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Abstract

The hydrogen molecular ion (H+
2 ) is the simplest molecule and an essential system

for testing fundamental constants and validating quantum theories due to the high
precision achievable in its theoretical calculations. Despite its apparent simplicity,
the precise control and understanding of H+

2 present significant challenges.

This thesis provides a detailed theoretical analysis of the hyperfine structure of
H+

2 , calculating transition matrix elements for magnetic dipole, two-photon, and
quadrupole transitions. It also evaluates energy level shifts including quadrupole,
DC Stark, and light-induced shifts. These analyses apply to the ro-vibrational
levels of both para-H+

2 and ortho-H+
2 .

The theoretical framework developed here is applicable to all bond states. Explicit
numerical results for the transition matrix elements and energy level shifts are
provided for different ro-vibrational levels, improving the accuracy of theoretical
predictions for high-precision spectroscopy for H+

2 .
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Chapter 1

Introduction

The hydrogen molecular ion H+
2 consists of two protons and one electron, form-

ing a simple yet profoundly important system in molecular physics and quantum
chemistry. The study of H+

2 is compelling due to its fundamental nature and
the precision with which its properties can be calculated and measured. As the
most basic molecular ion, H+

2 serves as a critical test-bed for theories of molecular
structure and dynamics, quantum electrodynamics (QED), and the interactions
between particles at the quantum level. Insights gained from H+

2 spectroscopy
not only advance our understanding of fundamental physical principles but also
enhance the accuracy of spectroscopic techniques used to probe more complex
systems.

To achieve a deeper understanding of H+
2 , we aim to study its theoretical aspects

with a focus on determining theoretical transition frequencies accurately. This in-
volves investigating the fine structure and hyperfine transitions of the ion, provid-
ing a framework for comparison with experimental data to validate our theoretical
models. Any discrepancies between theory and experiment may reveal the need
for refined models or uncover interactions not accounted for in existing theories,
such as subtle nuclear spin interactions beyond the standard model.

Experimentally the H+
2 molecule poses many challenges. Many of the methods

employed on other systems (such as direct laser cooling, internal readout by state-
dependent fluorescence detection, and state preparation by optical pumping) can-
not be employed. In [1] the first steps required for quantum logic spectroscopy are
demonstrated, following a method proposed in earlier publications, which involves
co-trapping and sideband cooling a H+

2 - 9Be+ ion pair in a cryogenic Paul trap.
This trap is shown in figure 1.1.
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Figure 1.1: The ion trap at TIQI. The lower inset shows a fluorescence image of a
single trapped Be+ ion. The co-trapped H+

2 ion is invisible, but its presence can be
inferred from the position and mechanical resonances of the Be+ ion. The upper
inset shows a quantum logic signal, making the H+

2 visible. This image is taken
from the TIQI homepage.

In chapter 2 we discuss the hyperfine structure of the H+
2 ion. We present a de-

tailed discussion on the effective spin Hamiltonian, followed by the computation of
its matrix elements. The primary goal is to determine the hyperfine basis states,
which are foundational for understanding the ion’s energy levels and interactions.
This exploration provides a theoretical framework essential for high-precision spec-
troscopic analysis and for interpreting experimental data in the context of the H+

2

ion.

In chapter 3 we examine the hyperfine structure of beryllium. Understanding the
hyperfine interactions and energy levels of 9Be+ is critical for characterizing the
magnetic field environment within the trap, which is required for high-precision
spectroscopic measurements of H+

2 . By analyzing the hyperfine structure of 9Be+,
we can effectively monitor and control the magnetic field.

In chapter 4 we explore the intricate nature of hyperfine transitions in H+
2 , which

are essential for comprehending the ion’s spectroscopic behavior. We begin with
magnetic field insensitive transitions, highlighting their role in achieving high-
precision measurements. The chapter further examines various transitions, in-
cluding magnetic dipole (M1), two-photon (2E1), and electric quadrupole (E2)
transitions, discussing their theoretical foundations.

In chapter 5, we address various systematic frequency shifts that affect the accuracy
of spectroscopic measurements of H+

2 . We investigate the quadrupole shift, the
DC Stark shift, and light-induced shifts, discussing their origins and theoretical
characterization. Understanding and mitigating these shifts is crucial not only

5
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for precise hyperfine transitions but also for accurate ro-vibrational transitions,
thereby enhancing the overall reliability of H+

2 spectroscopic techniques.

Finally, in the appendix, we provide supplementary theoretical and computational
details that support the main content of the thesis. This includes an in-depth
discussion on the angular momentum structure, the coupling of angular momenta,
irreducible tensor operators, and reduced matrix elements in Appendix A. We
also cover the labeling of eigenstates for the lowest levels in Appendix B and the
calculation of transition probabilities for magnetic dipole (M1), two-photon (2E1),
and electric quadrupole (E2) transitions in Appendix C. These additional details
provide a rigorous foundation for the analyses presented in the earlier chapters,
underpinning the study of hyperfine transitions in H+

2 .

1.1 Non-relativistic Hamiltonian
In order to better understand the labeling of states and to gain a basis of knowledge
for this molecule we will briefly talk about the non-relativistic Hamiltonian and the
states we obtain, when we look for its eigenfunctions. As mentioned before, the H+

2

molecule consists of two protons and one electron that interact via the Coulomb
interaction. With this notation, we can express the non-relativistic Hamiltonian
H0 of the system as:

H0 =
p⃗1

2 + p⃗2
2

2mp

+
p⃗e

2

2me

+
e2

4πϵ0
(− 1

r1
− 1

r2
+

1

r12
), (1.1)

Where mp and me are the masses of a proton and electron respectively. Here ri
(i = 1, 2) are the distances between the electron and each proton, and r12 is the
distance between the two protons. This Hamiltonian is not analytically solvable.
Using the Born-Oppenheimer approximation this problem has been solved as early
as 1930, and the energy levels have been calculated in [8]. In the recent years,
the nonrelativistic problem has been solved numerically to essentially arbitrary
precision (for example in [2] or [3]) following the methodology developed in [4].
However, the uncertainties in the relativistic corrections now dominate, limiting
the overall precision.

The molecular states of the H+
2 ion, particularly the formalism involving the Σg,

Σu, and Π bands, can be understood through the context of molecular orbital
theory and the Born-Oppenheimer approximation. In molecular systems, such as
H+

2 , the orbitals are classified based on their symmetry properties and quantum
numbers. In analogy to the orbitals of an atom, that are classified according to m,
the quantum number for the z-component of the angular momentum (m = 0, 1, ...
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correspond to σ, π,...); for a molecule the classification is in capital letters (Σ,
Π,...). For this system, only the Σ orbitals are of relevance, as for all the other
bands, all states lie above the dissociation energy, so they do not posses any bond
states. These Σ orbitals have cylindrical symmetry around the molecular axis.

The Σ band is split into two, the subscripts on Σg (gerade) and Σu (ungerade)
refer to the behavior of these orbitals under inversion through the center of the
molecule. g indicates that the orbital is symmetric, while u indicates that the
orbital is anti-symmetric under this inversion. For the H+

2 ion, it is established
that most of the bound states are in the Σg band, except for a four loosely bound
Σu states.

Within each band, the energy levels are split according to quantized types of mo-
tion, specifically vibrations and rotations. Firstly, the vibrational levels, denoted
by ν, exhibit larger splittings and can take on values ranging from 0 up to a
maximum of 19 for the bond states. Within each vibrational level, the states are
further split into rotational levels, L, which can take values up to 41 for the bond
states. Therefore, in each band, the states can be labeled according to the so-called
ro-vibrational level (ν, L), which fully characterizes the non-relativistic electronic
ground state of H+

2 . The full list of all the states with their energies can be found
in the tables in [8].

νν

LL

Figure 1.2: Schematic representation of a H+
2 molecule, illustrating vibrational

motion (ν) and rotational motion (L) of the molecule.
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Chapter 2

The hyperfine structure of H+
2

The hyperfine structure of the H+
2 molecular ion arises due to the interactions

between the magnetic moments caused by the different angular momenta of the
particles within the molecule. This section treats the theoretical framework used
to understand and calculate these hyperfine energy levels. By incorporating both
relativistic corrections and external magnetic fields, the resulting Hamiltonian pro-
vides a comprehensive view of the energy splitting.

For each ro-vibrational level (ν, L), the effect of these interactions is encoded into
an effective spin Hamiltonian Heff . The level is split into hyperfine states, which
correspond to the eigenvectors of this Hamiltonian matrix. The hyperfine energy
correction for each state is the eigenvalue corresponding to this eigenvector.

The sections below explore the key components contributing to the hyperfine
Hamiltonian. The angular momentum coupling scheme is first introduced, de-
tailing how the spins and orbital angular momenta of the proton and electron are
combined to form total angular momentum states. This sets the foundation for
understanding the subsequent terms in the Hamiltonian.

Following this, we discuss the effective spin Hamiltonian, which includes the spin-
spin interactions between the electron and proton, the electron spin-rotation in-
teraction, and the orbit-nuclear spin interaction. We discuss the method for cal-
culating the Hamiltonian matrix in the chosen basis.

Then, we consider the effect of an external static magnetic field, leading to the
Zeeman Hamiltonian. This interaction further splits the energy levels and is crucial
for understanding the behavior of the molecule under laboratory conditions.

Finally, we present the calculation of eigenstates at zero field and in the presence
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of a magnetic field, providing a complete picture of the hyperfine structure and its
dependence on external influences.

2.1 The angular momentum coupling scheme
Each particle has a spin and a orbital angular momentum. In this case we consider
the total spin of the two hydrogen nuclei I = I1+I2. Since these are both protons,
we have for each nuclear spin Ii =

1
2

(i = 1, 2). This coupled quantity is chosen,
since the two nuclei are identical and thus they cannot be distinguished, by the
symmetry of the molecule. The quantum number I can, as the tensor product of
two spin 1

2
particles, only take the values 1 (triplet states) or 0 (singlet state). We

call the nuclear spin vector space VI . The electron is a spin 1
2

particle, we call its
spin Se and the electron spin vector space VS. For the orbital angular momenta,
we choose to consider the total orbital angular momentum L (= L1 + L2 + Le),
which can take on any integer value and call the vector space VL. We do this,
as the eigenstates of the non-relativistic Hamiltonian are ordered by this number
(and the vibrational level ν).

The total angular momentum vector space is the tensor product VL
⊗

VS
⊗

VI .
The order in which the three spaces lie in this product does in principle not matter,
but the same order has to be followed consistently throughout the entire analysis.
We choose this order here and follow it through the next sections. This vectorspace
has the basis |L,mL;Se,mS; I,mI⟩ = |L,mL⟩ ⊗ |Se,mS⟩ ⊗ |I,mI⟩, where in each
space the respective basis obeys its respective angular momentum basis equations
A.1.

This is a valid choice for the basis, but one tries to find a basis in which the
Hamiltonian is as close to diagonal as possible. For practical purposes, we will
not use this basis, as the eigenstates of the Hamiltonian differ significantly from
them. For this reason, new quantum numbers are defined as coupled angular
momenta. It turns out that the Hamiltonian is nearly diagonal for the coupled
angular momentum basis, at least with no external fields present.

First the total spin F = Se + I is defined, it has the vectorspace VF = VS
⊗

VI
and following equation A.3, the total space VL

⊗
VF has the coupled basis

|L,mL; (Se, I)F,mF ⟩. As a last step, we couple the two reminding angular mo-
menta to one total angular momentum J = L + F with the coupled basis
|(L, (Se, I)F ); J,MJ⟩. This is the basis that is used when dealing with the hy-
perfine structure of this molecule.

From the non-relativistic Hamiltonian H0 for the Σg band (the same goes for the
Σu band) one finds energy states, which are labeled by their ro-vibrational level
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(ν, L). When talking about hyperfine states in this analysis if nothing else is stated,
the Σg sideband is assumed, since all the bond states, except for four weakly bound
Σu states, are in this band.

When we consider the ro-vibrational level (ν, L), since for even L for parity reasons
the nuclear spin has to be I = 0 and for odd L the nuclear spin is I = 1 for all
the states within the band (the other way around in Σu), the number I is omitted
when writing the basis, as it is completely determined by L. Since the spin of
the electron is always Se = 1

2
, this letter is omitted in the basis as well. For

that reason, when considering a ro-vibrational level (ν, L) the coupled basis states
discussed above will just be labeled |F, J,MJ⟩.

2.2 The effective spin Hamiltonian
The leading correction to the non-relativistic energy is determined by the so called
Breit-Pauli Hamiltonian, it gives the relativistic correction up to the order α2,
where α is the fine structure constant, as the QED corrections are expanded in
a series of powers of this constant. In [5] it is shown that one can express this
interaction in terms of an effective spin Hamiltonian, that consists of five terms:

Hhf = bF (I · Se) + ce(L · Se) + cI(L · I)

+
d1

(2L− 1)(2L+ 3)

(
2

3
L2(I · Se)− {(L · I), (L · Se)}

)
+

d2
(2L− 1)(2L+ 3)

(
1

3
L2I2 − 1

2
(L · I)− (L · I)2

)
,

(2.1)

Where the different coupling constants (bF , ce, cI , d1, d2) are determined numeri-
cally and depend on the ro-vibrational level (ν, L) of the molecule. These constants
were first calculated in table I in [5] for the lowest ro-vibrational states (0 ≤ ν ≤ 4
and 0 ≤ L ≤ 4) up relative theoretical accuracy of O(α2).

In the case of ortho-H+
2 , meaning when L is odd (in the Σg band), the spin-

spin electron-proton interaction is the strongest. For that reason, accuracy in the
coupling coefficient bF is of utmost importance. Over the years different papers
have provided improved values for some levels. A mα6(m/M) correction term
is treated first in [9] and then to full extend, with higher-order QED corrections
in [10] (for L = 1, 3 and 0 ≤ v ≤ 10). Some higher-order corrections to spin-
orbit and spin-spin tensor interactions made in [11] led to more accurate ce and d1
coefficients.

To actually compute the matrix elements of this Hamiltonian here we have split
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the five parts and calculated each separately, which is a simpler problem. This
way it was easier to spot mistakes and compare the results with the ones stated
in the literature.

Hhf = bFH1 + ceH2 + cIH3 +
d1

(2L− 1)(2L+ 3)
H4 +

d2
(2L− 1)(2L+ 3)

H5, (2.2)

In [6] formulas are given for each of the matrix elements of the effective spin
Hamiltonian. These are obtained by doing the calculations as in the following
subsection and then setting in the actual values for (F, J,MJ) and (F ′, J ′,M ′

J) in
the formulas found. Our results found here match these equations.

2.2.1 Matrix elements

This interaction is composed by many different rank 0 tensor operators acting
on the various subspaces of the composed spin tensor space VL

⊗
VS
⊗

VI . In
this subsection we will calculate the matrix elements of the different operators in
the coupled basis |F, J,MJ⟩. Since the operators are of rank 0, we know that the
Hamiltonian will be diagonal in both J and MJ due to the Wigner-Eckart theorem
A.9.

