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Abstract

As quantum computers scale up to eventually reach a quantum advantage, their control
systems have to scale accordingly. Therefore, it is important to avoid overspecification
of hardware to be cost-effective. This thesis investigates the relationship between the
phase noise of the RF-generation hardware and the gate fidelity of trapped-ion qubits,
such that an appropriate phase noise specification can be derived. To achieve this goal,
this work contains both theoretical analysis and simulations, as well as experimental
evidence. I simulated both single- and multi-qubit quantum gates under noise influence.
In order to precisely control the phase noise present in the experimental setup, I added a
noise generator to the current control firmware. It enables the synthesis of signals with
defined noise power and profile. This thesis is a collaboration with Texas Instruments.
They provided us with a high-performance, wide-bandwidth multi-channel RF transceiver
board, the AFE8000EVM. I integrated it into the existing hardware as the analogue front
end. Finally, we measured the influence of noise on single-qubit operations on 40Ca+ ions
utilising the implemented noise generator. I find a linear dependence of the gate fidelity on
the phase noise at the Rabi (trap) frequency for single (multi)-qubit gates.
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Chapter 1

Introduction

The idea of utilising quantum physics for computation was first conceived by Paul Benioff,
Yuri Manin and Richard Feynman in the early 1980s [1, 2, 3]. They conjectured that using
the quantum nature might be more efficient to simulate complex quantum systems than
classical computers. The first quantum algorithm proposed by David Deutsch confirmed
that [4]. This advantage comes from the way quantum computers process information.
While a classical computer stores its computational state in a bit with states 0 and 1, a
qubit, the quantum equivalent, is the linear combination of two quantum states |0⟩ and
|1⟩. On measurement, either one or the other is measured with a certain probability. It
is defined by the probability amplitude, which is the coefficient of the state in the linear
combination. Quantum algorithms work by increasing the probability amplitude of the
state representing the correct solution by applying a sequence of quantum gates. Thus, the
solution to the problem can be measured with high probability in the end. In some cases,
these quantum algorithms require fewer operations than their classical counterpart, even
up to an exponential speedup. Some examples are Grover’s algorithm [5] for unstructured
search or most prominently, Shor’s algorithm [6] for integer factorisation.

However, a big challenge for quantum computers to overcome is the limited ”accuracy”
or fidelity of aforementioned quantum gates. Although measurement results are binary,
the probability amplitudes are complex numbers. Therefore, quantum gates are more
like operations on an analogue computer than digital operations, suffering from small
disturbances or imperfect gate operations. Since these minor errors propagate and add
up over the several applied gates, it is important to keep them as low as possible to get
a meaningful output. Currently, quantum computing is in the noise intermediate-scale
quantum (NISQ) era [7]. Thus, we are considerably limited by the error rates of current
quantum systems, which are not capable of correcting these errors yet.

Another major obstacle is the number of qubits in a system. Since the gate time for
classical computers is in the range of nanoseconds or even picoseconds compared to a gate
time of microseconds in the case of trapped-ion quantum computing, and classical bits are
much easier to realise than qubits, classical computers still outperform quantum computers.
Therefore it is important to scale up the number of qubits such that quantum computers
can take advantage of the speedup they promise. This poses a challenge, however, since
with a rising number of qubits, error rates increase. The system couples more to the
environment and loses its quantum state (it decoheres) and it becomes harder to keep up
the same gate fidelity. Also, the cost per qubit has to go down so that such a big system is
even economical.
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CHAPTER 1. INTRODUCTION

It is important to know the influence of different parts of the system on the final gate
fidelity, such that the focus can be set on the most influential aspects. This is especially
important with an increasing amount of qubits in order to spend resources per qubit
most efficiently. In this thesis, I focus on the influence of control electronics, which all
quantum information processing relies on. In the case of trapped ions, the control system
is essentially a well-orchestrated set of signal generators. These electrical pulses in the
radio frequency (RF) domain control lasers, which in turn control the quantum state of the
qubits. All electrical signals however are subject to noise, which impacts the gate fidelity
of the qubits negatively as will be shown here. One can aim to reduce this noise as much
as possible, but only at the cost of complexity and therefore size and price. Also, at some
point the fidelity will no longer be limited by the noise introduced by control hardware,
but by other error sources. One has to find a balance between the gate fidelity increase
and less complex and affordable and therefore scalable hardware.

The goal of this thesis is to derive a qualitative and quantitative dependency of the fidelity
of trapped-ion gates on the noise introduced by control hardware. Some prior studies [8,
9, 10] have been conducted on which this thesis will build. This includes mathematical
derivations of the influence of noise, as well as simulations and measurements thereof.
However, all of these papers focus on intrinsic laser noise, not noise introduced by control
electronics in particular. Therefore, I present noise requirements that help specify an RF
generation platform for trapped-ion quantum information experiments. In return, scientists
working on the improvement of gate fidelities get a picture of when they are limited by RF
noise.

To achieve this goal, this work contains both theoretical analysis and simulations, as well
as experimental evidence thereof. The theoretical background of trapped-ion quantum
control and derivations of the influence of RF phase noise on single-qubit gates can be
found in chapter 2. Based on this, I simulated both single and multi-qubit quantum gates
under noise influence in the programming language Julia [11] with the quantum simulation
package QuantumOptics.jl [12]. To confirm the results retrieved from both theory and
simulation, we measured the influence of noise on 40Ca+ ions. For this, I implemented a
noise generator in the current control firmware, such that signals with defined noise power
and shape can be synthesised directly. To convert the digital signal to electrical pulses,
Texas Instruments has provided us with an RF transceiver card, the AFE8000EVM. I
integrated this card into the existing hardware as part of the thesis. The current hardware
platform and technical knowledge needed for this implementation are explained in chapter
3. Chapter 4 covers the realisation of the aforementioned integrated noise generation and
adaption of the TI card, together with accompanying changes to hardware and firmware.
The final simulation and measurement results are then presented in chapter 5.
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Chapter 2

Theory

This chapter covers the theory in quantum optics needed to understand quantum informa-
tion experiments with trapped ions. Furthermore, I explain the fundamentals of noise and
its sources.

2.1 Trapped-ion qubit control

Every quantum computer needs physical qubits at heart [13]. In trapped-ion quantum
computing, this physical realisation takes the form of single ions. A notable feature of such
an elemental system is that an atom is the same everywhere in the world. Atoms from
the alkaline earth metal group are often used since, after ionization, a relatively simple
one-electron-like ion is left [14]. Although it is not a qubit in itself, since the remaining
valence electron does not only have two electronic states, two states can be defined as
our two qubit states |0⟩ and |1⟩. Other states can then assist as auxiliary states for state
preparation through optical pumping or state-dependent readout. The atom is ionised
such that the charged particle experiences a force in an electric field and can therefore be
held in place, or trapped, by a well-crafted electromagnetic potential.

To control the electronic states, or spin, of the ion, we use coherent laser light. A laser can
interact with the ion and induce transitions between spin states. In the following sections,
we will derive the Hamiltonian for this interaction and subsequently see how we can use it
to create single- and multi-qubit gates.

2.1.1 40Ca+ as a qubit

A popular choice, including the configuration used in the eQual setup at Trapped Ion
Quantum Information (TIQI) for ions, is calcium, specifically its most abundant isotope
40Ca+. Figure 2.1 shows the energy level splittings for such an ion. As there are many
electronic states, selecting two for the qubit is necessary. For certain ions, like 9Be+ or the
odd isotope 43Ca+, a feasible option is encoding the qubit in the hyperfine levels of the
ground state S1/2 called a hyperfine qubit. In the case of 40Ca+, we opt for an optical qubit,
choosing two states from the S1/2 and D5/2 manifolds. Since this transition is a quadrupole
transition, this selection leads to a qubit with a long lifetime. State detection utilises
P1/2 as an auxiliary state. When a laser is tuned to the S1/2 ↔ P1/2 dipole transition
and the ion is in S1/2, photons can be scattered. Conversely, if the qubit is in the D5/2

manifold, the laser is out of tune for all transitions, so the ion is dark [15]. It is customary
to represent the ground state and excited state as |g⟩ = S1/2 and |e⟩ = D5/2 respectively,
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CHAPTER 2. THEORY

instead of |0⟩ and |1⟩. This representation offers a more physical description compared to
the purely logical and arbitrarily assigned digits.

Figure 2.1: 40Ca+ energy level splittings. Figure taken from [16].

We can express the Hamiltonian of just the two-level system as

Ĥs = ℏ
ωge
2
σ̂z, (2.1)

where ωge is the energy difference between the two states, σ̂z = |e⟩⟨e|− |g⟩⟨g| is the Pauli-Z
matrix, and ℏ is the Planck constant.

The ions have to be contained somehow. Since in three dimensions, a static electric field
alone is not capable of containing a particle, Wolfgang Paul invented a trap using both a
static and an oscillating field [17]. While the classic Paul trap arranges electrodes in 3D, a
more recent approach is surface traps, which ”unfold” the electrodes onto a 2D plane for
easier fabrication. Another solution utilises a combination of a static electric and magnetic
field, called the Penning trap.

Given that the ions are well localised, the potential at the ion’s position can be approxim-
ated via Taylor expansion by a quadratic potential. Therefore, the ion’s motion can be
described by a quantum harmonic oscillator (QHO). This results in the motional part of
the Hamiltonian of

Ĥm = ℏωm
(
â†â+

1

2

)
. (2.2)

Here, ωm denotes the trap frequency, while â† and â are the creation and annihilation
operators of the harmonic oscillator. Note that this represents only one oscillator, while
in a 3D trap, there are three modes. We will need only one mode, as the others can be
cooled to the ground state and be uncoupled during operations. However, one motional
mode is crucial, since multi-qubit gates use the motion as a mediator to couple different
ion spins together, as discussed in section 2.1.4. For further details on trapping, refer to
[18] and [19].

4



CHAPTER 2. THEORY

2.1.2 Ion-light interaction

As discussed previously, lasers are used to interact with the ion. Due to their monochromatic
nature, lasers can be precisely tuned to exact transitions between the two electronic states
of the qubit. Additionally, their narrow beams allow for the addressing of individual ions. If
the states |g⟩ and |e⟩ are coupled by an electric field E0 cos(kz−ωLt+ϕ), the Hamiltonian
governing the interaction is given by

ĤI = ℏΩσ̂x cos (kz − ωLt+ ϕ) , (2.3)

where Ω ∝ |E0| denotes the Rabi frequency, σ̂x = |e⟩⟨g|+ |g⟩⟨e| is the Pauli-X matrix, ωL
is the laser frequency and k is the wave vector of the electric field in the z-direction [20].

Now we will treat z quantum-mechanically as the position operator in the motional QHO:
ẑ = z0

(
â+ â†

)
. Here, z0 =

√
ℏ/(2mωz) is the size of the wave packet in the motional

ground state with the trap frequency of ωz and the mass of the ion m. We can now also
define the Lamb-Dicke parameter η = kz0. Combining this with the Hamiltonian of the
ion itself, Ĥ0 = Ĥs + Ĥm, the total Hamiltonian including the light interaction becomes

Ĥlab = Ĥ0 + ℏ
Ω

2
(σ̂+ + σ̂−)

(
ei(η(â+â

†)−ωLt+ϕ) + h.c.
)
. (2.4)

We also expanded the cosine into its exponential form and used σ̂x = σ̂+ + σ̂−. Now we
change to the interaction picture with respect to Ĥ0:

Ĥ = ℏ
Ω

2

(
eiωgetσ̂+ + e−iωgetσ̂−

) (
eiη(e

−iωmtâ+eiωmtâ†)e−i(ωLt−ϕ) + h.c.
)
. (2.5)

Since the laser frequency wL should drive the qubit transition with frequency wge, we
want wL ≈ wge. Therefore, |ωL − ωge| ≪ ωL + ωge, allowing us to drop the fast counter-
rotating terms utilising the rotating-wave approximation. We also express the detuning as
∆ = ωL − ωge. This results in the Hamiltonian

Ĥ = ℏ
Ω

2
σ̂+e

iη(e−iωmtâ+eiωmtâ†)e−i(∆t−ϕ) + h.c.. (2.6)

If we are in the Lamb-Dicke regime, where η ≪ 1, we can expand the exponential

eiη(e
−iωmtâ+eiωmtâ†) = 1 + iη

(
e−iωmtâ+ eiωmtâ†

)
.

The final Hamiltonian for the ion-light interaction is now

Ĥ = ℏ
Ω

2
σ̂+

(
e−i∆t + iηe−i(ωm+∆)tâ+ iηei(ωm−∆)tâ†

)
eiϕ + h.c.. (2.7)

There are three resonances depending on the detuning of the laser ∆. By choosing ∆ = 0,
the first term (carrier) is prevalent, which interacts only with the spin and not the motion; it
couples the states |g, n⟩ and |e, n⟩, where n is the motional state. When ∆ = −ωm however,
the second term (red sideband) couples the states |g, n⟩ and |e, n− 1⟩, thus altering the
motional state. Similarly, for ∆ = ωm, the third term (blue sideband) couples |g, n⟩ and
|e, n+ 1⟩. It is important to note that also the other off-resonant terms are still in play,
although not as strong. This is especially relevant for this thesis, as a noisy phase ϕ(t)
broadens the spectrum of the drive such that it can excite these terms.
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CHAPTER 2. THEORY

Figure 2.2: Bloch sphere representation of a qubit state |ψ⟩.

2.1.3 Single-qubit rotations

The qubit state in a general form is represented as |ψ⟩ = α |g⟩+ β |e⟩, where {α, β} ∈ C
are probability amplitudes. Due to normalisation and the irrelevant global phase, the state
can be expressed with only two real numbers:

|ψ⟩ = cos(θ/2) |g⟩+ eiϕ sin(θ/2) |e⟩ . (2.8)

These numbers are deliberately chosen as angles, allowing the qubit state to be visualised
on the surface of a sphere, called the Bloch sphere (see figure 2.2). Here, θ and ϕ represent
the polar and azimuthal angles. Because single-qubit operations rotate the state vector in
this polar coordinate system, they are also called rotations.

To understand how such a rotation is performed, we revisit the previous result, equation
2.7. Since the qubit is stored in the spin of the ion, we are not interested in the motional
part for the moment. Therefore, we set ∆ = 0 and use only the carrier excitation. Hence,
the Hamiltonian of the single qubit rotation is

Ĥsq = ℏ
Ω

2
σ̂+e

iϕ + h.c.. (2.9)

By utilising the fact that σ̂x = σ̂− + σ̂+ and σ̂y = i (σ̂− − σ̂+), the previous equation can
be transformed into

Ĥsq = ℏ
Ω

2
[cos(−ϕ)σ̂x + sin(−ϕ)σ̂y] . (2.10)

Here it is much easier to see the effects of the gate. Firstly, the Rabi frequency Ω determines
the speed of the rotation. The Pauli matrices σ̂x and σ̂y act as a rotation around the x-
and y-axes, respectively. The phase ϕ therefore selects a rotation axis anywhere on the
xy-plane. Note the importance of a stable phase here. If the phase is noisy and changes
with time, also the rotational axis changes and the implemented gate is no longer the same.
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CHAPTER 2. THEORY

2.1.4 Multi-qubit interaction with the MS gate

Controlling a single qubit is not sufficient to create a quantum computer. Entanglement,
which connects several qubits into a larger computational space, is also necessary. The first
entangling gate was proposed by Ignacio Cirac and Peter Zoller [21]. However, achieving
high gate fidelities with this gate is challenging, as it requires the ions to be in the motional
ground state. To address this, Anders Sørensen and Klaus Mølmer proposed a phase gate,
known as the MS gate, which works even in thermal motion.

The MS gate, like all trapped-ion entangling gates, leverages the coupling of motion of ions
in a trap by the Coulomb force between the ions. Thus, a common motional mode can be
utilised to mediate entanglement. Since the MS gate depends on the motion, we cannot
ignore it, as in the single-qubit case. To derive the gate, I will initially focus on the light
interaction for one ion.

