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Abstract

Noise affects many potential applications of current existing quantum processors. The
characterization of near-term devices generates information about the sources of those
disturbances. These insights facilitate error mitigation, error correction, and hardware
improvements. However, characterization is challenging, as the total amount of potential
noise processes becomes intractable with the increasing size of existing hardware platforms.
Therefore, noise structure assumptions are necessary for the scalability of characterization
protocols. This thesis introduces a new model approach for processes influenced by
incoherent noise. Furthermore, we extend an existing incoherent noise model to coherent
errors. We demonstrate the characterization and mitigation of the proposed model on
a superconducting hardware platform. The developed characterization procedure to
estimate coherent errors provides guidance for device calibration and future hardware
development.
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Chapter 1

Introduction

From the wooden beads of the first abacuses to the electrons in novel quantum computers,
the size of the fundamental computational unit has decreased by about ten orders of
magnitude. From sliding around 1024 electrons with our bare hands, we have advanced
to manipulating individual electrons with particles of light. And while even a trembling
person can operate an abacus, already cosmic rays may interfere with the calculations on
a quantum computer. In this evolution of shrinking system sizes, a major difficulty is to
isolate the increasingly delicate computing units from disturbances. Quantum computers
have yet to prove that they can sufficiently overcome this challenge and eventually allow
us to compute tasks that so far were incalculable.

The current phase of quantum computing, where noise hinders many potential appli-
cations, is referred to as the noisy intermediate-scale quantum (NISQ) era [1]. On the
path to building less error-prone quantum computers, it is critical to learn more about
the sources of the disturbing processes and understand the limiting factors of available
platforms better. Therefore, characterization, which denotes the analysis of existing
devices, stands at the core of future technological progress.

1.1. Characterization

Current existing quantum computers are highly affected by errors. The errors originate
from interactions of the quantum computer with its environment, unwanted dynamics
between the qubits, or imperfect control signals. This is not a unique quantum problem,
as classical computers are also exposed to such disturbances, and methods had to be
developed to protect bits from the influence of external magnetic fields. However, unlike
classical digital computers, the information in quantum computers is encoded as a
continuous superposition of states. Therefore, while for classical digital computers the
disturbances have to overcome some threshold to affect the state of the computer, in
quantum computers disturbances can influence computations in a continuous fashion [2].
Characterization aims to find error sources and quantify their effect on the performance of
a computing processor [3]. The information obtained from the characterization of a device
can then be used for the development of a less error-prone hardware platform [4]. Moreover,
the insights allow the implementation of schemes for correcting specific errors [5] and the
application of other procedures that mitigate the effect of the noise [6]. Characterization
procedures gain information about a process by analyzing the measurement statistic of an
ensemble of circuits. The set of executed circuits and the applied post-processing steps
are called characterization protocol [3].
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Figure 1.1.: Characterization methods - Different characterization methods are sorted
relative to each other concerning the amount of information the characterization reveals
and how scalable they are. Benchmark protocols are marked in blue, and full quantum
process tomography protocols appear in orange. The black protocols introduce different
assumptions on the process to lower the characterization’s complexity.

Noise can be seen as some unknown process that overlaps the intended operations.
A complete description of a general n-qubit process involves O (16n) real values [7].
Hence, estimating a complete representation of a noise process is intractable for systems
that can run interesting quantum computing algorithms. A characterization protocol is
considered scalable if it can be used to characterize processes involving many qubits [8].
Towards scalable characterization protocols, there are two ways forward, either introduce
a noise model of limited complexity and fit the real process to this model or limit the
characterization to certain metrics of the process. Either way, it is a trade-off between
limiting complexity and gaining information [9].

Protocols of the first approach introduce assumptions on the process structure to limit
the number of degrees of freedom in the estimation. Such assumptions are, for example,
that the noise can be expressed by a mixture of a few simple structured processes [10] or
that the noise is only correlated among spatially close qubits [11]. Benchmark protocols,
on the other side, focus on the estimation of heuristic properties of the system such as the
average error rate of a gate [12] or the average fidelity in state preparation [13]. A sorted
overview of different characterization methods is provided in Fig. 1.1. The following
subsections introduce several protocols located at the extremes of the explained trade-off.
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1.1. Characterization

1.1.1. Quantum Process Tomography

A characterization protocol that leads to a process description that facilitates the es-
timation of the output of the process for any input state is called quantum process
tomography (QPT) [7, 14, 15]. Full QPT refers to protocols with no prior assumptions
about the structure of the process and they are, therefore, not scalable. Generally, QPT
approaches can be divided into direct and indirect methods [16].

Indirect methods map information about the quantum process on a set of states and
then estimate experimentally a description of this state to retain the properties of the
process. Probably the most straightforward indirect approach is to map a quantum
process to a state in a Hilbert space of a higher dimension [17, 18]. Various methods
can then be applied to characterize the corresponding state [19–21]. Fig. 1.1 refers to
this method as Choi-state tomography and shows an exemplary circuit scheme. Another
example of indirect QPT is standard QPT [14, 15]. Introduced in 1997, it was the first
QPT approach and can be seen as the starting point for quantum process characterization.
In this protocol, states that form a complete basis of the corresponding Hilbert space
are evolved by the examined process. From an estimated representation of the evolved
states, the full description of the examined process is reconstructed [7]. One caveat of
indirect QPT is that the required experiment runs of these protocols scale exponentially
with the number of qubits. Furthermore, they rely on precise knowledge of the input and
output states of the process and, consequently, are susceptible to state preparation and
measurement errors (SPAM) [22].

Gate-set tomography (GST) [22, 23], on the other hand, does not rely on the accurate
preparation of states, and is therefore considered a direct characterization method. It is by
construction calibration-free, meaning SPAM error resistant [22]. Due to this advantage,
GST has become the standard method for performing complete characterization of
quantum processes [24]. GST completely characterizes a set of gates (used here as
a synonym for operation) by running a protocol that includes sequences of different
lengths of these gates [25]. In GST, the examined gates are applied not just once per
circuit but multiple times. This technique amplifies the action of the gates and improves
the estimation accuracy. As GST entirely characterizes an ensemble of operations, its
complexity also scales exponentially with the number of qubits.

1.1.2. Randomized Benchmarking

Randomized benchmarking (RB) [8, 12, 26] is the most widely used benchmarking protocol.
The characterization of a process is limited to estimating one or a few summary statistics.
By applying similar concepts as GST, it is also resistant to SPAM errors. Most RB
protocols execute circuits of various lengths and consist of randomly selected unitary
gates (Fig. 1.1) [26]. The circuits are constructed such that they correspond to identity
operations in the absence of noise meaning that the input state is left invariant. However,
in the non-ideal case, the fidelity between the input and output states drops with increasing
noise level. The average gate error rate is estimated by analyzing the decay of this fidelity
with increasing circuit length [26]. While initially derived for benchmarking some specific,
so called Clifford, gates [8], extensions to other operations exist [27, 28]. Since its proposal
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in 2005, various RB-related schemes have been developed that characterize different
metrics [28–30]. As RB focuses on the characterization of single heuristics instead of
a complete process description, the number of parameters to estimate does not scale
exponentially with an increasing number of involved qubits. Therefore, RB protocols are
generally scalable [12].

1.1.3. Noise Reconstruction

As stated above, the primary motivation for quantum process characterization is to
gain physical insight into noise sources, in order to refine the hardware or improve error
correction schemes. GST and full QPT schemes result in a complete process description,
including all the noise, but they do not scale to the characterization of a whole gate
layer on a NISQ device [31]. Furthermore, it is often difficult to link the results of QPT
to specific noise sources. Conversely, RB protocols are scalable and provide physically
intuitive results. However, the obtained information from RB does often not suffice for
the mentioned applications of characterization [5].

An approach that seeks a middle ground between RB and full QPT is called noise
reconstruction [9]. These schemes introduce a noise model with a limited set of parameters.
They then assume that the real process can be modeled by concatenating the ideal process
with this noise model. Existing protocols mainly focus on modeling the noise as a particular
type of incoherent noise, called Pauli noise [5, 32, 33]. Incoherent noise corresponds to
the loss of information stored in the qubits. This often arises from interactions with the
environment. As not all noise can be modeled by Pauli noise, the mentioned protocols
have to enforce their model assumption by applying a twirling technique [34] that projects
arbitrary undesired processes onto Pauli noise without introducing new errors [5]. Then,
the protocols applied to estimate the model parameters are similar to the schemes used in
GST and RB and are also resistant to SPAM error [5, 32]. The noise reduction protocols
of Refs. [32] and [5] are scalable under physically motivated assumptions on the noise
structure [5] and facilitate error mitigation schemes [32]. However, their application of
twirling eliminates certain noise components [31], which leads to an incomplete picture of
the actual noise processes. This thesis contributes towards resolving this issue by expanding
the noise reduction approach to a noise model involving coherent errors. Coherent errors
are related to incomplete knowledge about the dynamics of the qubits. Coherent and
incoherent errors affect the performance of quantum processors differently [35]. This
observation further motivates the proposed model expansion.

1.2. Mitigation

In the NISQ era, where fault tolerance is not reached, and error correction schemes
are hard to implement experimentally, quantum error mitigation is one approach to
simulate quantum circuits on noisy devices [32]. Quantum error mitigation protocols aim
to minimize the noise-induced bias in expectation values measured on noisy hardware
platforms [36]. Such protocols usually contain involved post-processing schemes that
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combine the measurement statistic of an ensemble of modified circuits [36]. It is important
to note that, different from error correction schemes, every single circuit of the ensemble
is noisy and only the examination of the measurements of the whole ensemble in post-
processing leads to a noise-free estimate of the expectation value [36]. The complexity
of executing quantum error mitigation increases with increasing noise rates, and its
scalability to deep circuits is, therefore, limited [36]. Examples of quantum error mitigation
schemes are probabilistic error cancellation (PEC) [6], quantum error extrapolation [37],
and stabilizer emulation [38]. Based on the characterized noise, this thesis applies
quantum error mitigation techniques to prove the validity and usefulness of the proposed
characterization methods.

1.3. Thesis Outline

This thesis aims to explore scalable noise characterization protocols that provide physical
insights which help advance existing quantum computing technologies. We start in
chapter 2 by introducing fundamental concepts of quantum information theory in the
framework of Pauli operators. In chapter 3, we present different noise models. We
propose a new Pauli noise based model in section 3.1 that models the noisy process as a
probabilistic mixture of the ideal process and a Pauli channel. Furthermore, we extend
a model similar to the one used in Refs. [32] and [5] to coherent noise in section 3.2.
Chapter 4 presents protocols to estimate the parameters of the introduced models. Our
main new contributions are the extension of the Pauli channel estimation protocol in
Ref. [39] to the combination of Pauli channel and decay, and the introduction of a
characterization protocol for coherent noise. Finally, we demonstrate in chapter 5 the
capability of the introduced coherent noise model to capture the main noise contributions
of a process executed on an existing hardware platform. We do this by mitigating the
noise based on the results of the characterization protocol. For this step, we develop a
gate-level correction scheme for coherent errors.
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Chapter 2

Fundamentals

The Bloch sphere picture represents a single qubit geometrically in R3. This representation
can be used to create an intuitive illustration of the action of a channel on a qubit. While
this geometrical picture loses its simplicity when more than one qubit is involved, the
algebraic framework behind the interpretation remains a powerful tool. This chapter
introduces a notation in terms of Pauli matrices for states and channels of single and
multiple qubits.

2.1. Qubit States

Qubits are two-level systems. While there are many ways to implement qubits physically,
the Hilbert space that represents their states mathematically is hardware-independent.
This chapter elaborates on the density matrix formalism in the basis of the Pauli matrices
for single-qubit and multi-qubit systems.

2.1.1. Single Qubit

An isolated single qubit is the simplest quantum mechanical system [7]. The state ψ
of a single-qubit system has two degrees of freedom. They can be interpreted as the
excitation of the qubit in some basis and its phase with respect to this basis. States
of such qubit systems that are independent of the environment and exactly known are
called pure states, and they are represented by vectors |ψ⟩ in the Hilbert space H2 = C2.
Partially unknown states or states of qubits that are entangled with the environment
are called mixed states. They can not be expressed by a vector |ψ⟩ ∈ H2. Instead, they
are described by a mixture of pure states. The density operator formalism describes
the states of a qubit subsystem by mapping them to linear operators ρ ∈ L(H2) that
act on the Hilbert space. The density operator of a pure state simply corresponds to
|ψ⟩⟨ψ|. Density operators of mixed states are expressed by some mixture

∑
i p(i) |ψi⟩⟨ψi|.

Unlike the statevector description of pure states, the set of valid density operators has
three degrees of freedom. The additional degree of freedom reflects the purity of the
state and describes to what extent the qubit is mixed. The density operators map to the
positive-semidefinite complex Hermitian matrices of size two and trace one. This set of
matrices can be expressed as a real superposition of the extended Pauli basis, consisting
of the three Pauli matrices and the identity,
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2. Fundamentals

Figure 2.1.: Bloch sphere representation
In the Bloch sphere representation of
a single-qubit state ρ, the expectation
values of the Pauli operators are used
to represent ρ in R3. All physical
states lie within a unit sphere, where
pure states correspond to states on the
surface of the sphere. |+⟩, |i⟩, and |0⟩
are the eigenstates of the operators σx,
σy, respectively σz.

σ0 = I =
(

1 0
0 1

)
, σ1 = σx =

(
0 1
1 0

)
,

σ2 = σy =

(
0 −i
i 0

)
, σ3 = σz =

(
1 0
0 −1

)
.

(2.1)

The expansion of the density matrix ρ in the Pauli basis,

ρ =
1

2
(I+ r1σ1 + r2σ2 + r3σ3) =

1

2
(I+ r · σ) , (2.2)

creates a unique relation between a quantum state and a vector r ∈ R3, where σ is a
vector containing the Pauli matrices. From the condition that density matrices must
be positive-semidefinite, it follows that |r| ≤ 1. Therefore, single-qubit states can be
geometrically interpreted as points inside the unit sphere. Points on the sphere correspond
to pure states, and points located inside the sphere represent mixed states. This relates
to the convex nature of the set of states, with the pure states being the boundary of the
set and the mixed states being a mixture of pure states. The completely mixed state is
mapped to the origin of the sphere. This sphere is referred to as the Bloch sphere [40],
shown in Fig. 2.1.

The Pauli matrices themselves represent operators in the Hilbert space. In the geomet-
rical representation, their action on a particular state corresponds to the rotation around
the corresponding axis by π. The points where the sphere intersects the positive x, y, and
z-axis, mirror the pure states |+⟩, |i⟩, and |0⟩. They are eigenstates of the Pauli operators
σx, σy, respectively, σz with eigenvalue 1. The states |−⟩, |−i⟩, and |1⟩, which are the
eigenstates of the Pauli operators with eigenvalue −1, are mapped to the intersection of
the sphere with the negative part of the axis.
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2.1. Qubit States

Choosing one axis as the computational basis, the projection of r onto this axis
corresponds to excitation of the state in the computational basis, the magnitude of r
relates to the purity of the state, and the angle with respect to the chosen axis represents
the phase of the state. Since the matrix product σiσj is traceless for i ̸= j and the identity
for i = j, the cartesian coordinates ri of a state in the geometrical picture correspond to
ri = Tr[σiρ].

In the case of the qubit modeling a spin system with s = 1/2, by the Born rule and the
proportionality of the Pauli matrices to the spin operators, ri = Tr[σiρ] is directly related
to the spin expectation values of the system.

2.1.2. Multiple Qubits

For systems of multiple qubits, no obvious generalization of the Bloch sphere picture exists.
While multiple separate Bloch spheres can represent separable states, the representation
of entangled states is more involved [41]. There are different approaches to illustrate states
of multi-qubit systems geometrically [42], for example, using Gell-Mann matrices [43],
Hopf fibrations [44], or steering ellipsoids [45, 46]. In this project, the applications focus
on the characterization of Clifford circuits. As the conjugation with a Clifford unitary
maps the group of Pauli operators to itself [47], the Pauli basis is convenient in the
Clifford context. Therefore, this thesis continues to describe states of multi-qubit systems
in the Pauli framework.

