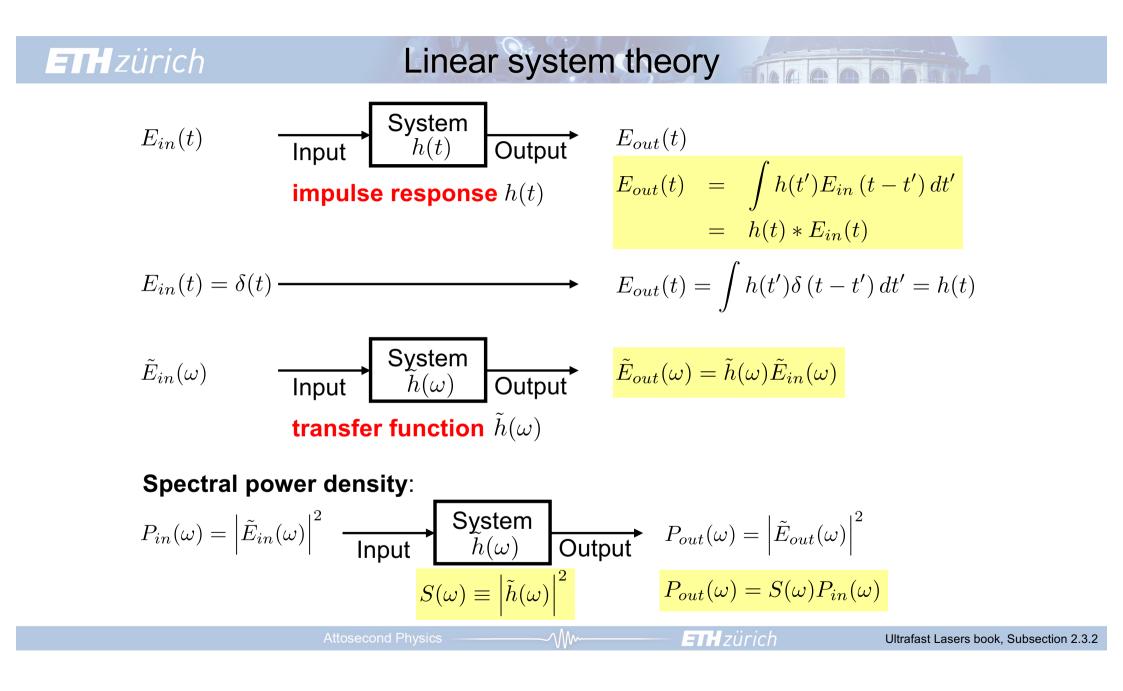


Examples of linear systems:

- pulse propagation in dispersive media
- photo detector (impulse response links photo current with light power or intensity)
- active light modulator in the linear regime
- image propagation through a lens systems
- stochastic processes such as amplitude and phase noise (linearized as a perturbation on a much stronger signal)



Attosecond Physics	Ultrafast Lasers book, Subsection 2.3.2

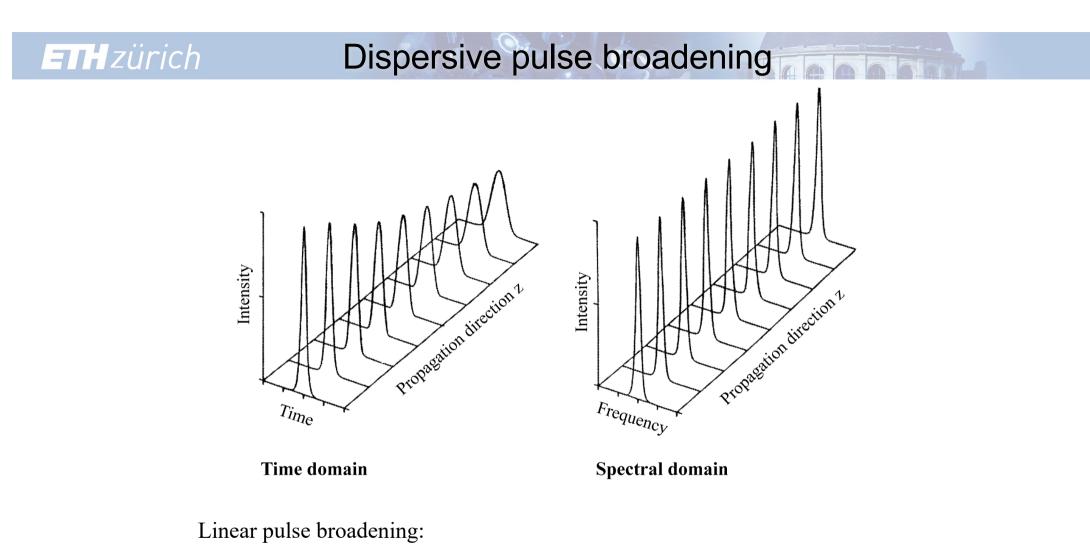


Ellipsich Linear system – example: dispersion

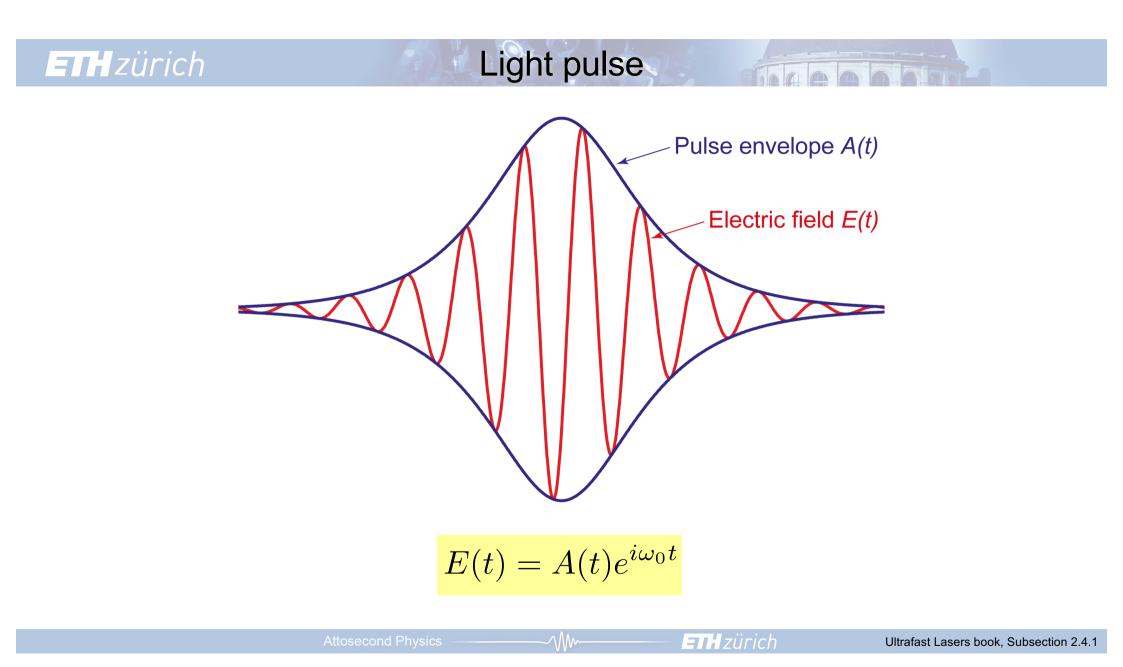
What is the impulse response or transfer function?What is the pulse form during propagation?How is the spectrum of the pulse changing ?