The MS gate operates by modulating the laser with two frequency tones, therefore applying
two sidebands to the ion simultaneously: the red sideband (RSB) and blue sideband (BSB).
We again use equation 2.7 as a starting point. We choose ∆ = −ωm− δ to tune to the RSB
and ∆ = ωm + δ for the BSB, where δ is a small symmetric detuning from the sidebands.
As the laser is now bichromatic, the phases can also differ, therefore we relabel them as
ϕ = ϕR and ϕ = ϕB for the RSB and BSB respectively. We also assume that the laser
intensities and therefore the Rabi frequency Ω are the same for both sidebands. The
Hamiltonian for the ion j is then the sum of the RSB and BSB Hamiltonian:

ĤMS,j =ĤRSB,j + ĤBSB,j =

ℏ
Ω

2
σ̂
(j)
+

[ (
ei(ωm+δ)t + iηeiδtâ+ iηei(2ωm+δ)tâ†

)
eiϕR,j

+
(
e−i(ωm+δ)t + iηe−i(2ωm+δ)tâ+ iηe−iδtâ†

)
eiϕB,j

]
+ h.c..

(2.11)

Since we want to entangle ions, we have to apply this laser scheme to several ions. In the
minimal case of two ions, this results in

ĤMS =
∑
j=1,2

ĤMS,j . (2.12)

This is the final MS Hamiltonian I will later use in MS gate simulations. We can rewrite
it differently to enhance understanding. Firstly, we rewrite the phases into the phase of
the spin ϕs =

ϕB+ϕR
2 and the phase of the motion ϕm = ϕB−ϕR

2 . Secondly, we can use the
transformation σ̂ϕ = σ̂x cosϕ+ σ̂y sinϕ [22]. This allows us to decompose equation 2.11
into the off-resonant carrier, near-resonant and off-resonant sideband:

ĤMS,j = Ĥcar + Ĥres + Ĥoffres, (2.13)

Ĥcar = ℏΩσ̂−ϕs cos ((ωm + δ)t− ϕm)

Ĥres = −ℏ
Ω

2
ησ̂π

2
−ϕs

(
âei(δt−ϕm) + â†e−i(δt−ϕm)

)
Ĥoffres = −ℏ

Ω

2
ησ̂π

2
−ϕs

(
âe−i((2ωm+δ)t−ϕm) + â†ei((2ωm+δ)t−ϕm)

)
.

(2.14)
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CHAPTER 2. THEORY

In the ideal scenario, we would only have the resonant Ĥres, which would drive a perfect
MS gate. However, there is still a carrier approximately ωm off-resonantly as well as
another sideband excitation detuned by 2ωm. Although these two other terms oscillate
fast compared to the resonant term and therefore approximately average out over time,
they still affect the qubit state, lowering the final gate fidelity, especially if they are excited
by noise. However, to understand how this Hamiltonian implements the gate, we will
do a second rotating wave approximation and drop them for now. Also, without loss of
generality, we set the phases ϕs = ϕm = 0. Therefore, the simplified MS gate Hamiltonian
for one ion is given by

ĤMS = −ℏ
Ω

2
ησ̂y

(
âeiδt + â†e−iδt

)
. (2.15)

We want to derive the gate propagator from this. Since equation 2.15 does not commute
with itself at different times, we use the Magnus expansion:

ÛMS(t) = e−
i
ℏ
∫ t
0 dt′ĤMS(t

′)− 1
2ℏ2

∫ t
0 dt′

∫ t′
0 dt′′[ĤMS(t

′),ĤMS(t
′′)]+... (2.16)

To calculate the commutator, we will use [â, â†] = 1:

[
ĤMS(t

′), ĤMS(t
′′)
]
=

(
ℏ
Ω

2
η

)2

2i sin
(
δ(t′ − t′′)

)
σ̂2y . (2.17)

Since σ̂2y is equal to the identity, all further commutators in the expansion are zero and the
Magnus expansion terminates. Performing the integration of the exponents therefore leads
to the exact propagator for the given Hamiltonian:

ÛMS(t) = e(α(t)â
†−α∗(t)â)σ̂ye−iβ(t)σ̂

2
y , (2.18)

where we defined α(t) = −Ω
2 η sin (δt/2)e

−iδt/2 and β(t) =
(
Ωη
2δ

)2
(δt− sin (δt)). The first

exponential here is the displacement operator. It moves the quantum state in the motional
phase space in circles. The second exponential is the geometric phase, which gets picked
up during this displacement and is proportional to the area of the circle. For a single ion,
a global phase does not matter, however. Hence, to see the entangling effect, we introduce
a second ion by replacing σ̂y by the operator on two ions, Ĵy = σ̂y ⊗ 1 + 1 ⊗ σ̂y. The
derivation is still valid, since although Ĵ2

y is not the identity anymore, it only contains terms

with σ̂y, which commute with all operators in ĤMS and therefore the Magnus expansion
still terminates. The two-ion propagator is then:

ÛMS(t) = e(α(t)â
†−α∗(t)â)Ĵye−i2β(t)(1⊗1+σ̂y⊗σ̂y). (2.19)

Now the geometric phase depends on the quantum state, which was the goal. Since we do
not want the ions entangled with the motion at the end of the gate, we set α(tg) = 0, which
leads to a gate time of tg =

2π
δ . Selecting the detuning δ = 2ηΩ to achieve the maximally

entangled state, the propagator is

ÛMS(tg) = e−i
π
4
(1⊗1+σ̂y⊗σ̂y). (2.20)
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CHAPTER 2. THEORY

This implements a controlled phase gate in the Y-basis. We can express the actions of this
gate in the computational basis:

ÛMS(tg) |gg⟩ =
1√
2
(|gg⟩+ i |ee⟩)

ÛMS(tg) |ge⟩ =
1√
2
(|ge⟩ − i |eg⟩)

ÛMS(tg) |eg⟩ =
1√
2
(−i |ge⟩+ |eg⟩)

ÛMS(tg) |ee⟩ =
1√
2
(i |gg⟩+ |ee⟩) .

(2.21)

We note that the gate transforms the ground state |gg⟩ into a bell state and is therefore
indeed a maximally entangling gate.

The final propagator derived in this section, equation 2.19, is consistent with the original
paper by Sørensen and Mølmer [23], only the sign of the exponent differs. This is expected
due to the different definition of the detuning ∆ from the carrier. In their paper, they
assume a detuning ∆ = ωm − δ, whereas in my derivation, it is the sum ∆ = ωm + δ. Note
that my ∆ is δ in their notation. This different definition results in a different sign for
the geometric phase. However, my derivation is different to [23] and is more similar to
[24, p: 102-103], [22, p. 82-85] and [25, p. 35-45]. Nevertheless, they are not exactly the
same as mine. For instance, [24] introduces a common phase ϕc, possibly equivalent to
my spin phase ϕs and later treated as a spin phase, yet the signs for ϕc are opposite for
RSB and BSB. The spin phase is the average of RSB and BSB phases, leading to ϕs = 0.
Additionally, the signs for the detuning δm should be opposite in equation 6.33 according
to my derivation. The final propagator has a sign switch accordingly. In [25], there is a
missing factor of i (and −i for the hermitian conjugate) in all Hamiltonians, leading to the
MS gate acting as a natural gate in X-basis instead of Y-basis when all phases are set to
zero. However, the sign of the phase aligns with mine. My derivation is the closest to [22],
with minor discrepancies such as a missing factor of i in equation 5.15, although it does not
affect subsequent equations. Also, the calculation of the propagator is a little bit different,
nevertheless leading to the same propagator. However, the state mapping retrieved from
applying the propagator in equation 5.25 introduces a sign mismatch compared to my state
mapping in equation 2.21.

Only [24] includes the off-resonant carrier and off-resonant sideband in their MS Hamiltonian.
These terms are very important in my case, since driving the carrier term with noise is the
biggest factor in gate error due to phase noise.

2.2 Impact of noise on trapped-ion qubits

We make use of sinusoidal signals to control the ions, be it in the form of lasers or electrical
signals controlling the latter. However, every real signal is subject to noise. Such a noisy
sinusoidal U(t) can be described by the following model [26, 27]:

U(t) = U0 (1 + α(t)) cos (ω0t+ ϕ(t)), (2.22)

where U0 is the amplitude and ω0 is the frequency. The parameters α(t) and ϕ(t) modify
the amplitude and phase of the signal and are therefore referred to as amplitude and phase
noise, respectively. For an ideal signal, they are α(t) = 0 and ϕ(t) = ϕR, where ϕR is the
ideal phase. The Fourier spectrum of the signal is depicted in figure 2.3a, where the ideal
signal is a Dirac delta function at ω0. When α(t) and ϕ(t) are not constants, they modulate
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the carrier. Thus, some of the power in the carrier goes into sidebands. This results in a
broadening of the peak, and the noise manifests as a pedestal around the carrier.
The shape of the pedestal depends on the type of noise. A zoom-in into one sideband is
illustrated in figure 2.3b. Here, three main types of noise are described, each differing
in their frequency dependence [28, 29]. The noise floor, therefore the minimum amount
of noise, is determined by Johnson-Nyquist noise or thermal noise [30]. It arises from
statistical fluctuations of charges in a conductor due to temperature. Going closer to the
carrier, flicker noise will start to take over. Flicker noise comes mostly from semiconductor
devices. It is generally not well understood but believed to come from trapped charges
at oxide-semiconductor interfaces or mobility fluctuations [29]. It follows a 1

f dependence
on frequency. Even closer to the carrier is white frequency noise. It often comes from
passive-resonator frequency standards like quartz oscillators and follows a 1

f2
dependence

on frequency[28].

In general, stationary noise sources contribute both to amplitude noise and phase noise to
equal parts. So why are we only concerned with phase noise in this thesis? Amplitude noise
does not play as significant a role as phase noise in electronics, as phase noise dominates
in power in most circumstances. Amplifying a noisy signal with a non-linear, limiting
amplifier rejects amplitude noise, while phase noise stays the same. An example is the noise
coming from an oscillator. Oscillators are used as timing references in nearly all electronic
circuits. For RF generation, the noise from the oscillator directly limits the achievable
noise level at the output. An oscillator allows for one amplitude solution, while the phase
can be chosen freely. Therefore, in case of an amplitude noise impulse, the oscillator steers
itself back to the steady-state amplitude; the noise gets rejected. In the case of a phase
shift due to noise, no restoring force brings it back [31]. Therefore, up to frequencies where
the restoring time is low enough, phase noise dominates. This can be seen in a simulation
of an oscillator in figure 2.4. Also, to reach higher clock frequencies, the frequency of an
oscillator often gets multiplied by a frequency multiplier. Such a multiplier increases phase
noise linearly with frequency, while the amplitude noise keeps the same [32]. In conclusion,
in most cases, amplitude noise is negligible in comparison to phase noise. In certain cases,
however, such as far from the carrier, it might become relevant. In the following, I will
focus on phase noise and its impact on quantum gates, following the argument above.
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Figure 2.3: (a) Depiction of a noise-widened carrier. The frequency axis is linear.
(b) A zoom-in on the noise near the carrier. The frequency axis is logarithmic.
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Figure 2.4: Simulation of a Van der Pol Oscillator. Figure taken from [33].

2.2.1 Phase noise

As described in equation 2.22, phase noise is the variation of the phase of a signal by a
random, time-dependent variable ϕ(t). This is a form of phase modulation, with noise
instead of information. Since any signal can be written as a sum of sinusoids via the Fourier
transform, we will initially assume ϕ(t) = δ cos (ωmt). The modulation is described by just
the amplitude δ and the frequency ωm. This simplification to a single tone makes it clearer
to see the effect of the modulation on the modulated spectrum in the carrier-frequency
domain. We also drop the amplitude noise α(t) now since we are looking at phase noise.
The resulting modulated signal can then be described by [26]

U(t) = U0 cos (ω0t+ δ cos (ωmt))

= U0ℜ
{
eiω0teiδ cos (ωmt)

}
= U0

∞∑
n=−∞

ℜ
{
(i)nJn(δ)e

i(ω0+nωm)t
}
.

(2.23)

Here, Jn is the Bessel function of the n-th order. In the last line, U(t) is written as an
infinite sum of tones. They are located at multiples of ωm around the carrier with the
amplitude Jn. Therefore, in contrast to amplitude modulation, the spectrum of phase
modulation in the carrier-frequency domain extends further than the frequency of the
modulation itself. Figure 2.5 shows the spectrum for a high modulation amplitude δ (black)
compared to the carrier without modulation (blue). Note that, due to Parseval’s theorem,
the total power of all tones is equal to the power of the unmodulated carrier. In most cases,
however, it is reasonable to assume that δ ≪ 1, where only the first sideband is relevant.
This assumption holds true for most electronic devices, as efforts are typically made to
minimise noise levels.

Let us extend this to arbitrary noise. In time domain, the random variable ϕ(t) can be
described by a probability density function. In nature, this is often a Gaussian distribution,
since it is the limit of the sum of several sources, following the central limit theorem [32,
26]. Using the Fourier transformation, the power spectral density Sϕ(f) of ϕ(t) describes
the signal in frequency domain. The two descriptions are linked by the fact that the total
noise power, therefore the integral of Sϕ(f), is equal to the variance σ2 of ϕ(t) (see figure
2.6a). Since ϕ(t) is an angle with units rad, Sϕ(f) is in units rad2/Hz.
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Figure 2.5: Spectrum of a phase modulated signal with modulation amplitude δ = 1 in
black. The spectrum of the unmodulated carrier can be seen in blue as a single tone at ω0.

(a) (b)

Figure 2.6: (a) The signal ϕ(t) in time domain and its histogram. The signal is approxim-
ately Gaussian distributed with a standard deviation of σ. (b) The Fourier transformed
power density spectrum Sϕ(f) (log-log plot). The area under the curve is equal to the
variance of the signal in time domain.

Analogous to the phase modulation with a single sinusoid, the carrier is now modulated by
the whole spectrum Sϕ(f). Since the signal does not contain just a single Dirac impulse
anymore, convolution has to be used to describe the modulation correctly. The power
density spectrum SE(f) in the carrier-frequency domain is now [34]

SE(ν − ν0) = e−σ
2
δ(f) + e−σ

2
Sϕ(f) + e−σ

2
∞∑
n=2

1

n!
Sϕ(f) ∗n−1 Sϕ(f), (2.24)

where f = ν − ν0 is the frequency offset from the carrier frequency ν0. The first term
here is the Dirac function of the carrier itself. The phase noise Sϕ(f) is placed around the
carrier unchanged in the second term, similar to the first sideband in the single-tone case.
The remaining terms are repeated convolutions of Sϕ(f) with itself. Note also the scaling

factor e−σ
2
before both the carrier term and the noise terms, which becomes smaller, the

higher the noise variance is. This comes from the fact that the higher the noise power is,
the more power goes from the carrier into higher and higher-order terms. An example of
modulated noise is given in figure 2.7. Here, Sϕ(f) in red is assumed to be white noise with
a bandwidth of 15.6MHz and a variance of σ2 = 1. The cut-off frequency is assumed to be
ideal to emphasise the effect of the modulation. The modulated spectrum SE is shown
in blue. Since the variance and therefore noise power is relatively high, one can see quite
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high noise density above the cut-off frequency, coming from the higher order terms.

Figure 2.7: The power spectral density of white noise, filtered with an ideal low-pass filter,
in the Fourier domain (Sϕ, red) and in the carrier domain (SSB SE , blue).