⟨F, J,MJ |T (0)
0 |F ′, J ′,M ′

J⟩ =
1√

(2J + 1)
CJ,M

J ′,M ′;0,0 ⟨F, J ||T
(0)||F ′, J ′⟩

=
1√

(2J + 1)
δJ,J ′δMJ ,M

′
J
⟨F, J ||T(0)||F, J⟩ ,

(2.3)

Here we have used the notation for the Clebsch-Gordan coefficients as in the ap-
pendix, where CJ,MJ

j1,m1;j2,m2
= ⟨j1,m1; j2,m2|J,MJ⟩. This already limits the possible

non-zero off-diagonal terms to those where only the total spin of the two states is
different (F ̸= F ′), but the other quantum numbers are equal. The next step in
our analysis is to calculate matrix elements involving each of the operators in Hhf

concretely.

First we consider the spin-spin interaction operator (I · Se). The question is how
does one compute matrix elements in the basis |F, J,MJ⟩. One way would be to
use the strategies developed in the Appendix A involving reduced matrix elements.
For this operator, there happens to be a more simple way to solve the problem,
since I and Se commute.
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F2 = I2 + 2(I · Se) + Se
2, (2.4)

Knowing that one can calculate the matrix element, by writing it in terms of
operators, with respect to which the basis states are eigenstates of.

⟨F, J,MJ |(I · Se)|F ′, J ′,M ′
J⟩ = ⟨F, J,MJ |

1

2
(F2 − I2 − Se

2)|F ′, J ′,M ′
J⟩

=
1

2
(F ′(F ′ + 1)− I ′(I ′ + 1)− S ′

e(S
′
e + 1))

× ⟨F, J,MJ |F ′, J ′,M ′
J⟩

=
1

2
(F (F + 1)− I(I + 1)− Se(Se + 1))

× δFF ′δJJ ′δMJM
′
J
,

(2.5)

In the next step we calculate the matrix elements involving spin-rotation coupling
operators (L · Se) and (L · I). For this calculation we will need the strategies
developed in the Appendix A. Both these operators are of the shape (L(1)⊗T

(1)
F )(0)

in the space VL
⊗

VF , where T
(1)
F (= Se, I) is a rank 1 tensor operator in the space

VF . For reduced matrix elements involving these operators we can use equation
A.15 to calculate the reduced matrix element.

⟨F, J ||(L ·TF)||F ′, J⟩ =
√

(2J + 1)(−1)J+L′+F

L 1 L′

F ′ J F


× ⟨L||L||L′⟩ ⟨F ||TF||F ′⟩ ,

(2.6)

In this expression a Wigner-6-j symbol is used in the curved brackets, as introduced
in the appendix, in equation A.7. To calculate the reduced matrix elements on the
VF space now, we use equation A.13 for T

(1)
F = (Se

(1) ⊗ 1)(1) and equation A.14
for T

(1)
F = (1⊗ I(1))(1). We obtain the expressions:

⟨F ||Se||F ′⟩ = (−1)F+I+S′
e+1
√
(2F + 1)(2F ′ + 1)

Se 1 S ′
e

F ′ I F

 ⟨Se||Se||S ′
e⟩ δI,I′ ,

⟨F ||I||F ′⟩ = (−1)F
′+I+Se+1

√
(2F + 1)(2F ′ + 1)

 I 1 I ′

F ′ Se F

 ⟨I||I||I ′⟩ δSeS′
e
,

(2.7)
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The last reduced matrix elements can simply be calculated using the equation A.12
for the three cases L, Se and I. The full expression is obtained by putting the
equations above together. For the two operators we find:

⟨F, J,MJ |(L · Se)|F ′, J ′,M ′
J⟩ = δJJ ′δMJM

′
J
δLL′

L 1 L

F ′ J F


Se 1 Se

F ′ I F


× (−1)J+L+F+F ′+I+Se+1

√
(2F + 1)(2F ′ + 1)

×
√
L(L+ 1)(2L+ 1)

√
Se(Se + 1)(2Se + 1),

(2.8)

⟨F, J,MJ |(L · I)|F ′, J ′,M ′
J⟩ = δJJ ′δMJM

′
J
δLL′

L 1 L

F ′ J F


 I 1 I

F ′ Se F


× (−1)J+L+F+F+I+Se+1

√
(2F + 1)(2F ′ + 1)

×
√
L(L+ 1)(2L+ 1)

√
I(I + 1)(2I + 1),

(2.9)

Although the expressions look very similar, there are small, but important differ-
ences, such as having a F ′ instead of a F in the phase. The matrix elements of
products of such operators like (L · I)(L · I) can be calculated by multiplying the
two individual matrixes meaning, we have to sum over all the different hyperfine
states. If we have in general two rank 0 operators T(0) and T̃(0), then we can write
the matrix element of the product as:

⟨F, J,MJ |T(0)T̃(0) |F ′, J ′,M ′
J⟩ =

∑
F ′′,J ′′,M ′′

J

⟨F, J,MJ |T(0) |F ′′, J ′′,M ′′
J ⟩

× ⟨F ′′, J ′′,M ′′
J |T̃(0) |F ′, J ′,M ′

J⟩ ,
(2.10)

The last kind of operators that appear in the effective spin Hamiltonian are L2

and I2. Matrix elements involving these operators can be calculated, by making
use that the basis states are eigenstates of these operators, of eigenvalues L(L+1)
and I(I + 1) respectively.

With that we have described how to calculate matrix elements involving all the
operators that appear in the effective Hamiltonian Hhf and we can calculate the
full matrix as a sum of expressions of that shape.
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2.2.2 Para-H+
2

For para-H+
2 , meaning the nuclear spin is in the singlet state I = 0, most of the

terms in the Hamiltonian vanish. For the bond states, this is the case for all even
orbital angular momentum states L. In fact we can write the Hamiltonian in this
case as just:

Hhf = ce(L · Se), (2.11)

From equation 2.8 we cannot directly see, that the Hamiltonian is diagonal in the
|F, J,MJ⟩ basis. This is true, because in this case the total spin quantum number
is the same as the electron spin F = Se =

1
2
. As there is only one possible F , the

Hamiltonian is diagonal in the coupled basis, splitting the states into two different
energies, according to J = L± 1

2
.

Another interesting property is that in general, for all Para states, the ce coefficients
are small compared to the dominating bF coefficients, that we have for ortho-H+

2 .
For that reason the hyperfine energy shift is much smaller than for ortho-H+

2 . For
the para-groundstate (ν, L) = (0, 0) there is no hyperfine splitting. Because of that,
we have calculated the energies for the first excited rotational level (ν, L) = (0, 2)
in table 2.1.

2.2.3 Ortho-H+
2

For ortho-H+
2 , where the nuclear spin is in the triplet state with I = 1, the effective

spin Hamiltonian is composed by the five components as stated in equation 2.1.
The strength of each of the five contributions is encoded in the coupling coefficients.
The largest coefficient for all levels, as mentioned above, is bF . This corresponds
to the term that is diagonal in the coupled basis. Thus, the entries on the diagonal
will in general be much larger than the off-diagonal terms, and the coupled basis
|F, J,MJ⟩ is close to the eigenbasis of this Hamiltonian.

For these levels, this Hamiltonian splits the states into five levels for L = 1 and
six for all other odd L. The possible quantum numbers (F, J) for these levels
are F ∈ {1

2
, 3
2
} and J ∈ {L + F, ..., |L− F |}. For this reason, these levels have

a much richer hyperfine structure than the para counterpart. One can see this
in table 2.1, where the energies of this Hamiltonian have been computed for the
Ortho-groundstate (ν, L) = (0, 1) comparing it to a Para state.
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Para State: Ro-vibrational Level (ν, L) = (0, 2)

State |F, J⟩ Energy (MHz)

|1
2
, 1
2
⟩ -63.24527149

|1
2
, 3
2
⟩ 42.16350586

Ortho State: Ro-vibrational Level (ν, L) = (0, 1)

State |F̃ , J⟩ Energy (MHz)

|1
2
, 1
2
⟩ -910.696074

|1
2
, 3
2
⟩ -930.371709

|3
2
, 1
2
⟩ 385.366110

|3
2
, 3
2
⟩ 481.923026

|3
2
, 5
2
⟩ 474.075770

Table 2.1: Hyperfine energy levels for two para and ortho levels of H+
2 . One can

clearly see that the hyperfine splitting is much larger for ortho-H+
2 . For para-H+

2

the eigenstates are |F, J⟩, whereas for ortho-H+
2 the states are |F̃ , J⟩, where the F̃

is introduced in equation 2.24.

15



2.3 Interaction with a Static Magnetic Field
Magnetic moments arise in systems of charged particles with nonzero angular
momenta, to which they are proportional. The magnetic dipole moment of an
object determines the magnitude of the torque the object experiences in a given
magnetic field. The magnetic dipole moment of an electron (proton) with spin Se

(Ip) and orbital angular momentum Le (Lp) can be expressed as:

µe = −geµBSe − µBLe, (2.12)
µp = gNµNIp + µNLp, (2.13)

where ge is the electron g-factor, gN is the nucleus g-factor, µB is the Bohr magne-
ton, and µN is the nuclear magneton. The different signs arise from the opposite
charges of the particles. We can define the magnetic dipole moment of the H+

2

molecular ion, a system consisting of one electron and two protons, as the sum of
three such operators. It can be written as a tensor operator of rank 1, which can
be written in cyclic components.

µ(1) = −geµBSe
(1) + gNµNI

(1) + µN (L1 + L2)
(1) − µBLe

(1), (2.14)

We can write this expression in a way to make clear on which angular momentum
subspace of VL

⊗
VS
⊗

VI each operator acts on. Written this way the expression
becomes:

µ(1) = −geµB(1⊗ 1⊗ Se
(1))(1) + gNµN(1⊗ I(1) ⊗ 1)(1)

− µB

(
[Le −

me

mp

(L1 + L2)]
(1) ⊗ 1⊗ 1

)(1)

,
(2.15)

In this equation, we used that µN

µB
= me

mp
. For clarity and spacing reasons, the

matrix elements of the magnetic dipole operator are computed in three parts. The
first term corresponds to the electron spin, the second to the nuclear spin, and the
third to the orbital angular momentum. With equations A.13 and A.14, we find
on the tensor space VJ = VL

⊗
VF :
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⟨J ||TL||J ′⟩ = (−1)J
′+L+F+1

√
(2J + 1)(2J ′ + 1)

L 1 L

J ′ F J

 ⟨L||TL||L⟩ δFF ′ ,

⟨J ||TF||J ′⟩ = (−1)J+L+F ′+1
√

(2J + 1)(2J ′ + 1)

F 1 F ′

J ′ L J

 ⟨F ||TF||F ′⟩ δLL′ ,

(2.16)

where the two equations hold for any rank 1 tensor TL
(1) (TF

(1)) acting only on
one subspace VL (VF ), which is the case for all the operators considered. The
same can be done for the tensor space VF = VI

⊗
VS, and we find again the two

equations 2.7.

With knowledge of equations 2.16 and 2.7, we can calculate each part of the
magnetic dipole operator µ(1)

q . The matrix elements for the two spin terms, electron
Se and nuclear I, can be expressed as:

⟨F, J,MJ | (Se)
(1)
q |F ′, J ′,M ′

J⟩ = CJ,MJ

J ′,M ′
J ;1,q

(−1)J+L+F ′+F ′+Se+I
√

(2J ′ + 1)

×

F 1 F ′

J ′ L J


Se 1 Se

F ′ I F


×
√

(2F + 1)(2F ′ + 1)
√

Se(Se + 1)(2Se + 1),

⟨F, J,MJ | (I)(1)q |F ′, J ′,M ′
J⟩ = CJ,MJ

J ′,M ′
J ;1,q

(−1)J+L+F ′+F+Se+I
√
(2J ′ + 1)

×

F 1 F ′

J ′ L J


 I 1 I

F ′ Se F


×
√

(2F + 1)(2F ′ + 1)
√

I(I + 1)(2I + 1),

(2.17)

The orbital angular momentum term is not as straightforward to calculate. The
three operators that appear are L1, L2 and Le, which by the first equation in 2.16
lead to reduced matrix elements ⟨L||Li

(1)||L⟩ (for i = 1, 2, e). These depend on
the orbital wavefunction of the ro-vibrational level (ν, L), which is obtained from
the non-relativistic Hamiltonian and thus have to be calculated numerically. This
calculation has been performed in [7] for all levels with 0 ≤ ν ≤ 4 and 0 ≤ L ≤ 4.
To abbreviate the equations, in this paper a new operator Ltot is defined, which
describes all the orbital angular momentum dependence.
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Ltot =
1√

2L+ 1

(
Le −

me

mp

(L1 + L2)

)
, (2.18)

This operator leads to the reduced matrix element ⟨||Ltot||⟩. Using the symmetry
of H+

2 under the exchange of the two nuclei, it follows that for the reduced matrix
elements one has:

⟨ν, L| |L1| |ν, L⟩ = ⟨ν, L| |L2| |ν, L⟩ , (2.19)

And the reduced matrix element of this new operator can be expressed as:

⟨||Ltot||⟩ =
⟨ν, L| |Le| |ν, L⟩√

2L+ 1
− 2

me

mp

⟨ν, L| |L1| |ν, L⟩√
2L+ 1

, (2.20)

The reduced matrix elements ⟨||Ltot||⟩ are given for all ro-vibrational states with
0 ≤ ν ≤ 4 and 0 ≤ L ≤ 4 in [7]. With this reduced matrix element ⟨||Ltot||⟩, we
can write the orbital angular momentum term of the magnetic dipole operator as:

⟨F, J,MJ | (Ltot)
(1)
q |F ′, J ′,M ′

J⟩ = CJ,MJ

J ′,M ′
J ;1,q

(−1)J
′+L+F+1

√
(2J ′ + 1)

×

L 1 L

J ′ F J

√(2L+ 1) ⟨||Ltot||⟩ δFF ′ ,

(2.21)

2.3.1 The Zeeman Hamiltonian

The interaction of a magnetic moment with a static magnetic field is described
by the Zeeman Hamiltonian. This Hamiltonian is crucial for understanding how
magnetic fields affect atomic and molecular systems, particularly in the context of
spectroscopy and magnetic resonance. For a static magnetic field B, the Zeeman
Hamiltonian is expressed as:

HZ = −(µ ·B), (2.22)

In this equation, B = (B+1, B0, B−1) is treated as a rank 1 tensor in cyclic com-
ponents. The magnetic field is assumed to be directed along the quantization axis
(B = B · êz), implying B(1) = B

(1)
0 . The Hamiltonian can thus be expressed as a

sum of several terms, each involving the zeroth component of a rank 1 irreducible

18



tensor operator, which acts on one of the three spaces in VL
⊗

VI
⊗

VS of angular
momentum.

HZ = −µ(1)
0 B

= geµBB(1⊗ 1⊗ Se
(1))

(1)
0 − gNµNB(1⊗ I(1) ⊗ 1)

(1)
0

+ µBB
1√

2L+ 1
(Ltot

(1) ⊗ 1⊗ 1)
(1)
0 ,

(2.23)

This formulation indicates that the case q = 0 is considered for the matrix elements
of the Hamiltonian, as given in equations 2.17 and 2.21. Notably, this operator is
not diagonal in the basis |F, J,MJ⟩, meaning that as the magnetic field increases,
the states become more mixed. However, due to the presence of only the q = 0
component of the tensors, there is no mixing between states with different total
angular momentum projection MJ , so the mixing is limited to those states with
the same projection. Interestingly this Hamiltonian is indeed diagonal for the
uncoupled basis |L,mL;Se,mS; I,mI⟩.