The Hilbert space that describes an n-qubit system is 2n-dimensional. The density
matrix representation of such a system consists of Hermitian matrices of dimension
d = 2n × 2n. A basis for those Hermitian matrices is given by all tensor products of
length n between the extended Pauli matrices Pi = σi1 ⊗ σi2 ⊗ ... ⊗ σin =

⊗n
m=1 σim ,

denoted by {Pi}i∈{0,1,2,3}n . Where P{0}n corresponds to the identity. This thesis refers to
these matrices as n-qubit Pauli matrices. For two qubits, this set of matrices is sometimes
called Dirac-matrices [42].

Each multi-qubit state can be represented in the n-qubit Pauli basis according to,

ρ =
1

2n

In +
∑

i∈{0,1,2,3}n\{0}n
riPi

 . (2.3)

The summation is over all n-qubit Pauli operators expect the identity because the
coefficient of the identity is fixed such that the overall trace of the density matrix equals 1.
Each multi-qubit state is therefore represented by a vector r ∈ R(4n−1). Unlike the
single-qubit case, the positive-definite condition on ρ does not result in |r| ≤ 1, and
the state is no longer represented by a point in a unit hypersphere. Like in the single
qubit case, the components of r correspond to rk = Tr[Pkρ]. Normalizing r with the size
of the Hilbert space and including the identity leads to a vector commonly denoted as
|ρ) ∈ R4n [33]. Its elements correspond to

|ρ)k =
1

2n
Tr[Pkρ]. (2.4)

From the trace condition on density operators follows that |ρ)0 =
1
2n .

9



2. Fundamentals

2.1.3. Classical shadow tomography

Although not directly connected to the Bloch sphere representation of states, this section
introduces classical shadow tomography as it is used for the characterization protocol
in section 4.1. Classical shadow tomography was initially introduced by Aaronson [48]
and then advanced to a less hardware-demanding protocol by Huang et al. [49]. The
central aspect of shadow tomography is that the number of measurements required to
estimate the expectation values of m bounded norm operators only depends logarithmic
on m and does not depend on the size of the Hilbert space of the state at all [49]. As
the complexity of states grows exponentially with the system size, naively, one would
expect that to determine a set of system properties, each property has to be measured
on its own [50]. However, this is not true, as classical shadows prove that the length of
a classical representation which suffices to predict m linear functions of the state only
scales logarithmically in m [49].

As any quantum state tomography protocol, classical shadow tomography attempts
to find a classical description of a quantum state that allows the prediction of different
characteristics. In standard quantum state tomography, the classical description is
created by measuring the state for a complete measurement set. Which then allows the
reconstruction of the density matrix of the state. In classical shadow tomography, on
the other hand, a classical shadow (or classical sketch) of the state is constructed by
repeatedly evolving the state by a randomly sampled unitary and a measurement in the
computational basis [49]. For each snapshot of the classical shadow, the information
on the applied unitary and the measurement readout is stored. From multiple such
pairs of information, many relevant properties of the state can be estimated without
reconstructing the density matrix [49].

Classical shadows can, for example, be used for quantum fidelity estimation, entan-
glement verification, prediction of the expectation value of local observables, or also
the estimation of non-linear properties of the system, such as the second-order Rényi
entropy [49]. However, because the size of the required classical shadows to estimate
general non-local properties grows exponentially with decreasing locality of the property,
classical shadow tomography does not prove to be advantageous in the estimation of
global observables, nor does it break the exponential scaling of full state tomography.

Classical shadows can also be used to efficiently predict all reduced density matrices of
a specific size of a state. For this application, the number of necessary measurements T to
ϵ-accurately estimate all reduced r-body density matrices of an n-qubit system is of order
O
(
constr log n/ϵ2

)
[51]. This thesis uses classical shadows in the spirit of a quantum

state tomography protocol to estimate reduced density matrices.
The protocol of estimating the density matrix of a state by classical shadow tomography

contains the following steps [49]: first, draw a unitary from an ensemble of unitaries, then
evolve a copy of the state ρ by the drawn unitary and measure the resulting state UρU †

in the computational basis. The resulting bitstring b is mapped to the computational pure
state |b⟩⟨b|, from which classically, the expression U † |b⟩⟨b|U is calculated. Averaging over
all snapshots creates the quantum channel M(ρ) = E

[
U † |b⟩⟨b|U

]
. For tomographically

complete ensembles of unitaries, M is invertible, although not physical. In classical
post-processing, ρ̂ = M−1

(
U † |b⟩⟨b|U

)
can be produced, which suffice to predict the

10



2.2. Channels

Figure 2.2.: Classical shadow tomography - Schematic of the classical shadow tomography
protocol, illustrated at the example of estimating the reduced density matrix of qubits
1 and 3 for the 4-qubit state ρ. For each repetition t, a unitary evolution Ut is drawn.
The state is then evolved by the unitary and measured in the computational basis.
The bitstring bt from the readout, together with the classical information on which
unitary was applied, is called a single classical snapshot of the state. All T classical
snapshots together correspond to the classical shadow of ρ. In classical post-processing,
the reduced density matrix of qubits 1 and 3 is estimated for each snapshot. The
expectation value of the average over all estimates (ρ̂1,3)t corresponds to the exact
reduced density matrix.

density matrix according to E [ρ̂] = ρ.
A particularly hardware-feasible version of this protocol is to select the unitaries from

the set of tensor products of the single-qubit Clifford circuits {H,S†H, I}, where H
denoting the Hadamard-gate and S the Phase-gate. In the Bloch sphere picture, H and
S†H rotate the x-axis, respectively the y-axis, to the z-axis. Therefore, applying those
unitaries in combination with a measurement in the computational basis corresponds
to a Pauli measurement. In many existing hardware platforms, these unitaries can
be implemented efficiently. As these unitaries are built from single-qubit operations,
reduced r-body density matrices can be constructed by ignoring the data from all other
sites. The random Pauli measurement leads to the inverse M−1

1 (X) = 3X + I for a
single qubit. The inverse for an r-body subsystem corresponds to the tensor product of
the individual inverses M−1

r (X) =
⊗r

i=1M
−1
1 (Xi). Fig. 2.2 shows a schematic of the

estimation protocol for the r-body density matrices.

2.2. Channels

A channel is a trace-preserving, completely positive, and linear map between operators
of Hilbert spaces [7]. EB|A denotes a channel that maps L (HA) to L (HB). From a
quantum computational perspective, channels are, for example, the application of a gate,
the coupling of a system to the environment, or the preparation of a state. Generally, the
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2. Fundamentals

input and output of a channel are operators of different Hilbert spaces. For example, if a
two-qubit state is prepared based on some instruction, a classical input is mapped on
a quantum state in L

(
C4
)
. However, this thesis focuses on the characterization of gate

operations, and in this context, channels usually map the operators of a Hilbert space
onto themselves L (HA) → L (HA).

There exist many different representations of channels. The Kraus representation is
particularly useful in connection with the density matrix representation of states. For every
channel, there exists a set of Kraus operators {Ki ∈ L (HA,HB)}mi=1 with

∑
iK

†
iKi = IA,

such that the action of the channel on a linear operator in HA can be expressed [7] as

EB|A (ρ) =
∑
i

KiρK
†
i . (2.5)

Starting from the Bloch sphere representation of single-qubit states and the Kraus
representation of channels, the following section discusses different allowed transformations
of the Bloch sphere under the action of a channel and introduces the Pauli Transfer
Matrix (PTM) formalism.

2.2.1. Geometric Interpretation of Single-Qubit Operations

By applying a single-qubit channel to all points within the Bloch sphere, it is possible
to illustrate the action of the channel as a geometric transformation in R3. Fig. 2.3
shows the image of the Bloch sphere for different single-qubit operations. Since the Bloch
sphere representation only shows the traceless part of the density matrix of a state, any
Bloch sphere transformation is trace-preserving. Generally, the image of the Bloch sphere
under the action of a channel is an ellipsoid within the initial Bloch sphere. However,
due to the condition of complete positivity, not all such transformations are physical
channels [52, 53].

Unitary channels have a unique Kraus representation with a single Kraus operator. As
they correspond to a closed system evolution, they are not changing the purity of the
state they are acting on. In the Bloch sphere picture, unitary operations are represented
by a rotation of all points within the sphere around an axis through the origin (Fig. 2.3
c). Therefore, the image of the set of pure states is again the Bloch sphere. The Pauli
operators are also unitary and correspond to a rotation of the Bloch sphere by π around
the respective axis.

If a channel can be represented with a Kraus map where all Kraus operators are
proportional to the Pauli operators, the channel is called a Pauli channel. Examples
of Pauli channels are the depolarizing and the dephasing channel. Pauli channels are
purity nonincreasing, meaning the distance from the sphere’s origin to the representation
of a state within the Bloch sphere is not increasing. In the Bloch sphere picture, the
application of a Pauli channel corresponds to a scaling along the axes of the Pauli basis
(Fig. 2.3 b). Each of the three axes can be scaled by a different scalar. The image of the
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2.2. Channels

Figure 2.3.: Bloch sphere transformations - Image of the Bloch sphere under the action
of different single-qubit channels: a identity, b unitary operation, c Pauli channel,
d amplitude damping

pure states is an ellipsoid with principle axes parallel to the Pauli basis. Written as,

P (ρ) =
∑
c

p(c)PcρPc, (2.6)

with
∑

c p(c) = 1, and p(c) ≥ 0 (enforcing complete positivity [33]), it is evident that
a Pauli channel is a probabilistic mixture of the application of Pauli operators. In the
framework of noise characterization, the set of p(c), which forms a probability distribution
over all Pauli operators, are called Pauli error rates. The Pauli error rates p(c) are not
the same as the scaling factors of the Bloch sphere, called Pauli channel eigenvalues [33].
Combining unitary operations and Pauli channels makes it possible to construct a scaling
of a Bloch sphere along arbitrary perpendicular axes.

As unitary and Pauli channels correspond to the rotation respectively, the scaling of
states in the Bloch sphere picture, the fully mixed state, represented at the sphere’s
origin, is left unchanged. Such channels are called unital [25]. An example of a common
non-unital channel is the amplitude damping channel (Fig. 2.3 d). In the Bloch sphere
picture, this channel corresponds to the scaling of all points within the sphere around the
point that corresponds to the state |0⟩.

2.2.2. Pauli Transfer Matrix Representation

In the Bloch sphere picture, the action of a channel E on a single qubit is described by

E
(
1

2
(I+ r · σ)

)
=

1

2
(I+ (t+Ar)σ) . (2.7)

The matrix A equals to the linear transformation of the Bloch sphere, and the vector t
represents the translation of the Bloch sphere. For example, a Pauli channel is represented
by a diagonal matrix A and a zero vector t since no translation is involved.

This approach can be generalized by using the notation introduced in section 2.1.2.
A channel E acting on a state ρ can be denoted by |E (ρ)) = TE |ρ). TE is called the
Pauli Transfer Matrix (PTM) representation of E [25]. The matrix is of dimension
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2. Fundamentals

4n × 4n and consists of the elements TE [i, j] = 1
2n Tr [PiE (Pj)]. The general structure of

TE corresponds to

TE =

(
1 0
t A

)
. (2.8)

The first row of the matrix ensures that the channel is trace-preserving. The matrix A
corresponds to the unital part of the channel, and t is associated with the nonutiality of
the channel [30].

In the following, the PTMs of the channels discussed in section 2.2.1 are presented.
Like the PTM of every Pauli channel, the PTM of the dephasing channel Z in Eq. (2.9)
and the PTM of the depolarization channel ∆ in Eq. (2.9) are diagonal,

TZ =


1 0 0 0
0 1− λ 0 0
0 0 1− λ 0
0 0 0 1

 T∆ =


1 0 0 0
0 1− λ 0 0
0 0 1− λ 0
0 0 0 1− λ

 . (2.9)

In the context of Pauli channels, the diagonal elements of the unital part of the matrix are
referred to as Pauli eigenvalues. They correspond to the scaling of the Pauli expectation
values of a state under the action of the channel. The Pauli eigenvalues are related to
the Pauli error rates of the channel by a Walsh-Hadamard transform [33]. Since all Pauli
eigenvalues of the depolarizing channel are equal, the Bloch sphere contracts uniformly
under its action. In contrast, the dephasing channel only changes the components of the
state that relate to σx and σy, which correspond to the off-diagonal terms of the density
matrix.

A single-qubit rotation Ry around the y-axis by angle θ corresponds to a unitary
evolution with the operator ei

θ
2
σy . The PTM

TRy =


1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 - sin θ 0 cos θ

 (2.10)

has the form of a rotation matrix. Lastly, the amplitude damping channel Γ with decay
parameter γ is an example of a non-unital channel, as visible from the first column in the
PTM,

TΓ =


1 0 0 0
0

√
1 - γ 0 0

0 0
√
1 - γ 0

γ 0 0 1 - γ

 . (2.11)
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2.3. Pauli Algebra

2.2.3. Pauli Twirling

Pauli Twirling is a technique to transform an arbitrary channel into a Pauli channel, (cf.
Eq. (2.6)). In terms of the PTM formalism, the effect of twirling is the cancellation of
all off-diagonal terms. Twirling is achieved by averaging over the set of Pauli operators,
where the input and the output of the channel are conjugated by the same Pauli operator.

ẼT (ρ) = Ei [PiE (PiρPi)Pi] , (2.12)

shows the Pauli twirled channel ẼT that originated from channel E . The PTM TẼT of the
twirled channel ẼT is diagonal with the elements TẼT [i, j] = δi,j Tr [PiE (Pj)]. If applied
to a noise channel, the transformation is helpful for the mitigation of quantum noise, as
it reduces the noise to a channel with a clear structure and lower complexity [32, 54].

By twirling with the set of Clifford gates instead, the channel transforms into a
depolarization channel with the same Pauli rates (cf. Eq. (2.9)). This further reduces the
complexity of the channel to a total of 2n parameters [5].

2.3. Pauli Algebra

The Pauli matrices of equation 2.1 are named after Wolfgang Pauli, who used them
to describe spin systems [55]. In the Bloch sphere picture, the Pauli matrices can be
interpreted as rotations of angle π around a specific axis. Hence it is fitting that the
algebra generated by the Pauli matrices is called a geometric (Clifford) algebra. Clifford
algebras extend the algebra of real numbers to vectors and are closed under addition
and multiplication [56]. The simplest non-trivial Clifford algebra is isomorphic to the
algebra of complex numbers, which creates an associative and commutative algebra for
vectors in R2 [57]. Another well-known Clifford algebra, often used for the representation
of 3D rotations, is generated by the quaternions. The Pauli algebra, generated by the
Pauli matrices, is isomorphic to the Clifford algebra of R3 [56]. Since the Pauli matrices
are extensively used in this thesis, this section introduces some of the properties of the
underlying geometric algebra.

In Clifford algebras, it is fundamental that the product of a vector with itself is
proportional to the identity element [56]. Vectors v created by linear combinations
of Pauli matrices v = aσ1 + bσ2 + cσ3 fulfill this property under the standard matrix
multiplication as the Pauli matrices mutually anti-commute

{σk, σl} = σkσl + σlσk = 2δk,l, (2.13)

and the product with themselves corresponds to the identity σkσk = I.
The 3D-rotation representation of the action of the Pauli matrices in the Bloch sphere

picture intuitively reveals their non-commutativity

[σk, σl] = 2i
∑
m

ϵklmσm. (2.14)

The products between the Pauli matrices and the identity are summarized in table 2.1.
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2. Fundamentals

I σx σy σz
I I σx σy σz
σx σx I iσz −iσy
σy σy −iσz I iσx
σz σz iσy −iσx I

Table 2.1.: Operation table of the Pauli matrices
and the identity. The operators inside the
table correspond to the products of the oper-
ators indicating the row with the operators
indicating the column.