The power spectral density SE is given in units of dBc/Hz. It is the ratio of the noise
power in a 1Hz bandwidth to the carrier power (the ”c” denotes ”relative to the carrier”).
This definition comes from phase noise measurements with spectrum analysers in earlier
days, where the power at the carrier frequency is compared to the power at a particular
frequency offset. This also includes amplitude noise however, and is also distorted by the
higher order terms, as it can be seen in figure 2.7. Nowadays, dedicated measurement
instruments like a signal source analyser (SSA) can measure Sϕ(f) directly. Therefore, in
1999, the Institute of Electrical and Electronics Engineers (IEEE) defined phase noise as
[35]

L(f) =
Sϕ(f)

2
. (2.25)

The factor of two is due to two different conventions. Sϕ(f) contains the power of both
negative and positive frequencies (double-sideband (DSB)), whereas SE(f) disregards noise
power in the lower sideband and only contains the upper sideband (single-sideband (SSB)).
Note the potential for confusion, as in some literature the SSB noise is called the two-sided
noise, since the noise is distributed onto two sides. Conversely, the one-sided noise is
equivalent to the DSB noise and higher by the factor of two, or equivalently 3dB. Since the
historical phase noise measurement with the spectrum analyser is a SSB measurement, it is
established in data sheets to report the SSB noise. Also IEEE recommends the use of L(f)
and therefore SSB phase noise. For small phase fluctuations (σ2 ≪ 1), the new definition
of L(f) does not differ much from the spectrum SE(f), since only the first order term
in equation 2.24 is non-negligible. In this case, also the units rad2/Hz and dBc/Hz are
interchangeable except for the conversion to decibel, since the small-angle approximation
holds.

The total phase noise spectrum consisting of 1
f -type contributions as described in the

introduction of this section can be written as the sum:

L(f) =
∑
k

=
Lk
fk
, (2.26)

where the coefficient Lk is a measure of the power of the respective noise spectrum [9]. We
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only consider the terms k ∈ {0, 1, 2}, corresponding to white phase noise, flicker noise and
white frequency noise.

2.2.2 Phase noise in single-qubit rotations

Single-qubit rotations can be fully described by the classical description of rotations around
the Bloch sphere. Therefore, it is possible to derive a mathematical formalism for the
influence of phase noise on these rotations, which we will do in the following section. The
derivation follows the work of Zilong Chen et al. [9]. Note that their calculations were
carried out within the rotation group SO(3). Although usually quantum operations are
expressed in the special unitary group SU(2), I will adhere to the former for consistency.

As seen in equation 2.10, each single-qubit rotation can be described by a rotation about a
rotational axis in the xy-plane with the azimuthal angle ϕ relative to the x-axis. In the
ideal case, where the phase is fixed to ϕ(t) = ϕR, the final Bloch vector J◦

f can be obtained
from the initial vector Ji by

J◦
f = R(ϕR, ψ)Ji. (2.27)

Here, R(ϕR, ψ) describes a rotation around the rotational axis given by ϕR and the
rotation angle ψ. To study the effect of a variable phase, we modulate the phase ϕ(t) =
ϕR + β cos (ωmt+ αm) similar to equation 2.23 with a coherent tone. The rotational axis
now oscillates around the mean in the xy-plane. Due to this changing axis, the final
Bloch vector Jf differs now from the ideal J◦

f by the deflection vector jf = Jf − J◦
f . This

deflection can also be seen as a small rotation r:

Jf = rJ◦
f . (2.28)

Figure 2.8: (a) The phase ϕR of the gate is modulated by a sinusoidal with amplitude β.
Hence, the rotational axis oscillates in the xy-plane around the mean ϕR. (b) The ideal
final Bloch vector J◦

f is deflected to Jf by the modulation. The deflection vector is jf .
Figure taken from [9].
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A depiction of the modulated rotational axis and the resulting deflection vector jf can be
seen in figure 2.8. The rotation r does not depend on the initial Bloch vector Ji, since the
modulation of the phase changes the rotational axis of the ideal rotation R and therefore
the rotation itself, not the vector it is applied to. This can be thought of as splitting
the ideal rotation R into infinitesimal rotations dR, which are interleaved by infinitesimal
rotations changing the phase. These interleaved rotations can be expressed as one rotation
rR, which does not involve Ji. Instead, the rotation r depends on the parameters of the
modulation, β and ωm, and the parameters of the ideal rotation R, namely the rotation
angle ψ and ϕR. The dependence on the phase ϕR can be overcome by changing the
reference frame before the rotation and changing it back afterwards:

r(ϕr) = Rz(ϕR)r(0)Rz(−ϕR). (2.29)

Hence, it is enough to determine r for the case ϕR = 0 and Ji = x, since in this case
J◦
f = Ji. A tilde (∼) denotes this special case. Under the assumption that β ≪ 1, we can

make use of the small-angle approximation. Therefore, the components of the deflection
vector j̃f = (0, j̃y, j̃z) can be approximated as angles and r can be split into rotations Ry
and Rz with angles j̃z and j̃y. The rotation r is then

r(0) = Ry(−j̃z)Rz(j̃y) =

 1 −j̃y −j̃z
j̃y 1 0

j̃z 0 1

 . (2.30)

Note that we dropped higher-order terms. We want to solve for j̃y and j̃z now. First, we
write the time-dependent state in the interaction picture Jf = rJi as a density matrix ρ̂ in
SU(2):

Jf =

 1
jy
jz

 ≡ ρ̂ =
1

2

(
1+ σ̂x + j̃yσ̂y + j̃zσ̂z

)
. (2.31)

I use the density matrix instead of the state vector because it simplifies the upcoming
derivatives. Using ρ̂, we can write down the von Neumann equation with the Hamiltonian
2.10, where we define −ϕ(t) = β sin (ωmt+ αm). The negative sign comes from different
definitions of the Hamiltonian, it does not matter in the end since it introduces just a
phase shift absorbed by αm. Therefore, I will go with the definition of [9] and the von
Neumann equation results in:

iℏ
dρ̂

dt
=

[
Ĥsq, ρ̂

]
, (2.32)

dj̃y
dt
σ̂y +

dj̃z
dt
σ̂z = ωmt

[
j̃zβ sin (ωmt+ αm)σ̂x − j̃zσ̂y + (j̃y − β sin (ωm + αm)) σ̂z

]
. (2.33)

We can drop the term proportional to σ̂x, since the product j̃zβ is small compared to the
j̃y, j̃z and β alone. We can equate the coefficients of σ̂y and σ̂z individually to arrive at
the differential equations:

dj̃y
dψ

+ j̃z = 0, (2.34)
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dj̃z
dψ

− j̃y = −β sin (νψ + αm), (2.35)

where we introduced ν = ωm/Ω and replaced ψ = ωmt. Note that these coupled differential
equations are the equations of motion of an undamped harmonic oscillator with resonance
frequency Ω driven by an external force with frequency ωm, with j̃y and −j̃z as the
displacement and velocity. You could arrive at the standard uncoupled differential equation
of second order by elimination of j̃z in equation 2.35 by substituting equation 2.34. We
can now solve for j̃y and j̃z, assuming both are initially zero:

j̃y =
β

1− ν2
[−ν cosαm sinψ − sinαm cosψ + sin (νψ + αm)] , (2.36)

j̃z =
β

1− ν2
[−ν cosαm cosψ − sinαm sinψ + cos (νψ + αm)] . (2.37)

We now have a formalism to express the deflection vector jf = (jx, jy, jz) dependent on
a coherent phase modulation. For now, we adhere to a constant modulation frequency
ωm. However, we assume β and αm now to be random. According to the assumption
that many noise processes are Gaussian (see section 2.2.1), we sample the amplitude
β from a Gaussian distribution with a zero mean and a variance of ⟨β2⟩. The phase
αm is assumed to be uniformly distributed between 0 and 2π. The SSB phase noise is
now modeled as L(f) = ⟨β2⟩δ(f − f0)/4. The denominator comes from equation 2.25
and the fact that ⟨sin(t)2⟩ = 1/2. We can now define the covariance transfer matrix as
T (ϕR,J

◦
f , ψ, ωm) = 4⟨jf j⊤f ⟩/⟨β2⟩. This matrix tells us the variance of deflection along an

arbitrary measurement axis n. It is normalised such that
∫
n⊤ · T · nL(f)df = ⟨(jf · n)2⟩,

therefore, T is a direct map from noise spectrum to deflection vector. We can now use
our previous results 2.36 and 2.37 to calculate the transfer matrix T̃ depending on noise
frequency ωm and gate length ψ, again for the special case ϕR = 0 and Ji = x:

T̃ (ψ, ωm) =

0 0 0

0 T̃yy T̃yz
0 T̃zy T̃zz

 , (2.38)

T̃yy(ψ, ωm) =
2

(1− ν2)2

{
[cosψ − cos (νψ)]2 + [ν sinψ − sin (νψ)]2

}
,

T̃zz(ψ, ωm) =
2

(1− ν2)2

{
ν2 [cosψ − cos (νψ)]2 + [sinψ − ν sin (νψ)]2

}
,

T̃yz(ψ, ωm) = T̃zy(ψ, ωm)
2

1− ν2
[cosψ − cos (νψ)] sinψ.

(2.39)

As an example, the transfer functions T̃yy and T̃zz are plotted for four different gate lengths
ψ in figure 2.9. As expected, with increasing ψ, the magnitude of the transfer function
increases. However, the plot also changes qualitatively. While the peak is always around
ν = 1, the transfer function experiences poles at different normalised frequencies. The
undamped harmonic driven oscillator (equation 2.34) has a transient response of a beating
with the frequency of the difference between the resonance at Rabi frequency Ω and the
driving force ωm. Sampling exactly a node of the beating with the gate length ψ translates
to a pole in the transfer function. With increasing ψ, the beating becomes faster compared
to the gate time and therefore the poles are spaced tighter. We can also observe that the
longer the gate is applied, the sharper the peak is around the resonance Ω = ωm. In the
limit of |ψ| → ∞, the transfer function becomes a Dirac delta function at resonance.
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We can calculate the transfer matrix T for arbitrary ϕR and Ji from T̃ with the transform-
ation

T = D(ϕR,J
◦
f )T̃ (ψ, f)D(ϕR,J

◦
f )

⊤ (2.40)

using the map

D(ϕR,J
◦
f ) =

0 −J◦
y −J◦

z cosϕR
0 J◦

x −J◦
z sinϕR

0 0 −J◦
x cosϕR +−J◦

y sinϕR

 . (2.41)

Until now we only considered a single modulation frequency. The total noise in the Bloch
vector, the covariance noise matrix, is simply the integral of the transfer matrix over the
phase noise spectrum L:

Ṽ (ψ) =

∫ ∞

0
T̃ (ψ, f)L(f)df. (2.42)

Note that this still assumes β ≪ 1 and consequently L(f) to be small. The arbitrary noise
matrix can be found similarly to the transfer matrix:

V = D(ϕR,J
◦
f )Ṽ (ψ)D(ϕR,J

◦
f )

⊤. (2.43)

We calculate an arbitrary noise matrix of a single π pulse (ψ = π) with assumed white noise
(L(f) = L◦) for demonstration. Note that for a π pulse, the initial and final ideal Bloch
vector are related by Ji = −J◦

f . We also write the initial Bloch vector in polar coordinates
as Ji = (cos θi cosϕi, cos θi sinϕi, sin θi) with the polar angle θi and the azimuthal angle ϕi
like in figure 2.2.

V (ψ = π) = D(ϕR,−Ji)L◦

∫ ∞

0
T̃ (ψ, f)dfD(ϕR,−Ji)

⊤

=
L◦Ω

2
D(ϕR,−Ji)

0 0 0
0 ψ − 1

2 sin 2ψ − sin2 ψ
0 − sin2 ψ ψ + 1

2 sin 2ψ

D(ϕR,−Ji)
⊤

=
πL◦Ω

2

1− cos2 θi cos
2 ϕi

1
2 cos

2 θi sin 2ϕi
1
2 sin 2θi cosϕi

1
2 cos

2 θi sin 2ϕi cos2 θi cos
2 ϕi 0

1
2 sin 2θi cosϕi 0 cos2 θi cos

2 ϕi


(2.44)

To translate this result into a gate fidelity, we can evaluate the state fidelity [36] after the
gate. It describes the difference between an ideal gate and an imperfect implementation.
Since the noise matrix V is already the deviation from the ideal Bloch vector, we can
obtain the gate infidelity with

1− F = tr(V )/4. (2.45)

For the example of the π pulse in equation 2.44 above, this results in the infidelity

1− F =
1

8
πΩL◦(1 + cos2 θi cos

2 ϕi). (2.46)

We can see that the infidelity depends on the initial state. To get a more general measure
for the influence of phase noise, we can average the infidelity over all possible initial states.
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We can also calculate it for an arbitrary gate length ψ, since no calculations of Ji are
needed anymore. By doing so we obtain

⟨1− F ⟩ = 1

6
ψΩL◦. (2.47)

As expected, the gate infidelity scales linearly with the gate length ψ. However, note
that it also scales with the noise density L◦, but not with the bandwidth of the noise and
consequently the total noise power, since the bandwidth is assumed to be infinite in the
example above. Furthermore, it is linear in the Rabi frequency Ω. This behaviour can be
explained by the transfer matrix which peaks at the resonance at Ω with a peak width
scaling with Ω. Hence, the gate infidelity can be characterised by the product of Rabi
frequency and the phase noise density at said frequency for long gates.

In contrast, it is not as easy for short gates. As it can be seen in figure 2.9, shorter gates
lose the zero at DC. T̃yy(ψ = π) already does so for the π pulse, while for even shorter
pulses, also T̃zz includes slow noise. The inclusion of frequencies near DC might be a
particular problem, since in this range the phase noise density is the highest due to flicker
and white frequency noise. Let us look at the magnitude of the problem. All short gates
that sample DC frequencies sample quite a broad frequency range > Ω. Thus, if the corner
frequencies fc1 and fc2 of the 1

f and 1
f2

noise are below Ω, all contribution from 1
f and

1
f2

noise is included in the bandwidth. Therefore, we cannot think about noise density
anymore, but total noise power. We therefore integrate the phase noise density. As the
upper limit, we can choose infinity for 1

f2
. Flicker noise needs an upper limit since the

integral does not converge. We can set it to 10fc1. The exact value does not really matter,
as the contribution of 1

f2
is much higher anyway. For the lower limit, we cannot choose 0.

The limits limf→0
1
f and limf→0

1
f2

are infinity, which is not physical. The lowest realistic
frequency is determined by the acquisition time of the system. In our case, this is the
maximum time of an experiment from state preparation to readout. Slower phase variations
do not have an impact, since phase is determined by the first pulse applied to a qubit. Let
us assume a maximum experiment time of 1s. At an MS gate time of 100µs (see section
5.2.2), this equates to ten thousand gates. Let us choose a Rabi frequency of Ω

2π =100kHz
for simplicity. Thus, 1s also equates to two million single-qubit gates. Frequencies lower
than fmin = 1

1s = 1Hz are therefore not observed. As corner frequencies, we choose
fc1 = 1kHz and fc2 = 300Hz, both with respect to white noise of L◦ = −100dBc/Hz.

First, we compare the noise power contribution of the white noise with an effective
bandwidth of Ω

2π = 100kHz given by T̃yy(ψ = π, ωm) to the contribution of 1
f and 1

f2

noise with parameters above, where Pk is the noise contribution of noise with frequency
dependence 1

fk
(see equation 2.26):

P0 =

∫ Ω
2π

0
L◦df = 1 · 10−5 = −50dBc

P1 =

∫ 10fc1

fmin

L1

f
df =

∫ 10fc1

fmin

L◦
fc1
f
df = 6.9 · 10−8 = −71.6dBc

P2 =

∫ ∞

fmin

L1

f2
df =

∫ ∞

fmin

L◦
f2c1
f2
df = 9 · 10−8 = −50.46dBc.

(2.48)

We can see, that with these parameters, the 1
f2

noise contributes about as much noise
power as the white noise, while the flicker noise is negligible. We can also compare the
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the Ṽyy element of the noise matrix by integrating the transfer function T̃yy over the noise
spectrum Lk:

Ṽyy,0(ψ = π) =

∫ ∞

0
L◦T̃yy(ψ = π, f)df = 9.87 · 10−5

Ṽyy,1(ψ = π) =

∫ ∞

fmin

L1

f
T̃yy(ψ = π, f)df =

∫ ∞

fmin

L◦
fc1
f
T̃yy(ψ = π, f)df = 2.15 · 10−8

Ṽyy,2(ψ = π) =

∫ ∞

fmin

L2

f2
T̃yy(ψ = π, f)df =

∫ ∞

fmin

L◦
f2c1
f2
T̃yy(ψ = π, f)df = 7.20 · 10−5.