Previous studies, such as [7], have considered two special cases where the interac-
tion can be treated as approximately linear. In the weak field regime, the Zeeman
effect is treated as a perturbation, and only the diagonal terms ofHZ in the coupled
basis |F, J,MJ⟩ (also in the eigenbasis |F̃ , J,MJ⟩ of Hhf ) are considered. The other
case is the strong field regime (Paschen–Back effect), where the external magnetic
field is sufficiently strong to disrupt the coupling between orbital (L) and spin (Se,
I) angular momenta. So HZ is treated exactly in the basis |L,mL;Se,mS; I,mI⟩
as a diagonal matrix and the Hamiltonian Hhf is treated as a perturbation and
only its diagonal terms in this basis are considered.

In both cases, the g-factors of the interaction are obtained, leading to a linear shift
in the hyperfine energy levels. Here the Zeeman effect is not treated perturbatively
but exactly. This approach allows recovery of the special cases computed in [7] by
considering the limits of very small or very large fields B. Additionally it allows one
to examine the region where the magnetic field is of intermediate strength, meaning
the Hamiltonians Hhf and Hz are comparable and due to the state mixing, the
shift of the eigenenergies can be highly nonlinear.
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2.4 Eigenstates
In the previous section, the focus was on computing the matrix elements of the
two different Hamiltonians that are responsible for the hyperfine splitting of the
ro-vibrational levels of H+

2 . Once the matrices are calculated, they can be diago-
nalized, yielding the eigenstates with their eigenenergies for this interaction.

2.4.1 At zero field

If there is no magnetic field, the hyperfine splitting is given by the interaction of
the effective spin Hamiltonian Heff = Hhf . As seen in the previous subsection,
this Hamiltonian is diagonal in J as well as in MJ , but there are some off diagonal
terms for different total spins (F ̸= F ′) in ortho-H+

2 . This means that the chosen
basis |F, J,MJ⟩ is not an eigenbasis of the Hamiltonian.

In [7] this is solved by introducing the eigenbasis |F̃ , J,MJ⟩, where this new number
F̃ takes into account the state mixing. We have thus the basis states:

|F̃ , J,MJ⟩ = C±
1 |1

2
, J,MJ⟩+ C±

3 |3
2
, J,MJ⟩ , (2.24)

This F̃ take on the same values as F , the upper index (±) in the coefficients
[C±

1 , C
±
3 ] correspond to F̃ = 1

2
for the upper index (−) and to F̃ = 3

2
for the upper

index (+). For all the ro-vibrational levels this mixing is small, amounting to less
than 1% (meaning

∣∣C−
1

∣∣2, ∣∣C+
3

∣∣2 ≈ 1). This is the reason, why F is still relatively
a good quantum number.

2.4.2 For a magnetic field B

Now we consider the case, where there is a nonzero, static magnetic field B. The
Hamiltonian matrix considered for the hyperfine splitting now is Heff = Hhf+HZ .
We calculate this matrix following the steps above in the |F, J,MJ⟩ basis. Now we
can obtain for each ro-vibrational level (ν, L) at each magnetic field strength B an
eigenbasis of the Hamiltonian, by diagonalizing the matrix. We need to introduce
a more general notation for the eigenstates than in the zero field case:

|i(B)⟩ =
∑
F,J

c
(i)
F,J,MJ

(B) |F, J,MJ⟩ , (2.25)

Where c(i)F,J,MJ
(B) are the magnetic field dependent coefficients of the coupled basis

state |F, J,MJ⟩ in the eigenstate of the Hamiltonian |i(B)⟩. Often we will omit
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the argument B, if it is clear which field we have. No sum over the different
MJ is necessary, as there is no state mixing between these states in neither of
the interactions. This leads to the existence of so called stretched states, which
are those with maximal (or minimal) total angular momentum projection. For
para-H+

2 we have the stretched states |F = 1
2
, J = L+ 1

2
,MJ = ±(L+ 1

2
)⟩, and

for ortho-H+
2 we have |F = 3

2
, J = L+ 3

2
,MJ = ±(L+ 3

2
)⟩. As there is only one

possible state with that projection, MJ = ±(L+ 1
2
) for para, andMJ = ±(L+ 3

2
) for

ortho; stretched states are always pure states of the Hamiltonian and are therefore
of special importance.

One way to order and label the states would be by ordering them by their energy.
The problem with this scheme is that as the magnetic field changes, some levels
may cross and thus different states would be labeled as the i-th state depending
on the magnetic field strength.

Here we choose the labeling in the following way. If we consider the zero field, the
labels are |i(0)⟩ = |F̃ , J,MJ⟩ such that the order of i is increasing first in F , then
in J and last in MJ . This is displayed explicitly for the four lowest rotational levels
in the Appendix B. Thus the i-th state |i(B)⟩ will be the eigenstate at magnetic
field B, to which |i(0)⟩ evolves when increasing the magnetic field. Thus when
plotting the eigenstates against the magnetic field B, each eigenstate |i(B)⟩ is
represented by a smooth line. This is for example displayed in the plot 2.1 for the
ro-vibrational level (3, 2).

Often for a given magnetic field B the eigenstates |i(B)⟩ will be referred to as
|F, J,MJ⟩. This does not mean that we are considering that pure state, but the
state which evolves as stated above. Additionally for the magnetic fields considered
and the given ro-vibrational levels, the state mixing is relatively small, such that
it still makes sense to use this labeling. As an example in table 2.2 the eigenstates
of the ortho-groundstate at the magnetic field B = 450µT have been calculated,
together with their coefficient corresponding to the pure state.

This labeling scheme is useful for smaller magnetic fields, as the ones considered
here. If we were to only work near the Paschen-Back regime, it would be better
to choose the labeling according to the uncoupled |L,mL;Se,mS; I,mI⟩, that the
states evolve into for large B.
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Figure 2.1: The magnetic-field-dependent hyperfine structure of the (ν, L) = (3, 2)
ro-vibrational level in the 0-10 mT range. We can clearly distinguish three regions.
At zero field, the levels are split in two according to the coupled basis (F, J), with
F = 1

2
and J = (2 ± 1

2
). In the weak-field (Zeeman) regime (0-1 mT) the states

follow a linear behaviour, with tangents according to the projection MJ . Then
many states follow curves which are highly nonlinear (1-6 mT). For large magnetic
fields, the hyperfine Paschen-Back regime, all the lines are again straight (6-10
mT). On the right, at 10 mT, we see the levels split according to the uncoupled
basis |L,mL;Se,mS⟩. We have a large split according to mS = ±1

2
and then a

finer split within that, according to mL.
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(ν, L) = (0, 1) B=450.0 [µT]

i F J MJ Energy [MHz] |c(i)F,J,MJ
(B)|2

0 1
2

1
2

−1
2

-910.91311 0.98775

1 1
2

1
2

+1
2

-910.13871 0.98951

2 1
2

3
2

−3
2

-928.16289 0.99982

3 1
2

3
2

−1
2

-929.86044 0.9888

4 1
2

3
2

+1
2

-931.32705 0.99097

5 1
2

3
2

+3
2

-932.6302 0.99966

6 3
2

1
2

−1
2

381.49087 0.99779

7 3
2

1
2

+1
2

389.08379 0.99726

8 3
2

3
2

−3
2

477.74376 0.93252

9 3
2

3
2

−1
2

481.16472 0.92035

10 3
2

3
2

+1
2

484.2651 0.93007

11 3
2

3
2

+3
2

487.07844 0.95601

12 3
2

5
2

−5
2

467.79247 1

13 3
2

5
2

−3
2

469.78524 0.93265

14 3
2

5
2

−1
2

472.1318 0.92134

15 3
2

5
2

+1
2

474.6973 0.93119

16 3
2

5
2

+3
2

477.43984 0.95629

17 3
2

5
2

+5
2

480.35907 1

Table 2.2: The hyperfine eigenstates of the ortho-groundstate (ν, L) = (0, 1) at a
magnetic field of 450 µT. The state index i as well as the corresponding quantum
numbers (F, J,MJ) are displayed, together with the hyperfine energy shift and
the coefficient corresponding to the pure state with these quantum numbers. The
state mixing in this case is maximal for the state 9, at almost 8%. The only pure
states are the two stretched states.

23



-928.16 MHz
-929.86 MHz

-931.33 MHz
-932.63 MHz

-910.91 MHz
-910.14 MHz

381.49 MHz
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472.13 MHz
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487.08 MHz

Figure 2.2: Schematic representation of the hyperfine states of the ortho-
groundstate (ν, L) = (0, 1) at 450 µT. Colors represent different (F, J) quantum
numbers, with corresponding hyperfine energy levels labeled in MHz. Horizontal
positions indicate different MJ values, ranging from left (negative) to right (pos-
itive). Note that these states are the eigenstates of the Hamiltonian rather than
the pure |F, J,MJ⟩ states. The figure is illustrative and not to scale.
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Chapter 3

The hyperfine structure of 9Be+

In experimental setups such as the one at TIQI, H+
2 ions are co-trapped with

beryllium ions (9Be+). The 9Be+ ions are instrumental in sympathetically cooling
the H+

2 molecules, effectively reducing their kinetic energy and minimizing Doppler
broadening of spectral lines. This cooling process is crucial as it provides a colder
and more controlled environment, thereby enhancing the precision of spectroscopic
measurements.

Additionally, the use of 9Be+ ions facilitates the implementation of quantum logic
spectroscopy (QLS). In QLS, an auxiliary ion such as 9Be+ takes over the tasks
of laser cooling and state detection. This technique transfers the quantum state
information from the target ion H+

2 to the auxiliary ion, making it easier to de-
tect and manipulate with high precision. QLS thus enables us to probe H+

2 with
exceptional accuracy by leveraging the well-understood properties of the auxiliary
ion.

Furthermore,9Be+ ions enable the characterization of the magnetic field environ-
ment within the trap, as explained in [14]. Accurate knowledge of the magnetic
field is essential for ensuring that the magnetic field insensitive transitions in H+

2

are correctly measured. This characterization relies on understanding the hyper-
fine interactions and energy levels of 9Be+. By analyzing the hyperfine structure,
we can monitor and control the magnetic field more effectively, which is critical for
maintaining the stability of the experimental setup and for accurate spectroscopic
studies.

We will proceed similarly as we have done for H+
2 , to differentiate the quantities

concerning the 9Be+ ion from the ones of the H+
2 molecule, we will note these with

a tilde on the top. First we look at the coupling scheme, then at the effective spin
Hamiltonian H̃eff and finally we obtain the hyperfine states.
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3.1 The angular momentum coupling scheme

For the 9Be+ ion, the energy states are defined by the nuclear spin Ĩ and the
electronic angular momentum J̃ = S̃e + L̃. Again we couple these two angular
momenta to obtain the total coupled angular momentum F̃ = J̃ + Ĩ, so we have
the vector-space ṼF = ṼJ

⊗
ṼI . The coupled basis for the hyperfine structure is

|((S̃e, L̃)J̃ , Ĩ)F̃ , m̃F ⟩.

The nuclear spin of 9Be+ is Ĩ = 3
2
. Here, we examine the three lowest states of

this ion, which can be labeled either using spectroscopic notation or as (L̃, J̃).
The ground state is 2S1/2, where L̃ = 0 and the only possible value for the total
angular momentum is J̃ = 1

2
. Next, for L̃ = 1, we have two possible electronic

angular momenta, J̃ = 1± 1
2
, corresponding to the excited states 2P1/2 and 2P3/2

respectively.

3.2 The effective spin Hamiltonian
As before we can write the effective spin Hamiltonian for each level, given by
(L̃, J̃), as H̃eff = H̃hf + H̃Z . We can express these operators as:

H̃hf = Ahf (̃I · J̃) +BhfQ(̃I, J̃), (3.1)

H̃Z = −(µ̃ ·B), (3.2)

In these equations we have introduced the coupling constants (Ahf ,Bhf ), which
have been measured experimentally for the levels we consider. The Ahf coefficient
for 2S1/2 is given in [16] and for the other levels they can be found in [15]. A big
difference from the previous section is discussed in [16], here the coefficient Ahf has
some magnetic field dependence. The formula used for the correction is Ahf (B) =
(1 + kB2)Ahf , where the diamagnetic shift coefficient is k = 2.63× 10−11T−2.

The other quantity that is introduced is the quadrupole term Q(̃I, J̃), it only plays
a role, when the electronic angular momentum is not minimal. Here only for the
state 2P3/2 (with J̃ = 3

2
), for all other terms we have Bhf = 0. We can express the

quadrupole term as:

Q(̃I, J̃) =
1

2

3(̃I · J̃)2 + 3
2
(̃I · J̃)− Ĩ2J̃2

Ĩ(2Ĩ − 1)× J̃(2J̃ − 1)
, (3.3)
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The matrix elements of the Hamiltonian H̃hf are calculated in analogy from the
ones in the previous section. To calculate the matrix elements of the Zeeman
Hamiltonian, we still have to determine the magnetic dipole moment operator for
this ion. We can again express this as the rank 1 tensor operator:

µ̃(1) = −g′IµB Ĩ
(1) − gJ(L̃, J̃), µBJ̃

(1), (3.4)

The g-factors g′I and gJ have been measured in [16]. With this we can calculate
the Hamiltonian matrix in the coupled basis |F̃ , m̃F ⟩ as we have done for H+

2 in
the previous chapter. In this case the matrix is less complicated and the resulting
structure simpler. We have three different types of matrix elements in our effective
spin Hamiltonian, we can write them as:

⟨F̃ , m̃F | (̃I · J̃) |F̃ ′, m̃′
F ⟩ =

1

2
(F̃ (F̃ + 1)− Ĩ(Ĩ + 1)− J̃(J̃ + 1))δF̃ F̃ ′δm̃F m̃′

F
, (3.5)

⟨F̃ , m̃F | (̃I)(1)q |F̃ ′, m̃′
F ⟩ = C F̃ ,m̃F

F̃ ′,m̃′
F ;1,q

(−1)F̃+J̃+Ĩ′+1

 Ĩ 1 Ĩ ′

F̃ ′ J̃ F̃


×
√
2F̃ ′ + 1

√
Ĩ(Ĩ + 1)(2Ĩ + 1)δJ̃ J̃ ′ ,

(3.6)

⟨F̃ , m̃F | (J̃)(1)q |F̃ ′, m̃′
F ⟩ = C F̃ ,m̃F

F̃ ′,m̃′
F ;1,q

(−1)F̃
′+J̃+Ĩ+1

 J̃ 1 J̃ ′

F̃ ′ Ĩ F̃


×
√

2F̃ ′ + 1

√
J̃(J̃ + 1)(2J̃ + 1)δĨ Ĩ′ .

(3.7)

By adding and multiplying matrices involving these operators, we can recover an
expression for the full Hamiltonian matrix Heff .
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3.3 Eigenstates
For each level (L̃, J̃) we have the states |F̃ , m̃F ⟩, where F̃ ranges from (J̃ + Ĩ)
to |J̃ − Ĩ|. We have chosen to order the states first increasing in F̃ and then in
m̃F . At the zero field, these are the exact eigenstates of the Hamiltonian, with a
degeneracy in the angular momentum projection m̃F . The energies of all the levels
considered at zero field are displayed in table 3.1.