In the n-qubit Pauli basis {Pi}i∈{0,1,2,3}n , it is useful to introduce the symplectic inner
Product ⟨k, l⟩sp, which is 0 if the Pauli operators Pk and Pl commute and 1 otherwise [32].
This notation is extended to the elementwise product [39]

k ⋆ l = {⟨k0, l0⟩sp, ⟨k1, l1⟩sp, ..., ⟨kn, ln⟩sp ∈ {0, 1}n. (2.15)

Note that all n-qubit Pauli operators commute with exactly half of the n-qubit Pauli
operators and anticommute with the other half, except for the identity, which commutes
with all other Pauli operators. The product PkPl can be expressed as −PlPk in the
anticommuting case or as PlPk in the commuting case. In a more compact form PkPl =
(−1)⟨k,l⟩spPlPk is valid and more important in the course of this thesis

PkPlPk = (−1)⟨k,l⟩spPl. (2.16)

With this property one can establishes the relation between the Pauli error rates p(c) and
the Pauli eigenvalues f(b) of a Pauli Channel P , as introduced in sections 2.2.1 and 2.2.2,

f(b) =
1

2n
Tr [PbP (Pb)] =

1

2n
Tr

[
Pb

∑
c

p(c)PcPbPc

]
=

1

2n

∑
c

p(c)(−1)⟨c,b⟩spTr [PbPb] =
∑
c

p(c)(−1)⟨c,b⟩sp .

(2.17)

The transformation in Eq. (2.17) is called Walsh-Hadamard transform [33] and corre-
sponds to a discrete n-dimensional Fourier transform [58].
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Chapter 3

Models

This thesis aims to characterize the noise introduced by a quantum operation. The
characterization protocol should not simply reveal a single summarizing noise rate that
indicates how much the noise disturbs the ideal process but instead provide a physically
insightful model of the active noise channels. For general unstructured noise channels,
this task coincides with full quantum process tomography, and such protocols are not
scalable to many qubits [39]. Therefore, we must make assumptions on the noise structure
that lead to a model where the number of parameters does not scale exponentially with
the number of qubits.

A quantum system is often exposed to various noise sources, such as interactions with
the environment or between qubits, imperfect calibration, or leakage [59]. One general
noise classification is the distinction between coherent and incoherent noise [60]. Coherent
noise is the noise that corresponds to an undesired unitary evolution and preserves the
purity of a state. Therefore, coherent noise does not lead to a loss of information in
the qubit system. Typically, coherent noise is interpreted as small systematic over- or
under-rotations [61] and can be dealt with by calibration. On the other hand, Incoherent
noise, often arises from an interaction of the computing system with its environment.
It does not preserve purity, and error correction is the standard way to suppress its
effects. In the Bloch sphere picture, coherent noise is mirrored by a sphere rotation, while
incoherent noise corresponds to a mixture of shrinking, rotation, and translation of the
sphere. These two noise classes lead to very different error distributions [35]. For the same
overall error rate, coherent noise can lead to a much bigger worst-case error (diamond
distance of noisy process to ideal process) than incoherent noise [60]. This difference has,
for example, practical implications in error correction, where the fault-tolerant threshold
heavily depends on the type of noise [62].

We focus on Pauli Noise to treat incoherent noise and use low-angle qubit rotations
to model the effect of coherent noise. This chapter further explains these different noise
channels, introduces two main models on how to model noise around an ideal process,
and discusses the assumptions behind these models.

3.1. Pauli Noise

Pauli noise can be represented as a Pauli channel (cf. Eq. (2.6)). This includes, for
example, dephasing, which acts according to

Zλ(ρ) = (1− λ) ρ+ λ diag(ρ) = (1− λ

2
) I ρ I+

λ

2
σz ρ σz (3.1)
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for a single qubit and a dephasing parameter λ. The modeling of incoherent noise as
Pauli noise is a common approach because depolarization and dephasing often dominate
the noise introduced by the interaction of a qubit system with its environment [63, 64].
Furthermore, quantum error correction leads to noise that is better approximated by a
Pauli channel [33]. It is also possible to enforce the Pauli noise assumption on general
noise by applying twirling (cf. section 2.2.3), randomized compiling [65, 66], or Pauli
frame randomization [67]. Lastly, protocols that estimate Pauli errors are realizable on
existing quantum computing hardware with low-depth circuits, as the preparation of
Pauli eigenstates and the measurement of Pauli expectation values often only require a
few native gates. One possibility to increase the expressibility of a Pauli noise model is to
extend Pauli channels by incorporating other Clifford gates, such as the Hadamard-gate
(H) or the controlled-NOT-gate (CX), into the stochastic mixture [68].

For an n-qubit system, a general Pauli channel includes 4n Pauli matrices and equally
many Pauli error rates. This exponential scaling in the number of parameters necessitates
further assumptions on the structure of the Pauli noise channel. To reach a model that is
tractable for more than a few qubits, one option is to assume that the Pauli channel is
sparse, meaning that most of the Pauli error rates are close to zero [39]. Another approach
is to approximate the Pauli error rates with a Gibbs random field [5]. By choosing a
factor graph that corresponds to the connectivity tree, shown, for example, in Fig. 5.5, of
the computing hardware, this approach implies the assumption that the correlation of
the noise is spatially local. A similar assumption, which we will take in this thesis, is to
restrict the Pauli noise model to single and two qubit Pauli matrices [32]. This constraint
limits the number of Pauli errors to O(n2). Note that a model with such restrictions still
includes cross-talk between all qubit pairs. A further reduction is possible by taking the
topology of the computational hardware into account and considering only spatially local
noise correlations.

3.1.1. Parallel Pauli Noise Model

A possible notion of a noisy channel ENp that incorporates incoherent Pauli noise is given
by

ENp(ρ) = (1− η) UIρU
†
I + η

∑
c

p(c)PcρPc. (3.2)

We refer to this model as the parallel Pauli noise model. In this model, UI represents
the ideal channel, and the noise is modeled by a Pauli channel acting on the initial state
ρ. As illustrated in Fig. 3.1, the modeling channel equals a probabilistic mixture of the
ideal channel and a Pauli channel acting on ρ. The parameter η ∈ [0, 1] corresponds to
the probability that the noise modeling Pauli channel is applied and can be associated
with the process error rate. The case η = 0 corresponds to the ideal case without noise.
As there are two types of parameters in this model, η and the Pauli error rates p(c),
the question arises on whether there are different parameter combinations that lead to
the same model. The only unitary processes that are Pauli channels are single Pauli
operations. Therefore, for a general UI , each combination of η and Pauli error rates p(c)
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3.1. Pauli Noise

Figure 3.1.: Pauli noise models - a When implemented on real hardware, an ideal process
UI will always introduce noise. One approach is to model the action of the noise as
a Pauli channel P. b shows the parallel Pauli noise model, where the real process is
modeled as a probabilistic mixture of the ideal process and a Pauli channel. In the
sequential Pauli noise model c, the noise modeling Pauli channel is concatenated with
the ideal process.

creates a unique noise model. For the special case where UI is a Pauli operator Pc, we
require the corresponding p(c) to be 0. As mentioned in the last section, we will restrict
the model to single- and two-qubit Pauli operators to eliminate the exponential scaling in
the number of parameters in the model with an increasing number of qubits.

The motivation behind the parallel Pauli noise model is that the noise contributions
are easy to interpret physically. This is favorable if the characterization results are used
to improve the computing hardware. The central assumption of the model is that in a
noisy process, either the ideal process happens or some other process that a Pauli channel
can approximate. However, it is unclear how well such a model can approximate real
processes on existing quantum computers, and there is no existing work for this model.
Like any non-universal model, this model is certainly not useful for all cases of noise.
Let us, for example, assume we want to characterize a 4-qubit GHZ preparation process,
which starts from the state |0000⟩ and prepares the state 1√

2
(|0000⟩ + |1111⟩). In the

real process, however, with some probability, a bit-flip error (σx-error) occurs on the
last qubit, and the prepared state ends up being a mixture between the GHZ-state and
the state 1√

2
(|0001⟩+ |1110⟩). This noisy state preparation process already exceeds the

expressibility of the parallel Pauli noise model, even more under the assumption that the
model only includes single and two-qubit Pauli operators.

Decay is a type of incoherent noise that a Pauli channel fundamentally fails to express
as it is nonunital [68]. In the chapter on characterization, we will also discuss the
characterization of an extended model,

ENγ
p
(ρ) = Fγ

(
(1− η) UIρU

†
I + η

∑
c

p(c)PcρPc

)
, (3.3)

where a decay channel F with decay rate γ acts in sequence with the noise model.
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3. Models

3.1.2. Sequential Pauli Noise Model

A widely used noise model [5, 9, 32] is the sequential Pauli noise model. In this model,

ENs(ρ) =
∑
c

p(c)PcUIρU
†
IPc, (3.4)

the Pauli channel modeling the noise acts in sequence with the ideal channel (Fig. 3.1). For
a noiseless operation, the Pauli error rate corresponding to the identity, p ({0}n), equals 1,
while all other Pauli error rates are 0. For the characterization, we will again limit the
model to single and two-qubit Pauli operators. The PTM formalism is advantageous for
the treatment of the model, as the concatenation of channels corresponds to the product
of PTMs. Furthermore, in the practically relevant case of UI being a Clifford unitary, the
PTM of UI is a permutation matrix. This structure is preserved in the noise model, as
the PTM of a Pauli channel is diagonal.

In the sequential Pauli noise model, the noisy GHZ preparation example of the last sec-
tion can be modeled with single-qubit Pauli operators. The Pauli error rate corresponding
to σx on the last qubit equals the error probability. The Pauli error rate connected to the
identity corresponds to one minus the error probability.

3.2. Coherent Noise

Like quantum computing operations, coherent noise corresponds to a unitary evolution
of the system. Thus coherent noise is associated with an incorrect knowledge of the
system dynamic [69]. While Pauli noise is referred to as stochastic noise, coherent noise is
also called systematic errors and is often connected to imperfect control of the quantum
operation [61]. In contrast to the shrinking of the Bloch sphere being an insightful
illustration of Pauli noise, coherent noise can be seen as small over- or under-rotations of
the ideal process in the Bloch sphere picture. Therefore, the characterization of general
coherent noise corresponds to the characterization of a general quantum computing process
and is consequently of similar complexity as full QPT [33]. As coherent errors preserve
the purity and do not lead to information loss, it is conceptually possible to undo the
unwanted dynamics on the gate level. Common sources of coherent errors are crosstalk
and other unitary dynamics during the idle time of a qubit. [32].

Unitary operators can be expressed as U = e−iH , where H is a Hermitian matrix. The
Pauli basis is a basis for the Hermitian matrices, and H can be written as H =

∑
θkPk.

For a general unitary operator, θ is a vector with 4n elements. Under the assumption
of small θ values, Uθ = exp (

∑
−iθkPk) is approximated to second order in θ by the

expression Uθ ≈
∏

exp (−iθkPk). In the Bloch sphere picture, the terms exp (−iθkPk) =
cos θk I− i sin θk Pk represent rotations around the k-axis by angle θ. This interpretation
relates to the earlier statement that coherent errors can be seen as over- or under-rotations.
In order to reach a tractable model, similar to the approach chosen for the Pauli noise,
we only consider one and two-qubit rotations. The integration of the coherent noise term
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3.2. Coherent Noise

Figure 3.2.: Coherent noise model - Coherent noise
model consisting of a concatenation of the ideal
process UI , a unitary evolution Uθ modeling
the coherent part of the noise, and a Pauli
channel P modeling the incoherent part of the
noise.

into the sequential Pauli model is formalized by

ENc(ρ) =
∑
c

p(c)PcUθUIρU
†
IU

†
θPc. (3.5)

In this thesis, we will refer to this model, illustrated in Fig. 3.2, as the coherent noise
model.

An ongoing discussion takes place on the influence of coherent noise on error correcting
schemes and the fault tolerance threshold. In this context, a similar noise model to
Eq. (3.5) is used [62, 70, 71]. In Refs. [70] and [62], the model includes dephasing noise
and coherent Z-rotations, as they consider them to be physically the most relevant. Their
model N (ρ) = e−iθZ [(1− p)ρ+ pZρZ] eiθZ applies coherent noise and Pauli noise in a
sequence similar to the approach of this thesis. In Ref. [71], on the other hand, where the
model includes X-rotations and Pauli X errors, the coherent noise is applied in parallel to
the coherent noise according to N (ρ) = ηe−iθZρeiθX + (1− η) [(1− p)ρ+ pXρX]. These
works do not focus on the characterization of a noisy process but rather on analyzing the
properties of a process with the respective noise model.
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Chapter 4

Characterization

In the spirit of noise reconstruction (cf. section 1.1.3), we proceed to characterize processes
based on the models introduced in chapter 3. We aim to derive a protocol for each model
to estimate the parameters for which the model resembles the real process best. We
presume that we can repeatedly apply the noisy process in an experiment and that the
process can be integrated into a circuit. The starting point for the derivation of the
protocols is the assumption that the model can express the real process, and the knowledge
of the model included ideal unitary evolution UI (cf. equations (3.2), (3.4), and (3.5)).
The protocols should be scalable, both in the size of the executed circuit ensemble and the
required post-processing steps. Furthermore, as we intend the execution of the protocols
to be feasible on existing hardware, only low-depth state preparation and measurement
circuits shall be used.

Notation

In the developed protocols, we only apply state preparation schemes that prepare from
the ground state a separable state, where each qubit is in an eigenstate of a specific Pauli
operator. Hence, each qubit is prepared in one of the states |+⟩, |−⟩, |i⟩, |−i⟩, |0⟩, |1⟩.
Those states can be prepared by a combination of X-gate, phase-gate (S), and Hadamard-
gate (H). According to the notation in Ref. [39], we denote such an n-qubit state as χa

b ,
where a ∈ {1, 2, 3}n labels the preparation basis for each qubit, 1 corresponding to an
eigenstate of σx, 2 to an eigenstate of σy, and 3 to an eigenstate of σz. The bitstring
b ∈ {0, 1}n indicates whether the state is an eigenstate of eigenvalue 1 (for bk = 0) or −1
(for bk = 1) of the corresponding Pauli operator. We refer to b as the excitation of the
state. For example, χ{1,2}

{0,0} = |+⟩ ⊗ |i⟩ and χ{1,2}
{1,0} = |−⟩ ⊗ |i⟩. We will write χa

{0}n as χa
0.

4.1. Parallel Pauli Noise

The parameters in the parallel Pauli noise model ENp , from Eq. (3.2), are the process
error rate η and the Pauli error rates p(c). In this section, we first discuss the estimation
problem of each part of the model separately and then move on to the full characterization
protocol, including simulation results. Furthermore, we show how to extend the presented
protocol to the decay extended parallel Pauli noise model of Eq. (3.3).
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4.1.1. Process Error Rate Estimation

The main idea for estimating the process error rate η can be illustrated in the Bloch
sphere picture. While a Pauli channel only squeezes the Bloch sphere, the ideal unitary
will generally rotate the sphere. Therefore, if we prepare some state |χa

0⟩ in a Pauli
basis a, then act on it with a Pauli operator Pc, the state is still in the basis of a and
can be expressed as

∣∣∣χa
{a⋆c}

〉
, where a ⋆ c denotes the elementwise commutation product

introduced in section 2.3. Consequently, measuring the expectation value of this state for
some Pauli operator Pb with a ⋆ b ̸= {0}n will always be 0, as stated in

Tr[PbPcχ
a
0Pc] = (−1)⟨a,c⟩spTr[Pbχ

a
0] =

{
(−1)⟨a,c⟩sp , if a ⋆ b = {0}n

0, otherwise
. (4.1)

For example, if we prepare the state |+⟩ and act on it with Pauli operator σy, we reach,
up to a phase, the state |−⟩. The expectation value of |−⟩ is 0 for σy and σz, 1 for the
identity, and −1 for σx. This property is well reflected in the diagonal PTM structure of
a Pauli channel and follows from Eq. (2.16).