(2.49)

Here I integrated also flicker noise up to infinity, as it is limited by the transfer function.
White frequency noise contributes about as much to Ṽyy and thus to the gate infidelity for
the worst case (certain final Bloch vectors J◦

f ) as the white phase noise does. Ṽzz is not an
issue since it has a zero at DC. Flicker noise is negligible.

Hence, white frequency noise could matter in certain circumstances. However, this example
is likely the worst case. My assumptions are on the high side. Since the optical qubit
lifetime of 40Ca+ is about 2s, the fidelity would be limited by qubit relaxation rather than
the phase noise after a second. Rabi frequencies will likely get rather higher than lower to
speed up gates, where the relative effect of 1

f2
is decreasing, as it does not scale with Rabi

frequency. Also, in terms of gate length, Ṽyy for the π pulse is the peak of the problem. For
lower gate lengths, DC is always sampled by the pulse, but the transfer function decreases
in magnitude. For longer gates, there is a zero at DC, eliminating the influence of slow
noise. However, this analysis shows, that for short gates, the full integral of the noise
profile with the transfer function has to be considered.
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Figure 2.9: Transfer functions for four different gate lengths ψ. (a) T̃yy(ψ, ωm) (b)
T̃zz(ψ, ωm)
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Chapter 3

Quantum Experiment Control at
TIQI

In this chapter, I describe the current setup for quantum experiments at TIQI. In this thesis,
this is the eQual setup. As it is of special interest, I additionally focus on the experiment
control of the setup, the Quantum Experiment Next-Generation Control Hub (QuENCH)
system. I will also briefly review the technical background needed to understand the setup
and conducted measurements.

3.1 Programmable hardware

Qubit control requires the generation of several RF pulses in parallel, which have to be
timed precisely relative to each other and with the correct pulse length. This is a challenging
task for traditional computers. While a CPU supports a high throughput of arbitrary
operations, they are not designed for meeting strict real-time requirements. Furthermore,
the flexibility makes a CPU less efficient for highly specific tasks. In contrast, programmable
hardware provides a solution for such high-throughput, real-time applications.

A widely used architecture of programmable hardware today is an field-programmable gate
array (FPGA). It comprises configurable logic blocks (CLBs), containing combinatorial
logic and flip-flops, interconnected through programmable connections. The FPGA is
connected to the outside world with input output banks (IOBs). Certain hardware which
is often used is also available as dedicated blocks, for example, digital signal processing
(DSP) slices and block RAM (BRAM). The DSP slices contain multipliers and wide adders,
while the BRAM allows storage of big blocks of data, which can be accessed quickly [37].

The advantage of FPGAs is that the hardware can be tailored to specific product require-
ments. This enables parallel processing of a lot of data since highly specific, individual logic
blocks can work in parallel. However, programming an FPGA requires proficiency in digital
design and differs from traditional programming paradigms due to its inherent parallelism.
Moreover, since it is much closer to hardware, a lot of the higher abstraction and libraries
provided by traditional programming fall away. Also, the synthesis and implementation
of hardware, which is comparable to the compilation of code, is more complicated, as
is debugging. Compared to application specific integrated circuits (ASICs), they are
reprogrammable and do not require high upfront development efforts. However, FPGAs
consume more power, operate at slower maximum clock speeds and have higher per-piece
costs. Therefore, programmable hardware is ideally suited for situations where CPUs are
not fast enough, necessitating custom hardware, yet demand flexibility in configuration
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and involve small product volumes. Since we have eight experimental setups in the group
and all of them require constant feature updates for new experiments, this is the case for
qubit control at TIQI. Therefore, we use FPGAs for RF pulse generation.

3.2 Hardware description languages (HDLs)

To program an FPGA, an HDL is used. As the name implies, it does not define an
algorithm like programming languages, but describes the logic and its interconnections
within the FPGA. It is more a descriptive form of a schematic than a program.

There are two widely used HDLs, Very High Speed Integrated Circuit Hardware Description
Language (VHDL) and Verilog. VHDL syntax resembles a more natural language. It tends
to be very verbose, which makes it a little bit more tedious to write, but in turn tends to
be self-documenting. It is a strongly typed language. Verilog on the other hand is closer
to the C language, making it easier to learn when coming from a software background.
It requires less code for the same functionality, also due to the weak typing, but needs
more documentation to be able to understand the code [38, 39]. VHDL tends to be more
popular in Europe, while Verilog is prevalent in the USA. Nevertheless, TIQI uses only
Verilog for its projects.

In 2005, Verilog was extended with SystemVerilog. It provides a higher level of abstraction,
making it easier to model systems of increasing complexity. These include object-oriented
programming and interface abstraction. Also, it makes verification easier by supporting
assertions, constraint random verification and code coverage [39]. SystemVerilog is a strict
superset of Verilog, thus any Verilog file can also be used in a SystemVerilog project.
However, since it is a lot of effort to adhere to the full SystemVerilog syntax, some tools
do not support it or only parts of it. This includes some simulation software used by TIQI
like Icarus Verilog [40]. Thus, TIQI has not yet fully switched to SystemVerilog.

3.3 Standardised interface for data converters (JESD204)

JESD204 is a standard defining an interface between data converters, such as ADCs and
DACs, and the hardware processing them, such as FPGAs or ASICs. It accommodates
the increasing data rate of converters resulting from increased resolution and sampling
rate. Additionally, it reduces the number of pins required due to its serial design, leading
to simpler and less expensive designs. The electrical interface utilises current mode
logic (CML), which is more power-efficient at high frequencies than other interfaces like
complementary metal–oxide–semiconductor (CMOS) or low voltage differential signaling
(LVDS) [41]. Due to these advantages, JESD204 has become very popular.

The standard developed over the years, expanding features and speed. JESD204A brought
support for multiple parallel lanes, JESD204B added deterministic latency and speed, while
JESD204C tackles efficiency and further enhances throughput. Since we use JESD204B for
the control system, I will focus on it.

In the JESD204B protocol, one logic device is connected to one or more converter devices.
The converter devices can comprise several converters, given by the number M. Each
converter device is connected to the logic device by one link, consisting of L differential
signal pairs, called lanes. Each device is clocked by its own device clock, which in turn is
derived from a common source clock. This configuration is depicted in figure 3.1. Other
clocks are derived from the device clock, like the frame clock and the local multiframe
clock (LMFC). These are used to arrange samples in frames and multiframes for higher
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layers, where the frames and multiframes are aligned to the edges of these clocks.

       M
converters

   1 link,
  L Lanes

       M
converters

   1 link,
  L Lanes

Logic device
     (FPGA)

  Device clock 1   Device clock 2

Figure 3.1: Illustration of devices within the JESD204B protocol.

JESD204B is split into three different subclasses: Subclass 0 to 2. They differ in the
way they achieve synchronisation and deterministic latency. Subclass 0 does not support
deterministic latency, but is mainly included in JESD204B to be backwards-compatible
to JESD204A. It profits however from the higher line rates up to 12.5Gbps. In terms of
synchronisation, the L lanes within one link are all aligned to each other, like in all other
subclasses too. Inter-device synchronisation is not trivial, however. Several subclass 0
devices may be synchronised using a SYNC signal, which is a return path from receivers to
transmitters. However, a separate interface is needed for that.

Subclass 1 devices are synchronised utilising a timing signal called SYSREF. It is source
synchronous, thus it is distributed together with the common clock to all devices. The
goal of the synchronisation is to align the edges of the LMFCs of all devices, such that
all multiframes start at the same time. The LMFC period is an integer multiple of the
device clock and the LMFC edge is aligned to the device clock. Initially, the individual
LMFCs can be aligned to a different clock edge on each device, thus having a different
phase. The SYSREF signal has a period of an integer multiple of the LMFC, thus also of
the device clock. By sampling the rising edge of SYSREF, the phase of the LMFC can be
determined and adjusted, such that all LMFCs are aligned. The SYSREF signal can be
periodic, gapped periodic or one-shot. Since a periodic SYSREF signal is a sub-harmonic
of the device clock, the other two modes might be preferable to reduce possible spurious
effects on the converter.

For subclass 2 devices, the procedure is very similar, however, they use the SYNC signal
instead of the SYSREF signal as a timing reference. For ADC devices, the LMFC clock is
reset to the same device clock edge upon receiving a SYNC edge from the logic device. For
DACs, the SYNC is sent from the converter to the logic device, where it determines the
phase difference between the LMFCs utilising the sampled SYNC. In case of a difference,
the logic device sends phase adjustment information to the DAC, which in turn adjusts the
LMFC accordingly. In comparison to the ADC case, this requires several iterations. The
advantage of subclass 2 devices is the simpler clock distribution network, since no SYSREF
is required. However, the SYNC signal is system-synchronous. It is generated by the
receiver and not the common clock source, like SYSREF. In the latter case, the distributed
clock and SYSREF are skewed by roughly the same amount, making it easier to adhere
to setup and hold constraints. For subclass 2 devices, the skew of the SYNC signal to
the device clock sampling is influenced by the skew from source clock to both transmitter
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and receiver, as well as the skew from transmitter and receiver. Thus, it becomes hard to
adhere to timing constraints. Thus, subclass 2 is recommended for slower device clocks up
to 500MHz.

After the LMFC clocks of all devices are aligned either with SYSREF or SYNC, the
deterministic latency feature is implemented in the same way for subclass 1 and 2. The
transmitter starts the initial line alignment at the same LMFC edge across all lanes. This
initial edge is determined by SYNC for both subclass 1 and 2, but it is not timing critical
in this case since the LMFC is slower than the device clock by a factor of 256 or more.
After the initial line alignment, the receivers buffer the incoming data and release it on
each lane after a well-defined amount of time known as the Rx buffer delay. Since it is
fixed and referenced to an LMFC edge which is the same on all devices, it is deterministic.
The Rx buffer delay must be longer than any possible delay in this implementation. The
minimum Rx buffer delay can be determined by the maximum time it takes to receive valid
data in the initial lane alignment phase over all lanes [42, 43, 41]. Some implementations
even shorten the Rx buffer delay to the link delay variation by splitting it into a fixed and
variable delay. The fixed part is covered by offsetting the edge of the LMFC of each link
by the fixed part, so the buffer has to cover only the variance over power cycles [44].

Since deterministic latency is important for quantum control for precisely timed pulses,
we need subclass 1 or 2. Subclass 1 supports higher device clocks and is, therefore, more
capable of adjustment for future development, while the downsides are minimal. Thus,
JESD204B subclass 1 is used as a data converter interface at TIQI.

3.4 The experimental setup

All my experiments were conducted on the eQual setup, where eQual stands for ”encoded
Qubit alive”. It was mainly built by Robin Oswald [45] and Roland Matt [46]. As part
of the IARPA ”LogiQ” (Logical Qubit) program together with the group of Rainer Blatt
from the University of Innsbruck (UIBK), the goal was to demonstrate a logical qubit. A
logical qubit groups several physical qubits together to form a fault-tolerant qubit. Thus,
the setup is suitable for experiments with many ions.

Ion traps are operated at an ultra-high vacuum (UHV) to avoid collisions of the ions
with residual gas. Some traps achieve this at room temperature, but this requires UHV-
compatible components and time-consuming vacuum chamber bake-outs. The eQual
setup however is a cryogenic setup. If the trap is cooled down to about 5K within a
cryostat, residual gas tends to stick to the cold surfaces. With the help of this ”cryo-
pumping”, it is much easier to reach the required UHV. Additionally, many materials
become UHV-compatible at cryogenic temperatures.

The lab holding the experiment is split into three areas: The control room, the ion trap
room and the laser room. The lasers needed to manipulate the ions are located in the
laser room, from where they are guided by optical fibres to the ion trap room, containing
two cryostats with traps inside. The whole setup can be controlled from computers in the
control room via Ethernet.

In the laser room are two enclosures for optics and two optical tables. Most lasers and
their reference cavities, that is 732nm, 423nm, 397nm, 854nm and 866nm, are contained
in one of the enclosures, a custom-built rack based on a commercial 19-inch rack. It is
water-cooled to minimise temperature fluctuations, which could affect both cavity stability
as well as optics alignment. The qubit laser however comes from a 729nm TiSaph laser on
one of the optical tables. The second enclosure is dedicated to a high-finesse cavity and
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optics to lock the 729nm laser, which means stabilising its frequency.

The ion trap room contains two cryogenic setups surrounded by an optical table each. The
table is mostly used to deliver the beams into the cryogenic chamber, for power monitoring
the laser beams and pulsing the laser used for coherent operations. The room also holds
two racks, one for electronics and one for optics. The electronics rack contains the control
system for the setups, in detail explained in section 3.5. It creates RF pulses, which are
then sent to the optics rack. It contains mostly acousto-optic modulators (AOMs). The
AOMs are placed in the path of the lasers before they go to the trap. They modulate the
RF frequency coming from the control system onto the laser. The RF voltage generates
an acoustic wave applied to a piezoelectric crystal. A laser sent through this crystal is
diffracted and shifted in frequency by the frequency of the acoustic wave and thus the RF
signal.

The cryogenic setup itself consists of an ion trap with a vacuum chamber surrounding
it. A commercial closed-cycle cryostat reaching into the chamber cools an inner chamber
containing the trap down to 5K. Several feed-troughs provide access for electrical signals
and fibres. Electrical connections are needed for the DC electrodes and RF drive of the
trap, as well as for piezo-actuators, heaters and the oven. Eleven optical fibres leading
into the chamber allow individual addressing of ions. Other freespace lasers reach the
trap through viewports, which also serve as an optical path for readout by the camera
and the photomultiplier tube (PMT). An effusive oven in the chamber is used to load
ions. It creates a flux of neutral atoms, which are then ionised by the 423nm laser and an
additional 375nm laser.

The chamber can hold various ion traps, which have changed over time. My experiments
were conducted with the latest trap called the Weizmann trap. It gets its name from the
collaborative design and fabrication efforts with the group of Roee Ozeri at the Weizmann
Institute. It is a linear Paul trap made of fused silica glass wafers. The electrode-ion
distance is 150µm. The gold-coated electrodes are wire-bonded to the printed circuit board
(PCB) it is placed on. A picture of the trap can be seen in figure 3.2.

Figure 3.2: The Weizmann trap, the ion trap used for experiments in this thesis. Figure
adapted from [45].

3.5 The control system

The latest iteration of the control system in use at TIQI is called QuENCH, developed
by Martin Stadler, Cagri Önal, Utku Altunkaya, Vlad Negnevitsky, Ilia Sergachev and
others [47]. It is the successor of the previous Modular Advanced Control of Trapped
IONs (M-ACTION) system by Vlad Negnevitsky [24] and is backwards compatible, since
many experiments still use old hardware. At the beginning of this thesis, the eQual setup
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was in the upgrade process for QuENCH. Since QuENCH RF generation hardware is
indispensable for noise generation and the TI card, together with Martin Stadler we put
significant effort into finalising the integration.

The core of the system is the main controller∗, comprising a system on a chip (SoC) with
two ARM CPUs and an FPGA. Experiments can be written in C++ and are compiled and
linked into the application that is uploaded to the processor. A PC can change parameters
and start experiments by connecting to the processor via Ethernet. The processor generates
the instructions for a sequence of pulses according to the experiment and writes it to
the FPGA. The FPGA is then responsible for time-accurate execution of the experiment.
It does so by orchestrating the rest of the coherent electronics, most notably the RF
generation cards.