With a magnetic field, this degeneracy is lifted, and as the magnetic field increases,
the states get more mixed, because the Zeeman Hamiltonian has non-vanishing off-
diagonal terms. The hyperfine states for the three levels considered are plotted in
3.1 for a range of magnetic field values B.

Ground Electronic State of 9Be+

Nuclear spin Ĩ = 3
2

State |F̃ ⟩ Energy (MHz)

Level 2S1/2

|1⟩ 781.26104631

|2⟩ -468.75662778

Level 2P1/2

|1⟩ 147.415

|2⟩ -88.449

Level 2P3/2

|0⟩ 0.97325

|1⟩ 2.24665

|2⟩ 2.49405

|3⟩ -2.88335

Table 3.1: Hyperfine energy levels for the lowest electronic states of 9Be+.
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Figure 3.1: Hyperfine states plotted against magnetic field values for the different
levels in 9Be+. For the last level with the richest structure in subplot 3.1(c), a
smaller magnetic field range is chosen, as the hyperfine splitting for this level is of
orders of magnitude smaller than the other two, as shown in table 3.1.

29



Chapter 4

Hyperfine transitions

In this chapter, we will look at different transitions in the hyperfine manifold of
one ro-vibrational level (ν, L) of H+

2 and between hyperfine states of two different
ro-vibrational levels. First we will search for magnetic field strengths at which
transitions are insensitive, meaning that the energy difference between the two
states considered (and also the transition frequency) barely changes when the
magnetic field B varies about that value. Next, we will look at the actual transition
mechanisms that are achievable. For the insensitive transitions found before, we
will compute the transition probabilities to determine if the transitions are allowed.

4.1 Magnetic field insensitive transitions
Considering magnetic field insensitive transitions is crucial for several reasons re-
lated to precision measurements, reducing experimental uncertainties, and obtain-
ing clearer spectral lines. Laboratory environments often have fluctuating mag-
netic fields, which can introduce noise and variability in spectroscopic measure-
ments. These magnetic field variations can cause unwanted shifts and broadenings
in sensitive transitions, complicating data analysis and reducing the precision of
measurements. By focusing on magnetic field insensitive transitions, the impact
of these environmental fluctuations is minimized, resulting in more stable and
repeatable measurements.

When talking about insensitive transitions, we consider the transition insensitive
if the sensitivity s, is below a certain threshold. The range of values in which the
transition is considered insensitive is noted as (Bmin, Bmax) and the value at which
the sensitivity is minimal in this interval is denoted as Bs. The range of magnetic
field values is probed with accuracy of 10 nT (= 10−5 mT) for this purpose in the
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1 mT range. These values are arbitrary in principle, if in some case one of these
values is chosen differently, it will be stated.

4.1.1 The ortho-groundstate

The ortho-groundstate (0, 1) is split into 18 hyperfine states as shown in table 2.2
and schematically in figure 2.2 for a magnetic field of B = 450 µT. These states
vary as the magnetic field varies. In figure 4.1 they are displayed in the magnetic
field range of 1 mT. To find insensitive transitions, we have to find fields B at
which two lines in the figure 4.1 are parallel. This corresponds to the points at
which the derivatives of their energy with respect to the magnetic field dE

dB
are

equal. For this reason the derivatives have been computed and are displayed in
figure 4.2. The insensitive transitions correspond to crossing points of two lines in
this figure as we can express the sensitivity between states |i(B)⟩ and |f(B)⟩ as:

sif =
dEf

dB
− dEi

dB
, (4.1)

Here we consider the transition insensitive if the sensitivity is below the threshold
|sif | ≤ 10 MHz/T. In fact for all the cases where this occurs, here the lines do
actually cross. As seen in the figure 4.2, there are multiple such crossing points in
this range.

For a better overview of these insensitive transitions, they are all put into the
table 4.1. In this table the range considered is extended up to 1.2 mT. The reason
for that is that as one can see in the figure 4.2, the lines of state |3⟩ and state
|15⟩, which cross at Bs = 277.94 µT, seem to collide again at the end. And after
computation, as done in table 4.1, we see that this transition is in fact insensitive
again at Bs = 1008.29 µT and thus is insensitive twice in this range.
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Figure 4.1: The two subplots show the hyperfine states of the Ortho-groundstate
in the 1 mT range. They are splitted into two figures as the energy difference
between states with different total spins F is large. In 4.1(a) we have the F = 1

2

and in 4.1(b) the F = 3
2

sub-levels. We can see that for some levels, the behaviour
is not entirely linear in this range.
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Figure 4.2: The derivatives of the hyperfine energies of the ortho-groundstate with respect to the magnetic field dE
dB

in the 1 mT range. As many of these lines are not constant, we can see many crossing points. The two lines with
the highest and lowest values correspond to the stretched states of this level. We can clearly see, that these lines
are completely straight, as the states are pure.
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Initial State Final State Frequency Insensitivity Range [µT]

i (F, J,MJ) f (F, J,MJ) fhf [MHz] (Bmin, Bmax) Bs

6 3
2

1
2

−1
2

13 3
2

5
2

−3
2

88.7101 12.84 17.73 15.29

9 3
2

3
2

−1
2

14 3
2

5
2

−1
2

7.8314 44.30 45.56 44.93

4 1
2

3
2

+1
2

9 3
2

3
2

−1
2

1412.1348 173.71 175.66 174.69

2 1
2

3
2

−3
2

10 3
2

3
2

+1
2

1412.1686 174.56 177.13 175.84

1 1
2

1
2

+1
2

3 1
2

3
2

−1
2

19.5997 195.16 200.32 197.74

8 3
2

3
2

−3
2

13 3
2

5
2

−3
2

7.6292 201.26 203.09 202.17

1 1
2

1
2

+1
2

15 3
2

5
2

+1
2

1384.9864 231.99 234.77 233.38

3 1
2

3
2

−1
2

15 3
2

5
2

+1
1

1404.5916 274.48 281.45 277.94

6 3
2

1
2

−1
2

8 3
2

3
2

−3
2

96.2111 330.87 334.09 332.48

5 1
2

3
2

+3
2

14 3
2

5
2

−1
2

1404.7952 332.80 336.52 334.66

0 1
2

1
2

−1
2

9 3
2

3
2

−1
2

1392.0777 455.60 460.94 458.26

10 3
2

3
2

+1
2

16 3
2

5
2

+3
2

6.8241 466.66 469.46 468.05

9 3
2

3
2

−1
2

15 3
2

5
2

+1
2

6.4608 487.40 489.70 488.55

0 1
2

1
2

−1
2

15 3
2

5
2

+1
2

1385.6197 507.76 511.70 509.73

3 1
2

3
2

−1
2

9 3
2

3
2

−1
2

1410.9949 537.59 540.28 538.93

0 1
2

1
2

−1
2

3 1
2

3
2

−1
2

18.8975 598.17 602.70 600.44

7 3
2

1
2

+1
2

10 3
2

3
2

+1
2

94.9703 761.15 766.54 763.84

8 3
2

3
2

−3
2

14 3
2

5
2

−1
2

5.2398 786.04 789.89 787.96

3 1
2

3
2

−1
2

15 3
2

5
2

+1
2

1404.3865 1002.59 1013.94 1008.29

1 1
2

1
2

+1
2

9 3
2

3
2

−1
2

1390.8480 1172.97 1193.04 1182.93

Table 4.1: Possible magnetic field insensitive transitions of the ortho-ground state
(ν, L) = (0, 1). The magnetic field range considered goes up to 1.2 mT. The
sensitivity threshold is set to 10 MHz/T. The transitions that are dipole allowed
have |∆MJ | ≤ 1.
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4.2 Magnetic dipole transitions (M1)

Magnetic dipole transitions (M1) are given by the magnetic dipole operator µ(1)
q

given by equation 2.14. Since this operator only couples states within the same
rotational level L, these transitions obey the selection rule ∆L = 0 in all cases.
Here we only consider transitions within the same ro-vibrational level (ν, L), having
∆ν = 0. In [18], the more general case of such transitions has been considered.
By computing the matrix element between the two hyperfine states involved in
the transition, we obtain a quantity that is related to the transition probability by
Fermis Golden Rule:

∣∣∣∣⟨f | µq

µB

|i⟩
∣∣∣∣, (4.2)

The reason we divide by Bohrs magneton µB is to obtain unitless numbers of order
unity. These matrix elements are only nonzero if the projection of the total angular
momentum of the two states obeys the equation:

M ′
J −MJ = q, (4.3)

This means that the magnetic dipole transition is possible for transitions with
|∆MJ | ≤ 1 and only for one choice of polarization given by equation 4.3. For all
other transitions (|∆MJ | ≥ 2), the magnetic dipole transitions are not possible.

The matrix elements for insensitive transitions in the 1 mT range for the ground
vibrational level ν = 0 and L = 1, 2, 3 are displayed in tables in the appendix C.1.

4.3 Two-photon transitions (2E1)
Electric dipole transitions (E1) are given by the electric dipole operator d, defined
by:

d = e[(R1 +R2)−Re], (4.4)

where R1 , R2 , and Re are the position vectors of the nuclei and of the electron
with respect to the center of mass.

Electric dipole transitions change the orbital angular momentum as |∆L| = 1, but
they also maintain the nuclear spin I (meaning ∆I = 0). For that reason these
transitions are called forbidden, as they are not allowed within the same band Σg
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(or Σu). These dipole transitions between the different bands are allowed, but are
very weak and will not be considered here.

Here we will consider two photon transitions as was done in [6]. They can be seen
as two consecutive electric dipole transitions, where the intermediate state is only
a virtual state. For that reason they are denominated as (2E1). The selection rules
for these transitions are ∆L ∈ {0,±2} and ∆I = 0, which are allowed transitions
for the bound Σg band states.

The operator that is considered for such transitions is the two-photon transition
operator SQϵ1,ϵ2(E) =

1
2
(Qϵ1,ϵ2(E) +Qϵ2,ϵ1(E)), where E is the intermediate state

energy and ϵi are the polarization vectors of the two photons. For spacing reasons
often the energy as an argument is dropped in this case. The operator is expressed
as:

Qϵ1,ϵ2(E) = d · ϵ1
1

H − E
d · ϵ2, (4.5)

Here d is the dipole operator and H is the full Hamiltonian. The two-photon
transition operator can also be written in cyclic coordinates, if the polarization
vectors of the photons are chosen among the standard polarizations (π, σ+, σ−).
In this case the equations become:

SQq1,q2 =
1

2
(Qq1,q2 +Qq2,q1), Qq1,q2 = dq1

1

H − E
dq2 , (4.6)

To calculate the quantities
∣∣∣⟨f(B)|S Qq1,q2 |i(B)⟩

∣∣∣2 that are related to the transition
probability, the operator Qq1,q2 is written as a sum of irreducible tensor operators
of rank 0 and 2:

Qq1,q2 =
∑
k=0,2

(
k∑

q=−k

Ck,q
1,q1;1,q2

Q(k)
q

)
, (4.7)

We can write the matrix elements as:

⟨f |S Qq1,q2 |i⟩ =
1

2
⟨f | (Qq1,q2 +Qq2,q1) |i⟩ ,

⟨f |Qq1,q2 |i⟩ = C0,0
1,q1;1,q2

⟨f |Q(0)
0 |i⟩+

2∑
q=−2

C2,q
1,q1;1,q2

⟨f |Q(2)
q |i⟩ ,

(4.8)

36



The tensor operators Q(k)
q only act on the orbital angular momentum subspace VL,

thus we can use the equation A.13 to calculate the matrix elements. For the pure
states we find:

⟨ν ′, L′, F ′, J ′,M ′
J |Q(k)

q |ν, L, F, J,MJ⟩ = C
J ′,M ′

J
J,MJ ;k,q

(−1)J+L′+F+k
√

(2J + 1)

×

L′ k L

J F J ′

 ⟨ν ′, L′||Q(k)||ν, L⟩ δFF ′ ,

(4.9)

The reduced matrix elements ⟨ν ′, L′||Q(k)||ν, L⟩ have been calculated numerically
for different ro-vibrational levels in different papers. In [23] the reduced matrix
elements for the para-groundstate (ν, L) = (0, 0) and the excited vibrational levels
ν ′ = 1, 2, 3 (L′ = 0) are calculated. This is a demonstration that the strength of
this type of transitions decreases very strongly as the difference between vibrational
levels increases. Thus, only the transitions with ∆ν = 1 are considered for two-
photon transitions, this becomes kind of a selection rule. The reduced matrix
elements for different transitions of this kind are calculated in [7] and in [17].

In Appendix C.2, the different feasible magnetic field insensitive two-photon tran-
sitions in the 1 mT range between the ortho-groundstate (ν, L) = (0, 1) and the
first excited vibrational level (ν ′, L′) = (1, 1) (with ∆ν = 1) are displayed.

4.4 Electric quadrupole transitions (E2)
Electric quadrupole transitions (E2) are allowed between states of the same band
Σg (or Σu), since they are even with respect to parity and to permutation of the two
protons. As the dipole transitions (E1) are not, these transitions are the dominant
mode of decay of the hydrogen molecular ion. Electric quadrupole transitions have
been considered in [17] and [19].

The quadrupole transition operator is of rank 2, its components can be written in
Cartesian coordinates as {Θij}3i,j=1 as done in [17], resulting in a traceless sym-
metric matrix operator. To calculate the matrix elements proportional to the
transition probability we express this tensor in cyclic coordinates {Θ(2)

q }2q=−2 with:

Θij =
2∑

q=−2

Θ(2)
q c

(q)
ij , (4.10)
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where the second rank tensors c(q)ij are introduced, they are given explicitly in [20].
For photons of polarization ϵ⃗ along the propagation direction n⃗, the matrix element
that is to be considered for a transition between states |i⟩ and |f⟩ is:

Θif
ϵ,n =

1

3

3∑
i,j=1

2∑
q=−2

⟨f |Θ(2)
q |i⟩ c(q)ij ϵinj, (4.11)

To maximize the amplitude of the transition, the propagation direction and the po-
larization must be chosen in a certain way depending on the |∆M | of the transition.
This is because one has to maximize the geometrical factor |gq| = |

∑
i,j c

(q)
ij ϵinj|.

In the case ∆MJ = 0 we find the maximal |g0| = 1
2

for n⃗0 making an angle of
π
4

with the quantization axis, and polarization ϵ⃗0 in the plane defined by n⃗0 and
the quantization axis e⃗z. For ∆MJ = ±1 we obtain a maximal |g±1| = 1√

6
for

propagation direction n⃗±1 orthogonal to the quantization axis e⃗z and polarization
ϵ⃗±1 along e⃗z. In the case ∆MJ = ±2 propagation direction n⃗±2 orthogonal to the
z axis, and polarization ϵ⃗±2 orthogonal to the plane defined by n⃗±2 and the axis
e⃗z lead to a maximal |g±2| = 1√

6
.

We can write the matrix element ⟨f |Θ(2)
q |i⟩ in terms of a reduced matrix element,

the same way as for the tensor operators of two-photon transitions in 4.9, resulting
in the equation:

⟨ν ′, L′, F ′, J ′,M ′
J |Θ(2)

q |ν, L, F, J,MJ⟩ = C
J ′,M ′

J
J,MJ ;2,q

(−1)J+L′+F
√

(2J + 1)

×

L′ 2 L

J F J ′

 ⟨ν ′, L′||Θ(2)||ν, L⟩ δFF ′ ,

(4.12)

These reduced matrix elements ⟨ν ′, L′||Θ(2)||ν, L⟩ have been calculated in the sup-
plementary material of [21] between all states with 0 ≤ ν ≤ 10 and 0 ≤ L ≤ 6.
We find that, in contrast to the (2E1) transitions, these (E2) transition matrix
elements do not drop off as fast with increasing ∆ν. In any case, they are smaller
for this kind of transitions. The transition rates then scale with the intensity of
the light. For quadrupole transitions, the rates scale linearly with intensity, and
for two-photon transitions, the rates scale quadratically with intensity.