Next, we consider the evolution of the state χa
0 with a unitary operator UI instead of a

Pauli operator. If UI does not correspond to a Pauli operator, the PTM of UI contains
off-diagonal terms. This implies the existence of a combination of state preparation |χa

0⟩
and Pauli Pb, with a ⋆ b ̸= {0}n, such that

ξa,b := Tr[PbUIχ
a
0U

†
I ] ̸= 0. (4.2)

Combining this result with Eq. (4.1), still considering a ⋆ b ̸= {0}n, the expectation value
of the state χa

0 after applying the noisy channel is equal to

Tr[PbENp(χ
a
0)]︸ ︷︷ ︸

⟨Pb⟩ENp
(χa

0)

= (1− η)Tr[PbUIχ
a
0U

†
I ]︸ ︷︷ ︸

ξa,b (Eq. (4.2))

+η
∑
c

p(c)Tr[PbPcχ
a
0Pc]︸ ︷︷ ︸

0 (Eq. (4.1))

. (4.3)

Rearranging, for nonzero ξa,b, leads to the expression

η = 1−
⟨Pb⟩ENp (χ

a
0)

ξa,b
. (4.4)

As the terms on the right-hand side depend on the ideal circuit ξa,b or can be measured
experimentally ⟨Pb⟩ENp (χ

a
0)

, this equation can be used to estimate η.
⟨Pb⟩ENp (χ

a
0)

is estimated by repeatedly measuring a circuit that prepares the state χa
0,

applies the noisy channel, and does a Pauli measurement in the basis of b (shown in
Fig. 4.1). The expectation value of Pb corresponds to E [(−1)r], where r is the circuit
readout.
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Figure 4.1.: η-estimation circuit - Example of a cir-
cuit to estimate η. The first gate-layer prepares
the state χa={1,2,3,1}

0 . Then the noisy implemen-
tation EN of the ideal process is applied. Finally,
qubit 4 is measured in the y−basis in order to
estimate the expectation value of the operator
Pb={0,0,0,2} = I⊗ I⊗ I⊗ σy.

By introducing the operator η̂ := 1− P̂b/ξa,b, we can formalize the estimation of η as
Tr [η̂χa

0]. This allows evaluating the variance in the measurement process to

σ2η =
1

ξ2a,b
− (1− η)2. (4.5)

The scaling of the expected estimation error with the number of qubits in the system, ξ,
and the number of measurements is shown in Fig. A.2 and confirms Eq. (4.5).

In order to create a favorable measurement statistic, we are interested in choosing
the state χa

0 and operator Pb such that
∣∣∣ξ2a,b∣∣∣ is maximal. The respective Pb will be of

structure {I, ..., I, σi, I, ..., I}, as any additional non-identity Pauli matrix would decrease
the expectation value Tr[PbUIχ

a
0U

†
I ]. We have not found an efficient way to optimize

over a and b. Instead, we calculate ξa,b for randomly pick a and b and select the best
combination.

4.1.2. Pauli Channel Estimation

This section focuses on the estimation of the error rates of a Pauli channel, as shown
in Eq. (2.6). The integration of this Pauli channel characterization protocol into the
characterization protocol of the parallel Pauli noise model will be discussed in the next
section. The presented protocol was developed by Flammia et al. [39], and we closely
follow their derivation of the protocol.

For understanding the protocol, it is most helpful to interpret the Pauli channel as a
black box with some hidden probability distribution p(c). The goal of the protocol is to
estimate this distribution. We can interact with the black box by inputting any state.
The black box then chooses a Pauli operator Pc according to its probability distribution
and evolves the state by this operator. Afterward, we can further process the evolved
state. In this framework, the question arises of which state we should input into the
black box and how to measure the output state to gain information on the applied Pauli
operator. To answer this question, we regard the property

P(χa
0) =

∑
c

p(c)Pcχ
a
0Pc =

∑
c

p(c)χa
a⋆c. (4.6)
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Figure 4.2.: Pauli error estimation circuit - One
circuit instants for the estimation of the Pauli
error rates p(c) of a Pauli channel P. The first
set of applied single-qubit gates prepares the
state χa={2,1,0,1}

0 . After the application of the
Pauli channel, a Pauli measurement in the basis
a is conducted on the circuit.

The application of the Pauli channel does not change the basis of the input state χa
0.

However, depending on whether the individual elements of Pa and Pc commute, the
excitation is flipped. Therefore, the readout of a measurement in the Pauli basis a, after
the black box applied the Pauli operator Pc on the input state χa

0, corresponds to the
bitstring r := a ⋆ c. Illustrated for one qubit in the following table:

r c
a ⋆ c 0 1 2 3

a
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0

(4.7)

Although for a given a, different Pc lead to the same r, r still reveals some information
on which Pauli operator Pc was applied inside the black box. The next step is to analyze
how we can estimate the Pauli error rates from a set of r and a. The experimental circuit
corresponding to the described black box measurement is shown in Fig. 4.2.

We first discuss how to reconstruct the Pauli error rates for a single-qubit Pauli channel
and then generalize this case to multi-qubit Pauli channels. Let us assume we want to
find the Pauli error rate corresponding to the single-qubit Pauli operator Pb. For each
experiment run, we can calculate a ⋆ b, which corresponds to the result expected if the
black box applied Pauli operator Pb. The actual result r = a ⋆ c is equivalent to a ⋆ b,
for a uniformly random drawn from {1, 2, 3}, with probability 1 if Pc equals Pb and
with probability 1

3 if Pc differs from Pb. Table 4.1 explains the respective probability
distribution.

We introduce the binary variable w := r+2 a ⋆ b, with +2 denoting the binary addition.
Note that for one circuit measurement, we can calculate the quantity w for all guesses
b ∈ {0, 1, 2, 3}. For an experiment with a uniformly random drawn a, the obtained value

w c
b = 1 0 1 2 3

1 0 0 1 1
a 2 1 0 1 0

3 1 0 0 1

Table 4.1.: The tabular shows the results for
w = a ⋆ c+2 a ⋆ b with b = 1. For some
c ≠ 1 the probability for w = 0 assuming
a uniformly random sampled a is 1

3 . If
c = 1 the probability for w = 0 is 1.
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4.1. Parallel Pauli Noise

of w is distributed for some guess b according to

w = r +2 a ⋆ b =

{
0, p(b) + 1

3(1− p(b))

1, 2
3(1− p(b)).

(4.8)

With the observation that the expectation value for w corresponds to 2
3(1− p(b)), we can

reconstruct the Pauli error rate p(b) with the relation

p(b) = 1− 3

2
E[w]. (4.9)

Another approach to restore p(b) from Eq. (4.8) is introducing the variable G :=
(
−1

2

)w.
According to

E[G|c] = E
[(

−1

2

)w∣∣∣∣c] =
{(

−1
2

)0
= 1 if b = c

1
3

(
−1

2

)0
+ 2

3

(
−1

2

)1
= 0 if b ̸= c,

(4.10)

the expectation value of G for a fixed Pc evaluates to 1 if c = b and to 0 if c ̸= b. This
leads to the simple result

E[G] =
∑
c

p(c) E[G|c] = p(b), (4.11)

which can be evaluated for various b.
For n-qubit Pauli channels, p(c) is a probability distribution over c ∈ {0, 1, 2, 3}n. a is

an element in {1, 2, 3}n and b is element in {0, 1, 2, 3}n. Consequently, w ∈ {0, 1}n is a
bitstring of length n. G =

∏n
t=0

(
−1

2

)wt is generalized as the product of all single-qubit
G, where t denotes qubit index. The coordinates wt are independent random variables.
Therefore, E[G] =

∏n
t=0 E

[(
−1

2

)wt
]

is valid, and combined with Eq. (4.10) we reach

E[G|c] =
n∏

t=1

E
[(

−1

2

)wt
∣∣∣∣c] =

{
1 if b = c

0 if b ̸= c.
(4.12)

This finally implies E[G] = p(b) and allows us to estimate all Pauli error rates. An
example of the steps in the protocol for two qubits is illustrated in Fig. 4.3.

We can apply the above-stated protocol for all choices of b and estimate potentially
any Pauli error rate from a set of measurements. However, as an n-qubit process contains
4n potential Pauli errors, the question arises on how we efficiently find all Pauli error
rates above some threshold ε.

The presented protocol not only allows to estimate p(b) for any b ∈ {0, 1, 2, 3}n but
also for any shorter string, called marginal, β ∈ {0, 1, 2, 3}l. This is achieved by ignoring
all data in positions l + 1, ..., n. For example, for a 2-qubit Pauli channel, p(β = {1})
corresponds to p({1, 0}) + p({1, 1}) + p({1, 2}) + p({1, 3}). Therefore, if the estimation
p̂(β = {1}) is smaller than ε, all two-qubit Pauli error rates that emerge from this marginal
are also lower than ε.
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4. Characterization

Figure 4.3.: Pauli black box - Illustration of the main concept of the Pauli channel
estimation protocol by Flammia et al. [39]. A preparation basis a is chosen uniformly
over {1, 2, 3}n. In the example of the figure, the state |i⟩ ⊗ |0⟩ is prepared. The Pauli
channel is interpreted as a black box that applies a Pauli operator Pc according to a
hidden probability distribution p(c) over {0, 1, 2, 3}n. The resulting state is χa

a⋆c. In
the example, where the Pauli operator σy ⊗ σx is applied, the state |i⟩ ⊗ |1⟩ is reached.
The quantity r = a ⋆ c can be accessed by a readout of the outputted state in the Pauli
basis a. From the quantity w = r+2 a ⋆ b, G =

∏n
t=0

(
−1

2

)wt can be calculated for all
b ∈ {0, 1, 2, 3}n. The expectation value of G for a certain b equals p(b). Therefore, by
running the protocol repeatedly, it is possible to estimate all Pauli error rates of the
Pauli channel P.

With this concept, a cascade that starts with estimating all marginal Pauli error rates
of the first qubit can be built. It proceeds with estimating all two-qubit marginals that
arise from one-qubit marginals above the threshold. Then for all estimated two-qubit
marginals above the threshold, the 3-qubit marginal error rates are calculated. This
procedure is repeated until the Pauli error rates of the entire system are estimated.

4.1.3. Complete Protocol

The protocol to estimate the Pauli error rates introduced in the last subsection can not
be applied directly to the parallel Pauli noise model of Eq. (3.2) because there is no
experimental access to the Pauli channel itself but only to the probabilistic mixture of
ideal and Pauli channel. Aiming to isolate the Pauli channel, we rearrange the terms in
Eq. (3.2) to ∑

c

p(c)PcρPc =
1

η

(
ENp(ρ)− (1− η) UIρU

†
I

)
. (4.13)

The idea is to estimate the right-hand side for different states χa
0 such that then the

presented protocol of Flammia et al. [39] can be applied.
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4.1. Parallel Pauli Noise

To perform the subtraction of the terms on the right-hand side of Eq. (4.13), a density
matrix representation ENp(χ

a
0) and UIχ

a
0U

†
I is required. The task of estimating ENp(χ

a
0)

corresponds to a quantum state tomography (QST) problem. The evolution UIχ
a
0U

†
I

is calculated classically. The computational complexity for both parts, QST and the
classical simulation of general unitary evolutions, scale exponentially with the number
of involved qubits. Therefore, as we aim for a scalable protocol, we have to introduce
further assumptions on UI and the Pauli error rates.

As discussed in the introduction to the Pauli noise models in section 3.1, we restrict
to two-qubit Pauli errors. First, this limits the number of different Pauli errors from
O (4n) to O

(
n2
)
. Secondly, this reduces the task from estimating Pauli errors of length

n to estimating marginal Pauli error rates involving only two qubits. As described in the
cascading estimation scheme in the last section, the data of all other than the involved
qubits is not relevant for estimating marginal Pauli error rates. Mathematically speaking,
this implies that for the estimation of marginal Pauli error rates, both sides of Eq. (4.4)
can be traced over all except the involved two qubits (for qubits k and l denoted by
Tr¬(k,l)[·]). This leads to O

(
n2
)

equations of the form:

∑
c∈{0,1,2,3}2

p(c)Pcχ
{ak,al}
0 Pc =

1

η
Tr¬(k,l)

[
ENp(χ

a
0)
]
− (1− η)

η
Tr¬(k,l)

[
UIχ

a
0U

†
I

]
. (4.14)

By considering only the marginal Pauli channels, we have changed the QST problem
from estimating one density matrix of size 2n × 2n to the estimation of O

(
n2
)

reduced
density matrices of size 4×4. For this estimation, we use the classical shadow tomography
protocol introduced in section 2.1.3. The protocol efficiently estimates Tr¬(k,l)

[
ENp(χ

a
0)
]

for all reduced subsystems.
The complexity of the calculation Tr¬(k,l)

[
UIχ

a
0U

†
I

]
scales exponentially with increasing

system size. Therefore, we either assume that UI can be written as a tensor product of
multiple unitaries of tractable size or that UI corresponds to a Clifford unitary [72]. In
the case that we are characterizing gate-layers, both assumptions are usually valid.

Finally, all pieces are ready to characterize the complete model by the following
procedure (illustrated in Fig. 4.4):

1. Estimate η according to Eq. (4.4).
2. Apply classical shadow tomography to estimate Tr¬(k,l)

[
ENp(χ

a
0)
]

for all two-qubit
subsystems, consisting of qubits k and l, and different prepared states χa

0.
3. For the same prepared states, calculate for each subsystem Tr¬(k,l)

[
UIχ

a
0U

†
I

]
.

4. Estimate for each subsystem the Pauli channel evolution of all prepared states by
applying Eq. (4.14).

5. Apply the Pauli error estimation protocol of section 4.1.2 for each subsystem.

While in the initially presented Pauli error rate estimation protocol, we apply Pauli
measurements on the state P (ρ), we now can calculate the probabilities for all possible
outcomes of this measurement in post-processing as we have already estimated the reduced
density matrices of the evolved state in Eq. (4.14).
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4. Characterization

Figure 4.4.: Parallel Pauli noise model characterization protocol - Overview of the estima-
tion protocol for the parallel Pauli noise model. The protocol starts by preparing a
state χa

0 and evolving it with the noisy process. The reduced density matrices of the
output state are then estimated with classical shadow tomography. This, combined
with the estimate for η and the calculated ideal evolution, allows estimating how the
sole Pauli noise channel would evolve the initial state. After repeating this procedure
for many initial states, the Pauli error rates can be estimated for each subsystem.
Finally, under some assumptions regarding the correlation length of the Pauli errors,
the full system Pauli errors are reconstructed.

Applying the Pauli error estimation protocol on all two-qubit subsystems returns 16
marginal Pauli error rates per subsystem. However, the marginal Pauli error rates are not
independent of each other. For example, in the subsystem of qubits 0 and 1, a two-qubit
Pauli error on qubits 1 and 3 will be observed as a single-qubit Pauli error on qubit 1. We
assumed that only one- and two-qubit Pauli errors are present in the system. Therefore,
whenever there is a two-qubit Pauli error in a two-qubit subsystem, we can erase its effect
on single Pauli error rates in other subsystems. If we do that for all detected two-Pauli
error rates, we restore the correct single-qubit error rates. Finally, we can find the Pauli
error rate connected to the identity by subtracting the sum of all single- and two-qubit
error rates from one, enforcing that all probabilities sum to one.

4.1.4. Extension to decay

A decay channel is not a Pauli channel. Consequently, the parallel Pauli noise model
fails to model noise that originates from decay. In order to increase the expressibility
of the model, we expand it to the decay extended model of Eq. (3.3). The multi-qubit
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4.1. Parallel Pauli Noise

decay channel corresponds to the application of the single-qubit decay channel to each
qubit, where the decay parameter γ can vary between qubits. By introducing the Kraus
operators

K0 =
√
γσ− =

√
γ

2
(σx + iσy) and K1 =

(
1

2
+

√
1− γ

2

)
I+

(
1

2
−

√
1− γ

2

)
σz, (4.15)

we express the single-qubit channel Fγ as Fγ(ρ) = K0ρK
†
0 +K1ρK

†
1.

The extended model of the noisy process, ENγ
p
(ρ), consists of three independent sets

of parameters, γ, η, and p(c). We take the same assumptions for the Pauli error rates
as in the protocol without decay, meaning we still restrict the model to two-qubit Pauli
errors. γ consists of the individual decay rate of each qubit in the system, and η is a
single parameter that determines the probabilistic mixture of the ideal process and the
Pauli channel. In the following, we will introduce a procedure to characterize γ for all
qubits and discuss for η and the Pauli error rates how the presented characterization
protocol can be adjusted to the model with decay.

Decay Rate Estimation

In order to estimate the decay rates, we use the fact that, different from the Pauli channel
and the ideal process, the decay channel is nonunital. This leads to ENγ

p
(I) = Fγ(I) ̸= I.