The RF generation cards provide functionality to control the laser pulses, generating wave
forms using direct digital synthesis (DDS) (see section 4.3 about DDS). They can be
programmed with instructions for the pulse sequence containing phase, frequency and
amplitude information before the experiment. During the experiments, the instructions
are then triggered by the main controller. The QuENCH RF generation cards improve
on some of the shortcomings of the previous generation. They drastically decrease the
minimum pulse time, improve time resolution and double the channel density. Furthermore,
they support several sine tones on the same physical output channel, removing the need
for power combiners to add the output of two single-tone channels. This is useful in the
MS gate experiments for the RSB and BSB. The cards consist of a carrier card with an
FPGA†, connected to two FPGA mezzanine card (FMC) cards with four channels each.
One of these cards was replaced with the TI card for this thesis. The noise generator was
implemented on the FPGA of the carrier board.

Both the main controller and the RF generation cards slot into a custom backplane based
on the MicroTCA standard, which itself is in an enclosure which can be mounted into
a 19-inch rack. Communication between the cards is handled by dedicated differential
lanes each from the main controller to the RF cards and a backplane clock. The FPGA
of the main controller also handles other coherent electronics, like the camera and PMT
for readout, as well as arbitrary waveform generators (AWGs) to set the trap electrode
voltages.

The experiment is controlled from the control PC with a GUI called Ionizer2. It connects
to a server on the main controller over Ethernet. It queries the available experiments
from the application running on the main controller and creates a separate page for each
experiment, where experiment parameters can be set. Each experiment generates pulse
sequence instructions that are loaded into memory blocks of the FPGA when the experiment
is started. The results of the measurements are plotted in one or several windows and
the underlying data is saved for further processing. Ionizer2 also has a Python API to
automate longer experiment sequences with Python scripts.

Ionizer2 controls other, non-time-critical devices in the setup via plugins. These include
fixed-frequency RF sources, shim electrodes to compensate stray electric fields in the trap,
piezo-actuators to adjust the lengths of optical cavities and control loops for frequency and
intensity stabilisation of the lasers. For the asynchronous control, the plugin communicates
with single-board computers (Raspberry Pi’s) over the Ethernet network. The Raspberry
Pi’s in turn control the asynchronous devices. A full overview of all parts of the control
system is shown in figure 3.3.

∗Avnet ZedBoard.
†AMC FMC carrier Kintex (AFCK).
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Figure 3.3: An overview of the QuENCH control system. The TI DAC card is highlighted
in red. Image by Martin Stadler.
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Chapter 4

Implementation

Utilising the experimental setup and control system, we want to quantify the influence of
phase noise on the gate fidelity of quantum gates. That requires the possibility of injecting
excess noise into the RF signals. Precise and flexible control of the power and profile of the
injected noise is important. Precisely knowing the input parameters allows us to derive
an exact dependency on the noise. The flexibility of generated noise parameters allows
us to test different hypotheses based on theory and simulation. Also, the AFE8000EVM,
the high-performance transceiver card, which Texas Instruments provided us with, had
to be integrated into the current control system. Thus, several changes to the hardware,
firmware and software of the QuENCH control system were needed for this thesis.

4.1 DAC upgrade - AFE8000

The AFE8000EVM is an evaluation board for an RF sampling transceiver chip, the
AFE8000 from Texas Instruments [48]. The acronym AFE stands for ”analogue front
end”. The AFE8000 is a high-performance, wide bandwidth multi-channel transceiver,
primarily used for high-frequency RF applications like radar systems, software-defined
radio or wireless communication testing. It features eight 14-bit DACs and ten 14-bit
ADCs, of which we only use the DACs. Its DACs sample with 9GSPS in straight mode,
which could go up to 12GSPS in interleaved mode (a mode where the output of two parallel
DACs is combined to increase the sampling rate). The output frequency is 5-7125MHz,
with a maximum signal bandwidth of 800MHz (for 8 channels). Each transmitter chain can
be attenuated by a digital step attenuator with a range of 40dB. It also features a digital
upconverter, which means that samples can be provided at a lower sampling rate and
upconverted to a higher frequency. This is a useful feature for us, as it allows us to generate
samples at a lower frequency, saving us resources on the FPGA. The AFE8000 also features
a high-speed data interface supporting the JESD204B and JESD204C protocol. These
protocols feature deterministic latency, which is important for real-time control of pulses.

The AFE8000EVM also includes the LMK04828, a low-noise clock jitter cleaner to generate
a clock for both the transceivers as well as the JESD204 protocol. It features a dual
phase locked loop (PLL) designed to multiply a clock signal sourced from an internal
quartz oscillator while simultaneously minimising excess noise. This removes the need for
a high-frequency reference clock, just a 10MHz reference signal is needed to synchronise
the LMK04828 with the main reference. The interface to a carrier card is realised by a
high pin count FMC connector.

As mentioned, the AFE8000 is designed for high-frequency applications in the GHz range,
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although our requirements only necessitate RF frequencies up to about 400 MHz. Thus, the
evaluation board sent to us was modified by Texas Instruments to adjust the reconstruction
filters for four of the channels for these lower frequencies. We also had to make some minor
adjustments ourselves. First, we had to desolder the four edge-mounted SMA connectors
to fit the card into the MicroTCA chassis. Furthermore, the AFE8000EVM, being an
evaluation board, is notably long. Hence, the FMC connector alone cannot be expected
to bear the mechanical load of the card being mounted vertically to the AFCK slotted
into the chassis, similar to the regular front-end cards. To address this, I designed a
small mechanical fixture consisting of a metal plate which can be screwed to both the
AFE8000EVM and the AFCK, providing additional support. However, the card still
protrudes several centimetres beyond the front panel plane, which is not ideal. If the card
would be used more extensively in the future, it would have to be integrated more densely
to shorten the card. Front-facing edge-mounted SMA connectors would also be useful,
since in the current setup, the adjacent slot has to be empty to be able to access the SMA
connectors. It is probably a challenging task to comply with these requirements, while still
keeping the very high channel number. A picture of the AFE8000EVM is shown in figure
4.1.

Figure 4.1: The AFE8000EVM evaluation board. Picture taken from [49].

4.2 Noise generation

An important part of the implementation was the ability to inject well-controlled noise
into the RF signals. Since I wanted flexible noise profiles and power levels, the easiest way
would be to synthesise it on board. One option could have been to utilise an arbitrary
waveform generator and inject the synthesised noise either by modulating it onto the
RF signal or directly onto the laser using an AOM [8]. However, this would necessitate
additional hardware and more modifications to the eQual setup. Since we generate the RF
signals anyway on custom hardware (see section 4.3), the FPGA of the RF signal cards,
the most straightforward solution is to generate the noise directly on the FPGA and add it
to the phase of the sine-wave synthesis. Since the upconverter feature of the TI card frees
some FPGA resources, resource constraints should not be a problem.

Indeed, generating noise on an FPGA is not a trivial task. High-level programming
languages usually come with a large library of algorithms, including pseudo-random
number generation. This is not the case on an FPGA. Usually, the FPGA developer
implements functional blocks on a hardware level to utilise resources as efficiently as
possible. There are implementations of sophisticated noise generation algorithms [50], but
the complexity of these algorithms often comes with a high demand for FPGA resources.
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Thus, it is helpful to think about the requirements on our noise to find a reasonable balance,
since we want to add a noise generator to each of the eight channels supported by one
RF generation card. Our goal is to simulate real phase noise as close as possible. This
translates to noise which is

• (pseudo-) random,

• Gaussian-distributed in the time domain and

• ideally encompasses the three noise profiles described in section 2.2.1 in frequency
domain.

It is hard to create true randomness on an FPGA, since logic is deterministic [50]. Luckily,
we do not need a truly random signal, a pseudo-random signal is good enough. A pseudo-
random sequence exhibits statistical randomness, despite being generated by a deterministic
algorithm. While this might be insufficient for applications in cryptography, in our case we
only care about its statistical properties.

A simple method to create pseudo-random numbers on an FPGA is a linear feedback
shift register (LFSR) [51]. It is a shift register where the input bit is a linear function of
the previous bits. By appropriately selecting the feedback function, the LFSR can cycle
through all possible states (excluding zero), with the last bit of the current state serving as
the output. This results in a pseudo-random bitstream. The architecture of an LFSR can
be represented by its characteristic polynomial over the integers modulo 2 in finite-field
arithmetic [52]. In our case, the polynomial is P (x) = x31+x28+1. The feedback function
takes values from the register cells whose corresponding monomial in the characteristic
function is non-zero, known as taps. In our case, these taps are 28 and 31, and they are
fed back to the input using an XOR function. A graphical representation of the LFSR
implementation can be seen in figure 4.2.

b1 b2 b3 b31b30b29b28b27b26...
1

output

Figure 4.2: The architecture of an LFSR. The output is the last bit of a shift register,
where the input is a function of the previous state.

The length of the register determines the period of the pseudo-random number sequence.
With a register length of n = 31 bits, and the LFSR cycling through all states except the
the all-zero state before repeating itself, the period is T = 2n − 1. However, we require
the LFSR to generate a random number of length L = 14 bit each clock cycle, whereas
the output of the LFSR is only one bit. One approach is to take a longer substring of
the status register as an output. This would still result in a uniform distribution, but the
subsequent numbers are highly correlated, since each one is the previous one shifted by
one plus an additional bit. Thus, a solution is to advance the LFSR by L every clock cycle,
which can be done with replication. Note that n = 31 is conveniently chosen such that
the period T is a Mersenne prime number. Thus, even though the LFSR advances faster
by a factor of L = 14, the periodicity T does not change, since T and L are co-prime and
therefore the LFSR still cycles through all states before repeating itself [53]. Interestingly,
this means that a bigger LFSR is not always better. Increasing the register length to
n = 33, for example, would decrease the total periodicity, as gcd(T, L) = 7 while T is only
increased by a factor of four. In total, the chosen register length of n = 31, using an FPGA
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clock period of Tc = 4ns, equates to a periodicity of T = T ·Tc = 8.6s, which is significantly
longer than every individual experiment.

The generated number sequence using an LFSR is uniformly distributed in the frequency
domain, which is desirable, but the amplitude is also uniformly distributed in time domain.
This is an unnatural distribution, as most noise exhibits a Gaussian distribution (see
section 2.2.1). Therefore, we aim to convert the uniform noise to Gaussian noise. One
approach for this conversion is the Box-Muller transform [54]. However, this transform
uses non-arithmetic functions, which have a higher resource demand. Thus, I made use of
the central limit theorem instead. It states that the mean of independently distributed
variables converges to a Gaussian distribution, regardless of the distribution of the individual
variables. Therefore, I add the result of n = 4 parallel 14-bit LFSRs together, resulting
in 16-bit Gaussian-distributed white noise (see figure 4.6). Although the theorem claims
Gaussian distribution only in the limit of n → ∞, n = 4 already provides a reasonably
good approximation. The resulting distribution and a comparison to the ideal Gaussian
distribution are depicted in figure 4.3a. To better see the difference between the two
distributions, especially tiny differences in the tails of the Gaussian distribution, I use
a quantile-quantile (Q-Q) plot (see figure 4.3b). It is a graphical method for observing
the similarity of two distributions. The samples of the distribution in question are split
into quantiles and plotted against the quantiles of a reference, usually an ideal model, on
a scatter plot. The closer the two distributions are, the closer they are to the identity
line. Here, it can be observed that for values within about ± 23k (±2.5σ), the synthesised
distribution closely aligns with the ideal one. However, in the tails, the approximation
breaks down due to the limitation imposed by the total sum of four 14-bit numbers
being limited to a 16-bit number (ranging from -32768 to 32767). Despite this limitation,
the distribution is assumed to be sufficiently good since both theory (section 2.2.2) and
simulations do not indicate a dependence of the gate fidelity on the distribution in the
time domain.
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Figure 4.3: (a) Histogram of the sum of four uniformly distributed numbers generated by
an LFSR, with the ideal Gaussian distribution as a comparison (red dashed line). The bin
count is 128. (b) The quantile-quantile plot of the generated distribution versus the ideal
Gaussian distribution.
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Since we want to be able to generate different noise profiles, the white noise has to be
modified. To do this, I pass the white noise through a filter with the appropriate frequency
response. Such a filter can be constructed using a PI (proportional-integral) controller.
It is typically used to steer a system to a desired outcome by comparing the fed-back
output of the system to a setpoint. The setpoint is set to the generated white noise in
this case. The controller consists of a proportional component and an integral component.
The proportional part multiplies the error signal (the difference between the setpoint and
the feedback) with a constant KP , thereby generating white phase noise at the output,
adjusted in the power level by KP . The integral part integrates the error and multiplies it
with KI for scaling. Since the phase is the derivative of frequency, this creates random
phase walk or white frequency noise ( 1

f2
dependence). The feedback is the time-delayed,

scaled-down output. Without it, the output would eventually wander out of the numerical
limits of the output of the controller. It exhibits a high-pass behaviour with a corner
frequency of about 100Hz, countering the integrator up to those frequencies. The controller
with feedback is depicted in figure 4.4.

P

I

PI controller

delay

Figure 4.4: The implemented filter. It uses a PI controller with a feedback structure to
prevent the output from exceeding bounds.

This filter design implements white phase and frequency noise, but not flicker noise. Flicker
noise is more complex to generate than the other two. One possible solution is an infinite
impulse response (IIR) filter. This approach approximates a slope of 1

f by alternating
poles and zeros. Increasing the number of poles and zeros allows for fitting to arbitrary
accuracy [55]. Another approach is the Voss-McCartney algorithm [56], which involves
adding several random white noise sources. Each source is updated at progressively lower
frequencies, resulting in a mixture of white noise (where the output is replaced by a new
value every clock cycle) and 1

f2
noise (where the output is a sum of all previous inputs).

Both approaches are more resource-intensive than generating white noise or white frequency
noise, but they are not unreasonably so. However, I decided to not implement flicker noise
because of the time needed to implement it. Its priority did not seem to be as high in
comparison to other tasks, as simulation indicates that noise profile, especially flicker noise,
does not matter that much (see chapter 5).

I added an additional low-pass filter with a corner frequency of 7.85MHz. The purpose of
this filter is to limit noise power at frequencies well above the relevant frequencies (Rabi
and trap frequency), since high noise power creates other problems with measurement (see
chapter 5). Since we want to cover a big range of noise levels, it is not a good idea to
adjust the power level with only the filter constants KP and KI . Very small values for low
noise levels lead to quantisation errors. Therefore, I added a global scaler. It does not
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multiply the noise with a constant using a DSP slice; rather, it shifts the value, thus scaling
it by powers of two. This allows it to cover a large range without increasing the bit width
of KP and KI . It shifts the total frequency response, including the I and P components
and the high-pass behaviour of the feedback structure. In the end, the synthesised noise is
added to the ideal phase to create a noisy phase used in sine-wave synthesis (section 4.3).
An example of generated noise is depicted in figure 4.5. The complete noise generator is
illustrated in figure 4.6.
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Figure 4.5: Example of simulated noise output. The first dashed line is at the corner
frequency of the PI filter (set by filter parameters), while the second dashed line is at the
corner frequency of the low-pass filter (fixed, 7.85MHz).
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Figure 4.6: The noise generation block implemented in firmware.
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4.3 On-board complex sine-wave synthesis

The QuENCH system incorporates RF generation through direct digital synthesis (DDS).
This entails digitally creating a continuous stream of sine-wave samples using the FPGA
of the RF generation card, which is then sent to the DAC for conversion into an analogue
signal. I will now provide a brief overview of such an implementation in firmware.

The basis is a register representing the instantaneous phase of the signal. A phase parameter
sets the initial phase offset. Since the instantaneous phase is the integral of the frequency,
it is advanced at each clock cycle by the clock period multiplied by the current frequency,
specified by the frequency parameter. This block is therefore known as a phase accumulator.
The register only needs to hold the phase ranging from 0 to 2π, since sinusoids are 2π
periodic, and any overflow acts as a modulo-2π function.

Subsequently, the instantaneous phase is converted to a sinusoid using a mapping of phase
to amplitude in a memory block called a lookup table (LUT). It is unnecessary to store a
whole period of a sine though, as a sinusoid exhibits a four-fold symmetry. Since the saved
sinusoid in the LUT is always full scale to minimise quantisation error, the amplitude is
scaled down to the desired value by a constant amplitude parameter.