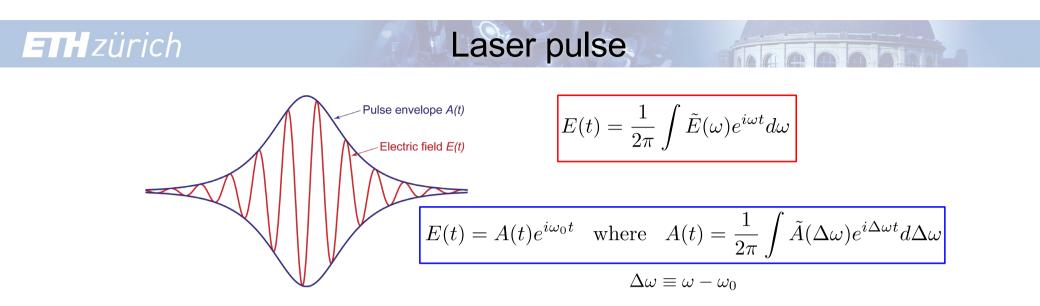
Solution:

Ultrafast Lasers book, Chapter 2, page 34

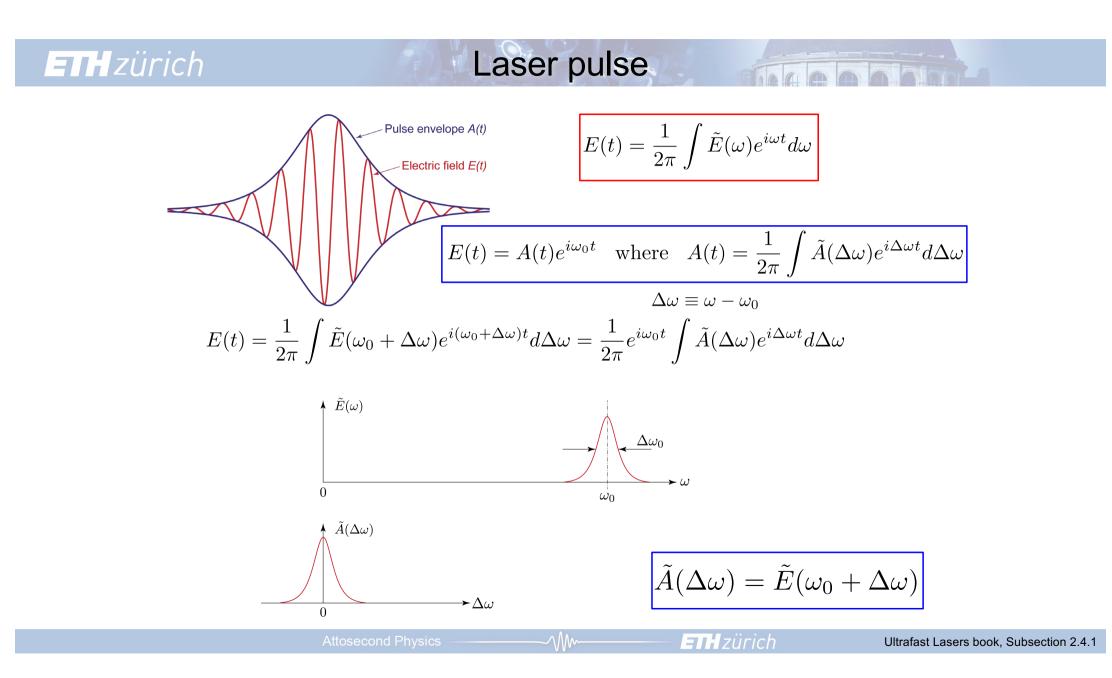


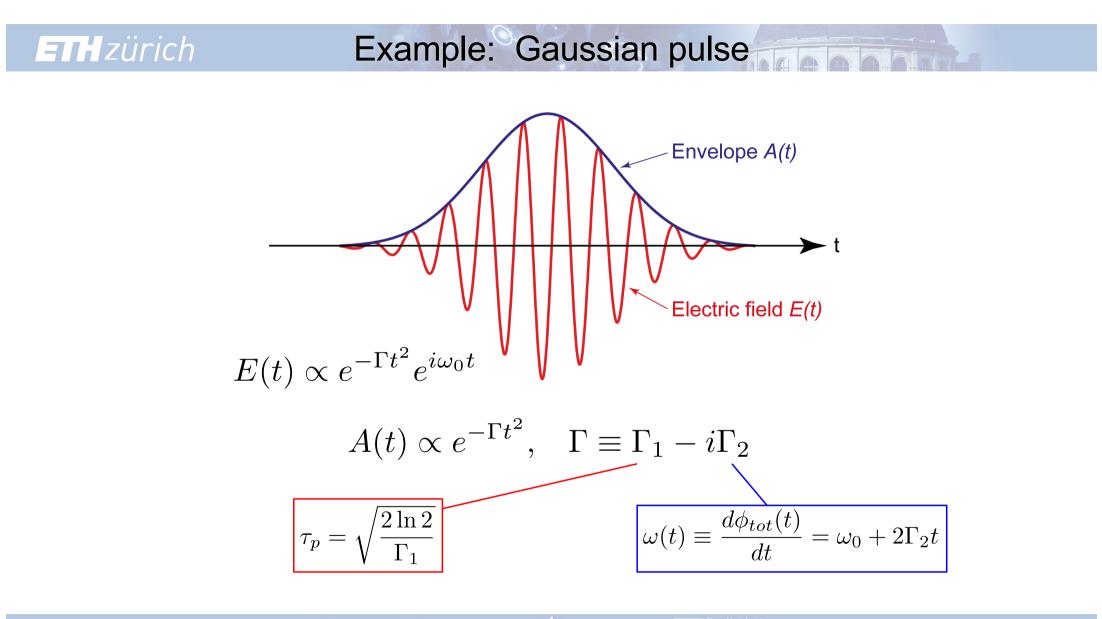
Transform-limited pulse is broadening in the time domain but its spectrum remains unchanged.