As established in

Tr
[
σ(k)z ENγ

p

(
1

2n
I
)]

= Tr
[
σ(k)z Fγ

(
1

2n
I
)]

=
1

2n
Tr
[(
K

†(k)
0 σ(k)z K

(k)
0 +K

†(k)
1 σ(k)z K

(k)
1

)
I
]

=
2(n−1)

2n
Trk

[(
1− γ(k)

)
σz + γI

]
= γ(k),

(4.16)

the measurement of the expectation value of σ(k)z of the evolved completely mixed state
reveals the decay rate γ(k) of qubit k. σ(k)z is the Pauli operator that acts as σz on qubit
k and as the identity on all other qubits. However, instead of preparing the completely
mixed state, which would require the use of usually undesired dissipation in the system,
we exploit the linear property of channels. The completely mixed state corresponds to an
even mixture of all states in the computational basis I =

∑
a∈{0,1}n χ

{3}n
a . Therefore, the

protocol starts by preparing the state χ{3}n
a for a uniformly random sampled a ∈ {0, 1}n,

which corresponds to applying a sparse layer of X-gates to the ground state. We then
evolve the state by the noisy channel and measure it in the computational basis. From
the measurement, we can reconstruct ⟨σ(k)z ⟩

χ
{3}n
c

for all qubits. The average of ⟨σ(k)z ⟩ over

many preparations is finally an estimate for γ(k).
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Estimation of η

After determining γ(k), we can proceed with estimating η. The protocol is similar to the
presented protocol in the absence of decay in section 4.1.1. The idea is again to prepare a
state χa

0 and estimate the Pauli expectation value for Pauli operator Pb with a ⋆ b ̸= {0}n

and Tr[PbUIχ
a
0U

†
I ] ̸= 0. However, in the protocol with decay, we choose Pb to be a Pauli

operator σ(k)z and then choose a accordingly. The constraint a ⋆ b ̸= {0}n requires qubit k
to be prepared either in the state |+⟩ or |i⟩. The expectation value of σ(k)z of the state χa

0

after the noisy channel action in terms of the decay rate, η, and the ideal expectation
value ξa,b is expressed as

Tr
[
σ(k)z ENγ

p

(
χb
0

)]
= Tr

[(
K

†(k)
0 σ(k)z K

(k)
0 +K

†(k)
1 σ(k)z K

(k)
1

)
ENp

(
χb
0

)]
= (1− γ(k))Tr

[
σ(k)z ENp

(
χb
0

)]
+ γ(k)Tr

[
ENp

(
χb
0

)]
= (1− γ(k))(1− η)Tr

[
σ(k)z UIχ

b
0U

†
I

]
︸ ︷︷ ︸

ξa,b

+γ(k).

(4.17)

We can rearrange this equation to an expression for η

η = 1−
Tr
[
σ
(k)
z ENγ

p

(
χb
0

)]
− γ(k)

(1− γ(k))Tr
[
σ
(k)
z UIχb

0U
†
I

] . (4.18)

The terms on the right-hand side of this equation are known γ(k), can be estimated by an
experiment similar to the protocol shown in Fig. 4.1 Tr

[
σ
(k)
z ENγ

p

(
χb
0

)]
, or are calculable

in the knowledge of the ideal process Tr
[
σ
(k)
z UIχ

b
0U

†
I

]
.

Pauli Error Rates Estimation

With the estimation of γ and η, the missing piece is the estimation of the Pauli channels
in the presence of decay. In the context of the whole protocol, this can be seen as the
problem of estimating the Pauli error rates on the left-hand side of the expression

Fγ

(∑
c

p(c)PcρPc

)
=

1

η

(
ENγ

p
(ρ)− (1− η) Fγ

(
UIρU

†
I

))
. (4.19)

We have access to the processes on the right-hand side of the equation and know the
decay rates γ. The same methods achieve this as in the protocol without decay, namely
the reduction to 2-qubit subsystems, the application of classical shadow tomography, and
the calculation of the ideal unitary evolution with known decay. We now present our
extension of the protocol of section 4.1.2 to the estimation of Pauli error rates in the
presence of decay.
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The main feature of Pauli channels that facilitates the protocol of Flammia et al. [39]
is the symmetry of the action of Pauli channels on the eigenstates of each Pauli operator,
as shown in table (4.7). This symmetry leads then to Eq. (4.8), from where the elegant
recovery scheme of Eq. (4.12) is derived. Our attempt to solve the Pauli error estimation
problem with decay is to recreate this symmetry and apply similar recovery techniques as
in the protocol without decay.

The recreation of table (4.7) in the presence of decay leads to

p(r̃) c
0 1 2 3

a

1 |+⟩ r = 0 0.5 + γ̃ 0.5 + γ̃ 0.5− γ̃ 0.5− γ̃
2 |i⟩ r = 0 0.5 + γ̃ 0.5− γ̃ 0.5 + γ̃ 0.5− γ̃

3 |0⟩ r = 0 1 γ γ 1
|1⟩ r = 1 1− γ 0 0 1− γ

(4.20)

The first difference to the case without decay is that the resulting state is no longer pure.
Therefore, the readout r̃ of a Pauli measurement in the basis of the preparation can no
longer be expressed as a ⋆ c. Instead the outcome is probabilistic. The first three rows
in table (4.20) show the probability of measuring 0, where γ̃ corresponds to

√
1− γ/2,

which equals 1− γ/2 in the first order of gamma. The symmetry in the preparation basis
is broken, as the probabilities to measure 0 is different for the state |0⟩ than for the states
|+⟩ and |i⟩. The fourth line of the table shows the probabilities of having a readout of 1
if we prepare the state |1⟩. While in the absence of decay, this would correspond to the
case of preparing |0⟩ and measuring 0, decay breaks this symmetry in excitation. Note
that also considering the states |−⟩ and |−i⟩ would not add new aspects to the table, as
those cases correspond to the cases of |+⟩, respectively |i⟩.

We can symmetrize table 4.20 and restore the symmetries of the case with no decay in
two steps. First, whenever we draw to prepare a qubit in the z-basis, we prepare with an
equal probability state |0⟩ or |1⟩. If we prepared state |1⟩, the readout of the respective
qubit is inverted in post-processing. Secondly, whenever we draw to prepare a qubit in
the state |+⟩ or |i⟩, we invert in post-processing the obtained readout with a probability
of 1

2 + 1−γ
2
√
1−γ

. With these two mitigation steps, we obtain the table:

p(r̃ = 0) c
0 1 2 3

a
1 1− γ/2 1− γ/2 γ/2 γ/2
2 1− γ/2 γ/2 1− γ/2 γ/2
3 1− γ/2 γ/2 γ/2 1− γ/2

(4.21)

This table resembles the structure of table 4.7. In order to create a similar recovery
scheme as in Flammia et al. [39], we introduce the value w̃ = r̃ +2 a ⋆ b and use the
ansatz G̃ = f · (−m)w̃. The values for f and m are chosen such that E

[
G̃
]
= p(b), which

corresponds to f = 1−γ
4(1−γ) and m = 1+γ

4−γ . We generalize this to multi-qubit Pauli error
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rates analogous to the case for no decay and arrive at equation

E[G̃|c] =
n∏

t=1

E

 1− γ(t)

4(1− γ(t))

(
−1 + γ(t)

4− γ(t)

)w̃t
∣∣∣∣∣∣c
 =

{
1 if b = c

0 if b ̸= c.
(4.22)

This subsection presented a protocol to estimate decay rates, η, and the Pauli errors in
the framework of the parallel Pauli noise model with decay. Combining these concepts
with the classical shadow application and the recovery scheme in the last section enables
complete characterization of the introduced model. The protocol is scalable to many
qubits under the same assumptions as the model without decay and for individual decay
rates.

4.1.5. Simulation Results

We simulate the presented protocol using Qiskit [73]. Fig. 4.5 shows the characterized
values for η, the decay rates, and the Pauli error rates for a four qubit system. For
the simulation, we drew a random 4-qubit unitary and noise according to the parallel
Pauli noise model. In total, 8 Pauli error rates were included in the model, 5 being
two-qubit errors and two being single-qubit errors. For the simulation of the decay rates
and the following estimation of η we run 400′000 measurements each. For the Pauli error
estimation, 1′440′000 circuits are measured. The presented error bars are estimated by
repeating the experiment multiple times.

We calculated the scaling of the Pauli error estimation error with the number of
measurements by combining the reported scaling of classical shadow tomography [49] and
the Pauli error estimation protocol [39], with the scaling factor due to the probabilistic
mixture of Pauli and ideal channel. In the picture of the probabilistic mixture between
noise and ideal process, the intuitive argument is that for smaller η, it is less likely that
the state is evolved by the noise term and, therefore, less probable that a measurement
reveals something about the noise. Finally, we reach a scaling of the error ε in the Pauli
error rates with the number of measurements of O

(
logn
ϵ2η2

)
. We confirmed this scaling for

η and ε in a simulation (Fig. A.3).
The simulation results illustrate the capability of the protocol to estimate η, γ, and the

8 introduced Pauli error rates. The values of η and γ were estimated with high accuracy.
We set η relatively high (compared to error rates of real processes), characterized a process
perfectly described by the model, and executed an amount of measurement that would
take several minutes to run on the provided hardware platform of IBM [74]. However, the
estimation uncertainty is still in the order of 25% of the Pauli error rates. For lower η, an
accurate estimation of the Pauli error rates will become challenging. Nevertheless, it is
notable that all introduced Pauli errors were captured in the simulation. Demonstrating
the protocol’s potential to characterize leading errors on which one then can further
elaborate. The simulation proves the protocol’s applicability to processes that the parallel
Pauli noise model can model.
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4.1. Parallel Pauli Noise

Figure 4.5.: Parallel Pauli noise model characterization results - Simulation result of the
characterization of a 4-qubit process that is modeled by the parallel Pauli noise model.
The ideal model parameters are indicated by the black line, while the characterized
values are represented by the bars. The error bars are created by repeating the same
characterization several times.

4.1.6. Analysis

We presented a scalable protocol to estimate all parameters in the parallel Pauli noise model.
To achieve this, we combined different existing concepts, such as classical shadows [49]
and an existing Pauli error estimation protocol [39], with new approaches. Furthermore,
we managed to extend the characterization to a decay-including model. The protocol
uses only simple state preparation and measurement processes. Its resource requirements
are met by current existing hardware platforms [74].

However, the protocol does not resist state preparation and measurement errors (SPAM).
The usual concept to deal with SPAM errors, for example, in randomized benchmarking,
is to apply the noisy channel repeatedly. This procedure amplifies the noise introduced
by the examined process. Within the assumption of a parallel Pauli noise model, such a
repeated scheme will lead to a broad mixture of different structured channels. For example,
already for two repetitions, the model creates the terms UIUIρU

†
IU

†
I with probability

(1−η)2, P(UIρU
†
I ) and UIP(ρ)U †

I with probability η(1−η), and P (P(ρ)) with probability
η2. Although one can restrict the number of terms with a first-order approximation in η,
the presented protocol fails to deal with these mixed terms, and we did not manage to
create a protocol that facilitates the estimation of the parameters in the case of repeated
application of the noisy channel.

Beyond the technical intricacies of the model, it is unclear whether the presented
model adequately represents physical noise processes insightfully, as seen in section 3.1.1.
Furthermore, coherent noise can not be modeled as a probabilistic mixture of an ideal
and a noise channel because the mixture leads to an incoherent process. Therefore, an
extension of the model to coherent noise in the spirit of the model is impossible.
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4.2. Sequential Pauli Noise

In contrast to the parallel Pauli noise model, the sequential Pauli noise model is well-
established in the literature [5, 32, 75]. In the spirit of randomized benchmarking, the
protocols to characterize the Pauli errors in the sequential model usually contain multiple
repetitions of the noise-inducing element. This repetition amplifies the noise one wants
to characterize while the amount of SPAM stays unchanged as it only appears once per
circuit. By looking at some quantity for different amounts of amplification, one can isolate
the noise introduced by the probed element from the SPAM and reach a SPAM-resistant
noise estimation protocol. This section will further discuss this concept with the example
of characterizing a Pauli channel.

An open problem is estimating Pauli error rates for general unitary processes UI in the
sequential model given in Eq. (3.4). The approach in Ref. [5] assumes that the introduced
noise is gate-independent. They then estimate the average Pauli noise channel over the
set of Clifford gates. Gate-specific noise is characterized in Refs. [75] and [32]. However,
those protocols are limited to the characterization of Clifford gates as the protocols
use the property UcPa = PbUc, where Uc is a Clifford unitary and Pa and Pb are Pauli
operators. The protocols presented in Refs. [5], [75] and [32] have in common that the
circuits used for characterization correspond in the noiseless case to the identity. Such a
circuit can be constructed by adding a circuit element at the end that inverts the action
of all previous gates [5], analogous to randomized benchmarking. Refs. [32] and [75]
focus on the characterization of CX-gate-based processes (CX, SWAP , and CZ). Their
circuits contain an even number of those elements, creating an identity because each
of those gates is its own inverse. This thesis does not further expand on the theme of
characterizing Pauli noise in the presence of arbitrary unitaries. We will use the example
of an identity gate consisting of two CX gates to illustrate the main concept for the
SPAM-free estimation of a Pauli channel. We refer to the CX-gate pair as noisy identity.

4.2.1. Protocol

Starting-point for creating a SPAM-free Pauli error estimation of a noisy identity channel
is the diagonal PTM of a Pauli channel. As mentioned previously, the concatenation of
two channels corresponds to the product of PTMs. Therefore, the PTM of a repeated
application of the same Pauli channel is still diagonal with exponentiated elements on the
diagonal. As discussed in section 2.3, those diagonal elements, which relate to the scaling
factors of the Bloch sphere, are called Pauli eigenvalues f(b) and link to the Pauli error
rates p(c) by a Walsh-Hadamard transform.

The diagonal PTM elements of a channel E correspond to Tr[PiE(Pi)] (cf. section 2.2.2).
However, this expression can not be measured explicitly, as a Pauli matrix is not a valid
state, and therefore, it is impossible to experimentally apply a channel to it. Instead, by
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4.2. Sequential Pauli Noise

Figure 4.6.: Repeated Pauli channel simulation - Simulation data obtained with Qiksit [73].
The schematic of the executed circuits is shown on the left side of the figure. The
expectation values of the measured Pauli operators, shown in the right half of the
figure, decreases exponentially with the number of executed repetitions of the noisy
identity. The noisy identity is implemented with two CX-gates. The noise model of
Qiskit includes depolarization, measurement errors and decay.

using Eq. (2.16), we reach

⟨Pb⟩P(ρ) = Tr

[
Pb

∑
c

p(c)PcρPc

]

= Tr

[∑
c

p(c)PcPbPcρ

]
=
∑
c

p(c) (−1)⟨c,b⟩sp︸ ︷︷ ︸
f(b)

Tr [Pbρ] .

(4.23)

If ρ is chosen to be χb′
0 , with b′ ⋆ b = {0}n, χb′

0 is an eigenstate of Pb. The equation
simplifies further to ⟨Pb⟩P(χb′

0 )
= f(b). The generalization of Eq. (4.24) for m repetitions

of a Pauli channel, denoted as P◦m(·) and state χb′
0 is

⟨Pb⟩P◦m(χb′
0 )

= Tr

[
Pb

∑
c

p(c)Pc

(
P◦(m−1)(χb′

0 )
)
Pc

]
= f(b)Tr

[
PbP◦(m−1)(χb′

0 )
]

= f(b) ⟨Pb⟩P◦(m−1)(χb′
0 )

= ... = f(b)m.

(4.24)

We can illustrate the result of Eq. (4.24) by simulating the corresponding experiment.
Fig. 4.6 shows the measurements of an experiment with two qubits that consists of
preparing the state χ{1,2}

0 = |i0⟩⟨i0|, applying m pairs of the CX-gate and measuring
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4. Characterization

Figure 4.7.: Repeated noisy identity experiment - Experimental data from ibm_perth.
We executed the same circuits as in Fig. 4.6. Different to the simulation, we observe
oscillations of the measured expectation values with an increasing number of noisy
identity repetitions.

the evolved state in the Pauli basis {1, 2}. From the readout, we can then restore the
expectation value of the Pauli operators P{0,2}, P{1,0}, and P{1,2}, which correspond to
the Pauli eigenvalues of the m-times repeated channel. The simulation is executed on
Qiskit [73]. It includes measurement errors, and gate errors are modeled as a combination
of depolarizing errors and decay. As the depolarizing channel is a Pauli channel, we
observe the expected exponential decay with the number of noisy identities. The fact
that the curves do not exactly start at 1 for 0 repetitions relates to SPAM errors. The
expectation values converge to a value slightly offset from 0 due to present decay. From
this data, we can find the corresponding Pauli eigenvalues by fitting an exponential curve
g(x) = a · bx + c, where the base b of the exponential term equals the eigenvalue. The
presence of SPAM only influences the scaling factor a and not the estimation of the
eigenvalue b [5]. Applying a Walsh-Hadamard transform on the estimated values reveals
the Pauli error rates. To estimate all 16 Pauli eigenvalues of a two-qubit system, we must
prepare and measure states in 9 different bases.