These samples generated at every clock cycle are then sent to a DAC for conversion to an
analogue signal. In our setup, where the samples are generated on the FPGA on a carrier
board while the DAC is on a dedicated mezzanine board, the samples are transferred over
the FMC connector connecting the carrier board with the DAC card with a high-speed
data interface called JESD204B. An overview of the sine-wave synthesis is provided in
figure 4.7.
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Figure 4.7: Architecture of sine-wave synthesis for the previous QuENCH DAC card.
Figure adapted from Martin Stadler.

An advantage of this on-board synthesis compared to a fixed-function RF signal generator,
where just the frequency, phase and amplitude are set, is the great flexibility it offers. The
QuENCH system enables the generation of not just one tone, but up to four tones on
the same channel by digitally combining the outputs of several synthesisers. In contrast,
combining tones using fixed-function signal generators requires multiple channels, which
then need to be combined using analogue power combiners. Alternatively, AWGs can be
used, which would also allow for any pattern including many tones. However, the tight
integration of the QuENCH system avoids long delays during experiments due to sample
upload time. For this thesis, the flexibility of the QuENCH RF generation allows the value
of the phase accumulator to not only be influenced by the phase and frequency parameters
but also by the generated instantaneous phase noise. Thus, the injected phase noise is
already included in the sine-wave present at the DAC output and does not have to be
added at a later point, requiring additional hardware.

For this thesis, Texas Instruments has provided a DAC card to replace the currently used
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QuENCH DAC card (see section 4.1). It features a built-in upconverter. Thus, it can accept
samples at a lower frequency (baseband), which are then upconverted to a higher frequency
(RF frequency). However, to preserve phase information during the upconversion, the
samples must be provided as complex samples. In practice, this is achieved by providing
both an in-phase (I) and a quadrature (Q) component. They represent the real and
imaginary parts of a complex value, rather than the amplitude and phase information (see
4.8). During upconversion, the upconverter multiplies these components with the sine wave
coming from a local oscillator (LO), where the phase of the LO for the Q component is
shifted by 90°. The LO is a digitally generated sine wave exactly like described before,
called the numerically controlled oscillator (NCO).
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Figure 4.8: A complex phasor represented in the complex plane with I and Q components.
The phasor advances in time in the anticlockwise direction.

Since the TI DAC card now requires I/Q samples, the sine-wave synthesis has to be
adjusted accordingly. The phase accumulator stays the same, as the phase is used for both
the I and Q samples. Subsequently, the path is divided into separate I and Q paths, where
the phase of the Q path is shifted by -90°. To motivate this, see the rotation of the phasor
in figure 4.8 through the complex plane, with the I component as the real part and the
Q component as the imaginary part. The I component is the cosine cos(ωt), while the Q
component follows a sine sin(ωt). As time and therefore angle moves anticlockwise, the
Q component is lagging 90° behind. We can write the upconversion also as a complex
multiplication of the LO phasor eiωLOt and the I/Q phasor eiωt:

x(t) = ℜ{AeiωLOteiωt}
= A cos (ωLOt) cos (ωt)−A sin (ωLOt) sin (ωt),

(4.1)

where ωLO is the LO frequency and ω is the frequency of the I/Q signal. We can observe
that the unshifted LO (cos (ωLO)) is multiplied with the I sample, which is a cosine
(cos (ωt)), while the 90°-shifted LO (− sin (ωLOt)) is multiplied with the Q sample, which
is a sine (sin (ωt)).

For each of the signal paths, the phase has to be converted to an amplitude. Naively, with
a fixed number of ports per LUT, this would require double the amount of LUTs, each
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saving the sine or cosine. However, we can take advantage of the displacement symmetry
of the sine and cosine. Previously, we needed to save a quadrant of the sine function to
reconstruct the full sine over a period. However, it is also sufficient to save an octant of
both the sine and cosine functions in the same memory entry. This approach doubles the
memory width but halves the depth, thereby keeping the memory size the same. Since
both the sine and cosine values are retrieved with one memory call, one memory block of
the same size can accommodate both the I and Q paths. For phases not in the first octant,
the sine and cosine amplitudes in the first octant can be switched and mirrored across the
x- and y-axis to retrieve the desired amplitude in that octant [57].

The amplitudes of both the I and Q paths are then scaled down by the amplitude parameter,
similar to before. However, this multiplication needs to be performed individually, requiring
an additional multiplier. The generated I and Q samples are then again sent to the TI
DAC card over the FMC connector using JESD204B. A depiction of the total signal path
can be seen in figure 4.9.

As observed, although there are now two signal paths instead of one, most of the resources
can be shared between them. The effective increase in resources is only one additional
multiplier requiring a DSP slice for the final amplitude adjustment, plus some minor logic.
However, the samples can be provided at a lower rate — in our case the FPGA clock
frequency of 250MHz — compared to the previous rate of 1GHz. Sampling for a 1GSPS
DAC at 250MHz, as previously done, requires hardware replication to generate four samples
per clock cycle, which can now be omitted. Consequently, we reduce the resources used for
sine-wave synthesis, down to almost a quarter, thanks to the upconverter of the TI card.

ph
as

e

time

am
pl

itu
de

phase

DAC

+90°

frequency phase amplitude

+

+
+

NCO

FMC connector

I

Q-90°

lookup tableaccumulator

upconverter

Figure 4.9: Architecture of sine-wave synthesis modified for this thesis, accommodating
the upconverting feature of the TI DAC card.

4.4 Clock generation and distribution

The programmable logic within the FPGA of the RF generation card is clocked at various
speeds. Most logic operates with the management clock at 125MHz to relax timing
constraints. However, certain parts, namely the sample generation and the GTX transceivers
used for the JESD204B protocol, run at higher speeds. Some other frequencies are also
used in other modules of firmware, but since these were not altered in the scope of this
project, I will not cover them here.

To test the TI card, Texas Instruments also provided an example design using a Virtex
7 FPGA VC707 Evaluation Kit along with accompanying example firmware, aiming to
simplify the integration of the card. At the core of this design is a custom JESD IP core
from Texas Instruments, which implements the JESD204 protocol∗. Since the TI card
already has an internal reference†, the firmware of the example design is entirely clocked by

∗The TI 204c IP core [43].
†The Texas Instruments LMK04828, a dual PLL [58].
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references provided by the TI card over the FMC connector. This includes both the system
clock and the clock for the GTX transceivers. I ported the JESD core to the QuENCH
system. However, this process was not seamless, as the schematics of the hardware of the
example design and the QuENCH RF generation cards differ.

To understand the problem, we have to look at the architecture and physical placement
of the GTX transceivers [59]. The GTX transceivers used by the used FPGAs combine
four lanes to form a quad. Each quad also physically contains two high-speed reference
clock inputs to clock each of them. The clock can alternatively be sourced from one of the
two adjacent quads. The example design uses eight lanes (L=8). Thus, the JESD core
uses two quads. In the example design on the Virtex 7, the used quads are positioned
next to each other, allowing them to be clocked by the same reference. This is not the
case for the QuENCH system, however. The lanes, hardwired on both the TI card and
the RF generation card, are now connected to two quads that are not adjacent to each
other. The transceiver reference clock from the TI card is directly wired to one of these
quads and therefore cannot clock the other quad. This situation applies to both FMC
connectors available on the RF generation card, so switching to the other connector does
not resolve the issue. Figure 4.10 illustrates the problem. The TI card on the left is
connected to the RF generation card via the FMC connector 2. Within the RF generation
card lies the FPGA with its four quads and the two clock input buffers for their assigned
clocks, positioned according to the physical layout. Note that all clocks within the TI card
and the RF generation card are differential up to these clock buffers, although this is not
depicted for simplicity. The hardwired transceiver reference clocks are depicted in yellow.
Not shown here are the transceiver lanes, where quad 0 and 2 are mapped to the FMC
connector 2, while quad 1 and 3 are mapped to the FMC connector 1. Since I connected
the TI card to FMC connector 2, the JESD core uses therefore quad 0 and 2.

As also shown in figure 4.10, the RF generation card includes a crossbar switch. It can
map different input clocks to different output clocks. However, the transceiver reference
clock is not connected to the crossbar switch and therefore cannot be rerouted to clock the
used quads. Additionally, no other reference from the TI card is routed over the crossbar
switch, making it impossible to use the TI card to clock the GTX transceivers. As a result,
an external reference is needed. For this, we use a clock generation board‡. It contains
a dual-loop PLL, providing versatile clock generation. One output is then used to feed
a 250MHz clock over the U.FL connector into the RF generation card. Another clock
output is connected to the 10MHz reference input of the TI card to synchronise its internal
reference to the external oscillator. A third 250MHz output is connected to the main
controller of QuENCH. This clock distribution concept is illustrated at the bottom of figure
4.10.

The reference connected to the RF generation card is internally connected to the crossbar
switch, where it is forwarded to both quads individually. Since two separate clocks are
now needed, the JESD core, in particular the Xilinx GTX IP core§ within it, had to be
slightly modified to accommodate this. Furthermore, the main system clock was previously
also derived from the transceiver clocks. However, since the JESD core instantiates the
differential clock input buffers within the core itself and does not output the single-ended
clock for use outside of the core, this is not possible. This may be solved with another
configuration of the GTX IP core, but I rather connected the external reference over
the crossbar switch to yet another input buffer, from where it is forwarded to the clock
manager to generate the main 125MHz management clock. Note that the instantiation

‡The HMC7044 evaluation board [60].
§The LogiCORE IP 7 Series FPGAs Transceivers Wizard.
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of the differential input clock buffers by the JESD core has another interesting side
effect. Previously, in the QuENCH firmware, the input/output (I/O) of each of the FMC
connectors, including the reference clocks, was routed through an I/O module. However,
Vivado is unable to place a differential input buffer when the differential lines are routed
through a module, even if the wires from the input are directly assigned to an output.
Bypassing the I/O module solves this problem.

Not all clocks are derived from the external reference. The sample clock for the JESD core
and for the RF generation are still derived from the TX system clock coming from the TI
card. However, I increased the sampling frequency of the JESD core from 125MHz in the
example design to 250MHz by re-configuring the GTX IP core embedded in the JESD
core. This leads to slight timing violations of about 0.02ns total negative slack. I could
not investigate them further, since they appear within the encrypted part of the JESD
core by Texas Instruments. However, the timing violations do not seem to be a problem in
practice.
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Figure 4.10: The clock distribution concept for the QuENCH system with the TI card.
The figure also includes signal names from the QuENCH firmware and net names of the
schematics of the TI card and the RF generation card in monospace font. While these are
not important to understand this section, they may be helpful for developers continuing
on the project in understanding the QuENCH firmware.
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Chapter 5

Results

In this chapter, I present the main findings of this thesis. Firstly, I measure the inherent
phase noise of the system and confirm the correctness of my implementation of phase noise
injection. Furthermore, I present the results of simulations investigating the influence of
phase noise on gate fidelity for both single- and multi-qubit gates. In the single-qubit case,
the simulations are then compared to measured fidelities from the eQual setup and to the
theoretical values from [9] (see also section 2.2.2).

5.1 Phase noise measurements

We confirmed the correct operation of the noise generation by measuring the phase noise
with a signal source analyser. Hereby, I thank Sandro Camenzind from the Ultrafast Laser
Physics group, who allowed us to use their Agilent (Keysight) E5052B and also helped
us conduct the measurements. All measurements were conducted at a carrier frequency
of 150MHz at -6dBFS. Initially, we measured the SSB phase noise of the reference clock∗

and the inherent phase noise of a sinusoidal at the output of the TI DAC card† (see figure
5.1a). The noise spectral density of the DAC itself is specified as NSD = −157dBFS/Hz
and is therefore much lower than the noise density of the reference clock up to the MHz
range. Consequently, the noise performance of the TI card is likely limited by the reference
clock. This also suggests that the noise measured at the output mostly reflects the noise of
the internal reference clock‡ employed in the TI card. Given that the external reference
clock is a dual PLL very similar to the internal one, the traces look very similar. However,
a peak at about 200Hz is evident on the TI card, followed by lower phase noise than the
input from the reference clock. This discrepancy can be attributed to a lower PLL1 loop
filter bandwidth of the internal reference compared to the external one. In the PLL2
loop bandwidth, the internal reference seems to add some noise overall. We note that
the total phase noise characteristics of the TI card are well below what would impact our
measurements, as demonstrated in the following sections.

We further tested the noise generation. Note that the following measurements exclude
the low-pass filter mentioned in 4.2. In figure 5.1b, three traces each of white phase noise
(KP = 1) and white frequency noise (KI = 1) are illustrated. These traces differ from each
other by the global gain G, which shifts them up or down. For the white noise traces, it can

∗HMC7044 evaluation board EVAL-HMC7044 [60, 61].
†The AFE8000EVM provided by Texas Instruments. [48, 62]
‡LMK04828 [58].
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be observed that they are limited by the base noise from the TI card for frequencies below
about 400Hz. However, this is not a problem, since relevant frequencies are well above
that limit. A mixture of the two noise profiles can be seen in figure 5.1c. This synthetic
noise profile most closely resembles the noise profile seen on actual devices (compare with
5.1a). By adjusting the proportional (KP = 1) and integral gain (KI = 1), the quantitative
parameters of the profile can be changed. A comparison of the white phase noise, white
frequency noise and a mixture of both with the ideal calculated transfer function can be
seen in figure 5.1d. They agree very well up to about 10MHz, where a drop of about 0.5dB
can be seen, probably the roll-off of the Nyquist filter.
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Figure 5.1: (a) Phase noise measurements of the reference clock and the output of the
TI DAC card.(b) Measured phase noise with different levels of injected white phase noise
and white frequency noise. The base noise from the TI card is shown as a reference. (c)
Measured phase noise of a mixed white phase and frequency noise profile with different
filter parameters. (d) A comparison between the calculated filter transfer function (dashed
line) and the measured phase noise (solid line) for white phase and frequency noise and a
mixture of both. All measurements were conducted at a carrier frequency of 150MHz.

5.2 Simulation

I simulated the impact of phase noise on the gate fidelity for both single- and multi-
qubit gates. All simulations were conducted using the quantum simulation package
QuantumOptics.jl [12] in the programming language Julia [11]. For both types of gates,
I initially generated Gaussian white noise, which I filtered to achieve the desired noise
profile in the Fourier domain. Each simulation run involved numerically solving the
time-independent Schrödinger equation, where the Hamiltonian of the respective gate was
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updated at each time step with the instantaneous phase of the laser sampled from the
distribution as described earlier. The average gate fidelity was obtained by averaging the
results of multiple simulation runs.

5.2.1 Single-qubit gate

For single-qubit rotations, I used the Hamiltonian 2.10. The phase ϕ = ϕ0+ϕ(t) is the sum
of the desired laser phase ϕ0 and the random variable ϕ(t), where ϕ0 = 0 w.l.o.g. for all
subsequent simulations, as it does not change Rabi flops starting in |g⟩. The Rabi frequency
was set to Ω0

2π = 189kHz to match the Rabi frequency achieved at the eQual setup. The
simulation length was set to 20 Rabi oscillations or T = 20 2π

Ω0
. The noise was sampled from

a white distribution, then low-pass filtered with a bandwidth of 7.8MHz (single-sided).
Single instances of simulations experience contrast loss due to the noise-induced deflection
jf from the ideal final state J◦

f (see section 2.2.2). This contrast can be ”revived” if jf
becomes zero due to random processes, but this is not the case for the average over several
instances. Thus, on average, the Rabi flops are a damped sinusoid with exponential decay,
following the function

Pe(t) =
1

2

(
1 + e−

t
τ cos (Ωt+ π)

)
, (5.1)

where Ω is the corrected Rabi frequency (see equation 5.5) and τ the exponential decay
constant. Equation 2.47 from single-qubit theory suggests that the fidelity loss should be
linear in gate time, not exponential. However, this cannot be true for long gate times, as
the fidelity would eventually become negative. The derivation relied on the assumption
that the deflection is small, allowing the use of the small-angle approximation. However,
for long gates with relatively high phase noise, this approximation no longer holds. Instead,
we can treat long gates as a series of infinitesimal gates, where each infinitesimal gate
reduces the relative contrast by an infinitesimal amount:

dC = −C 1

τ
dt, (5.2)

where C is the contrast and τ the decay constant as before. Solving this differential
equation for C yields the observed exponential decay C(t) = exp (−t/τ). The fidelity is
then F = 1

2(1 +C), since a truly random measurement in the limit t→ ∞ has a fidelity of
1
2 . We can also intuitively reason why this should be the case. Although the instantaneous
phase of the rotational axis is a Markovian process in the case of white noise, the state
vector to which the rotation is applied remembers all previous deflections. Thus, the total
deflection vector, and consequently the infidelity, is a sum of all infinitesimal, random
contributions, exhibiting random walk. Random walk deviation increases with the square
root of the number of steps [63], or, in our case, with time. One individual Rabi flop trace
can then be written as:

Pg(t) = 1− Pe(t) = cos

(
Ωt

2
+ α

√
t

)2

, (5.3)

where α is a Gaussian distributed random variable with standard deviation σα and mean
zero. I also switched from the |e⟩ population to the inverse |g⟩ population to eliminate the
phase of π. Averaging over all values of α results in:
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Pg(t, τ) =
1

σα
√
2π

∫ ∞

−∞
cos

(
Ωt+ α

√
t
)2
e
− α2

2σ2
α dα

=
1

2

(
1 + e−2σαt cos (Ωt)

)
.