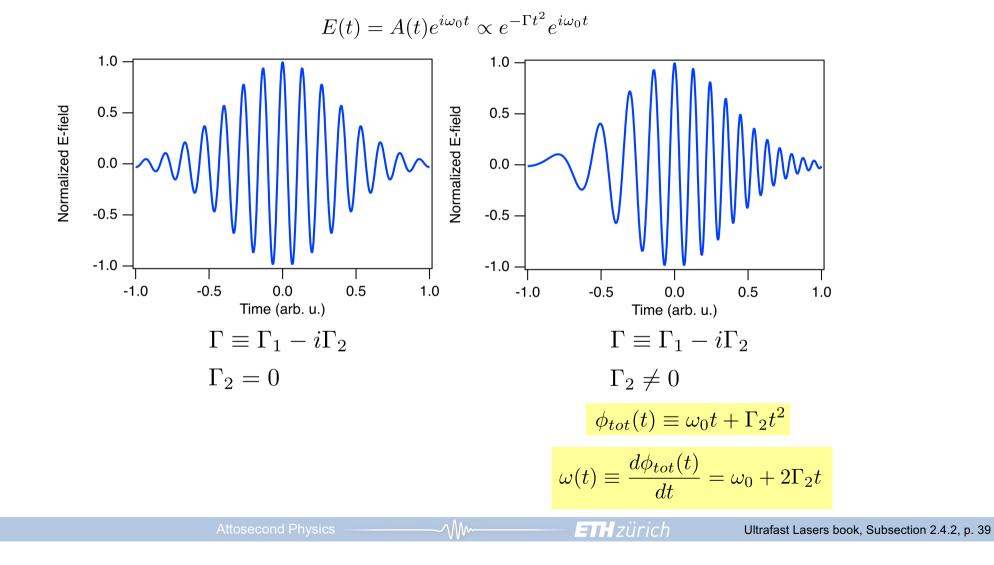


|--|





Chirped Gaussian pulse

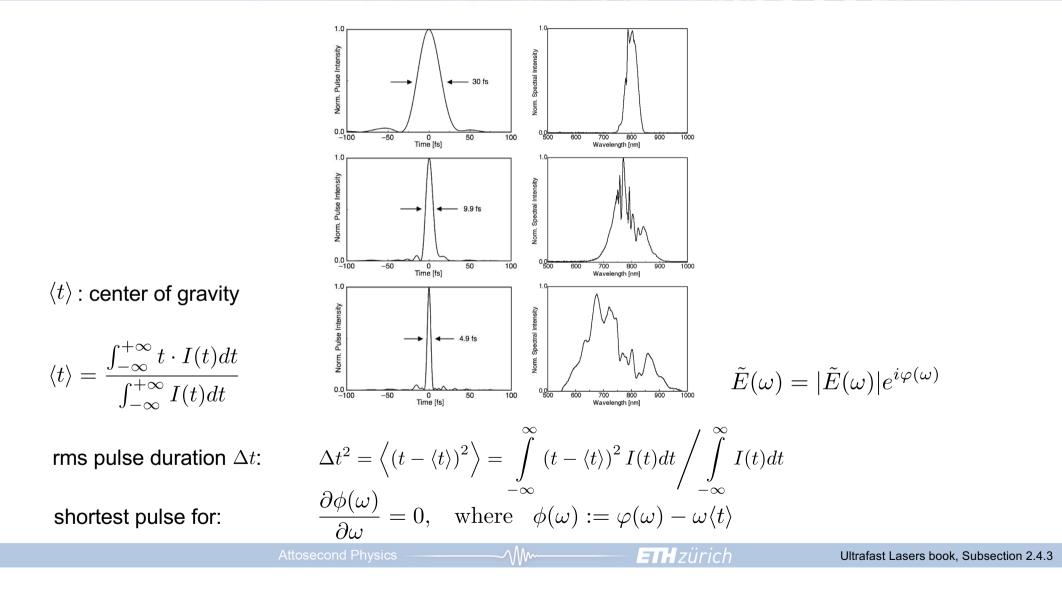


ETH zürich

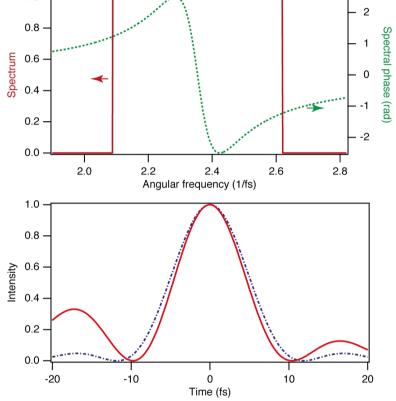
Time-bandwidth products

$I(t) \ (x\equiv t/ au)$	$ au_p/ au$	$\Delta u_p \cdot au_p$
1. Gaussian		
$I(t) = e^{-x^2}$	$2\sqrt{\ln 2}$	0.4413
2. Hyperbolic secant (soliton pulse)		
$I(t) = \mathrm{sech}^2 x$	1.7627	0.3148
3. Rectangle		
$I(t) = egin{cases} 1, & t \leq au/2 \ 0, & t > au/2 \end{cases}$	1	0.8859
4. Parabolic		
$I(t) = \begin{cases} 1 - x^2, & t \le \tau/2\\ 0, & t > \tau/2 \end{cases}$	1	0.7276
5. Lorentzian		
$I(t) = \frac{1}{1+x^2}$	2	0.2206
6. Symmetric two-sided exponent $I(t) = e^{-2 x }$	$\ln 2$	0.1420