4.2.2. Experimental Results

Repeating the experiment in Fig. 4.6 on a superconducting quantum processor verifies
whether the sequential Pauli noise model explains the noise induced by the noisy identity.
We run this circuit with 1000 shots on ibm_perth, one of the IBM Quantum Falcon
Processorsi [74]. The resulting curves are displayed in Fig. 4.7.

While the expected exponential decay of the expectation values is visible, there is also
an oscillatory behavior. The oscillations have different frequencies for different expectation

iWe acknowledge the use of IBM Quantum services for this work. The views expressed are those of the
authors, and do not reflect the official policy or position of IBM or the IBM Quantum team.
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4.3. Coherent Noise

values. A purely diagonal PTM of the noise channel, as assumed in the sequential Pauli
noise model, can not explain this behavior because, under repeated application of a
diagonal PTM, the magnitudes of the expectation values are strictly decreasing and will
never change sign. Therefore, the sequential Pauli noise model clearly fails to capture the
main noise contributions for this process. From this finding, a usual way forward is to
enforce the Pauli noise assumption by altering the noise with the application of twirling [5,
32, 75] (cf. section 2.2.3). This approach allows for the characterization of the modified
channel according to the presented Pauli estimation protocol. The characterization
information can then be used to mitigate the altered noise to restore the ideal behavior.
However, the information that allows us to relate the characterized noise to physical
sources is lost by twirling the noise. Consequently, the twirling approach is not heplfull if
one wants to repeal the noise by hardware changes or device calibration. Furthermore,
twirling creates some circuit overhead, and precise knowledge of the noise might facilitate
more efficient gate-level noise corrections.

Instead of twirling, we propose a physically motivated model expansion that potentially
allows explaining the observed oscillations. The experimental behavior reminds us of Rabi
cycles [7] - a well-known oscillating process at the core of quantum computing. As Rabi
cycles originate from Hamiltonian evolution, modeling the observed noise oscillations as
a unitary evolution seems reasonable. This approach leads to the coherent noise model
introduced in section 3.2.

4.3. Coherent Noise

The extension of the sequential Pauli model to the coherent noise model of Eq. (3.5) is
motivated by the experimental results of the previous section. This section outlines a
protocol to estimate the introduced noise modeling unitary Uθ in terms of single- and
two-qubit rotation errors.

In Ref. [76], the systematic error between the intended rotation angle and the real
rotation angle of a single-qubit x-rotation-gate is characterized (Rx(θ)). They characterize
this coherent error by applying the Rx-gate for various rotation angles to the ground
state and subsequently measuring the probability of the qubit being in the excited state.
They introduce an ansatz that includes the effect of the systematic error and find the
systematic error by least-square fitting the measured data to the ansatz.

In this section, we follow a similar procedure. Our ansatz is the coherent noise model of
Eq. (3.5). We measure circuits with various repetition lengths of the characterized process
and apply a least-square fit to find the parameters of the model that resemble the real
process best. As discussed in section 3.2, we consider the unitary that models the coherent
error Uθ to be close to the identity. Furthermore, we only consider single-qubit coherent
errors and correlated errors between neighboring qubits in the connectivity tree of the sys-
tem. After the presentation of the characterization protocol, we demonstrate the method
by characterizing the coherent errors introduced by a gate layer on a superconducting
quantum processor.
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4.3.1. Protocol

The protocol to estimate the rotation angles is first explained for an ideal process UI

corresponding to the identity. In the second step, we will generalize the result to other
unitaries. The central concept of the characterization protocol is to fit the 15 rotation
angles, corresponding to all single- and two-qubit rotations of each two-qubit subsystem,
to the oscillations in measurements similar to those in Fig. 4.7.

According to the Pauli formalism introduced in chapter 2, the action of a noisy channel
modeled by the coherent noise model ENc(ρ) is represented in terms of the vectorized
density matrix of ρ and the PTM of the channel as |ENc(ρ)) = TENc

|ρ) = TPTUθ
TUI

|ρ).
As stated, we first discuss the case of TUI

being the identity. Having access to an
experiment, both |EN (ρ)) and |ρ) can be estimated.

We reformulate the estimation problem of TUθ
as a minimization problem for T̂Uθ

of
the term ∥|ENc(ρ))− TP T̂Uθ

|ρ)∥2.

Statement. With the assumption TP and TUθ
being close to the identity. The minimiza-

tion of ∥|ENc(ρ))− TP T̂Uθ
|ρ)∥2 for T̂Uθ

, corresponds to the minimization of ∥|ENC
(ρ))−

T̂Uθ
|ρ)∥2 for T̂Uθ

.

Proof. A noisy identity process described by the coherent noise model, |ENc(ρ)) equals
TPTUθ

|ρ). We show that θ′ = θ minimizes the expression ∥TPTUθ
|ρ)− TUθ′ |ρ)∥ indepen-

dent of the choice of ρ.

min
θ′

∥|EN (ρ))− TUθ′ |ρ)∥
2

=min
θ′

∥TPTUθ
|ρ)− TUθ′ |ρ)∥

2

=min
θ′

(
|ρ)⊤

(
T⊤
Uθ
T⊤
P − T⊤

Uθ′

) (
TPTUθ

− TUθ′

)
|ρ)
)

=min
θ′

(
|ρ)⊤

(
T⊤
Uθ
TP

2TUθ
− T⊤

Uθ′
TPTUθ

− T⊤
Uθ
TPTUθ′ + T⊤

Uθ′
TUθ′

)
|ρ)
)

(4.25)

Where we used that TP is diagonal. Given that the noise channel is close to the identity,
we take the approximation that the diagonal matrix TP and the matrix TUθ

commute.
Furthermore, because of the rotation matrix structure, T⊤

Uθ
TUθ

= I is valid.

=min
θ′

(
|ρ)⊤

(
TP

2 − TP

(
T⊤
Uθ
TUθ′ + TUθ′

⊤TUθ

)
+ I
)
|ρ)
)

=min
θ′

(
|ρ)⊤

(
I+ T 2

P − TP

(
T⊤
Uθ
TUθ′ +

(
T⊤
Uθ
TUθ′

)⊤))
|ρ)
) (4.26)

The off-diagonal part of T⊤
Uθ
TUθ′ is anti-symmetric. Consequently, T⊤

Uθ
TUθ′ +

(
T⊤
Uθ
TUθ′

)⊤
is diagonal and ≤ 2 I. Thereby, all involved matrices are diagonal. From 1 + T 2

P ≥ 2 TP

follows that the examined expression is minimal if T⊤
Uθ
TUθ′ +

(
T⊤
Uθ
TUθ′

)⊤
= 2 I. This

corresponds to TUθ
= TUθ′ , which finally implies θ = θ′.
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4.3. Coherent Noise

This statement implies that we can optimize for the coherent noise term without
considering the present Pauli noise, thus creating a relatively simple way to estimate TUθ

.
First, estimate experimentally |EN (ρ)) and |ρ) for each two-qubit subsystem. Secondly,
create a parameterized Pauli transfer matrix T̂Uθ′ , that consists of the 15 parameters of
the single- and two-qubit rotation errors. Lastly, for each two-qubit subsystem, conduct a
least square error optimization for ∥|EN (ρ))− T̂Uθ

|ρ)∥2.
While the PTM of the unitary evolution Uθ = exp (

∑
−iθkPk) can be calculated

explicitly, simplifying the PTM to a structure that allows generating T̂Uθ
quickly for any

θ speeds up the optimization. Assuming small coherent errors, we use the approximation
Uθ ≈

∏
exp (−iθkPk). This corresponds to the approximation that the single- and

two-qubit rotations commute. The PTM TUθk
that corresponds to each of the terms

exp (−iθkPk) is constructed according to[
TUθk

]
a,b

=
1

2n
Tr
[
PaUθkPbU

†
θk

]
=

1

2n
Tr [Pa (cos θkI− i sin θkPk)Pb (cos θkI+ i sin θkPk)]

=


0, ⟨b, k⟩sp = 0 ∧ b ̸= a

1, ⟨b, k⟩sp = 0 ∧ b = a
i
2n sin 2θk Tr [PaPbPk] , ⟨b, k⟩sp = 1 ∧ b ̸= a

cos 2θk, ⟨b, k⟩sp = 1 ∧ b = a.

(4.27)

Finally, using again the assumption that the rotations TUθk
are close to the identity,

TUθ
≈
∏

k TUθk
is approximated by TUθ

≈ I+
∑

k

(
TUθk

− I
)
.

As we consider two-qubit subsystems, TUθk
is parameterized with 15 parameters

corresponding to the 6 single-qubit rotations related to the Pauli operators Pk ∈
{P{1,0}, P{2,0}, P{3,0}, P{0,1}, P{0,2}, P{0,3}} and the 9 two-qubit rotations Pk ∈ {P{i,j} |
i, j ∈ {1, 2, 3}}. The vectorized density matrices |EN (ρ)) and |ρ) also have 15 non-trivial
entries, corresponding to the expectation values of the above-stated single- and two-qubit
Pauli operators. Therefore, Pauli measurements in all bases of a general state ρ and the
state EN (ρ) suffice to predict T̂Uθk

. However, in practice, the prediction accuracy increased
by adding redundancy through the preparation of many different states. Although not
yet analyzed, the improved results from adding redundancy could originate from a higher
SPAM error resistivity. In the implemented version of the protocol used for simulations
and real experiments, we prepare states in each of the 9 Pauli bases and apply multiple
repetitions of the noisy identity. We repeat the channel application as this allows us
to use some of the estimated states for two optimizations, which lowers the complexity.
For example, by estimating |ρ), |EN (ρ)), and |EN (EN (ρ))) we can apply the optimization
between the states ρ and EN (ρ), and between EN (ρ) and EN (EN (ρ)). An example of all
the data collected to estimate the coherent noise and the corresponding circuit schematic
is shown in Fig. B.3.
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Furthermore, when looking at each qubit subsystem separately, one has to address
the correlated two-qubit noise between a qubit in the regarded subsystem and a qubit
outside the subsystem. We avoid the influence of this correlated noise by preparing the
subsystem-surrounding-qubits in multiple different bases for each preparation basis of
the subsystem. This preparation prevents any correlation between the preparation of
the subsystem with the preparation of the neighboring qubits and thus randomizes the
effect of the noise introduced from outside the regarded subsystem. Therefore, such a
preparation scheme mitigates the bias of the outside noise in the optimization process. .
If the ideal process does not correspond to the identity, an additional step after estimating
|EN (ρ)) and |ρ) is necessary to characterize the coherent errors. In order to create the
same optimization problem as for the identity case, we classically apply in post-processing
the channel UI on the estimated state |ρ). However, in order to do this for general UI , it is
no longer possible to treat each subsystem separately, and instead, full state tomography
is necessary. To preserve scalability, we restrict the characterization to unitaries that
are separable into multiple single- and two-qubit unitaries UI = U1 ⊗ U2 ⊗ ...⊗ Ul. This
requirement is fulfilled, for example, in the characterization of gate layers consisting of
single- and two-qubit gates. For estimating the coherent two-qubit errors of qubits a
and b, |ρ) must be estimated for the reduced subsystem consisting of the qubits a, b,
and the qubits entangled by UI with either of the two qubits. Therefore, maximally 4
qubit subsystems must be considered, which corresponds to the case that both qubits
a and b are involved in a different two-qubit process. After estimating the vectorized
partial density matrix |ρ), the partial unitary is applied. The vectorized density matrix of
the enlarged subspace is then reduced to the subsystem that only involves qubits a and
b. Now the same steps are applied as in the case where UI corresponds to the identity.
Note that, like the restriction to correlated errors of 2 qubits, the restriction to one- and
two-qubit unitaries is arbitrary and different choices are possible.

4.3.2. Experimental Results

We characterize the coherent noise induced by a gate-layer executed on a real hardware
platform using the presented protocol. The experiment is conducted on the IBM Quantum
Falcon Processor ibm_lagos [74]. The processor specifications from the experiment time
are displayed in table 4.2, and the connectivity tree is shown in Fig. 4.8. We aim to
characterize the layer shown in the top right panel of Fig. 4.8, consisting of 2 CX-gates,
one SX-gate, one X-gate, and one Hadamard-gate (H). Note that the Hadamard-gate is
not a native gate of the used processor and is transpiled to multiple native single-qubit
gates.

In the characterization procedure, we prepared the 7-qubits in a total of 216 different
initial states. Each qubit is prepared in one of the states |+⟩ , |−⟩ , |i⟩ , |−i⟩ , |0⟩, or |1⟩.
The large amount of different combinations, as well as the expansion of the usual basis
|+⟩ , |i⟩ , |0⟩ to the basis that includes preparations with an additional X-gate at the start,
aims to lower the influence of noise from neighboring qubits in the two-qubit subsystem
optimization. For each state, we apply 0 to 3 repetitions of the layer. The correction of
the effect of the unitary in the estimation process necessitates estimating the state of
3-qubit subsystems. This leads to a total of 27 Pauli measurements per circuit. Overall we
run 216 · 4 · 27 = 23′328 different circuits with 128 shots each. The choice of the number
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4.3. Coherent Noise

Qubits Q0 Q1 Q2 Q3 Q4 Q5 Q6
readout-error [10−2] 1.3 0.7 0.5 1.9 2.1 2.5 1.1
T1 [µs] 68 103 186 167 103 116 108
T2 [µs] 53 87 101 41 33 89 141
sx-error [10−4] 2.8 2.3 1.9 1.9 2.7 1.9 3.0
x-error [10−4] 2.8 2.3 1.9 1.9 2.7 1.9 3.0

CX-gate 0-1 5-6
CX-error [10−3] 6.8 7.2
gate time [ns] 305 291

Table 4.2.: Specification of the IBM Quantum Falcon Processor ibm_lagos at the time of
the characterization. The numbering of the qubits refers to the numbers in Fig. 4.8.

of preparation bases and repetitions is based on hardware simulations of the platform
executed with Qiskit [73]. It took approximately 30 minutes of system time to run all
the circuits. The post-processing time of the optimization is irrelevant compared to the
experiment time. We successfully tested the characterization protocol in simulations with
processes described by the coherent noise model (not shown here).

The result of the coherent characterization is displayed in Fig. 4.8. The plot shows
the absolute value of the angles of the characterized single- and two-qubit coherent
rotation errors. The most significant two-qubit correlated coherent errors occur between
qubits 1 and 2 and between qubits 5 and 6. This is expected, as those are the pairs of
qubits on which the CX-gate is acting. The biggest two-qubit coherent error induced
by both CX gates is associated with the Pauli P{2,3} = σy ⊗ σz. Overall predominantly
single-qubit coherent errors are present. There seems to be no strong bias towards a
specific single-qubit rotation error.

We conducted the exact characterization of Fig. 4.8 again after 19 days. The second
time we run the characterization twice, waiting 6 hours between the two executions.
The shifts in the characterization results between those three experiments are shown in
Fig. A.1. First, we observe that the leading coherent errors in the system did not change
over the 19 days. In the total period, the most significant single-qubit coherent errors
have changed by maximally 10% (corresponding to about 0.03 radians). The two-qubit
coherent rotation errors have changed by maximally 0.018 radians. As expected, the
changes observed for the two experiments within 6 hours are significantly smaller than
the differences over the complete time span. The results suggest that the platform is
affected by systematic coherent errors which are not influenced by the daily re-calibration
of the system.