(5.4)

Choosing σα = 1√
2τ

leads to the same exponential form as in equation 5.1.

A depiction of the average of several simulated traces can be seen in figure 5.2. The
standard deviation is shown as a blue band around the average, all well an exponential
fit to the simulated data. The Rabi frequency is not the same as in the noiseless case, as
with increasing noise power, the carrier power must decrease due to Parseval’s theorem
(see section 2.2.1). This results in a reduced Rabi frequency given by:

Ω = Ω0e
−σ2

2 , (5.5)

where σ2 is the variance of ϕ(t).
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Figure 5.2: Averaging of many Rabi flops with induced phase noise at L◦=-80dBc/Hz.

The fit parameters Ω and τ can be extracted from the averaged simulation. Running the
simulation for several different noise levels results in a relation between phase noise density
L and the decay constant τ (see figure 5.3).

The average fidelity of a π rotation corresponds to the average |e⟩ population after the
gate time tπ = π

Ω . Therefore, we can calculate the π gate fidelity as

Fπ =
1

2

(
1 + e−

tπ
τ cos (Ωtπ + π)

)
=

1

2

(
1 + e−

tπ
τ

)
. (5.6)

By mapping the decay constants at each noise level to gate fidelities, we arrive at the
relationship between phase noise density and gate infidelity depicted in figure 5.4. Since
the fidelity of single-qubit rotations can be analytically calculated, we can compare the
simulation results to the values obtained from equation 2.46, which depends on the initial
polar angle θi and the azimuthal angle ϕ. Since the simulation always starts in the ground
state |g⟩, the initial polar angle is θi = −π

2 . The azimuthal angle ϕ is not unique at |g⟩.
However, since |g⟩ is orthogonal to the rotational axis x, all following states of the rotation
are on the yz-plane and therefore have the azimuthal angle ϕi =

π
2 (or ϕi =

3π
2 ; however,

this is the same for the even, periodic cosine function). Hence, we use ϕi =
π
2 as the initial

angle as it is the limit for t→ 0. The calculated values fit very well to the simulated ones,
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Figure 5.3: Contrast decay time versus various levels of phase noise density.
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Figure 5.4: Gate fidelity of a π pulse versus various levels of phase noise density for a Rabi
frequency Ω0

2π = 189kHz.

as can be seen in 5.4, confirming the simulation method. Note that the Rabi frequencies Ω
are adjusted at each data point to the fitted frequencies from each simulation.

All previous simulations assumed low-pass-filtered white noise, and I found a dependence
on the phase noise density. To confirm that this is the appropriate metric to compare,
I conducted simulations to assess the dependence on the noise profile. For this purpose,
I filtered the injected phase noise to a narrow band of 20kHz. The phase noise density
within this band was set to L◦ = −80dBc/Hz and the centre frequency of the band was
swept. The resulting infidelity is plotted in figure 5.5. It can be observed that the infidelity
is the highest when the centre frequency is at the Rabi frequency, where the 20kHz band
of noise is responsible for almost all caused infidelity. This validates that the bandwidth
of the injected white noise does not really matter, as long as the Rabi frequency is well
within the noise bandwidth. Therefore, the total noise power does not influence the gate
fidelity; only the noise power sampled by a small band around Ω matters. Therefore, I
conclude that the phase noise density at the Rabi frequency is a good metric to describe
gate fidelity. However, the narrow peak in figure 5.5 might be deceiving, as this fidelity was
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extracted from Rabi flops, and therefore long gates. The theory of single-qubit rotations in
section 2.2.2 however suggests that for shorter gates, the peak gets wider. Thus, for a π
pulse, the sampled bandwidth is about as wide as Ω itself, even including DC for certain
Bloch vectors (compare figure 2.9). For a π/2 pulse, the bandwidth is even higher at about
2Ω, always encompassing DC. I chose the simulation method however to keep it close to
the experimental method used later. A detailed analysis of this problem can be found in
section 2.2.2.
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Figure 5.5: The centre frequency of a 20 kHz wide white noise band with L◦=-80dBc/Hz
is swept and the resulting gate fidelity is measured.

5.2.2 MS gate

To simulate the MS gate for two ions, I used the result from equation 2.12. Similar
to single-qubit gates, filtered Gaussian white noise adjusts the instantaneous phase of
the Hamiltonian at each simulation time step. Since this Hamiltonian has two beams
with a red and blue sideband, there are four phases, namely ϕR,1, ϕB,1, ϕR,2 and ϕB,2.
Some of these random variables might be correlated depending on the implementation
of the gate. For instance, the red and blue sideband may be generated by two digitally
synthesised tones output on the same RF channel, or the same laser might be defocused to
address both ions. However, it turns out that correlation between phases does not seem
to matter. In the following, noise for each of the four phases is sampled uncorrelated
to each other. W.l.o.g., the average of all phases is set to zero. I simulated by solving
the time-independent Schrödinger equation with one sample of the noise distribution and
examining the population of the target entangled state. In the ideal case, the target state
is 1, and the difference to the actual state is the measured gate infidelity. The final gate
fidelity is again the average over all simulation instances. An average over several instances
of the population of the entangled state, the initial state |g, g⟩ and |e, e⟩ can be seen in
figure 5.6a, with a zoom-in on the gate infidelity for the last microseconds in 5.6b. The
injected phase noise is a white frequency band with L◦ = −90dBc/Hz and a bandwidth
of 8MHz. The gate parameters here and in the following are Ω

2π = 100kHz, Lamb-Dicke
parameter η = 0.05 and trap frequency ωm = 3.75MHz.

To retrieve a dependency on the phase noise density L, I conducted a sweep of L and plotted
the resulting gate infidelity in figure 5.7. Similar to the single-qubit gates, the dependence
is very linear. The linear fit (dashed line) indicates a factor of a = 38.0± 2.2MHz

rad2
.
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Figure 5.6: (a) The simulated populations of |g, g⟩ |e, e⟩ and the target state Ptarget = |g, g⟩+
i |e, e⟩ averaged over several instances. (b) A zoom-in on the gate error (1−F = 1−Ptarget)
for the last microseconds of the gate. The periodicity is caused by the driven off-resonant
carrier term in equation 2.13.
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Figure 5.7: Gate fidelity of a MS gate versus various levels of phase noise density. Simulation
parameters are Ω

2π = 100kHz, η = 0.05 and ωm
2π = 3.75MHz.

The dependence on the profile of the noise is assessed by sweeping the centre frequency
of a white noise band with a 1MHz bandwidth and a noise density of L◦=-90dBc/Hz.
The relevant frequency here is the trap frequency ωm and, to a much lesser extent, the
first multiple of ωm. This can be explained by the carrier transition excited by the power
spectral density at this offset, leading to incoherent spin-pumping [8]. Interestingly, the
Rabi frequency does not play a significant role at all for multi-qubit gates. In figure 5.8,
the first data point encompasses all frequencies from 0-1MHz and therefore also the Rabi
frequency. It is even slightly negative due to numerical errors. For the MS gate, the peak in
sensitivity is expected to be sharp because MS gates are comparatively long and therefore
quite narrow in spectral width, sampling a narrow frequency band. Consequently, the
phase noise density at the trap frequency L(ω = ωm) proves to be an even better metric to
describe noise dependency than L(ω = Ω) for single-qubit gates.

Note that these measured fidelities depend not only on the phase noise density but also
on other gate parameters. To adjust the gate fidelity to a different Rabi frequency Ω or
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Figure 5.8: The centre frequency of a 1MHz wide white noise band with L◦=-90dBc/Hz is
swept, and the resulting gate fidelity is measured.

Lamb-Dicke parameter η, the following relation can be used:

1− FMS ≈ α
Ω

η
L(ω = ωm), (5.7)

where a = 3.02± 0.17Hz s
rad2

is a constant extracted from the fit to the measurements before.
An intuition for the relationships is given in the following: The gate infidelity is proportional
to the spectral noise power of the electric field times gate time. The spectral noise power
is carrier power times phase noise, thus ∝ Ω2L, the gate time is ∝ 1

δ ∝ 1
ηΩ . One Ω cancels

and the total dependence is therefore as above.

5.3 Gate fidelity measurements

To validate the analytical and numerical analysis, we also measured the gate fidelity of a
single-qubit π pulse. The experiments were conducted on the eQual setup (see section 3.4)
on a 40Ca+ ion, with much-appreciated support from Jeremy Flannery. In the experimental
realisation, the implementation of the noise generator and the TI DAC card as the analogue
front end were ultimately employed. The noise was injected into the RF signal of the
single-pass AOM modulating the 729nm laser driving the Rabi flops. We did not get to
the experimental verification of multi-qubit gates due to time constraints.

A typical experiment sequence is depicted in figure 5.9. At first, the ion is cooled close
to the motional ground state with Doppler cooling followed by resolved sideband cooling.
Subsequently, the ion is prepared in the electronic ground state through state preparation.
After these basic operations, the main part of the experiment involves the implementation
of the actual gates. Finally, the resulting state is read out. Note that only the main part
consists of coherent pulses, while the cooling, state preparation and readout consist of
incoherent pulses. This sequence is repeated several times to get a statistical average [45].

5.3.1 Single-qubit rotations

To measure the influence of phase noise density on the fidelity of single-qubit gates, we
followed a methodology similar to the numerical approach. Our goal was to measure
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Figure 5.9: Illustration of a typical experimental sequence.

decaying Rabi flops, fit the decay constant and calculate the π pulse gate fidelity utilising
equation 5.6. While single-qubit gates do not directly involve the motional state, it is
still advantageous to have very cold ions. This is because, although the Rabi frequency is
independent of the motional state n in the first order, considering the next-order correction,
the Rabi frequency becomes [25]:

Ωn = Ω

(
1− η2

2
(2n+ 1)

)
+O(η4). (5.8)

This would not be a problem if the ion was in a Fock state. However, after cooling, the ion
is in a thermal state, which leads to a fluctuating Rabi frequency and therefore decoherence
and contrast loss, even without injected noise. To mitigate this effect, the ions has to be
cooled close to the motional ground state. Therefore, a lot of sideband cooling loops were
necessary. Together with the requirement of enough points to fit a sine with sufficient
accuracy and a quite long time window to capture the decay, a single measurement such as
in figure 5.2 would take several hours. A long measurement is susceptible to interruptions,
such as those caused by an unlocked laser. Also, parameters might drift over time, obscuring
the results. Therefore, I selected several time windows, encompassing about two oscillations,
at several time offsets. At each time window, I measured oscillations both with and without
injected noise for comparison. The measurement order of the time windows was selected at
random to avoid measuring the impact of parameter drift instead of just pulse length. An
example of a measurement with six different time windows is depicted in figure 5.10a. The
plot on top is the |e⟩ state population Pe over time without injected noise, while the bottom
plot depicts Pe with injected noise. The phase noise density for this particular plot was
L◦=-84.8dBc/Hz. The noise profile in this plot, as well as all subsequent measurements,
was white phase noise with a bandwidth of 7.85MHz.

The bandwidth in this measurement, and subsequently in the simulations to mirror the
experiment, was a deliberate choice. Initially, the noise profile was white noise up to
the Nyquist frequency of the generated samples (125MHz). However, relatively high
background noise without noise injection obscured the effects of the injected phase noise.
Simply increasing the phase noise to observe an effect was not straightforward because
doing so caused the Rabi frequency to decrease (see equation 5.5). Consequently, comparing
the reference measurement without injected noise to the noisy measurement was more
difficult due to differing Rabi frequencies. The solution was to implement an additional
low-pass filter with the aforementioned corner frequency of 7.85MHz. This reduces the
power in the noise by a factor of 16, while still not affecting the measurements, because
both the Rabi frequency and the trap frequency for eventual MS gate experiments are well
within the passband. Furthermore, the AOM has a corner frequency in the same order,
such that noise above the AOM corner frequency would be filtered out anyway and would
not matter. This bandwidth limitation therefore allowed us to measure points at higher
phase noise densities without a significant reduction in Rabi frequency.
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For every time window in 5.10a, a sine was fitted to the data points within the window for
both the reference measurement and the measurement with injected noise. For the latter,
a zoom-in on the six measurement windows with fits is depicted in figure 5.10b. In this
approach, the length of each time window compared to the total measurement length is
assumed to be small enough to neglect the effect of decay within a single time window. By
fitting a sine curve to each time window, I obtained contrast and frequency values for each
specific offset time of the window. Another approach would have been to fit a damped
sine directly to the composite plot like figure 5.10a. However, providing good starting
parameters for such a fit proved challenging, as even slight variances in frequency would
result in very different fits due to the large blocks of missing points to fit to. Therefore, I
chose the method of individual fits for each time slot.
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Figure 5.10: (a) Measured decaying Rabi flops. To keep the number of measured points
low, only certain windows in time were measured. The top plot shows a measurement
without injected noise, and the bottom plot one with injected phase noise. (b) A zoom-in
on these time windows for the measurement with injected noise. For each time window, a
sine was fitted, whose contrast fit serves as a contrast data point at this time offset.

The contrasts fitted to the measurement windows can then be plotted against the measure-
ment time to observe the dependency of contrast on time. An example for L◦=-84.8dBc/Hz
can be seen in figure 5.11. The red line represents the contrast decay without additional
injected noise (background noise), while the blue line represents the decay with injected
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phase noise. The background noise fits well to a Gaussian decay (orange line), primarily
attributed to slow Rabi frequency noise caused by laser frequency and amplitude fluctu-
ations, as well as slow magnetic field noise [22, p. 91]. As expected, the measurement with
phase noise shows a faster contrast loss than the reference, attributed to the additional
exponential decay. However, in contrast to the simulations, the observed decay is now
a mixture of the two noise processes. Hence, we have to separate those two to get the
influence of the phase noise. The contrast decay can be modelled as a mixture of Gaussian
and exponential decay:

C(t) = C0e
− t2

2τ2gauss e
− t

τexp , (5.9)

where C0 is the initial contrast, τgauss is the decay constant for the Gaussian decay part and
τexp is the decay constant for the exponential decay part. In a first attempt, I assumed the
Gaussian decay to be the same for the reference and the noisy measurement. Therefore, I
modelled the noisy measurement with the Gaussian decay τgauss fixed to the value retrieved
from the fit of the reference. The initial contrast C0 and τexp are free parameters. The fit
of this model is represented by the black curve. However, it becomes apparent later that for
low noise, assuming the same Gaussian decay leads to a fitted exponential decay constant
close to zero with high confidence. This discrepancy arises because if the exponential
decay is very weak, even slight variations in Gaussian decay between the reference and
noisy measurement significantly influence the fitted exponential decay constant but are
not accounted for. To address this issue, I also fitted a mixed fit where both the Gaussian
and exponential decay constants, as well as the initial contrast, are free variables (green
line). The fitted Gaussian decay constants of both the reference and noisy measurement
are expected to be similar, which they are. The Gaussian decay constant of this three-
parameter fit is then attributed to the slow frequency noise, while the exponential decay is
assumed to be the effect of the phase noise.
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Figure 5.11: The decay of contrast for both the measurements without injected noise (red
line) and with injected white phase noise at L◦=-84.8dBc/Hz (blue line). The orange line
fits a Gaussian decay to the background noise. The black line is a fit of equation 5.9, where
τgauss is fixed to the value retrieved from this previous fit to the background noise. The
green line fits a mixed Gaussian and exponential decay to the noisy trace with both decay
constants as free variables.