In Appendix C.3, we display different feasible magnetic field insensitive quadrupole
transitions between the groundstate and excited levels for both ortho- and para-
H+

2 .
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Chapter 5

Systematic frequency shifts

When we trap H+
2 in an experimental setup, the energy levels and transition fre-

quencies that are observed may differ from the ones calculated in the previous
section because of the environment. On the one hand, in an ion trap we have
static electrical fields that lead to a quadrupole shift on the hydrogen molecular
ions. On the other hand, if we drive transitions using lasers, these lead to light
shifts between the energy levels that are driven.

In this section, these shifts are treated with the goal to be able to predict the
frequencies with higher accuracy.

5.1 Quadrupole shift
The electric quadrupole shift has been treated extensively in [22] in the
Born–Oppenheimer approximation. They concluded that the effects of the
quadrupole interaction can be treated in the form of an additional term VQ in
the effective spin Hamiltonian Heff .

VQ(ν, L) =

√
3

2
E14(ν, L)Q(RC)(L⊗ L)(2), (5.1)

Here the E14 are numerical coefficients, that have to be calculated for each ro-
vibrational level (ν, L). They were calculated for 0 ≤ ν ≤ 8 and 0 ≤ L ≤ 10 in
[22]. The second term is the gradient of the static external electric field at the
center of mass coordinate RC, in Cartesian coordinates Qij = ∂iEj. To be exact
one has to write this operator in cyclic components the other way around as done
for the quadrupole operator, finding an equation equivalent to 4.10 but inverted:
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Q̂(2)
q =

3

2

∑
ij

Qij(−1)qc
(−q)
ij , (5.2)

where the relations for the c
(q)
ij stated in [20] are used to invert the equation.

This operator is not to be confused with the one appearing for the two-photon
transitions, for that reason the hat notation is introduced. The product appearing
in equation 5.1 can be expressed as:

Q(RC)(L⊗ L)(2) =
2∑

q=−2

(−1)qQ̂
(2)
−q(L⊗ L)(2)q ,

=
2∑

q=−2

∑
i,j

3

2
Qijc

(q)
ij (L⊗ L)(2)q ,

(5.3)

If the trapping potential is complicated, we could have up to 5 nonzero such
components. Instead if the trapping potential only varies along the quantization
axis, the only component that we have is the one for q = 0 and the expression for
the quadrupole term becomes:

VQ(ν, L) =

√
3

2
E14(ν, L)Qzz(L⊗ L)

(2)
0 , (5.4)

Back to the general case. The quadrupole interaction VQ is a rank 0 tensor op-
erator, it is diagonal in (J,MJ) by the Wigner-Eckart theorem A.9. Since the
equation becomes very long, here we split it in three steps. Where the second and
third equations give explicit expressions for reduced matrix elements that can be
found in the equation above.

⟨F ′, J,MJ |VQ |F, J,MJ⟩ =
(
3

2

) 3
2

E14(ν, L)
∑
ij

Qijc
(q)
ij ⟨F ′, J,MJ | (L⊗ L)(2)q |F, J,MJ⟩ ,

(5.5)

⟨F ′, J | |(L⊗ L)(2)| |F, J⟩ = (−1)J+L′+F
√
(2J + 1)

×

L′ 2 L

J F J

 ⟨L||(L⊗ L)(2)||L⟩ δFF ′ ,
(5.6)
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⟨L||(L⊗ L)(2)||L⟩ =
√
L(L+ 1)(2L− 1)(2L+ 1)(2L+ 3)

6
, (5.7)

Where the reduced matrix element in equation 5.7 has been calculated by decom-
posing the tensor operator into the rank 1 known tensor operators L(1):

(L⊗ L)(2)q =
1∑

q′=−1

C2,q
1,q′;1,(q−q′)L

(1)
q′ L

(1)
q−q′ , (5.8)

With equation 5.6 (together with the WE-theorem) we see that this Hamiltonian
is diagonal in the |F, J,MJ⟩ basis. One way to incorporate this interaction would
be to treat it perturbatively and add the resulting shift to the hyperfine energy
of each state. Instead of doing that, we can treat it exactly by adding it to the
effective spin Hamiltonian as mentioned in the beginning, finding:

Heff = Hhf +HZ + VQ, (5.9)

Diagonalizing this Hamiltonian we obtain a new hyperfine basis, taking into ac-
count the quadrupole interaction.

5.2 Static polarizability and the DC Stark shift
While the ion in an ideal trap is located at the field null, practical setups often
exhibit imperfections, such as stray electric fields or slight misalignments, which
result in a small but non-zero electric field at the ion’s position. This residual
field can induce a DC Stark shift in the hyperfine states of H+

2 . Even though this
shift may be small, it is important to consider and quantify it for high-precision
spectroscopy.

When interacting with an external electric field E in the dipole interaction, the
change of energy due to the polarizability of a molecular ion is expressed by

E(2)
p = EiEj ⟨ψ0| di

1

H0 − E0

dj |ψ0⟩ = −1

2
αij
d EiEj, (5.10)

where |ψ0⟩ are the eigenstates of energy E0 of the non-relativistic Hamiltonian H0

and αij
d , the polarizability tensor of rank 2, has been introduced as in [24]. This

tensor can be decomposed into irreducible tensors with a scalar term αs and a
tensor term αt.
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Now we introduce the polarizability operator α̂d, to evaluate the polarizabilities
of the hyperfine states of a given ro-vibrational level. The approximation that is
made is that this operator only acts in a manifold of given L. We can write:

α̂ij
d (ν, L) = αs(ν, L)δij + αt(ν, L)[LiLj + LjLi −

2

3
L2δij], (5.11)

The values of αs(ν, L) and αt(ν, L) were calculated in [24] and later in [25] rela-
tivistic corrections were included. Instead of using this decomposition into a scalar
(rank 0) and a rank 2 irreducible tensor operator, it is more useful to write the
polarizability along the quantization axis and orthogonal to it, making use of the
cylindrical symmetry of the problem. This leads to the linear combinations:

α̂∥(ν, L) = αs(ν, L) + αt(ν, L)

√
8

3
(L⊗ L)

(2)
0 , (5.12)

α̂⊥(ν, L) = αs(ν, L)−
1

2
αt(ν, L)

√
8

3
(L⊗ L)

(2)
0 , (5.13)

Now we know how to calculate matrix elements involving the parallel and perpen-
dicular polarizability for each hyperfine basis state |F, J,MJ⟩ for all ro-vibrational
levels (ν, L) and thus each eigenstate of the Hamiltonian Heff . Another useful
quantity to introduce is α̂θ = cos2 θα̂∥ + sin2 θα̂⊥, the polarizability at a certain
angle θ with respect to the quantization axis.

When the ion is in an external static electric field E⃗, the (DC) Stark energy shift
induced to the eigenstate can be calculated using first order perturbation theory,
if it is small compared to the other effects:

∆EDC(i) = −1

2

(
⟨i| α̂∥ |i⟩E2

z + ⟨i| α̂⊥ |i⟩ (E2
x + E2

y)
)
, (5.14)

When using this equation, one has to be careful to use the right units for the
polarizabilities, as in the literature (in [24] and [25]) these are given in atomic
units (au).

5.3 Light shifts
When driving a transition within the molecule with a laser, the energy levels can
be shifted due to the (AC) Stark effect. This effect occurs due to the interaction
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between the molecule and the dynamic electric field of the laser. These shifts have
been theoretically studied in [17] for the two type of transitions between different
ro-vibrational levels discussed before ((2E1) and (E2)).

When doing QLS like for the pair of 9Be+ and H+
2 we have Rabi oscillations with

Rabi frequency Ω. The expression for this frequency will be different depending on
the type of transition considered. In [20] a derivation is stated on how to obtain
the Rabi requency for electric dipole (E1) and quadrupole (E2) transitions.

QLS clocks are typically operated with a single interrogation π-pulse whose du-
ration τ is adjusted according to the desired resolution, typically of the order of
100 ms. The laser intensity I needed to obtain that duration is obtained by the
relation Ωτ = π, as the Rabi frequency depends on the intensity. For simplicity,
we will assume the use of this π-pulse method in our discussion, although other
techniques such as Ramsey protocols are also viable options.

For photons of polarization ϵ and angular frequency ω, the dynamical polarizability
of a state |i⟩ is given by:

αi
ϵ(ω) = −4πa30 ⟨i|

(
SQϵϵ(Ei + ℏω) + SQϵϵ(Ei − ℏω)

)
|i⟩ , (5.15)

Where a0 is the Bohr radius. These polarizabilities would have to be calculated nu-
merically for each state and each transition wavelength. Here we will approximate
them with the static polarizability (αi

ϵ(ω) ≈ αi
ϵ(0)). For most of the transitions

this approximation is accurate enough, as for most of the states considered they
only differ by at most a few percent.

The frequency the transition is shifted by is ∆fLS. This shift depends two things,
one is the difference of the dynamic polarizability of the two states ∆αif

ϵ , which we
will only be able to approximate using the difference of the static polarizabilities.
The other is the intensity of the laser I or equivalently the amplitude of the electric
field E0, which are related by:

I =
1

2
cϵ0E

2
0 , (5.16)

Where c is the speed of light and ϵ0 is the permittivity of the vacuum. For the
considered transitions we will express the frequency shift for a π-pulse of duration
τ , inserting the corresponding relationship between intensity I (or equivalently E0)
and Rabi frequency Ω.
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5.3.1 Two-photon transitions (2E1)

We consider a transition between the state |i⟩ and |f⟩, each photon has frequency
Ef−Ei

2
, the factor half is important as we have to apply only half the correction on

each photon to account for the shift. The Rabi frequency and the corresponding
shift in the transition frequency (for each one of the two photons) needed to achieve
a π-pulse of duration τ are given by:

Ω =
I

ϵ0ℏc

∣∣∣⟨f |S Qϵϵ |i⟩
∣∣∣, (5.17)

∆fLS = − 1

8τ

∆αif
θ

| ⟨f |S Qϵϵ |i⟩ |
, (5.18)

where for the shift in equation 5.18 both the polarizabilites and two-photon transi-
tion matrix elements are given in atomic units (au). The polarizability is given in
units of 4πa30 and the matrix element in units of ℏ2e2

me
in atomic units. The reason

for this choice is that in the calculations these quantities are already expressed as
such. If these quantities were expressed in SI units, we would have to change the
equation.

Now we can calculate the shift in the transition frequency for any laser of po-
larization ϵ driving the two-photon transition between any two hyperfine states,
for which we have calculated the transition matrix element. For example we can
calculate the shift for the insensitive transitions found in table C.2 between the
ortho-groundstate (νi, Li) = (0, 1) and (νf , Lf ) = (1, 1).

Note that in the table C.2 the total shift between the two levels is calculated for
all of the frequencies. Since these are two-photon transitions, the shift that has to
be applied to each one of the photons is only half of the values indicated in the
table.

5.3.2 Electric quadrupole transitions (E2)

For quadrupole transitions we obtain equivalent expressions for both the Rabi
frequency and the frequency shift:

Ω =
ea20E0

2ℏ
2π

λ

∣∣Θif
ϵn

∣∣, (5.19)

∆fLS = −meλ
2

4ℏτ 2
∆αif

θ

|Θif
ϵn|2

, (5.20)
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Again here the difference in polarizabilities and the transition matrix element are
given in atomic units as for equation 5.18. For selected magnetic field insensitive
transitions in the 1 mT range, the light shift of the transition frequency due to the
AC-Stark shift has been calculated in the tables in the appendix C.

Ortho-transitions starting from the groundstate (νi, Li) = (0, 1) to two different
final states have been calculated, the final ro-vibrational state (νf , Lf ) = (3, 1) and
(νf , Lf ) = (3, 3). One pair of para-H+

2 is also considered in table C.5, where we have
the initial para-groundstate (νi, Li) = (0, 0) and the final state (νf , Lf ) = (3, 2).
For the transitions, that are drivable, meaning that the transition matrix element
is big enough, the resulting shifts ∆fLS are small, of maximal a few kHz, compared
to the hyperfine shifts introduced by our effective Hamiltonian ∆fhf , on the order
of up to over 1 GHz. Nevertheless correcting for this shift is necessary for accurate
measurements.
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Appendix A

Angular momentum structure

In this Appendix we derive the formalism for the angular momentum structure
following [12], that is used in the previous chapters to treat the coupling of angular
momenta and matrix elements.

When we have one angular momentum J, it spans a (2J + 1) dimensional vec-
torspace VJ . The basis of this space that is considered, is that of simultane-
ous eigenstates of the operator J2 and the projection on the z-axis Jz (often
called quantization axis and labeled J0). Resulting in the (2J + 1) basis states
{|J,MJ⟩}MJ∈{−J,...,J} which posses the properties, that:

J2 |J,MJ⟩ = J(J + 1) |J,MJ⟩ ,
Jz |J,MJ⟩ = MJ |J,MJ⟩ ,

(A.1)

A.1 Coupling angular momenta
When dealing with two angular momenta j1 and j2, we have the tensorspace
V1
⊗

V2 with the tensor basis |j1,m1; j2,m2⟩ = |j1,m1⟩ ⊗ |j2,m2⟩. By defining
the coupled angular momentum operator:

J = j1 ⊗ 1+ 1⊗ j2, (A.2)

Which is often written as J = j1 + j2, we have a new coupled angular momentum
eigenbasis |(j1, j2)J,MJ⟩ that can be expressed in terms of the uncoupled basis
using the Clebsch-Gordan (CG) coefficients CJ,MJ

j1,m1;j2,m2
= ⟨j1,m1; j2,m2|J,MJ⟩ or

equivalently the Wigner-3-j symbols.

47



|(j1, j2)J,MJ⟩ =
∑

m1,m2

CJ,MJ
j1,m1;j2,m2

|j1,m1; j2,m2⟩

=
∑

m1,m2

(−1)j1−j2+MJ
√
2J + 1

 j1 j2 J

m1 m2 −MJ

 |j1,m1; j2,m2⟩ ,

(A.3)

Often the letters in the brackets (j1, j2) are dropped, when it is clear what the
coupled momentum J represents. In the case of only two angular momenta we
actually have two choices for the coupling, depending on the chosen order of j1
and j2. They do not lead to the same basis. Not coupling as in A.3, changing the
roles of j1 and j2, leads to a basis |(j2, j1)J,MJ⟩ that differs for some states in the
sign. The conversion factor is (−1)j1+j2−J for the two bases.