Ell zürich Spectral phase yielding shortest pulse

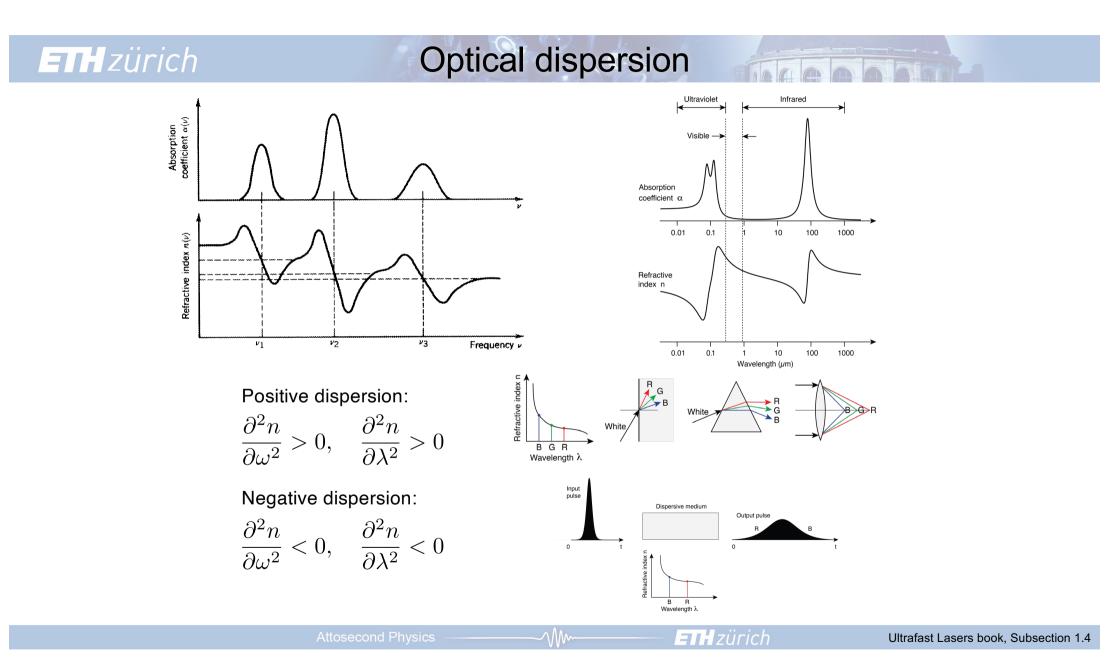


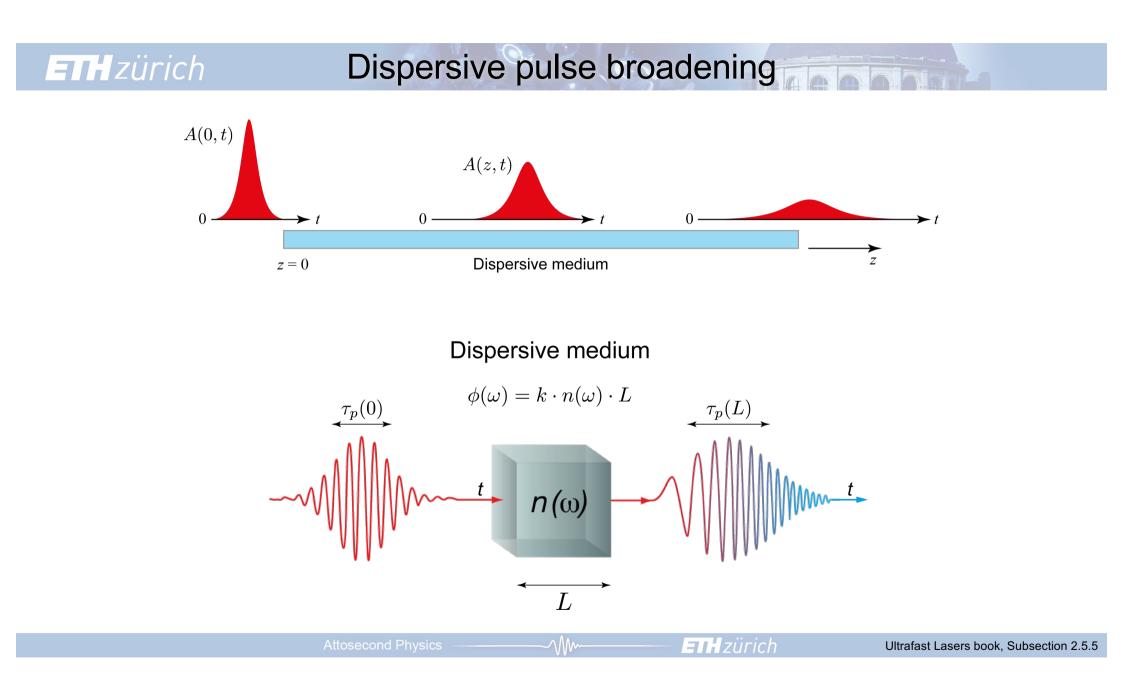
ETHzürich Inappropriateness of FWHM definition



Temporal FWHM of pulse with nonlinear spectral phase is shorter than "transform-limited" pulse

FWHM is the standard in the community – but one has to be aware of its limitations





Linear pulse propagation

 $\Delta\omega\equiv\omega-\omega_0$

Helmholtz equation:

$$\frac{\partial^2 \tilde{E}(z,\omega)}{\partial z^2} + \left[k_n(\omega)\right]^2 \tilde{E}(z,\omega) = 0$$

 $\tilde{E}(z,\omega_0+\Delta\omega) = \tilde{A}(z,\Delta\omega)e^{-ik_n(\omega_0)z}$

$$\tilde{A}(z,\Delta\omega) = \int A(z,t) e^{-i\Delta\omega t} dt$$

$$\frac{\partial^2}{\partial z^2} \tilde{A}(z, \Delta \omega) - 2ik_n(\omega_0) \frac{\partial}{\partial z} \tilde{A}(z, \Delta \omega) - [k_n(\omega_0)]^2 \tilde{A}(z, \Delta \omega) + [k_n(\omega_0 + \Delta \omega)]^2 \tilde{A}(z, \Delta \omega) = 0$$