The previous measurement is then repeated for several phase noise densities. Each of
these measurements yields a fit for the exponential decay constant, which can be converted
to a gate fidelity using equation 5.6. The dependence of the gate infidelity of a π pulse

49



CHAPTER 5. RESULTS

on the noise density is illustrated in figure 5.12. Additionally, the theoretical fidelity
calculated with equation 2.46 is represented by the blue line, while the simulated gate
fidelity is depicted by the orange dashed line. For high injected phase noise densities
(L◦ > −85dBc/Hz), the measured points align well with the analytical and numerical
results. Below that noise level, the Gaussian background noise dominates the measurements,
leading to poor agreement. Here, the difference between the two fitting approaches becomes
apparent. While both exponential and mixed fit agree well for high noise densities, it can
be seen that the exponential fit has very small error bars, while the mixed fit error bars
seem reasonable. For low noise densities, the exponential fit points are near zero (and are
therefore omitted from the plot), but with very high confidence. The mixed fit points also
disagree with the theory and simulations for low noise densities, but the error bars at least
indicate their inaccuracy.

Note that there is a non-linearity, which becomes prominent above approximately L◦=-
80dBc/Hz. This is attributed to two factors. Firstly, as explained in section 5.2.1, the
Rabi frequency decreases according to equation 5.5 as the injected phase noise increases.
Since the gate infidelity is also linear in the Rabi frequency, this reduces the gate infidelity
plotted here. Secondly, we are in a regime where it cannot be longer assumed that the noise
power is small compared to the carrier. As a result, the noise power is not only in the first
phase modulated sideband in the carrier domain anymore, but a non-negligible amount of
noise power is also in higher-order sidebands (see section 2.2.1). Consequently, the noise
power in the first sideband decreases, further reducing the measured gate infidelity. Note
that the noise density on the x-axis represents the power density spectrum SE(f) in the
carrier-frequency domain. This reflects the noise spectral density of the electric field at
some frequency offset from the carrier relative to the actual carrier power (which is reduced
by the aforementioned effects). This is in contrast to the usually reported phase noise
density according to definition 2.25. I made this choice because SE(f) is the noise density
that directly influences the gate fidelity. This is evident in the fact that the theoretical
values fit very well to the measured points using SE(f) instead of L(f). However, for small,
and therefore realistic, phase noise levels the difference is negligible and SE(f) = L(f).

110 105 100 95 90 85 80 75 70
Noise density SE( = ) [dBc/Hz]

10 5

10 4

10 3

10 2

1
F

theory
simulation
meas. exp. fit
meas. mixed fit

Figure 5.12: Measured gate fidelity of a π pulse versus various levels of noise spectral
density for a Rabi frequency Ω0

2π = 189kHz. Note that for low noise densities (in this plot
< 80dBc/Hz), SE(f) is virtually equivalent to L(f).
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Discussion

In the course of this thesis, I investigated the influence of phase noise from RF generation
hardware on the gate fidelity of trapped-ion qubits. I analysed single- and multi-qubit
gates numerically, while single-qubit gates were additionally investigated analytically.
Furthermore, I implemented a noise generator on the control hardware of a quantum
experiment setup to inject phase noise during experiments. This enabled measuring the
effect of the noise on gate fidelity on real trapped-ion qubits. Using this hardware setup, I
also confirmed the dependence of infidelity on the noise level for white noise.

For long single-qubit gates, the average gate fidelity is proportional to the gate angle ψ,
the angular Rabi frequency Ω and the phase noise density L(ω = Ω) at the Rabi frequency:

1− Fψ =
1

6
ψΩL(ω = Ω). (6.1)

Long gates are those with ψ > π. For shorter gates, it is not as straightforward as only
considering the noise at the Rabi frequency, as the sampled noise bandwidth increases with
shorter gates. For ψ < π, slow noise near the carrier also starts to play a role. Thus, to
establish the exact relationship, an integral of the product of noise and transfer function is
necessary. Also, the exact infidelity depends on the final state of the qubit after the gate.

With a Rabi frequency of Ω
2π = 189kHz used in simulation and measurement, this corres-

ponds to L(ω = Ω) < −97dBc/Hz to achieve a gate fidelity of 1− Fπ = 10−4. For short
gates, slow noise starts to have an influence, primarily limited by 1

f2
noise rather than 1

f
noise. To ensure that the effects of slow noise remain below the impact of noise at the Rabi
frequency in the worst-case scenario, the noise coefficients according to equation 2.26 should
satisfy L1 < −60dBcHz

Hz (equivalent to a corner frequency with respect to L◦ = −100dBc/Hz

of fc1 < 1kHz) and L2 < −51dBcHz2

Hz (fc2 < 300Hz with L◦ = −100dBc/Hz). To account
for this effect of slow noise, white noise for fast gates should be L◦ =< 100dBc/Hz. Note
that these requirements have to be scaled with the Rabi frequency.

For multi-qubit gates, I found a linear dependence on the phase noise density at the trap
frequency L(ω = ωm) and the Rabi frequency Ω. It is also inversely proportional to the
Lamb-Dicke parameter η:

1− FMS ≈ α
Ω

η
L(ω = ωm), (6.2)

where a = 3.02± 0.17Hz s
rad2

is a fitted constant. In contrast to single-qubit gates, the noise
at the trap frequency, which is typically around 1MHz, is always a good measure for noise
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requirements. This is because multi-qubit gates are much longer than single-qubit gates,
resulting in a narrower spectral width. With parameters of Ω

2π = 100kHz and η = 0.05,
achieving a gate fidelity of 1− F = 10−4 requires the noise at the trap frequency ωm to be
L(ω = ωm) < −116dBc/Hz. Again, an increase in Rabi frequency requires the limit to be
more stringent accordingly.

Thus, the limiting factor likely lies in the requirements for multi-qubit gates. As expected,
lowering the overall noise density will lead to a higher gate fidelity. However, what is more
intriguing is the sensitivity of gates to specific frequencies in the noise spectrum. This could
possibly enable engineering of the noise such that the noise at these sensitive frequencies
is minimised. Noise shaping in the case of quantisation noise is such an example [64].
In practice, this might be difficult, since the system has to be designed to accommodate
different Rabi and trap frequencies. Thus, increasing noise between those two frequencies
is not really viable. Also, near-DC noise starts to matter for fast single-qubit gates, thus
also slow noise cannot be ignored. Nevertheless, above the trap frequency, noise does not
matter in any case.

Currently, qubit gates are far from being limited by phase noise from RF pulses. Other
noise sources dominate the gate error, as is evident in the measurements conducted in
this thesis. However, as efforts continue to reduce other sources of noise, phase noise from
RF generation may become a relevant factor in the future. Thus, it is sensible to design
systems with this consideration in mind.

6.1 Comparison to other papers

As seen in section 5, my numerical analysis and measurements fit the theoretical analysis
derived in Zilong Chen et al. [9] well. This is especially true for the phase noise magnitude,
as the paper’s results for gate fidelity focus mostly on white noise. The impact of the profile
of phase noise can also be derived from the theory and also fits my results qualitatively.

The paper of Haim Nakav and Ran Finkelstein from the Weizmann Institute [8] conducted
similar simulations and measurements to mine. The authors also study the effect of phase
noise on the fidelity of trapped-ion gates. However, their main focus is fast noise of the laser.
It predominantly comes from the servo bump, an artefact of the feedback loop stabilising
the laser frequency. I focus on the phase noise contribution from the RF generation, which
has a different noise profile, as noise density increases near the carrier (see 5.1a). The
main conclusions are comparable, however, especially for the MS gate, where the relevant
frequency range is narrow-band around the trap frequency.

I simulated the MS gate with the parameters given in their discussion, namely with a Rabi
frequency of Ω

2π = 100kHz and a Lamb-Dicke parameter of η = 0.05, which translates to a
gate time of 100µs. One of the differences between my and their simulation is the phase
noise profile, as I used white noise, bandwidth-limited to 7.85MHz. Note that they use the
concept of Rabi power spectral density (RPSD). It is the power spectral density of the
carrier, normalised ”such that the area under the carrier peak is Ω2”. It is not clear to me
if this integral also includes the power of the noise away from the carrier, but it should
not matter, since in this discussion, the power of the noise is negligible compared to the
power of the carrier itself. It is also not obvious if the Rabi frequency in this normalisation
is given in units of frequency or angular frequency. I assume that it is given in angular
frequency, as numerical values for Rabi frequencies throughout the paper are written with
a factor of 2π (although the unit is given as Hz instead of 1

s ). Thus, assuming all power
is in the carrier and a Rabi frequency Ω given in angular frequency, the RPSD can be
expressed as RPSD(f) = Ω2PSD(f), where PSD(f) is given as the noise power density
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relative to the carrier power. The gate infidelity resulting from my simulation is plotted
against the RPSD in figure 6.1. The expected gate infidelity from the paper is plotted in
green. It is a linear function with a proportionality constant of 1 sHz

rad2
, as it is written by

the authors. The phase noise density L(ω = ωm), as I have plotted throughout this thesis,
is given as a second axis label at the top.
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Figure 6.1: Comparison of my simulations to a linear plot with a proportionality constant
of 1 sHz

rad2
.

The two results seem in very good agreement. However, my conclusion differs from theirs
given in their discussion. As it can be read from the plot, to reach gate infidelities
of 1 − F < 10−4, the phase noise density has to be limited to L < −116dBc/Hz. In
comparison, they claim a requirement of −100dBc/Hz. Interestingly, this is close to a
difference of (2π)2 = 10 log

(
(2π)2

)
dB= 15.96dB. One explanation would be that they

scaled the RPSD with a Rabi frequency given in frequency, not angular frequency. This
thought is also supported by the fact that they mention the limit in terms of RPSD to
be RPSDmax< ∼1Hz

2

Hz instead of 1 rad
2

s2Hz
. This would lead to the phase noise density L <

10 log RPSDmax
f2r

dBc = −100dBc/Hz. Here, the Rabi frequency is written as fr = 100kHz

to avoid confusion with angular Ω. In this case, there is an inconsistency with the RPSD
scaling in figure 6.1.

Also, the proportionality constant for the single-qubit gates from my thesis is about 2π
times greater than figure 2c of their paper suggests (assuming angular frequency RPSD
scaling). I am quite confident however that the proportionality I derived is correct, as it
fits both theory and my measurements.

6.2 Possible further investigation

There are multiple aspects of the influence of phase noise that were not explored fully
due to time constraints. Firstly, the current method of simulation for single-qubit gates is
limited in the regard that it only simulates Rabi flops. Hence, it does not generalise for
short gates. Additionally, it always starts in the ground state, while real gates would be
applied to different states distributed all over the Bloch sphere. The results of simulation
and measurement fit well with the theory for this special case, which justifies the theory.
However, this does not reflect the average gate fidelity, although they are similar (compare
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equations 2.46 and 2.47). A possible method of simulation and measurement would be
random benchmarking [65]. It applies a series of random gates. The final output state is
then compared to the ideal one to get a fidelity for the whole gate sequence, which can
be used to estimate the average infidelity per gate. Further investigation into short gates
would also be interesting, since here flicker noise and especially white frequency noise start
to contribute to the gate fidelity. This thesis disregarded slow noise due to the theory
suggesting it may not be as relevant. Further analysis and measurement however should
confirm that the assumptions for the theoretical analysis are indeed correct. Since slow
noise is often the hardest to decrease in electronics, a second look at this topic might be
worth it.

Multi-qubit gates were simulated with the common Lamb-Dicke approximation. However,
for large Lamb-Dicke parameters, this approximation breaks down and further frequencies
at multiples of the trap frequency might become relevant. There are advantages of an
increased Lamb-Dicke parameter, such as decreased gate time. Thus, a simulation with
more terms of the Lamb-Dicke expansion might be interesting for such experiments. I
found that MS gates are sensitive to noise at the trap frequency with a certain bandwidth,
but I did not investigate which parameters influence this bandwidth. Also, the dependence
of MS gates on the initial state was not explored.

Finally, I did not utilise the full potential of the noise generator implemented on the RF
generation hardware to measure physical quantum gates with noise injection, although I
tested and integrated it fully into the control system. While I did confirm the dependency
on noise density for single-qubit gates, I only did so for white noise. The functionality of
1
f2

noise generation was tested, but ultimately not used in the measurements. Thus, more
measurements could highlight the effect of noise profile and acceptable white frequency
noise levels. Multi-qubit measurements were not conducted at all. It would have taken
changes to the experimental setup, which were not possible in time due to scheduling with
other experiments. Thus, experimental validation of the effect of phase noise on multi-qubit
gates is lacking.

Additionally, some improvements to the noise generation could be made. Flicker noise was
not implemented due to the requirement of a more complicated generation algorithm (and
because theory does not expect it to have a significant impact). It may also be beneficial to
be able to generate other noise profiles like a servo bump. Although that does not reflect
phase noise of the RF generation, it does reflect laser noise. This way, the project could
be expanded to examine the impact of other noise sources, increasing usefulness to other
scientists.
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Institute of Technology, 2010.

[51] William L. Dunn and J. Kenneth Shultis. “Chapter 3 - Pseudorandom Number
Generators”. In: Exploring Monte Carlo Methods (Second Edition). Ed. by Wil-
liam L. Dunn and J. Kenneth Shultis. Second Edition. Elsevier, 2023, pp. 55–110.
isbn: 978-0-12-819739-4. doi: https://doi.org/10.1016/B978-0-12-819739-
4.00011- 1. url: https://www.sciencedirect.com/science/article/pii/
B9780128197394000111.

[52] Ulrich Jetzek. Galois Fields, Linear Feedback Shift Registers and their Applications.
Carl Hanser Verlag, 2018. isbn: 978-3-446-45140-7. doi: https://doi.org/10.3139/
9783446456136. url: https://www.sciencedirect.com/book/9783446451407/.

[53] Analog Devices. Pseudo Random Number Generation Using Linear Feedback Shift
Registers. 2010. url: https://www.analog.com/en/design- notes/random-
number-generation-using-lfsr.html (visited on 25/01/2024).

[54] G. E. P. Box and Mervin E. Muller. “A Note on the Generation of Random Normal
Deviates”. In: The Annals of Mathematical Statistics 29.2 (1958), pp. 610–611. doi:
10.1214/aoms/1177706645. url: https://doi.org/10.1214/aoms/1177706645.

[55] N.J. Kasdin. “Discrete simulation of colored noise and stochastic processes and 1/fα

power law noise generation”. In: Proceedings of the IEEE 83.5 (1995), pp. 802–827.
doi: 10.1109/5.381848.

[56] James McCartney Richard Voss. DSP generation of Pink (1/f) Noise. 1978. url:
https://www.firstpr.com.au/dsp/pink-noise/ (visited on 30/01/2024).
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LO local oscillator. 35

LUT lookup table. 34, 35

LVDS low voltage differential signaling. 22

M-ACTION Modular Advanced Control of Trapped IONs. 25
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NCO numerically controlled oscillator. 35

NISQ noise intermediate-scale quantum. 1

PCB printed circuit board. 25
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QHO quantum harmonic oscillator. 4, 5

QuENCH Quantum Experiment Next-Generation Control Hub. 21, 25–28, 34, 35, 37, 38
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SSA signal source analyser. 13
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