In the case that one wants to couple three angular momenta j1, j2 and j3, we
have a new degree of freedom, as to the order in which the angular momenta are
paired. One possible way to realize the coupling is by defining J12 = j1 + j2 (or
J23 = j2 + j3) and then obtain the angular momentum operator J = J12 + j3
(= j1 + J23). The different coupling schemes to reach J are all equally valid and
would lead to different coupled angular momentum bases.

|((j1, j2)J12, j3)J,MJ⟩ =
∑

M12,m3

CJ,MJ

J12,M12;j3,m3

∑
m1,m2

CJ12,M12

j1,m1;j2,m2
|j1,m1; j2,m2; j3,m3⟩ ,

(A.4)

|(j1, (j2, j3)J23)J,MJ⟩ =
∑

m1,M23

CJ,MJ

j1,m1;J23,M23

∑
m2,m3

CJ23,M23

j2,m2;j3,m3
|j1,m1; j2,m2; j3,m3⟩ ,

(A.5)

The Wigner-6-j symbols are defined to relate two bases for different coupling
schemes, such that we can express one basis state of the first in terms of the
states of the second basis:

|(J12, j3)J,MJ⟩ = (−1)j1+j2+j3+J
√

(2J12 + 1)(2J23 + 1)

×

j1 j2 J12

j3 J J23

 |(j1, J23)J,MJ⟩ ,
(A.6)
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Using the equations A.4 and A.5 describing the coupled basis states in terms of the
uncoupled basis, we can write the Wigner-6-j symbols in terms of CG-coefficients
as:

j1 j2 J12

j3 J J23

 =
(−1)j1+j2+j3+J√

(2J12 + 1)(2J23 + 1)

∑
m1,m2,m3,M12,M23

CJ,MJ

J12,M12;j3,m3
CJ12,M12

j1,m1;j2,m2

CJ,MJ

j1,m1;J23,M23
CJ23,M23

j2,m2;j3,m3
,

(A.7)

We can go further and couple 4 angular momenta and for that the 9-j symbols are
defined. But for this analysis it suffices to know how to couple up to 3 angular
momenta.

A.2 Irreducible tensor operators
In this section we will discuss the computation of matrix elements concerning
tensor operators. A irreducible tensor operator T(k) of rank k is a set of 2k + 1
operators {T (k)

q }kq=−k that transform into each other as angular-momentum states
{|J,M⟩}JM=−J . This means that they obey the equations:

[J2, T (k)
q ] = k(k + 1)T (k)

q ,

[Jz, T
(k)
q ] = qT (k)

q ,
(A.8)

Where the square brackets [·, ·] denote the commutator of the two operators. This
is in analogy to the angular momentum states in equations A.1, but instead of the
action of a operator on a vector |J,M⟩, we have the commutator of two operators,
where the rank of the tensor k = J and the component q = M . Any Cartesian
tensor can be reduced into a sum of irreducible tensors.
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A.3 Reduced matrix elements
When calculating matrix elements in this section, we will assume irreducible tensor
operators, the result can be generalized by summation.

The basis considered is |(α)J,MJ⟩, where an additional parameter α is included,
that represents other quantum numbers that do not represent angular depen-
dence of the state. The matrix elements can thus in general be written as
⟨(α)J,MJ |T (k)

q |(α̃)J̃ , M̃J⟩.

An important result in angular momentum algebra is the Wigner-Eckart (WE)
Theorem. It states, that matrix elements of such tensors can be written it as a
product of a Wigner-3-j Symbol (or CG-coefficient) and a term that is independent
of the projections of the angular momentum considered. The MJ and q indepen-
dent term denoted ⟨(α)J ||T (k)||(α′)J ′⟩ is called the reduced matrix element.

⟨(α)J,MJ |T (k)
q |(α′)J ′,M ′

J⟩ = (−1)J−MJ

 J k J ′

−MJ q M ′
J

 ⟨(α)J ||T (k)||(α′)J ′⟩ ,

⟨(α)J,MJ |T (k)
q |(α′)J ′,M ′

J⟩ =
1√

(2J + 1)
CJ,MJ

J ′,M ′
J ;k,q

⟨(α)J ||T (k)||(α′)J ′⟩ ,

(A.9)

This equation differs from the equivalent in [12], where the convention has been
used for the reduced matrix element with an extra factor of

√
2J + 1. With that

convention, the equation is simpler in the notation using the CG coefficients. The
reason for the convention used here is that it is used in all the literature papers
concerning the H+

2 spectroscopy theory.

We can invert the equation using the symmetry relations of the Wigner-3-j symbols
(equivalently the orthogonality relations of the CG-coefficients) to express the
reduced matrix element as a sum over matrix elements.

⟨J ||T (k)||J ′⟩ =
∑
M ′

J ,q

(−1)J−MJ (2J + 1)

 J k J ′

−MJ q M ′
J

 ⟨J,MJ |T (k)
q |J ′,M ′

J⟩ ,

⟨J ||T (k)||J ′⟩ =
∑
M ′

J ,q

√
(2J + 1) CJ,MJ

J ′,M ′
J ;k,q

⟨J,MJ |T (k)
q |J ′,M ′

J⟩ ,
(A.10)

From this inverse Wigner-Eckart equation we can calculate two special cases for
irreducible tensor operators of importance, the identity 1 and the angular momen-
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tum operator J, which are the rank 0 and 1 irreducible tensor operators. As for
these operators the right hand side of equation A.10 can be simplified to obtain:

⟨J ||1||J ′⟩ =
√

(2J + 1)δJJ ′ , (A.11)

⟨J ||J||J⟩ =
√
J(J + 1)(2J + 1)δJJ ′ , (A.12)

In the following a tensor space V = V1
⊗

V2 will be considered, where the total
angular momentum operator is given by J = j1 + j2. Here, the irreducible tensor
operators of rank k1 on the first space U(k1) and of rank k2 on the second space
V(k2) give rise to tensor operators of rank k on the tensor space. The rank k of
such tensors can range from maximally k1 + k2 to |k1 − k2| as described by the
Clebsch-Gordan theorem. This is in complete analogy to the coupling in the basis
of the angular momentum states |(j1, j2)J,M⟩ in equation A.3. We thus have
irreducible tensor operators T (k)

q = (U(k1) ⊗V(k2))
(k)
q .

Next a step by step derivation for a formula is shown for reduced matrix elements
involving a tensor operator of the shape T (k)

q = (U
(k)
q ⊗ 1). Where the operator

acts only non-trivially on the first space and acts with the identity on the second
space. If the operator U (k)

q is irreducible on V1, then the operator T (k)
q is irreducible

on V .
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⟨J ||T(k)||J ′⟩ =
∑
M ′,q

√
(2J + 1)CJ,M

J ′,M ′;k,q ⟨(j1, j2)J,M |(U (k)
q ⊗ 1)|(j′1, j′2)J ′,M ′⟩

=
∑
M ′,q

√
(2J + 1)CJ,M

J ′,M ′;k,q

∑
m1,m2

CJ,M
j1,m1;j2,m2

∑
m′

1,m
′
2

CJ,M
j′1,m

′
1;j

′
2,m

′
2

× ⟨j1,m1; j2,m2|(U (k)
q ⊗ 1)|j′1,m′

1; j
′
2,m

′
2⟩

=
∑

M ′,q,m1,m2,m′
1,m

′
2

√
(2J + 1)CJ,M

J ′,M ′;k,qC
J,M
j1,m1;j2,m2

CJ ′,M ′

j′1,m
′
1;j

′
2,m

′
2

× ⟨j1,m1|U (k)
q |j′1,m′

1⟩ ⟨j2,m2|j′2,m′
2⟩

=
∑

M ′,q,m1,m2,m′
1,m

′
2

√
(2J + 1)CJ,M

J ′,M ′;k,qC
J,M
j1,m1;j2,m2

CJ ′,M ′

j′1,m
′
1;j

′
2,m

′
2

× ⟨j1,m1|U (k)
q |j′1,m′

1⟩ δj2,j′2δm2,m′
2

=
∑

M ′,q,m1,m2,m′
1

√
(2J + 1)CJ,M

J ′,M ′;k,qC
J,M
j1,m1;j2,m2

CJ ′,M ′

j′1,m
′
1;j2,m2

× ⟨j1,m1|U (k)
q |j′1,m′

1⟩ δj2j′2
=

∑
M ′,q,m1,m2,m′

1

√
(2J + 1)CJ,M

J ′,M ′;k,qC
J,M
j1,m1;j2,m2

CJ ′,M ′

j′1,m
′
1;j2,m2

Cj1,m1

j′1,m
′
1;k,q

× 1√
(2j1 + 1)

⟨j1||U(k)||j′1⟩ δj2j′2

In the first step we used the inverse WE theorem A.10, then we expressed the basis
elements in the uncoupled basis |j1,m1; j2,m2⟩. Since this operator is diagonal in
the second space, we can omit the sum over m′

2 and substitute the j′2,m′
2 with the

quantities j2,m2 in the sum. In the last step we use the WE theorem A.9 in terms
of CG-coefficients. The next step is to manipulate the equation to obtain a term
that can be expressed as a Wigner 6-j-symbol.
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⟨J ||T(k)||J ′⟩ =
∑

M ′,q,m1,m2,m′
1

√
(2J + 1)(−1)k+J ′−JCJ,M

k,q,J ′,M ′C
J,M
j1,m1;j2,m2

× (−1)2j
′
1+J ′−m′

1−j2

√
2J ′ + 1

2j2 + 1
Cj2,m2

j′1,−m′
1;J

′,M ′(−1)j
′
1−m′

1

×
√

2j1 + 1

2k + 1
Ck,q

j1,m1;j′1,−m′
1

1√
(2j1 + 1)

⟨j1||U(k)||j′1⟩ δj2j′2

=
∑

M ′,q,m1,m2,m′
1

√
(2J + 1)(2J ′ + 1)(2j1 + 1)

(2j2 + 1)(2k + 1)(2j1 + 1)
(−1)k+2J ′−J+3j′1−j2−2m′

1

× CJ,M
k,q,J ′,M ′C

J,M
j1,m1;j2,m2

Cj2,m2

j′1,−m′
1;J

′,M ′C
k,q
j1,m1;j′1,−m′

1
⟨j1||U(k)||j′1⟩ δj2j′2

=
∑

M ′,q,m1,m2,m′
1

√
(2J + 1)(2J ′ + 1)

(2j2 + 1)(2k + 1)
(−1)k+2J ′−J−j2+j′1(−1)2(j

′
1−m′

1)

× (−1)2(j
′
1+j′2−J ′)CJ,M

k,q,J ′,M ′C
J,M
j1,m1;j2,m2

Cj2,m2

j′1,−m′
1;J

′,M ′C
k,q
j1,m1;j′1,−m′

1

× ⟨j1||U(k)||j′1⟩ δj2j′2

=
∑

M ′,q,m1,m2,m′
1

(−1)j1+j′1+J ′+J√
(2j2 + 1)(2k + 1)

× CJ,M
k,q,J ′,M ′C

J,M
j1,m1;j2,m2

Cj2,m2

j′1,−m′
1;J

′,M ′C
k,q
j1,m1;j′1,−m′

1

× (−1)j1+j2+J ′+k
√

(2J + 1)(2J ′ + 1) ⟨j1||U(k)||j′1⟩ δj2j′2

=

j1 j′1 k

J ′ J j2

 (−1)J
′+j1+j2+k

√
(2J + 1)(2J ′ + 1) ⟨j1||U(k)||j′1⟩ δj2j′2

First, we used the symmetry relations of the CG-coefficients, yielding extra factors
where indices were permuted. After the manipulation, (j1, j′1, k, J ′, J, j2) assume
the role of (j1, j2, J12, j3, J, J23) in equation A.7 for the 6-j symbol. Additionally
we used, that (j′1 + j′2 − J ′) as well as (j′1 −m′

1) are integer numbers, meaning in
this case we find for the factors (−1)2(j

′
1+j2−J ′) = (−1)2(j

′
1−m′

1) = 1. These factors
can be multiplied in and out of the equation without changing the value.

53



Such formulas can be derived for different types of operators. The general formula
for an operator T(k) = (U(k1) ⊗ V(k2))(k) involves a Wigner-9-j symbol, this is
beyond what is needed here. The operators considered here are of three types.
Operators which only act on one space, such as the one just considered (U

(k)
q ⊗1),

where the formula was found following the above derivation:

⟨(j1, j2)J ||U(k) ⊗ 1||(j′1, j′2)J ′⟩ = (−1)J
′+j1+j2+k

√
(2J + 1)(2J ′ + 1)

×

j1 k j′1

J ′ j2 J

 ⟨j1||U(k)||j′1⟩ δj2j′2 ,
(A.13)

Equivalently we can consider the case, of a tensor operator only acting on the
second space. This means we have an operator (1 ⊗ V

(k)
q ). The same way as for

equation A.13 we can express a reduced matrix element of such an operator as:

⟨(j1, j2)J ||1⊗V(k)||(j′1, j′2)J ′⟩ = (−1)J+j1+j′2+k
√

(2J + 1)(2J ′ + 1)

×

j2 k j′2

J ′ j1 J

 ⟨j2||V(k)||j′2⟩ δj1j′1 ,
(A.14)

The other type of operator that is recurrent is (U(k) ⊗ V(k))
(0)
0 , these are the

rank zero irreducible tensor operators that we have, when considering the tensor
product between two tensors of the same rank k. Often we refer to these as the
scalar product and use the notation (U · V) to denote these tensors. Reduced
matrix elements involving such operators can be expressed as:

⟨(j1, j2)J ||(U(k) ⊗V(k))(0)||(j′1, j′2)J ′⟩ = (−1)J+j′1+j2
√

(2J + 1)

×

j1 k j′1

j′2 J j2

 ⟨j1||U(k)||j′1⟩ ⟨j2||V(k)||j′2⟩ δJJ ′ ,

(A.15)

All the equations are derived following the same procedure, using the WE equation
A.9, the inverse A.10 and writing the states in the uncoupled basis A.3. We see
that they share similarities, for that reason we have to be careful with the labeling,
denoting j1 and j2 consistently and noting when we have primed quantities.
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Appendix B

Eigenstate labels

Here are the state labels i used for the lowest four rotational states L. On the
first page the tables on the left column show the two para-H+

2 levels L = 0, 2. The
right column shows the ortho-H+

2 level L = 1. On a second page the level L = 3 is
shown in two columns. As we can see, the number of states rapidly increases with
L and we have more states for ortho-H+