"slowly varying envelope approximation"

$$\left|\frac{\partial A}{\partial z}\right| \ll \left|k_n(\omega_0)A\right|, \quad \left|\frac{\partial A}{\partial t}\right| \ll \left|\omega_0A\right|$$

$$\frac{\partial}{\partial z}\tilde{A}(z,\Delta\omega) + i\Delta k_n\tilde{A}(z,\Delta\omega) = 0$$

$$\Delta k_n \equiv k_n(\omega_0 + \Delta \omega) - k_n(\omega_0)$$

THzürich

Very simple equation of motion for the pulse envelope in the spectral domain with a very easy solution (i.e. a phase shift $\Delta k_n z$ for each frequency component)

$$\tilde{A}(z,\Delta\omega) = \tilde{A}(0,\Delta\omega)e^{-i\Delta k_n z} = \tilde{A}(0,\Delta\omega)e^{-i[k_n(\omega_0+\Delta\omega)-k_n(\omega_0)]z}$$

First and second order dispersion

Taylor expansion around the center frequency ω_0 : $\Delta \omega = \omega - \omega_0$

$$k_n(\omega) \approx k_n(\omega_0) + k'_n \Delta \omega + \frac{1}{2} k''_n \Delta \omega^2 + \cdots$$

ETHzürich

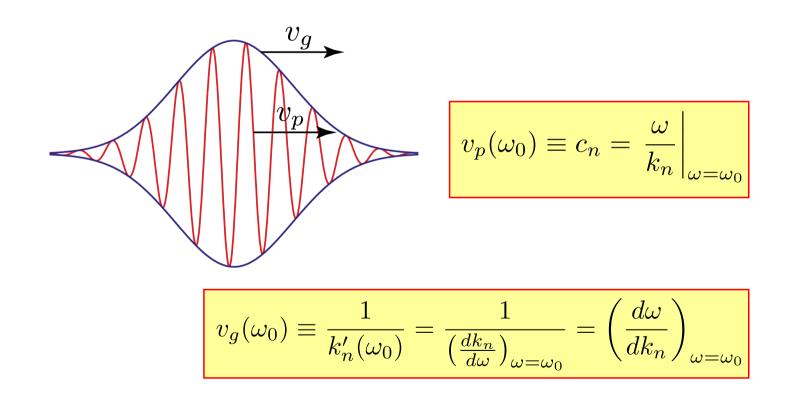
First order dispersion: $k'_n = dk_n/d\omega$

Second order dispersion: $k_n'' = d^2 k_n / d\omega^2$

Phase and group velocity

EHzürich

$$E(z,t) \propto \exp\left[i\omega_0\left(t - \frac{z}{v_p(\omega_0)}\right)\right] \cdot \exp\left[-\Gamma(L_d) \cdot \left(t - \frac{z}{v_g(\omega_0)}\right)^2\right]$$



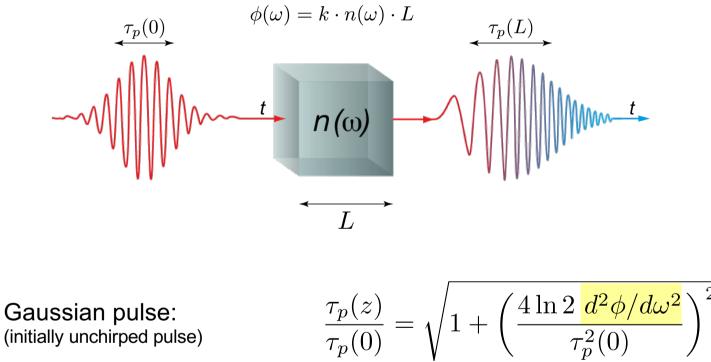
Ultrafast Lasers book, Subsection 2.5.4

ETH zürich

Dispersive pulse broadening

EHzürich

Dispersive medium

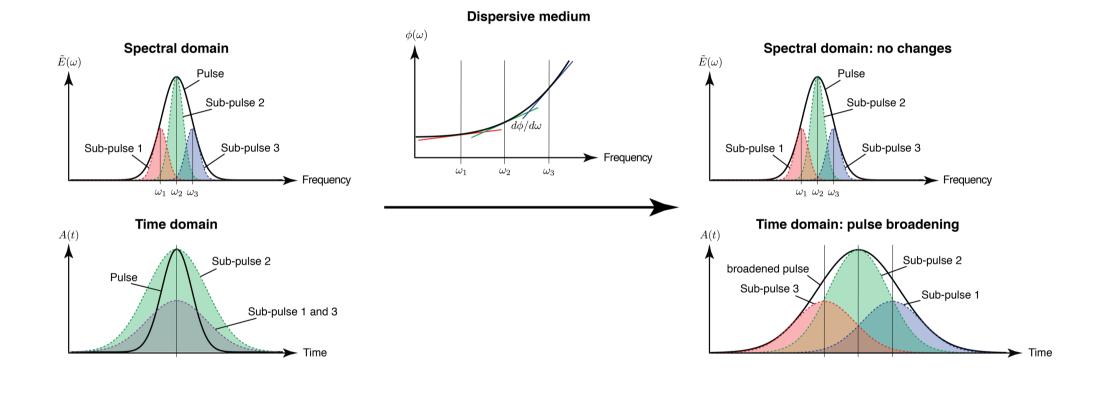


Approximation for (strong pulse broadening) $\frac{d^2\phi}{d\omega^2} \gg \tau_p^2(0) \qquad \tau_p(z) \approx \frac{d^2\phi}{d\omega^2} \Delta \omega_p$

Ultrafast Lasers book, Subsection 2.5.5

ETH zürich

Dispersive pulse broadening



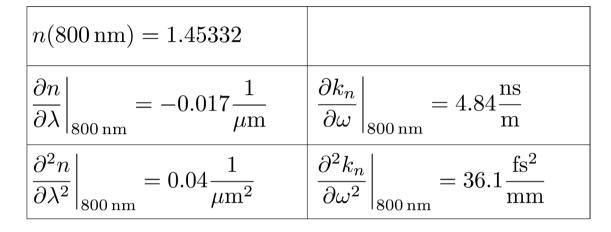
Attosocond Physics	Ultrafast Lasers book, Subsection 2.5.6
Auoseconu Physics	Unitatasi Lasers DOOK, Subsection 2.5.0