The fact that the protocol manages in simulation to correctly characterize the noise of
a known coherent noise model does not imply the correctness of the presented characteri-
zation, as the noise of the real process might not be expressible in the assumed coherent
noise model. The next chapter aims to verify the assumed noise model by showing that
the characterization results can be used to mitigate errors in a real system.
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4. Characterization

Figure 4.8.: Coherent characterization of a gate-layer - Coherent error characterization
of the noise induced by the layer shown in the top right panel on the IBM Quantum
Processor ibm_lagos. In the left plot, the characterized coherent errors overlay the
connectivity tree. The big circles picture the single-qubit errors and the 9 small circles
between two qubits display the two-qubit coherent errors.
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Chapter 5

Mitigation

The fact that the protocols of chapter 4 demonstrate how to determine the corresponding
model parameters of a process that behaves according to that model, does not imply that
the characterized physical noise processes are truly represented by these models. In order
to prove that the proposed characterization procedure may serve as a tool in the NISQ era
for gate calibration, hardware development, or error mitigation, we must show that it can
resemble aspects of real processes executed on existing hardware platforms. We aim to
undertake this validation for the coherent-noise model by attempting to cancel the noise
of an experimental process with a mitigation scheme that is heavily dependent on the
characterized model parameters. This chapter introduces mitigation techniques related
to Pauli noise, coherent noise, and readout errors. Those schemes are then applied in a
two-step experiment for the coherent noise model. We first characterize a noisy process
and then try to reclaim the noiseless measurement statistic by mitigating the process
based on the extracted parameters.

5.1. Mitigation Schemes

At some point, quantum error correction will hopefully enable quantum fault tolerance.
However, due to the gate overhead of quantum error correction schemes and the require-
ment of adaptive control, error correction is hardly applicable for quantum circuits on
hardware platforms in the NISQ era [77]. In this phase of quantum computing, quantum
error mitigation schemes enable simulations of simple quantum systems on noisy hardware
without error correction [78]. While error correction aims to restore the noise-free output
states in a noisy circuit, quantum error mitigation generally settles on finding bias-free
measurement statistic [37]. The main differences between error mitigation protocols
and error correction schemes are that error mitigation does not redundantly encode the
information of a single qubit over many additional qubits and does not use adaptive
operations that depend on syndrome measurements [77]. Quantum error mitigation
protocols often execute multiple slightly different versions of a circuit, followed by classical
post-processing that combines those results into a noise-free estimation of some observable.
A prominent example that nicely illustrates the main idea of quantum error mitigation is
quantum error extrapolation [37]. The idea is to estimate the expectation value of some
observables for multiple instances of a circuit, where the circuits only differ in the amount
of noise they contain. The amount of noise in the circuit can, for example, be changed
by adding additional gates to the circuit. The expectation value for the circuit without
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noise is then extrapolated by fitting a curve through the expectation values at different
amounts of noise. Since the protocol of this example depends very little on the actual
noise model, it would not be feasible to validate our characterization results. Instead,
we will discuss probabilistic error cancellation for mitigating Pauli errors and introduce
a correction scheme for coherent errors. Lastly, we examine a readout error mitigation
scheme used in hardware experiments to limit the influence of measurement errors on our
characterization protocols.

5.1.1. Pauli Error Mitigation

When thinking about the contracting action of the Pauli channel on the Bloch sphere,
at first glance, it seems that one can undo the action of the Pauli channel by simply
applying a process that rescales the Bloch sphere to its initial size. However, such a
process does not physically exist because it would require restoring lost information. For
example, after applying the depolarizing channel to the states |0⟩ and |1⟩, the two states
are no longer entirely distinguishable by a single measurement. As an additional physical
channel can not increase the distinguishability of two states, it can not cancel the effect
of the depolarizing channel. An alternative, chosen in this thesis, is to proceed with
error mitigation. More specifically, we apply probabilistic error cancellation (PEC) [6] to
mitigate the effect of the Pauli noise, closely following the approach of Berg et al. [32].
The central idea of PEC is to express the nonphysical inverse of some noise channel by
a linear combination of physical channels. As each channel of the linear combination
is physical, each can be applied to the noisy gate in a different circuit instance. The
estimation results for some observable of all those circuits are then combined according to
the linear combination weights. This procedure provides an estimation for the noise-free
expectation value of the observable. In the following, we discuss the outlined procedure
in the example of mitigating a Pauli noise channel.

The PTM of a Pauli channel TP is diagonal. As discussed in section 2.3, the Pauli
eigenvalues f(b) on the diagonal of TP are linked to the Pauli error rates p(c) by a Walsh-
Hadamard transform. The inverse of TP corresponds to T inv

P = diag
(

1
f(b)

)
. By applying

the Walsh-Hadamard transform on the inverted Pauli eigenvalues, we find the nonphysical
Pauli error rates qinv(c) that would correspond to the noise canceling process [32]. This
transformation reads as

qinv(c) =
1

2n

∑
b

(−1)⟨c,b⟩sp
1

f(b)
. (5.1)
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In the example of a dephasing channel Z(ρ) = 0.8 ρ+ 0.2 diag(ρ), this would look like:

Z(ρ) = 0.9 IρI+ 0.1 σzρσz ⇒ TZ =


1 0 0 0
0 0.8 0 0
0 0 0.8 0
0 0 0 1


⇓

Z inv(ρ) = 1.125 IρI− 0.125 σzρσz ⇐ T inv
Z =


1 0 0 0
0 1.25 0 0
0 0 1.25 0
0 0 0 1


(5.2)

As visible in this example of the dephasing channel, the weights of the linear combination
do not resemble a probability distribution and contain negative values. However, by
introducing the normalization factor γ =

∑
c

∣∣qinv(c)
∣∣, we can rescale qinv(c) to pinv(c) =

1
γ

∣∣qinv(c)
∣∣, which then represents a probability distribution. This allows us to rewrite the

nonphysical Pauli channel in terms of pinv(c) as

P inv(ρ) =
∑
c

qinv(c)PcρPc = γ
∑
c

sgn
(
qinv(c)

)
pinv(c)PcρPc. (5.3)

The PEC error scheme applied by Berg et al. [32] contains the following steps in order
to estimate the expectation value of some operator Ô of a state UIρU

†
I when one has

only access to the noisy version of the state P
(
UIρU

†
I

)
. First, draw a Pauli operator Pc

according to the probability distribution pinv(c) and store the related sign sgn
(
qinv(c)

)
.

Add to the estimation circuit a gate sequence that implements Pc next to the noise
channel. Estimate the expectation value of Ô by measuring this altered circuit, obtaining
an estimate for

Tr
[
ÔPc

(
P
(
UIρU

†
I

))
Pc

]
. (5.4)

To rescale this expectation value according to Eq. (5.3), multiply it by the corresponding
sign and scale it with the normalization factor γ, leading to

γ sgn
(
qinv(c)

)
Tr
[
ÔPc

(
P
(
UIρU

†
I

))
Pc

]
. (5.5)

These steps are repeated for multiple samples of Pc. Finally, the average over all those
rescaled expectation values estimates the unbiased expectation value of the operator.
Fig. 5.1 shows the corresponding circuits for the dephasing noise channel example of
Eq. (5.2).

The rescaling of the expectation values increases the variance of the expectation value
by a factor of O

(
γ2
)

compared to the noiseless case [32]. The protocol, therefore, creates
a circuit overhead of factor γ2. In order to mitigate multiple layers, for each layer, the
mitigating Pauli is sampled according to the layer-specific probability distribution. The
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Figure 5.1.: PEC dephasing example - Schematic of the PEC procedure to estimate the
expectation value of the operator σx for a state ρ evolved by the ideal unitary UI .
Experimentally we only have access to the noisy channel N (UIρU

†
I ). For the example

of this figure, the noise channel N corresponds to the channel Z of Eq. (5.2). As
showed in Eq. (5.2), the nonphysical inverse process consists of a mixture of two Pauli
operators. This figure shows the two corresponding mitigation circuits with their
probabilities pinv. By estimating the expectation value of σx for both circuits one can
estimate the bias-free expectation value by scaling the obtained results with the sign
of the circuit and the normalization factor γ.

weight of each circuit instance corresponds to the product of all layer-specific normalization
factors γ and signs. This causes growth of the circuit overhead with an increasing circuit
depth.

The PEC implementation in this thesis slightly differs from the described protocol.
Instead of sampling Pc, we select all Pc corresponding to the r most significant pinv(c)
and denote this set of c as c. For all Pc, we then run the mitigated circuit and restore
the expectation value of the operator. We must rescale the expectation values differ-
ently because we have not sampled probabilistically. We weight each expectation value
by its weight in the linear combination qinv(c) and scale by the normalization factor
γ =

∑
c q

inv(c). The noise channel is close to the identity channel for assumed error rates
in the order of a few percent or lower. Consequently, pinv({0}n) is at least about an order
of magnitude bigger than all other pinv(c). Therefore, when mitigating multiple layers in
our truncation approach, we will only add a mitigating Pauli operator at one layer per
circuit instance. The parameters of each layer are then multiplied analogous to the above
protocol. An advantage of this truncation method is that it prevents the same circuit
from being created and transpiled multiple times. We have not studied the implication
of the truncation on the circuit overhead or the variance scaling. We expect slightly
improved behavior due to reduced sampling noise since, in our method, we explicitly
multiply the expectation values by their probability pinv(c) instead of sampling over the
distribution pinv(c).
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5.1. Mitigation Schemes

5.1.2. Coherent Error Mitigation

Unlike the Kraus representation of an incoherent noise channel, the Kraus representation
of a coherent noise channel only consists of a single unitary operator. Rather than by
a probabilistic mixture of different unitary evolutions, coherent noise is described by
unitary dynamics. Therefore, the inverse of a unitary channel is also a valid and physically
implementable channel. In the framework of the coherent noise model introduced in this
thesis, this implies that the effect of the noise can be canceled by introducing single- and
two-qubit rotations. Where the latter act opposite to the characterized noise rotations.

The ideal implementation of such a noise-correcting circuit element heavily depends
on the native gate-set and the quantum hardware platform’s error rates. It is desired to
keep the circuit depth of the correcting scheme as low as possible to limit the additional
noise introduced by the correcting circuit element. Implementing single-qubit rotations
is straightforward on most hardware platforms and often only involves one or a few
single-qubit gates. On the other hand, a two-qubit rotation requires at least one two-qubit
entangling gate, which usually is of lower fidelity than the single-qubit gates. In this
section, we come up with a correcting circuit element that allows correcting for all 15
single and two-qubit rotations. The element is based on the CX-gate, the native two-qubit
gate on the used IBM Quantum platforms. We still operate under the assumption that
the rotation angles are small and the rotations commute with each other.

The designed circuit element is parameterized by the 6 single- and 9 two-qubit rotation
errors obtained from the characterization. We aim for a design where each of the 15
parameters is related to a different single-qubit rotation. The single-qubit rotations are
interleaved in a structure of CX-gates and fixed rotations, in order to create two-qubit
rotations. The sole structure of the fixed rotations and the CX-gates should correspond
to the identity such that no correction is applied if no error has been detected.

A two-qubit rotation is created by enclosing a single-qubit rotation with two CX-gates,
which is the entangling source in the circuit. The CX-gate commutes with the single-qubit
rotations Rzi and Rix, as visible from its unitary representation

UCX = e−iπ
4
(I−σz)1 ⊗ (I−σx)2 . (5.6)

Therefore, out of the 6 possibilities of interleaving a single-qubit rotation between two
CX-gates, only 4 lead to a two-qubit rotation. Those 4 created two-qubit rotations
can then be altered to different two-qubit rotations by adding additional single-qubit
rotations. While different rotations can be used to achieve this, when using IBM Quantum
platforms [74], it is advantageous to use the Z-rotation gate as this corresponds to a
virtual gate that does not introduce any errors [76].

From the circuit identities of Fig. B.1, we finally construct the mitigation gate shown
in Fig. 5.2. While this is not a unique solution to the posed problem, we have linked
each rotation error to one single-qubit rotation in the correcting gate. This allows us to
connect this circuit element with the characterization results easily. Note that the circuit
schematic in figure 5.2 still has to be transpiled to the native gate-set of the computing
hardware, which likely increases the number of gates. For the circuit diagrams in the
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5. Mitigation

Figure 5.2.: Coherent error mitigation element - Circuit element to mitigate single- and
two-qubit coherent errors. The orange circuit elements are fixed elements. Each blue
single-qubit rotation corresponds to a different two-qubit rotation (indexed by the gray
superscript) after it is propagated through the fixed structure. The red single-qubit
rotations correct for single-qubit rotation errors. The angle of each single-qubit rotation
depends on the characterization result.

Figure 5.3.: Mitigation element symbol - Circuit symbol used to represent
the circuit element of Fig. 5.2, where θ contains the parameters for the
rotation. Neglecting the first CX-gate of the element, leads to a mitigated
version of the CX-gate.

upcoming sections, we will use the symbol introduced in Fig. 5.3.

5.1.3. Readout Mitigation

The used IBM Quantum platforms report readout errors of the order of 1%, caused by
relaxation, imperfect coupling of the readout resonator, and signal amplification [76].
To counter the influence of these errors, we apply a post-processing readout mitigation
scheme in all of our experiments. The typical readout noise of superconducting platforms
can be described well with a purely classical noise model [78]. According to

pnoisy = A pideal, (5.7)

the readout model links the readout probabilities of the noisy measurement pnoisy to the
distribution of an ideal measurement pideal with the matrix A [79]. Each vector contains
the probabilities for all 2n possible readout results of an n-qubit system. Consequently, A
is a matrix of size 2n × 2n.

The readout noise of the used IBMq platform is mostly uncorrelated between qubits [79].
Therefore, we can express the full-system matrix A as the tensor product of the indi-
vidual error matrices A = A(n−1) ⊗ ... ⊗ A(1) ⊗ A(0). IBM Quantum lists the readout
characterization terms P (k)(i|j) for each qubit. They correspond to the probability that
the measurement of the computational basis state |j⟩ leads to the readout value i. The
matrix A(k) can then be expressed as

A(k) =

(
P (k)(0|0) P (k)(0|1)
P (k)(1|0) P (k)(1|1)

)
. (5.8)
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5.2. Experimental Results

In the presented protocols, we assume a limited correlation length of the noise. This
approach leads to post-processing procedures that never simultaneously analyze the
full-system readout but only the readout of subsystems of size r. Therefore, Eq. (5.7) can
be solved for each subsystem individually. It is tractable for subsystems of a few qubits
to invert the matrix A, and we can find the ideal readout distribution pideal by applying
A−1 to the measure noisy distribution pnoisy.

For the same circuit, a noisy measurement in combination with the readout mitigation
leads to a higher measurement uncertainty than an ideal measurement [79]. Therefore,
to limit the error in estimating an observable, a circuit with a noisy readout must be
sampled more than a circuit with an ideal readout.

5.2. Experimental Results

This section intends to verify the utility of the proposed characterization method for a
process running on a near-term device. We examine whether the model, output by the
coherent noise characterization protocol, facilitates the mitigation of the coherent noise
introduced by a process run on an IBM Quantum device. After mitigating the coherent
errors, we proceed to characterize the Pauli errors and apply PEC to mitigate them. This
procedure not only puts our characterization method to the test but also primarily the
noise model itself. We will only be able to significantly suppress the effect of the noise on
the measurement statistic if the coherent noise model of Eq. (3.5) is expressible enough
to capture the dominant noise contributions of the probed process.

The introduced circuit element to mitigate coherent noise consists of 4 CX-gates and
multiple single-qubit gates. Due to this, for NISQ devices considerable circuit depth,
the element substantially introduces noise itself. Therefore, we need to incorporate the
mitigation element with mitigation angles 0 into the characterization circuit, to advance
to mitigate the coherent noise without adding a new noise source to the circuit.

To illustrate the effect of the different mitigation steps, we characterize and mitigate the
sole coherent mitigation circuit element, where the angles of all parameterized rotations
are set to 0. Ideally, this process corresponds to the identity. The procedure contains
preparing a state in a Pauli basis, applying multiple repetitions of the process, and
estimating all two-qubit Pauli expectation values. For the ideal process, we would
measure an expectation value of 1 for all Pauli operators Pb of which the prepared state
χa
0 is an eigenstate (a ⋆ b = {0}2) and an expectation value of 0 for all Pauli operator Pc

of which the prepared state χa
0 is not an eigenstate (a ⋆ b ̸= {0}2). Those expectation

values are independent of the number of repetitions of the identity. Fig. 5.4 shows this
ideal behavior for the prepared state |+i⟩.