2 level than for para-H+
2 levels of a similar

rotational level L.
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Rotational Level L = 0

i F J MJ

0 1
2

1
2

−1
2

1 1
2

1
2

+1
2

Rotational Level L = 2

i F J MJ

0 1
2

3
2

−3
2

1 1
2

3
2

−1
2

2 1
2

3
2

+1
2

3 1
2

3
2

+3
2

4 1
2

5
2

−5
2

5 1
2

5
2

−3
2

6 1
2

5
2

−1
2

7 1
2

5
2

+1
2

8 1
2

5
2

+3
2

9 1
2

5
2

+5
2

Rotational Level L = 1

i F J MJ

0 1
2

1
2

−1
2

1 1
2

1
2

+1
2

2 1
2

3
2

−3
2

3 1
2

3
2

−1
2

4 1
2

3
2

+1
2

5 1
2

3
2

+3
2

6 3
2

1
2

−1
2

7 3
2

1
2

+1
2

8 3
2

3
2

−3
2

9 3
2

3
2

−1
2

10 3
2

3
2

+1
2

11 3
2

3
2

+3
2

12 3
2

5
2

−5
2

13 3
2

5
2

−3
2

14 3
2

5
2

−1
2

15 3
2

5
2

+1
2

16 3
2

5
2

+3
2

17 3
2

5
2

+5
2
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Rotational Level L = 3

i F J MJ

0 1
2

5
2

−5
2

1 1
2

5
2

−3
2

2 1
2

5
2

−1
2

3 1
2

5
2

+1
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4 1
2

5
2

+3
2

5 1
2

5
2

+5
2

6 1
2

7
2

−7
2

7 1
2

7
2

−5
2

8 1
2

7
2

−3
2

9 1
2

7
2

−1
2

10 1
2

7
2

+1
2

11 1
2

7
2

+3
2

12 1
2

7
2

+5
2

13 1
2

7
2

+7
2

14 3
2

3
2

−3
2

15 3
2

3
2

−1
2

16 3
2

3
2

+1
2

17 3
2

3
2

+3
2

18 3
2

5
2

−5
2

19 3
2

5
2

−3
2

20 3
2

5
2

−1
2

i F J MJ

21 3
2

5
2

+1
2

22 3
2

5
2

+3
2

23 3
2

5
2

+5
2

24 3
2

7
2

−7
2

25 3
2

7
2

−5
2

26 3
2

7
2

−3
2

27 3
2

7
2

−1
2

28 3
2

7
2

+1
2

29 3
2

7
2

+3
2

30 3
2

7
2

+5
2

31 3
2

7
2

+7
2

32 3
2

9
2

−9
2

33 3
2

9
2

−7
2

34 3
2

9
2

−5
2

35 3
2

9
2

−3
2

36 3
2

9
2

−1
2

37 3
2

9
2

+1
2

38 3
2

9
2

+3
2

39 3
2

9
2

+5
2

40 3
2

9
2

+7
2

41 3
2

9
2

+9
2
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Appendix C

Transition probabilities

C.1 Magnetic Dipole Transitions (M1)
Tables for magnetic field insensitive (M1) transitions in the 1 mT range for ground
vibrational (ν = 0) and the four lowest rotational levels (L = 0, 1, 2, 3). For the
para-H+

2 groundstate, there are no insensitive transitions, as there are only two
levels, which are pure. Only the matrix element is shown with the polarization q,
which could have a non-zero value according to equation 4.3. The tree standard
polarizations are right-hand circular σ+ (q = 1), linear π (q = 0) and left-hand
circular σ− (q = −1).
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(ν, L) = (0, 1)

i MJ f M ′
J B [µT] q | ⟨f |µq/µb |i⟩ | fhf [MHz]

6 −1
2

13 −3
2

15.29 -1 0.00544 88.7101

9 −1
2

14 −1
2

44.93 0 0.38639 7.8314

4 +1
2

9 −1
2

175.67 -1 0.4452 1412.1348

1 +1
2

3 −1
2

197.74 -1 0.20322 19.5997

8 −3
2

13 −3
2

202.17 0 0.32553 7.6292

1 +1
2

15 +1
2

233.38 0 0.15604 1384.9864

3 −1
2

15 +1
2

277.94 1 0.52651 1404.5916

6 −1
2

8 −3
2

334.1 -1 0.55286 96.2111

0 −1
2

9 −1
2

458.26 0 0.6635 1392.0777

10 +1
2

16 +3
2

468.05 1 0.28497 6.8241

9 −1
2

15 +1
2

488.55 1 0.22034 6.4608

0 −1
2

15 +1
2

509.73 1 0.21337 1385.6197

3 −1
2

9 −1
2

538.93 0 0.55052 1410.9949

0 −1
2

3 −1
2

600.44 0 0.32637 18.8975

7 +1
2

10 +1
2

763.84 0 0.43913 94.9703

8 −3
2

14 −1
2

787.96 1 0.14017 5.2398

(ν, L) = (0, 2)

i MJ f M ′
J B [µT] q | ⟨f |µq/µb |i⟩ | fhf [MHz]

2 +1
2

6 −1
2

0.42 -1 0.69372 105.4088

1 −1
2

7 +1
2

2.38 1 0.69424 105.4088

1 −1
2

6 −1
2

752.06 0 1.00141 103.2791
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(ν, L) = (0, 3)

i MJ f M ′
J B [µT] q | ⟨f |µq/µb |i⟩ | fhf [MHz]

19 −3
2

27 −1
2

22.86 1 0.30887 65.8919

27 −1
2

36 −1
2

44.13 0 0.45985 17.724

4 +3
2

28 +1
2

44.13 -1 0.31113 1384.0982

19 −3
2

36 −1
2

52.81 1 0.00419 83.6152

1 −3
2

36 −1
2

102.3 1 0.00688 1401.8046

3 +1
2

21 +1
2

122.54 0 0.18765 1318.2071

10 +1
2

36 −1
2

125.79 -1 0.59603 1448.2218

26 −3
2

35 −3
2

144.22 0 0.43867 17.6629

31 +7
2

39 +5
2

178.25 -1 0.09498 17.6537

20 −1
2

36 −1
2

238.47 0 0.0375 83.49

3 +1
2

9 −1
2

246.43 -1 0.22139 -46.3899

4 +3
2

22 +3
2

248.33 0 0.53857 1318.2241

30 +5
2

38 +3
2

248.36 -1 0.16107 17.5471

2 −1
2

36 −1
2

281.99 0 0.03749 1401.6621

25 −5
2

34 −5
2

281.99 0 0.39219 17.5053

5 +5
2

23 +5
2

281.99 0 0.86662 1318.2428

3 +1
2

28 +1
2

305.55 0 0.62082 1384.225

9 −1
2

21 +1
2

305.55 1 0.22671 1364.5896

29 +3
2

37 +1
2

315.57 -1 0.22416 17.3975

8 −3
2

15 −1
2

345.98 1 0.00799 1282.6326

21 +1
2

28 +1
2

360.42 0 0.60964 66.032

9 −1
2

36 −1
2

393.1 0 0.89005 1447.809

28 +1
2

36 −1
2

401.72 -1 0.28407 17.1832

21 +1
2

36 −1
2

417.05 -1 0.04373 83.2131

Continued on next page
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(ν, L) = (0, 3)

i MJ f M ′
J B [µT] q | ⟨f |µq/µb |i⟩ | fhf [MHz]

3 +1
2

36 −1
2

463.57 -1 0.04181 1401.3893

18 −5
2

35 −3
2

467.88 1 0.02143 83.0336

9 −1
2

28 +1
2

480.97 1 0.51594 1430.6271

27 −1
2

35 −3
2

520.22 -1 0.33974 16.8562

24 −7
2

33 −7
2

549.42 0 0.30583 17.1056

2 −1
2

28 +1
2

607.76 1 0.46221 1384.5573

15 −1
2

36 −1
2

629.46 0 0.00008 164.3518

2 −1
2

9 −1
2

642.98 0 0.33097 -46.0636

0 −5
2

35 −3
2

680.54 1 0.02469 1400.8946

8 −3
2

36 −1
2

694.96 1 0.62228 1446.9227

26 −3
2

34 −5
2

719.49 -1 0.38605 16.2973

19 −3
2

35 −3
2

759.87 0 0.10216 82.3805

3 +1
2

15 −1
2

855.54 -1 0.55843 1237.1638

4 +3
2

23 +5
2

855.54 1 0.4908 1318.6191

20 −1
2

28 +1
2

889.0 1 0.47279 66.531

9 −1
2

20 −1
2

932.27 0 0.3204 1364.0673

1 −3
2

35 −3
2

974.52 0 0.10385 1400.1867

3 +1
2

22 +3
2

992.92 1 0.6363 1318.6607
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C.2 Two-photon Transitions (2E1)
Here we only consider the case of driving the two-photon transitions with one
laser of a certain polarization q. This leads to transitions for which |∆MJ | =
0, 2. Polarization is adjusted according to the transition, linear for ∆MJ = 0
and circular for |∆MJ | = 2. We could in principle also drive transitions with
|∆MJ | = 1, but we would need two lasers of different polarizations.

The frequency shifts in the table C.2 are for the full transition, if we want to
calculate the shift for each of the two photons, we have to take half of each value
respectively. Here we have chosen the propagation direction of the photons to be
along the quantization axis, therefore the polarizabilities that are used are α∥. If
we were to position the laser at an angle θ from the axis we would have to use αθ,
which would in general lead to a different light shift ∆fLS.
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(ν, L) = (0, 1) (ν ′, L′) = (1, 1) f0 = 65596427.538167596 MHz

i MJ f M ′
J B [µT] ∆αif q | ⟨f | SQqq |i⟩ | ∆fhf [MHz] ∆fLS [Hz]

8 −3
2

8 −3
2

3.09 0.91355 0 0.51213 -13.428 -4.46

9 −1
2

9 −1
2

10.4 0.55 0 0.32697 -13.428 -4.205

14 −1
2

14 −1
2

16.43 0.91355 0 0.5144 -12.8484 -4.44

15 +1
2

15 +1
2

16.63 0.91355 0 0.51113 -12.8484 -4.468

10 +1
2

10 +1
2

19.1 0.55 0 0.3297 -13.428 -4.17

13 −3
2

13 −3
2

24.17 0.77722 0 0.44829 -12.8485 -4.334

16 +3
2

16 +3
2

25.45 0.77722 0 0.43845 -12.8485 -4.432

14 −1
2

9 −1
2

43.5 -0.30691 0 0.06292 -5.5959 12.195

9 −1
2

14 −1
2

43.87 1.77046 0 0.06489 -20.6803 -68.206

11 +3
2

11 +3
2

47.71 0.91355 0 0.52201 -13.428 -4.375

3 −1
2

3 −1
2

53.83 0.959 0 0.53178 24.6475 -4.508

4 +1
2

4 +1
2

105.61 0.959 0 0.54359 24.6475 -4.41

2 −3
2

10 +1
2

164.72 0.65711 1 0.00514 1398.7492 -319.746

2 −3
2

2 −3
2

169.45 0.50456 0 0.30481 24.6463 -4.138

10 +1
2

2 −3
2

175.84 0.39744 -1 0.00515 -1387.5224 -193.058

13 −3
2

8 −3
2

194.28 1.23489 0 0.16876 -5.7885 -18.294

Continued on next page
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(ν, L) = (0, 1) (ν ′, L′) = (1, 1) f0 = 65596427.538167596 MHz

i MJ f M ′
J B [µT] ∆αif q | ⟨f | SQqq |i⟩ | ∆fhf [MHz] ∆fLS [Hz]

8 −3
2

13 −3
2

195.17 0.45588 0 0.17772 -20.4861 -6.413

1 +1
2

15 +1
2

219.94 1.342 0 0.00535 1372.1244 -627.091

15 +1
2

1 +1
2

227.86 0.30332 0 0.00516 -1361.4709 -147.043

0 −1
2

0 −1
2

287.23 0.73178 0 0.44306 23.5041 -4.129

5 +3
2

14 −1
2

309.17 1.87757 -1 0.00055 1391.9189 -8559.564

14 −1
2

5 +3
2

335.31 -0.45946 1 0.00049 -1380.1448 2321.653

0 −1
2

9 −1
2

411.13 0.12155 0 0.00295 1378.7037 -103.061

9 −1
2

0 −1
2

470.61 1.16023 0 0.00295 -1368.5697 -981.825

3 −1
2

9 −1
2

513.05 -0.41402 0 0.00262 1397.6396 394.57

9 −1
2

3 −1
2

529.47 1.92302 0 0.00305 -1386.3689 -1577.497

0 −1
2

3 −1
2

582.66 1.49456 0 0.16869 5.7237 -22.15

3 −1
2

0 −1
2

590.9 0.19621 0 0.17723 42.4112 -2.768

6 −1
2

6 −1
2

649.29 0.73178 0 0.41496 -7.3962 -4.409

7 +1
2

10 +1
2

723.47 0.12155 0 0.101 81.6407 -3.009

10 +1
2

7 +1
2

746.21 1.16023 0 0.10199 -102.4098 -28.44

12 −5
2

12 −5
2

1000 0.50456 0 0.30476 -12.8484 -4.139

Continued on next page
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(ν, L) = (0, 1) (ν ′, L′) = (1, 1) f0 = 65596427.538167596 MHz

i MJ f M ′
J B [µT] ∆αif q | ⟨f | SQqq |i⟩ | ∆fhf [MHz] ∆fLS [Hz]

17 +5
2

17 +5
2

1000 0.50456 0 0.30476 -12.8483 -4.139

Table C.2: Magnetic field insensitive (2E1) transitions in the 1 mT range between hyperfine states of the ortho-
groundstate and the first excited vibrational level, when driving with one laser of polarization q along the quantization
axis. The magnetic field value is indicated at which the transition is insensitive. Together with the difference of
the static polarizabilities of the two states ∆αif , the polarization of the laser light q and the corresponding matrix
element of the two-photon transition operator. Then the frequency shift of the transition frequencies is indicated.
First is the hyperfine frequency ∆fhf due to the effective spin Hamiltonian, lastly the light shift due to the driving
laser ∆fLS is indicated. Note that in contrast to the other frequencies (given in MHz), this frequency is given in Hz.
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C.3 Electric Quadrupole Transitions (E2)
Here we display magnetic field insensitive electric quadrupole (E2) transitions in
the 1 mT range between different ro-vibrational levels.