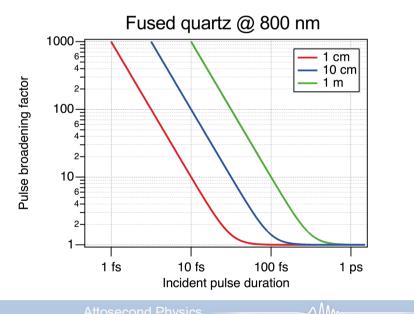
Phase Velocity v_p	$rac{\omega}{k_n}$	$\frac{c}{n}$
Group Velocity v_g	$rac{d\omega}{dk_n}$	$\frac{c}{n} \frac{1}{1 - \frac{dn}{d\lambda} \frac{\lambda}{n}}$
Group Delay T_g	$T_g = \frac{z}{v_g} = \frac{d\phi}{d\omega}, \ \phi \equiv k_n z$	$\frac{nz}{c}\left(1-\frac{dn}{d\lambda}\frac{\lambda}{n}\right)$
Dispersion 1. Order (Group Delay, GD)	$rac{d\phi}{d\omega}$	$\frac{nz}{c}\left(1-\frac{dn}{d\lambda}\frac{\lambda}{n}\right)$
Dispersion 2. Order (Group Delay Dispersion, GDD)	$\frac{d^2\phi}{d\omega^2}$	$\frac{\lambda^3 z}{2\pi c^2} \frac{d^2 n}{d\lambda^2}$
Dispersion 3. Order (Third-Order Dispersion, TOD)	$\frac{d^3\phi}{d\omega^3}$	$\frac{-\lambda^4 z}{4\pi^2 c^3} \left(3\frac{d^2 n}{d\lambda^2} + \lambda \frac{d^3 n}{d\lambda^3} \right)$
Attosecond Phys	ics	– ETH zürich UI

Ultrafast Lasers book, Subsection 2.5.6

ETH zürich

Example: fused quartz





Example:

EHzürich

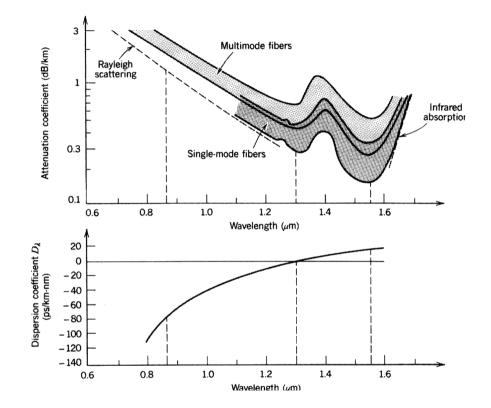
What is the final pulse duration:

10 fs pulse through 10 lenses, each 1 cm thick?

10 fs pulse through 10 cm fused quartz?

Ultrafast Lasers book, Subsection 2.5.5

Optical communication



$\lambda_0 [\mu m]$	Losses [dB/km]	2 nd order dispersion [ps/km·nm]	GVD: $D_{\lambda} \equiv -\frac{1}{L_F} \frac{dT_g}{d\lambda} = \frac{\omega^2}{2\pi c L_F} \frac{dT_g}{d\omega} \implies \text{units:} \frac{\text{ps}}{\text{km} \cdot \text{nm}}$
0.87	1.5	-80	
1.312	0.3	0	$\frac{1}{2} \tau_p(L_d) \approx \frac{d^2 \phi}{d\omega^2} \Delta \omega = \frac{2\pi c L_d D_\lambda}{\omega^2} \Delta \omega = D_\lambda \cdot L_d \cdot \Delta \lambda$
1.55	0.16	+17	$\Box \tau_p(L_d) \approx \frac{1}{d\omega^2} \Delta \omega = \frac{1}{\omega^2} \Delta \omega = D_\lambda \cdot L_d \cdot \Delta \lambda$

ETHzürich

Ultrafast Lasers book, Subsection 2.5.7

Physics ———

. . .

Higher order dispersion

$$\phi(\omega) = \phi_0 + \frac{\partial \phi}{\partial \omega} (\omega - \omega_0) + \frac{1}{2} \frac{\partial^2 \phi}{\partial \omega^2} (\omega - \omega_0)^2 + \frac{1}{6} \frac{\partial^3 \phi}{\partial \omega^3} (\omega - \omega_0)^3 + \dots$$

First order dispersion (group delay) $\partial \phi / \partial \omega$ Second order dispersion (group delay dispersion - GDD) $\partial^2 \phi / \partial \omega^2$ Third order dispersion (TOD) $\partial^3 \phi / \partial \omega^3$

Ellipsich Wigner representation of ultrashort pulses

Wigner distribution:

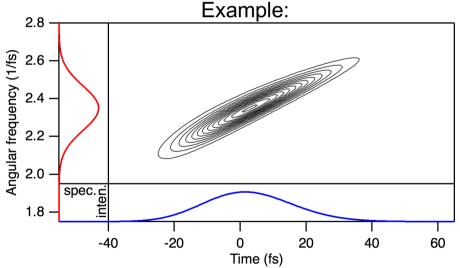
$$W(t,\omega) = \int_{-\infty}^{\infty} E\left(t + \frac{t'}{2}\right) E^*\left(t - \frac{t'}{2}\right) e^{-i\omega t'} dt'$$

"window" function

$$W(t,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{E}\left(\omega + \frac{\omega'}{2}\right) \tilde{E}^*\left(\omega - \frac{\omega'}{2}\right) e^{i\omega't} d\omega'$$

Time-frequency representation / windowed Fourier transform / "instantaneous spectrum vs time"

• $I(t) = |E(t)|^2 = \int_{-\infty}^{\infty} W(t,\omega)d\omega$ • $I(\omega) = |\tilde{E}(\omega)|^2 = \int_{-\infty}^{\infty} W(t,\omega)dt$