5.2.1. Hardware Platform

The characterization and mitigation are run on ibm_lagos, one of the IBM Quantum
Falcon Processors [74]. We choose to characterize the coherent error mitigation element
on qubits 1 and 2 as they report a low readout error. The specifications of the involved
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5. Mitigation

Figure 5.4.: Ideal Pauli expectation values - A plot of all 16 two-qubit Pauli expectation
values of the state |+i⟩ after it was evolved m times by the identity. By the nature of the
identity, the expectation values are independent of the number of applied repetitions.
The measured expectation value is 1 if |+i⟩ is an eigenstate of the respective Pauli
(shown in blue) and 0 otherwise (shown in orange).

qubits from the day of the experiment (provided by IBM) and the connectivity tree of the
processor are shown in Fig. 5.5. The native gate-set of ibm_lagos contains the two-qubit
CX-gate and the single-qubit gates X, SX, and RZ. The RZ-gate is only executed
virtually and does not introduce any noise [76]. Transpiling the coherent noise mitigating
circuit element to this native gate-set leads to the circuit of Fig. B.2. We apply readout
error mitigation based on the reported readout errors in all the experiments according to
the protocol of section 5.1.3. As the application of 9 instances of the noisy circuit element
corresponds to 36 CX-gates and 126 single-qubit SX gates, the readout statistic of such
a circuit on a NISQ device with no error correction or mitigation is highly influenced
by errors. By simply multiplying up the reported error fidelities for these gates and not
considering SPAM errors, the total error rate is estimated to be about 38%.

Qubits Q1 Q2
T1 124.49 µs 122.45 µs
T2 121.82 µs 152.94 µs
sx-error 1.89 10−4 1.62 10−4

x-error 1.89 10−4 1.62 10−4

readout-error p(1|0) 6.60 10−3 2.80 10−3

readout-error p(0|1) 1.02 10−2 6.40 10−3

CX-gate
CX-error 6.40 10−3

gate time 327.11 ns

Figure 5.5.: ibm_lagos - Connectivity tree and specifications of the ibm_lagos Falcon
Processor reported by IBM Quantum at the day of the experiment.
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Figure 5.6.: Coherent noise characterization experiment - Circuit diagram used for char-
acterization of the coherent noise mitigating circuit element. The right plot shows
the Pauli expectation values for different numbers of repetitions of the element and
the prepared state |++⟩. Expectation values that in the ideal case are 0 are plotted
in orange, the blue curves correspond to the expectation values of the operators IX,
XI, and XX, which are 1 in the noise-free-case, and the purple curve represents the
identity.

5.2.2. Coherent Noise Characterization and Mitigation

We execute the noise characterization protocol of section 4.3 on the element of Fig. B.2.
A schematic of the corresponding circuits is shown in the left half of Fig. 5.6. In total,
810 different circuits are executed, corresponding to all combinations of the 9 possible
preparation bases, 0 to 9 repetitions of the noisy process, and the 9 Pauli measurements
for two qubits. Per circuit, we measure 512 shots, leading to a total execution time in
the system of approximately 2.5 minutes. We obtain for each prepared state a chart
similar to the right chart in Fig. 5.6. Fig. B.3 shows the complete set of these plots for
the unmitigated circuit.

Applying the post-processing procedure to estimate the single- and two-qubit rotations
that resemble the coherent noise unitary leads to the following values:

single-qubit rotations
θXI θY I θZI θIX θIY θIZ
0.09 0.01 −0.15 −0.03 0.01 −0.03

two-qubit rotations
θXX θY X θZX θXY θY Y θZY θXZ θY Z θZZ

0.07 −0.00 0.03 −0.09 −0.03 −0.01 −0.02 −0.08 −0.01

The characterization shows expected symmetries in the characterized angles that arise
from the propagation of the coherent error introduced by each of the 4 CX-gates to
the end of the circuit element. For example, when propagated through a CX-gate, an
x-rotation error on qubit 1 becomes a correlated two-qubit xx-rotation error by the same
angle and vice versa. Therefore, assuming the CX-gate is the dominating noise source,
θXI is expected to be similar to θXX . Other such pairs are θY I ↔ θY X , θIY ↔ θZY ,
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5. Mitigation

Figure 5.7.: Coherent noise mitigation result - Same plot as Fig. 5.6 for the mitigated
circuit. In the right plot, the traces of the unmitigated case are plotted in light gray.

θIZ ↔ θZZ , θXY ↔ θY Z and θY Y ↔ θXZ .
To further improve the characterization, we rerun the characterization scheme, including

the mitigation of the circuit element with the angles of the first characterization run. The
number of shots for each of the 810 circuits is doubled to 1024. This iterative approach is
expected to improve the characterization because it compensates for violating the assumed
commutation of the single- and two-qubit rotation errors. We conduct a third iteration
with 2048 shots based on the angles obtained from the second characterization. Table B.1
shows the rotation angles of all iterations. The obtained angles between the first and
the last iteration do not change drastically. This observation supports the validity of the
characterization results in section 4.3, where we only run one iteration of characterization.

Fig. 5.7 shows the coherent error mitigated Pauli measurement statistic for the prepared
state |++⟩, where the circuit is mitigated by the angles obtained in the 3rd iteration
of the characterization. Comparing Fig. 5.7 with Fig. 5.6, the effect of the coherent
mitigation is clearly visible. The mitigation largely suppresses the diverging behavior of
the expectation values that ideally are of value 0, although not for all preparation bases
equally well, as visible in Fig. B.4. The expectation values of the Pauli operators of which
the prepared state is an eigenstate of are raised in the mitigated case compared to the
unmitigated estimation. However, the coherent noise mitigation does not retrieve their
ideal-case expectation value of 1, as according to our model, the statistic is still affected
by Pauli noise. Note that the trace corresponding to the expectation value of the identity
does not correspond to a physical measurement and consequently appears shot-noise-free
in the plots.

Beyond the described qualitative changes in the measurement statistic, we can quan-
titatively show the effect of coherent error mitigation by analyzing the fidelity of the
ideal and the real output state of the circuit. As the ideal circuit equals the identity, the
ideal output state corresponds to the ideal input state. We estimate the density matrix
of the real output state by applying classical shadow tomography to the measured data.
The standard state fidelity is used F (σ, ρ) = Tr

[√√
ρσ

√
ρ
]2. As visible in Fig. 5.8, the

fidelities corresponding to the unmitigated circuit are significantly lower than the fidelity
of the mitigated circuits. The mitigation leads to a decrease in the average infidelity by
about a factor of two.
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Figure 5.8.: Fidelity measurements - The fidelity of the ideal input state and the state
after multiple applications of the noisy identity. Red and blue curves correspond to
the evolution by the unmitigated, respectively, the coherent-error mitigated circuit
element. The thin lines represent the fidelity of each of the 9 prepared states. The
bold line is the average over all state preparation.

5.2.3. Pauli Error Characterization and PEC

After the mitigation of the coherent noise in the system, by the assumption of the
introduced model, all remaining noise can be described by a Pauli channel. The Pauli
eigenvalues are estimated from the Pauli expectation values of the mitigated circuits by
applying the protocol of section 4.2. This is achieved by fitting an exponential to the
blue curves in Fig. 5.7 and reading out the base of the exponent. By converting the Pauli
expectation to Pauli error rates, the following values are obtained:

single-qubit Pauli error rates
II XI Y I ZI IX IY IZ

0.968 0.002 0.000 0.006 0.001 0.001 0.006

two-qubit Pauli error rates
XX YX ZX XY Y Y ZY XZ Y Z ZZ
0.002 0.001 0.002 0.001 0.001 0.003 0.000 0.001 0.005

In accordance with the findings in Ref. [32] for another IBM Quantum hardware platform,
the most significant Pauli-errors correspond to Z-errors. We apply the presented truncated
version of the PEC protocol with a truncation depth of 6. This leads to a total of 2520
circuits, where 512 shots each are taken. The total time in the system was approximately
10 minutes. Due to the high complexity in the number of circuit measurements, we
restricted the measurement to the Pauli expectation values for a single prepared state
(|++⟩), shown in Fig. 5.9.

Since the data seems to contain more shot-noise, a clear statement on whether the
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5. Mitigation

Figure 5.9.: PEC results - Schematics of the circuit, including PEC and coherent error
mitigation. The plot shows the estimated Pauli expectation values. The gray traces
are the expectation values of the circuit with coherent error mitigation but no PEC.

PEC improves the measurement statistic compared to the sole coherent noise mitigation
is impossible. However, qualitatively for this preparation basis, it appears that the PEC
leads to slightly higher expectation values for the Pauli operators of which the prepared
state is an eigenstate. At the same time, PEC did not greatly change the spreading of
the expectation values of the other operators.

5.2.4. Analysis

We managed to suppress the expectation of all operators of which the prepared state
is not an eigenstate (the orange curves in figures 5.7, 5.6, and 5.9). This validates that
the coherent noise characterization protocol is feasible to execute on real hardware and
provides physically insightful information about the noisy process. Furthermore, the
suppression implies that the Pauli transfer matrix that describes the noise after the
coherent mitigation steps is predominantly diagonal. Otherwise, the initially non-zero
expectation values would lead, at least for one preparation basis, to the increase of an
initially zero expectation value. As a diagonal transfer matrix represents a Pauli channel,
the model of a sequential action of a coherent term and a Pauli channel on the ideal unitary
manages to resemble the main aspects of the real structure of the noise. This is also
supported by the fact that PEC further improves the recovery of the ideal measurement
statistic. We run the complete protocol also on ibm_jakarta and obtained similar results,
shown in Fig. B.5.
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Chapter 6

Conclusion

Motivated by the importance of physical insights into noise processes for improving
quantum computing platforms, this thesis aimed to expand existing characterization
protocols to include additional types of noise.

In the thesis’s first part, we proposed the parallel Pauli noise model as a new approach to
model the incoherent noise originating from a unitary process. By combining concepts of
shadow tomography, existing Pauli estimation protocols, and newly developed estimation
schemes, we managed to derive a characterization protocol for the model. We then
extended the protocol beyond the characterization of Pauli channels and included decay.
In a simulation, we confirmed that the protocol is feasible to execute on near-term devices.
The biggest open question regarding this model is whether it manages to resemble the
noisy behavior of processes executed on real devices. It would be interesting to compare
the model to the more common sequential Pauli noise model. However, to do this, one
must first address the susceptibility of the proposed protocol to SPAM errors.

In the thesis’s second part, we turned to more established noise reconstruction protocols.
We observed, as expected, that Pauli channels on their own can not explain the noise
of a process executed on a superconducting platform of IBM. We then expanded a
standard noise model to include coherent noise and confirmed that this model resembles
the main noise contributions of the examined process. We developed a coherent noise
characterization protocol to estimate the coherent noise introduced by a process. The
protocol characterizes the coherent noise in terms of single- and two-qubit rotations and
is thereby physically insightful. Under the assumption of limited noise correlation lengths,
the protocol is scalable. To the best of our knowledge, this is the first protocol that
characterizes correlated coherent noise of gate-layers on a NISQ device.

We created a circuit element that allows correcting the characterized coherent errors.
Together with established techniques to mitigate readout errors and Pauli noise, this
element allowed us to significantly suppress the effects of the noise on the analyzed process.
While we illustrated the utility of the characterization for a gate-level correction of the
coherent noise, one could also use the characterized over- and under-rotation as a starting
point for calibration or as guidance for hardware improvements.

As a possible model expansion, adding decay would be interesting. We have not
analyzed the resistivity of the protocol to SPAM errors. Furthermore, we believe it should
be possible to decouple the estimation process of the single- and two-qubit rotations
from one another. This methodology could also be necessary to create a SPAM-resistant
protocol. It would also be interesting to run the protocol on different quantum computing
hardware platforms. Finally, further investigation into how to characterize gate-specific
Pauli noise for more general unitaries would allow applying the presented mitigation
scheme to a broader range of processes.
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Appendix A

Characterization

Figure A.1.: Coherent noise drift - Coherent error characterization analogous to the
experiment of section 4.3.2, conducted at 3 different times. a shows the experimental
results from October 11, 2022. b shows the difference of the characterization in (a)
to the results of Fig. 4.8 from September 22, 2022. c shows the difference of the
characterization in (a) to an identical characterization conducted 6 hours earlier.
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Figure A.2.: η estimation error - Plots of the expected error in the estimation of η. For
each of the plot we fix two out of the three parameters ξ, number of measurements
and number of qubits. We then estimate the error for different values of the third
parameter. m represents the slope of the line obtained by linear regression in the
logarithmic base.

Figure A.3.: Pauli error rate estimation error - Plots of the expected estimation error in
the estimation of the Pauli error rates. The plots are created in the absence of decay.
The average estimation error is plotted against the number of circuit measurement with
fixed η in the left plot. In the right plot, η is varied while the number of measurements
is kept constant. m represents the slope of the line obtained by linear regression in
the logarithmic base.
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Appendix B

Mitigation

Figure B.1.: Qubit rotation circuit identities - Circuit identities to construct two-qubit
rotation from single-qubit rotations and the CX-gate. The gate Zπ

2
, corresponds to a

single-qubit z-rotation by π
2 . The framed identities are used in the construction of the

circuit element of Fig. 5.2.
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Figure B.2.: Transpiled circuit element - The coherent error mitigating circuit element
of Fig. 5.2, with all correction angles set to 0, transpiled to the native gate-set of
ibm_lagos. The dashed gates correspond to virtualy executedRZ-gates by the specified
angle. We manually prevent simplifications of the circuit during the transpilation by
inserting circuit barriers.

single-qubit rotations
θXI θY I θZI θIX θIY θIZ

1st 0.09 0.01 −0.15 −0.03 0.01 −0.03
2nd 0.06 −0.01 −0.13 −0.00 0.00 −0.02
3rd 0.08 −0.01 −0.13 −0.01 0.01 −0.03

two-qubit rotations
θXX θY X θZX θXY θY Y θZY θXZ θY Z θZZ

1st 0.07 −0.00 0.03 −0.09 −0.03 −0.01 −0.02 −0.08 −0.01
2nd 0.06 −0.01 0.01 −0.06 −0.03 0.02 0.03 −0.10 −0.01
3rd 0.06 −0.01 0.02 −0.06 −0.02 −0.01 0.03 −0.07 −0.01

Table B.1.: Characterized coherent noise angles - Characterized single- and two-qubit
rotation angles, for the three iterations of the coherent noise characterization described
in section 5.2.2. The circuits for the second and third round of characterization are
already mitigated based on the results of the previous characterization run.
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Figure B.3.: Complete data set from characterization - Collected data for the first coherent
error characterization iteration in section 5.2.2. Each of the 9 plots below the circuit
scheme at the top of the figure corresponds to a different prepared state. The state are
labeled at the left bottom of each plot. The expectation values of each single- and two-
qubit Pauli operator is plotted against the number of repetitions of the noisy identity.
The purple trace corresponds to the identity, the blue curves to Pauli operators of
which the prepared state is an eigenstate of, and the orange curves to all other Pauli
operators. In the noiseless case the blue curves are expected to be 1 and the orange
curves to be 0.
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Figure B.4.: Complete data set from coherent error mitigation - Collected data of the
coherent error mitigated experiment in section 5.2.2. Each of the 9 plots below the
circuit scheme at the top of the figure corresponds to a different prepared state. The
state are labeled at the left bottom of each plot. The expectation values of each
single- and two-qubit Pauli operator is plotted against the number of repetitions of
the noisy identity. The purple trace corresponds to the identity, the blue curves to
Pauli operators of which the prepared state is an eigenstate of, and the orange curves
to all other Pauli operators. In the noiseless case the blue curves are expected to be 1
and the orange curves to be 0. The Pauli eigenvalues are estimated from those plots
by fitting an exponential to the blue curves.
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B. Mitigation

Figure B.5.: Experimental data of ibmq_jakarta - Data from the characterization, co-
herent error mitigation and probabilistic error cancellation protocols executed on
ibmq_jakarta. The experiment is conducted analogous to the presented procedure
on ibmq_lagos in section 5.2. We only applied the probabilistic error cancellation
protocol to 7 states due to run-time constraints on the hardware platform.
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