We indicate the initial |i⟩ and final |f⟩ states, together with the quantum num-
ber MJ corresponding to the projection of the total angular momentum onto the
quantization axis. Additionally the magnetic field strength B at which the transi-
tion is insensitive, the difference in the static polarizability between the two states
∆αθ (where the anlge θ is given by the propagation direction n⃗) and the matrix
element |Θif

ϵ,n| as defined in equation 4.11 are given. The chosen polarization and
propagation vectors, depending on the |∆MJ | of the transition, are:

ϵ⃗±2 = êy, n⃗±2 = sin
π

2
êx + cos

π

2
êz,

ϵ⃗±1 = êz, n⃗±1 = êx,

ϵ⃗0 = cos
π

4
êx − sin

π

4
êz, n⃗0 = sin

π

4
êx + cos

π

4
êz,

Finally both the hyperfine frequency shift from the effective spin Hamiltonian and
the light shift are given. Note that the light shift is intensity dependent, for the
weakest transitions, with |Θif

ϵ,n| ≤ 10−5, to achieve a π-pulse we need a very large
intensity, witch experimentally is not feasible and thus this transition is not really
relevant.
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(ν, L) = (0, 1) (ν ′, L′) = (3, 3) f0 = 192818042.8465861 MHz

i MJ f M ′
J B [µT] ∆αif |Θif

ϵ,n| ∆fhf [MHz] ∆fLS [Hz]

15 +1
2

15 −1
2

0.7 2.57424 0.2504(-4) -144.7496 -2142.605

14 −1
2

16 +1
2

3.7 2.57424 0.2504(-4) -144.7496 -2142.632

10 +1
2

29 +3
2

14.36 2.39077 2.1167(-4) -31.3203 -27.857

0 −1
2

10 +1
2

35.13 2.06458 0.0082(-4) 40.2109 -1595333.356

6 −1
2

17 +3
2

47.52 3.57054 2.7228(-4) -56.0391 -25.142

13 −3
2

24 −7
2

57.62 3.85948 1.3929(-4) -23.4788 -103.842

9 −1
2

16 +1
2

62.85 2.14578 0.0156(-4) -152.5749 -459549.322

16 +3
2

39 +5
2

73.86 2.80867 2.7071(-4) -8.4567 -20.007

15 +1
2

8 −3
2

74.75 2.63909 0.0525(-4) -1344.5781 -49968.31

15 +1
2

37 +1
2

97.03 3.27848 3.0736(-4) -8.4939 -18.116

15 +1
2

5 +5
2

105.78 4.26033 0.0391(-4) -1306.0743 -145769.554

9 −1
2

11 +3
2

117.69 2.21063 0.0132(-4) -1352.343 -666113.441

15 +1
2

23 +5
2

146.03 3.77396 0.8073(-4) -77.9496 -302.301

11 +3
2

40 +7
2

146.47 3.59982 0.3158(-4) -16.2572 -1883.786

14 −1
2

35 −3
2

149.55 2.54902 2.5159(-4) -8.572 -21.023

1 +1
2

22 +3
2

151.62 2.84638 0.0852(-4) 1306.9022 -20454.896

Continued on next page
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(ν, L) = (0, 1) (ν ′, L′) = (3, 3) f0 = 192818042.8465861 MHz

i MJ f M ′
J B [µT] ∆αif |Θif

ϵ,n| ∆fhf [MHz] ∆fLS [Hz]

3 −1
2

4 +3
2

154.02 3.01689 1.1282(-4) 98.3796 -123.733

9 −1
2

18 −5
2

161.53 3.3455 2.1032(-4) -85.6148 -39.482

9 −1
2

0 −5
2

180.96 3.83188 0.0945(-4) -1313.7495 -22422.053

14 −1
2

26 −3
2

194.21 2.81922 0.204(-4) -23.5568 -3535.606

9 −1
2

27 −1
2

206.13 3.37262 2.284(-4) -31.0888 -33.75

15 +1
2

4 +3
2

218.12 2.96334 0.0242(-4) -1306.2004 -264476.487

3 −1
2

22 +3
2

249.78 3.11417 0.0335(-4) 1326.4969 -144975.728

8 −3
2

24 −7
2

257.12 4.02015 2.9713(-4) -31.0648 -23.77

10 +1
2

30 +5
2

260.4 2.87114 1.4513(-4) -30.9957 -71.161

15 +1
2

22 +3
2

265.96 3.06061 0.3828(-4) -78.0942 -1090.317

9 −1
2

19 −3
2

274.78 2.63216 0.2594(-4) -85.4263 -2042.295

9 −1
2

10 +1
2

285.12 1.85036 0.0166(-4) -1352.0316 -352289.894

0 −1
2

20 −1
2

296.7 3.20306 0.0958(-4) 1306.9548 -18209.161

9 −1
2

1 −3
2

307.08 2.53488 0.012(-4) -1313.5427 -918373.995

13 −3
2

33 −7
2

321.55 3.43915 2.7349(-4) -8.8378 -24.003

15 +1
2

3 +1
2

348.44 3.29049 0.049(-4) -1306.4201 -71423.576

Continued on next page
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(ν, L) = (0, 1) (ν ′, L′) = (3, 3) f0 = 192818042.8465861 MHz

i MJ f M ′
J B [µT] ∆αif |Θif

ϵ,n| ∆fhf [MHz] ∆fLS [Hz]

1 +1
2

4 +3
2

349.92 2.74911 2.8792(-4) 78.7918 -17.312

15 +1
2

36 −1
2

370.44 2.33886 2.1022(-4) -9.2001 -27.627

3 −1
2

36 −1
2

399.93 3.2517 0.0129(-4) 1395.3775 -1024829.002

3 −1
2

3 +1
2

400.89 2.36839 0.9281(-4) 98.1605 -143.535

9 −1
2

20 −1
2

409.99 3.31017 1.2901(-4) -85.139 -103.83

4 +1
2

35 −3
2

410.03 2.60257 0.0057(-4) 1395.4076 -4115002.425

15 +1
2

21 +1
2

410.05 3.09594 0.9456(-4) -78.3338 -180.733

1 +1
2

23 +5
2

417.82 3.55973 0.1002(-4) 1307.0979 -18517.038

16 +3
2

38 +3
2

442.31 3.25374 2.7407(-4) -9.2026 -22.613

1 +1
2

15 −1
2

454.24 2.36001 0.0941(-4) 1240.4524 -13912.027

9 −1
2

2 −1
2

462.06 3.50472 0.0569(-4) -1313.2222 -56540.074

14 −1
2

34 −5
2

474.09 2.96934 1.9799(-4) -9.551 -39.543

9 −1
2

28 +1
2

479.98 2.15059 0.9357(-4) -30.2695 -128.23

0 −1
2

2 −1
2

479.98 3.39761 3.0986(-4) 78.8556 -18.473

9 −1
2

9 −1
2

488.69 3.52273 0.0313(-4) -1351.4315 -188067.235

15 +1
2

9 −1
2

498.81 2.27881 0.0361(-4) -1344.9707 -91086.366

Continued on next page
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(ν, L) = (0, 1) (ν ′, L′) = (3, 3) f0 = 192818042.8465861 MHz

i MJ f M ′
J B [µT] ∆αif |Θif

ϵ,n| ∆fhf [MHz] ∆fLS [Hz]

0 −1
2

28 +1
2

501.07 2.36481 0.0018(-4) 1361.8099 -38364081.771

0 −1
2

9 −1
2

519.5 3.41562 0.193(-4) 40.6494 -4785.826

15 +1
2

2 −1
2

519.5 2.31484 0.024(-4) -1306.765 -209049.4

3 −1
2

21 +1
2

534.38 2.75749 0.0261(-4) 1326.2192 -211184.323

15 +1
2

28 +1
2

542.58 3.15839 0.9372(-4) -23.8103 -187.728

9 −1
2

21 +1
2

544.97 2.27548 1.586(-4) -84.7756 -47.226

1 +1
2

8 −3
2

545.91 2.42486 0.0722(-4) 40.6039 -24270.002

8 −3
2

25 −5
2

569.57 3.29959 1.5629(-4) -30.0894 -70.515

10 +1
2

14 −3
2

587.05 3.35631 1.1587(-4) -151.2893 -130.498

2 −3
2

37 +1
2

618.52 1.85685 0.0033(-4) 1395.0036 -8819040.15

3 −1
2

2 −1
2

645.55 3.26371 0.391(-4) 97.7416 -1114.674

15 +1
2

20 −1
2

650.55 2.70394 0.649(-4) -78.7298 -335.135

9 −1
2

22 +3
2

657.12 2.63216 1.3568(-4) -84.3816 -74.644

9 −1
2

3 +1
2

657.12 1.88638 0.0694(-4) -1312.7791 -20434.7

9 −1
2

15 −1
2

671.02 3.37502 0.8892(-4) -150.6737 -222.809

0 −1
2

21 +1
2

682.47 2.48971 0.074(-4) 1307.3343 -23711.381

Continued on next page
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(ν, L) = (0, 1) (ν ′, L′) = (3, 3) f0 = 192818042.8465861 MHz

i MJ f M ′
J B [µT] ∆αif |Θif

ϵ,n| ∆fhf [MHz] ∆fLS [Hz]

7 +1
2

38 +3
2

722.68 2.33479 0.0152(-4) 78.9851 -528959.58

9 −1
2

8 −3
2

785.49 2.21063 0.0443(-4) -1350.4162 -58831.771

0 −1
2

15 −1
2

795.78 3.26791 0.077(-4) 1241.5109 -28774.333

3 −1
2

20 −1
2

809.84 3.06916 0.0068(-4) 1325.7147 -3441350.394

15 +1
2

35 −3
2

809.84 2.54902 1.3794(-4) -11.0316 -69.939

15 +1
2

1 −3
2

836.8 2.96334 0.0021(-4) -1307.332 -35049789.153

3 −1
2

35 −3
2

855.72 2.60257 0.0217(-4) 1393.3796 -287525.148

3 −1
2

9 −1
2

864.88 3.28173 3.1046(-4) 59.5006 -17.774

3 −1
2

28 +1
2

864.88 2.6326 0.0484(-4) 1380.6384 -58591.049

0 −1
2

22 +3
2

890.87 2.84638 0.0604(-4) 1307.8221 -40690.34

9 −1
2

4 +3
2

891.47 2.53488 0.0553(-4) -1312.2205 -43333.721

3 −1
2

1 −3
2

918.17 3.01689 0.6066(-4) 97.0675 -427.967

16 +3
2

37 +1
2

926.21 2.17819 1.6199(-4) -11.1239 -43.331

1 +1
2

29 +3
2

932.62 2.605 0.0031(-4) 1362.3745 -14293420.459

4 +1
2

11 +3
2

963.43 2.69264 2.707(-4) 59.5905 -19.182

5 +3
2

16 +1
2

992.78 2.09223 0.0215(-4) 1260.7352 -237378.209
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(ν, L) = (0, 1) (ν ′, L′) = (3, 1) f0 = 185483644.34501278 MHz

i MJ f M ′
J B [µT] ∆αif |Θif

ϵ,n| ∆fhf [MHz] ∆fLS [Hz]

9 −1
2

9 −1
2

0.44 2.66523 0.9844(-4) -37.4044 -155.15

3 −1
2

3 −1
2

2.09 3.0881 1.2283(-4) 68.5122 -115.472

14 −1
2

14 −1
2

4.94 3.04111 0.9901(-4) -35.7644 -175.005

15 +1
2

15 +1
2

5.0 3.04111 0.9787(-4) -35.7644 -179.123

13 −3
2

13 −3
2

7.3 2.90015 0.263(-4) -35.7645 -2365.737

16 +3
2

16 +3
2

7.61 2.90015 0.2286(-4) -35.7645 -3129.587

16 +3
2

7 +1
2

7.71 2.90673 1.554(-4) -108.8576 -67.901

10 +1
2

10 +1
2

8.46 2.66523 0.9749(-4) -37.4044 -158.209

6 −1
2

13 −3
2

13.28 2.70564 1.5586(-4) 52.9456 -62.83

11 +3
2

11 +3
2

22.16 3.04111 1.0345(-4) -37.4047 -160.319

14 −1
2

9 −1
2

39.35 2.451 0.6818(-4) -29.5707 -297.41

9 −1
2

14 −1
2

39.81 3.25534 0.6802(-4) -43.5976 -396.953

4 +1
2

4 +1
2

39.81 3.0881 1.2637(-4) 68.5122 -109.092

2 −3
2

10 +1
2

140.74 3.1755 0.0351(-4) 1374.7888 -145787.742

3 −1
2

1 +1
2

162.34 3.12095 1.7333(-4) 84.8456 -58.604

10 +1
2

2 −3
2

173.15 3.37658 0.0353(-4) -1343.6615 -153031.952

Continued on next page
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(ν, L) = (0, 1) (ν ′, L′) = (3, 1) f0 = 185483644.34501278 MHz

i MJ f M ′
J B [µT] ∆αif |Θif

ϵ,n| ∆fhf [MHz] ∆fLS [Hz]

13 −3
2

8 −3
2

176.47 3.12145 1.8273(-4) -29.7441 -52.737

1 +1
2

3 −1
2

177.56 2.11553 1.7319(-4) 48.9032 -39.791

8 −3
2

13 −3
2

178.95 2.81982 1.8619(-4) -43.4197 -45.886

3 −1
2

15 +1
2

187.1 2.53084 0.0212(-4) 1368.7823 -317150.382

1 +1
2

15 +1
2

191.81 3.14823 0.0568(-4) 1349.1825 -55080.608

15 +1
2

1 +1
2

212.46 2.74606 0.0506(-4) -1319.7342 -60427.814

0 −1
2

0 −1
2

212.46 2.85317 0.1893(-4) 65.2173 -4489.415

5 +3
2

14 −1
2

258.58 1.99527 0.0043(-4) 1368.9523 -5974746.079

6 −1
2

8 −3
2

266.07 2.26306 0.024(-4) 58.8796 -221974.978

0 −1
2

9 −1
2

329.92 2.55811 0.0294(-4) 1354.8186 -166933.649

14 −1
2

5 +3
2

330.8 3.80504 0.0031(-4) -1336.275 -21966206.48

8 −3
2

6 −1
2

335.18 3.0674 0.0363(-4) -116.3427 -131632.759

15 +1
2

3 −1
2

345.21 2.32975 0.0216(-4) -1336.1035 -282210.403

16 +3
2

10 +1
2

401.49 3.49684 0.0995(-4) -30.4327 -19916.6

15 +1
2

9 −1
2

423.26 3.65751 1.0754(-4) -30.7575 -178.413

10 +1
2

16 +3
2

430.13 2.49141 0.1477(-4) -42.6762 -6444.146
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(ν, L) = (0, 1) (ν ′, L′) = (3, 1) f0 = 185483644.34501278 MHz

i MJ f M ′
J B [µT] ∆αif |Θif

ϵ,n| ∆fhf [MHz] ∆fLS [Hz]

0 −1
2

15 +1
2

431.6 2.26306 0.0527(-4) 1349.7117 -46021.681

9 −1
2

15 +1
2

442.49 2.04883 1.0654(-4) -42.3668 -101.835

3 −1
2

9 −1
2

458.88 2.42422 0.0302(-4) 1373.8037 -150243.417

6 −1
2

6 −1
2

483.21 2.85317 0.0448(-4) -20.1311 -80183.969

15 +1
2

0 −1
2

484.62 3.0674 0.0451(-4) -1320.3824 -85095.859

9 −1
2

0 −1
2

496.1 2.96028 0.0315(-4) -1326.8431 -168655.77

9 −1
2

3 −1
2

505.82 3.3291 0.028(-4) -1342.5505 -240164.106

0 −1
2

3 −1
2

540.01 3.22199 1.8243(-4) 49.5341 -54.615

3 −1
2

0 −1
2

563.07 2.71928 1.8593(-4) 84.1478 -44.374

7 +1
2

10 +1
2

638.54 2.55811 1.1058(-4) 57.8505 -118.015

14 −1
2

8 −3
2

682.3 2.47728 1.6818(-4) -31.8384 -49.411

10 +1
2

7 +1
2

702.72 2.96028 1.049(-4) -115.2349 -151.757

8 −3
2

14 −1
2

717.43 2.47728 1.7112(-4) -41.2965 -47.729

15 +1
2

3 −1
2

744.75 2.32975 0.028(-4) -1336.0638 -167907.159

1 +1
2

9 −1
2

815.2 3.44328 0.0603(-4) 1353.9254 -53374.573

17 +5
2

17 +5
2

1000.0 2.61824 1.2306(-4) -35.7642 -97.543
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(ν, L) = (0, 0) (ν ′, L′) = (3, 2) f0 = 190175354.34176856 MHz

i MJ f M ′
J B [µT] ∆αif |Θif

ϵ,n| ∆fhf [MHz] ∆fLS [Hz]

0 −1
2

4 −5
2

450 3.97192 2.831(-4) 34.7356 -26.593

1 +1
2

9 +5
2

450 3.97192 2.831(-4) 34.7234 -26.593

Table C.5: Nearly insensitive (E2) transitions in the 1 mT range between two para-H+
2 levels. Here all the states

considered are stretched states and thus pure. The sensitivity of the two transitions is constant in the entire range,
it is sif = ±13.5615 MHz/T. We have chosen to consider the states at B = 450 µT for the hyperfine shift. By
knowing the sensitivity, this shift can be computed for any other field strength, but does not change much along the
entire range.
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