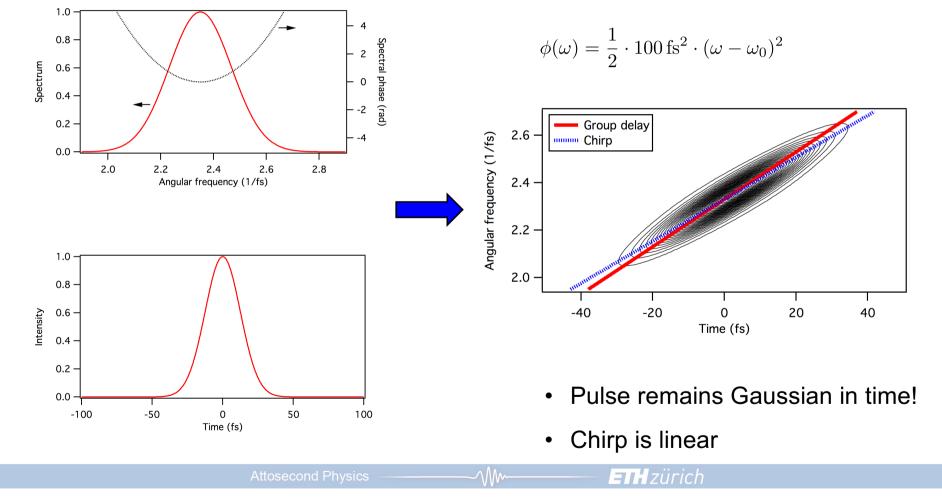


 Linear propagation in non-absorbing medium conserves area (≘ minimum time-bandwidth product)

cond Physics ________ Am-_____ III zürich

ETHzürich Effect of dispersion orders on Wigner trace

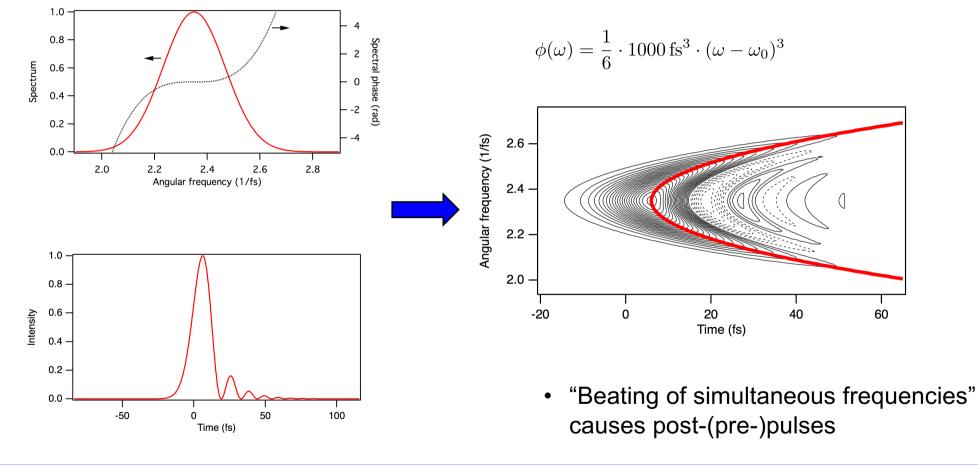
Everything calculated for an initially 10-fs long Gaussian pulse After 100 fs² of GDD:



ETHzürich Effect of dispersion orders on Wigner trace

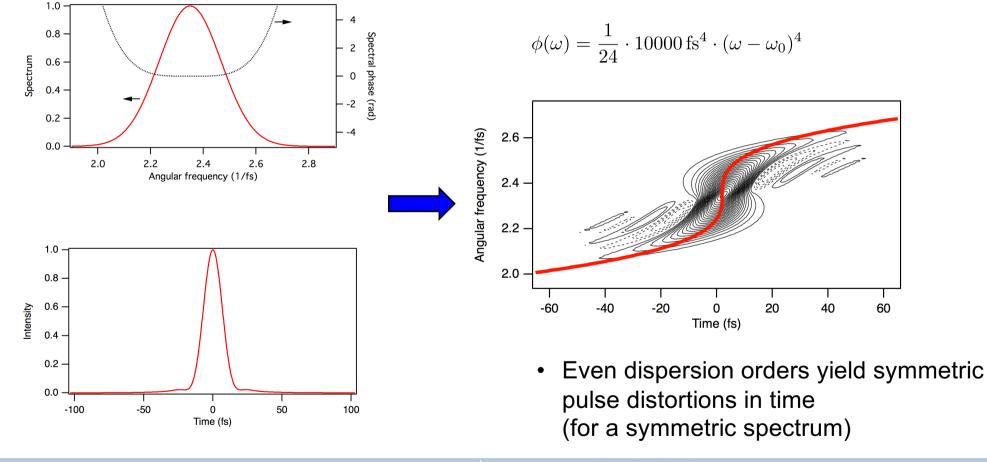
Everything calculated for an initially 10-fs long Gaussian pulse After 1000 fs³ of TOD:

EHzürich



ETHzürich Effect of dispersion orders on Wigner trace

Everything calculated for an initially 10-fs long Gaussian pulse After 10000 fs⁴ of FOD:

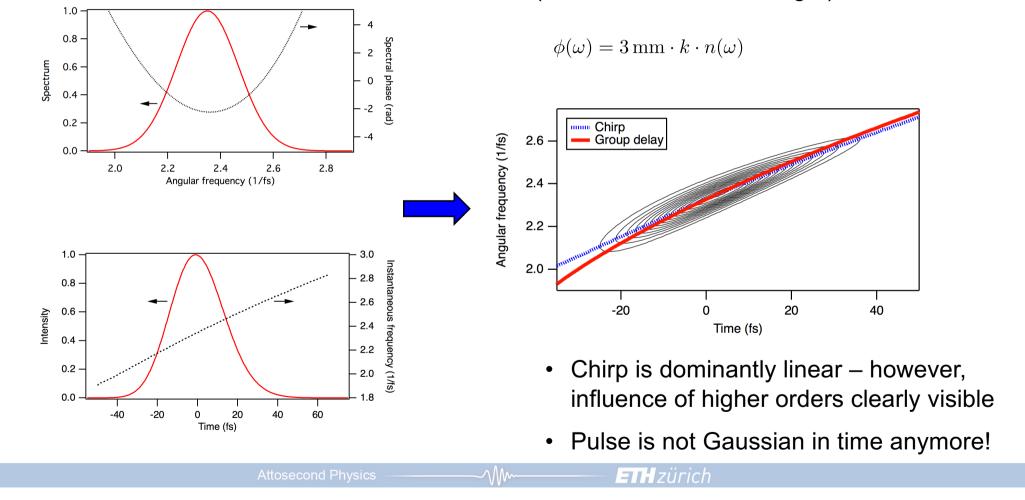


·-----^//

ETHzürich

Pulse after 3 mm of fused silica

Everything calculated for an initially 10-fs long Gaussian pulse After 3 mm of fused silica (800 nm center wavelength):



EHzürich

ETH zürich

Higher order dispersion

Material	Refractive index $n(\lambda)$	Propagation constant $k_n(\omega)$
	At 800 nm	At 800 nm
Fused quartz	$n(800\mathrm{nm}) = 1.45332$	
	$\left. \frac{\partial n}{\partial \lambda} \right _{800\mathrm{nm}} = -0.017 \frac{1}{\mu\mathrm{m}}$	$\left. \frac{\partial k_n}{\partial \omega} \right _{800 \mathrm{nm}} = 4.84 \cdot 10^{-9} \frac{\mathrm{s}}{\mathrm{m}}$
	$\left. \frac{\partial^2 n}{\partial \lambda^2} \right _{800 \text{ nm}} = 0.04 \frac{1}{\mu \text{m}^2}$	$\left. \frac{\partial^2 k_n}{\partial \omega^2} \right _{800 \text{nm}} = 3.61 \cdot 10^{-26} \frac{\text{s}^2}{\text{m}} = 36.1 \frac{\text{fs}^2}{\text{mm}}$
	$\left. \frac{\partial^3 n}{\partial \lambda^3} \right _{800 \mathrm{nm}} = -0.24 \frac{1}{\mu \mathrm{m}^3}$	$\left. \frac{\partial^3 k_n}{\partial \omega^3} \right _{800 \mathrm{nm}} = 2.74 \cdot 10^{-41} \frac{\mathrm{s}^3}{\mathrm{m}} = 27.4 \frac{\mathrm{fs}^3}{\mathrm{mm}}$
SF10-glass	$n(800\mathrm{nm}) = 1.71125$	
	$\left. \frac{\partial n}{\partial \lambda} \right _{800\mathrm{nm}} = -0.0496 \frac{1}{\mu\mathrm{m}}$	$\left. \frac{\partial k_n}{\partial \omega} \right _{800 \text{ nm}} = 5.70 \cdot 10^{-9} \frac{\text{s}}{\text{m}}$
	$\left \left. \frac{\partial^2 n}{\partial \lambda^2} \right _{800 \text{ nm}} = 0.176 \frac{1}{\mu \text{m}^2}$	$\left. \frac{\partial^2 k_n}{\partial \omega^2} \right _{800 \mathrm{nm}} = 1.59 \cdot 10^{-25} \frac{\mathrm{s}^2}{\mathrm{m}} = 159 \frac{\mathrm{fs}^2}{\mathrm{mm}}$
	$\left \frac{\partial^3 n}{\partial \lambda^3} \right _{800 \text{ nm}} = -0.997 \frac{1}{\mu \text{m}^3}$	$\left. \frac{\partial^3 k_n}{\partial \omega^3} \right _{800 \mathrm{nm}} = 1.04 \cdot 10^{-40} \frac{\mathrm{s}^3}{\mathrm{m}} = 104 \frac{\mathrm{fs}^3}{\mathrm{mm}}$
Sapphire	$n(800\mathrm{nm}) = 1.76019$	
	$\left. \frac{\partial n}{\partial \lambda} \right _{800\mathrm{nm}} = -0.0268 \frac{1}{\mu\mathrm{m}}$	$\left. \frac{\partial k_n}{\partial \omega} \right _{800 \text{ nm}} = 5.87 \cdot 10^{-9} \frac{\text{s}}{\text{m}}$
	$\left. \frac{\partial^2 n}{\partial \lambda^2} \right _{800 \text{ nm}} = 0.064 \frac{1}{\mu \text{m}^2}$	$\left. \frac{\partial^2 k_n}{\partial \omega^2} \right _{800 \mathrm{nm}} = 5.80 \cdot 10^{-26} \frac{\mathrm{s}^2}{\mathrm{m}} = 58 \frac{\mathrm{fs}^2}{\mathrm{mm}}$
	$\left \frac{\partial^3 n}{\partial \lambda^3} \right _{800 \text{ nm}} = -0.377 \frac{1}{\mu \text{m}^3}$	$\left. \frac{\partial^3 k_n}{\partial \omega^3} \right _{800 \mathrm{nm}} = 4.21 \cdot 10^{-41} \frac{\mathrm{s}^3}{\mathrm{m}} = 42.1 \frac{\mathrm{fs}^3}{\mathrm{mm}}$

Ultrafast Lasers book, Subsection 2.5.5

Attosecond Physics

– ETHzürich

EHzürich Higher order dispersion $\phi(\omega) = \phi_0 + \frac{\partial \phi}{\partial \omega} (\omega - \omega_0) + \frac{1}{2} \frac{\partial^2 \phi}{\partial \omega^2} (\omega - \omega_0)^2 + \frac{1}{6} \frac{\partial^3 \phi}{\partial \omega^3} (\omega - \omega_0)^3 + \dots$ First order dispersion (group delay) $\frac{\partial \phi}{\partial \omega}$ Second order dispersion (group delay dispersion - GDD) $\partial^2 \phi / \partial \omega^2$ Third order dispersion (TOD) $\frac{\partial^3 \phi}{\partial \omega^3}$. . . GDD becomes important, when: $GDD > \tau_0^2$ TOD becomes important, when: $TOD > \tau_0^3$ Dispersion lengths: $L_D \equiv \frac{\tau_0^2}{|k''_p|}, \quad L'_D \equiv \frac{\tau_0^3}{|k'''_p|} \qquad \frac{\tau_p(z)}{\tau_p(0)} \approx z \sqrt{1 + \frac{1}{L_D^2} + \frac{1}{4L'_D^2}}$ **Gaussian pulse** $E(t) \propto \exp\left(-\frac{t^2}{2\tau^2}\right) \Rightarrow \tau_p = 2\sqrt{\ln 2\tau} = 1.665\tau$

Soliton pulse $E(t) \propto \operatorname{sech}\left(\frac{t}{\tau}\right) \Rightarrow \tau_p = 2\ln\left(1+\sqrt{2}\right)\tau = 1.763\tau$

Ultrafast Lasers book, Subsection 2.5.10

ETH zürich