
Alexander Ferk

Integrated Real-Time Phase Modelling for
Trapped Ion Quantum Information Processing

Master’s Thesis

Eidgenössische Technische Hochschule Zürich

Trapped Ion Quantum Information

Supervisors:
Martin Stadler
Jonathan Home

Zürich, October 2022

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Integrated Real-Time Phase Modelling for Trapped Ion Quantum Information Processing

Ferk Alexander

Zürich, 17.10.2022

Abstract

With increasing complexity in quantum algorithms more qubits and gates are required. Gate
errors must be minimized, otherwise accumulated errors render the computation results un-
usable. In trapped ion quantum computing, gates can be performed by optically driving
transitions using laser pulses. For laser driven gates, the phase of the pulse relative to the qubit
determines the axis of rotation. However, off-resonant coupling to other transitions shifts the
qubit frequency. For accurate, coherent control of qubit transitions, the phase of the qubit
must be modelled in order to adjust the phase of the laser pulse accordingly. We present
an integrated approach to this problem, modelling the phase of the qubit in real-time on the
current control system and demonstrate the phase adjustment of the RF laser modulation on
the control hardware.

Contents

1 Theory 5
1.1 Atom Light Interaction . 5
1.2 Atomic Level Structure . 6
1.3 Single Qubit Gates . 7
1.4 AC Stark Shift . 8

2 Trapped Ion Control System 11
2.1 Overview . 11
2.2 Experimental Sequence Structure . 13
2.3 Experimental Sequence Generation . 15
2.4 Coherent Pulses . 17

3 Phase Tracker Implementation 19
3.1 Design Considerations . 19
3.2 Design Overview . 21
3.3 Python Sequence Generation - Ionpulse Sequence Generator 22
3.4 Interface Format - JSON Structure . 22
3.5 Sequence Interpretation - JSON Parser . 23
3.6 Sequencer Driver - Pulseway . 24
3.7 Communication - Hiway . 25
3.8 DDS-Card FPGA Design - Minotaur . 26

4 Results 29

5 Conclusion and Outlook 33

6 References 34

Alexander Ferk 17.10.2022

1 Theory

In this chapter, we will at first look at the interaction between the atom and the laser light
starting from the Hamiltonian in the electric dipole approximation. Then we will see how we
can use a 40Ca+ ion to encode a qubit and drive gates for Quantum Information Processing
(QIP) operations. Finally, from the interaction with the laser, we will derive the effects on
the frequency of the qubit. This lets us determine the phase between the qubit and our phase
reference (usually the laser).

1.1 Atom Light Interaction

This section shall summarize the theory of atom-light interaction as well as introduce the
notation used in the following sections. We will mainly follow the derivation from Fischer [5],
Malinowski [11], Cohen-Tannoudji et al. [3], and Loudon [10].

As a starting point, we introduce the electric dipole Hamiltonian [5, 11]. This Hamiltonian
is obtained by starting from the interaction of the vector potential with the current density of
the atom, then rewriting in the Göppert-Mayer gauge and applying the long-wavelength1 and
electric dipole approximation2 [3]. This gives

𝐻𝑑𝑖𝑝𝑜𝑙𝑒 =
∑︁
𝛼

𝑝𝑝𝑝2
𝛼

2𝑚𝛼

+𝑉𝑐𝑜𝑢𝑙 − 𝑑𝑑𝑑 · 𝐸𝐸𝐸 (𝑡) (1)

with the summation performed over all charge indices 𝛼 with momentum 𝑝𝑝𝑝𝛼 and mass 𝑚𝛼.
The Coulomb potential 𝑉𝑐𝑜𝑢𝑙 contains the electrostatic energy of the electrons and the core.
The interaction takes the form 𝐻𝐴𝐹 = 𝑑𝑑𝑑 ·𝐸𝐸𝐸 (𝑡), with the dipole operator 𝑑𝑑𝑑 and the electric field
at the atom 𝐸𝐸𝐸 (𝑡).[5]

Ideally, we want a two level system as our qubit, with ground state |𝑔⟩ and excited state |𝑒⟩.
In the dynamics of this two level system, the dipole operator 𝑑𝑑𝑑 only couples states of opposite
parity and can be identified as [2, 5]

𝑑𝑑𝑑 = `̀̀∗𝜎+ + `̀̀𝜎−

where the dipole matrix elements are `̀̀ = ⟨𝑔 | 𝑑𝑑𝑑 |𝑒⟩, and the Pauli operators 𝜎+ = |𝑒⟩ ⟨𝑔 |,
𝜎− = |𝑔⟩ ⟨𝑒 |. For this two level system, we obtain the Hamiltonian

𝐻 = 𝐻0 + 𝐻1 = ℏ𝜔𝑔 |𝑔⟩ ⟨𝑔 | + ℏ𝜔𝑒 |𝑒⟩ ⟨𝑒 | − (`̀̀∗𝜎+ + `̀̀𝜎−) · 𝐸𝐸𝐸 (𝑡) (2)

1 Assumes that the separation of charges (≈0.1 nm for an atom) is much less than the wavelength of the light
(>100 nm)

2 Neglects higher order terms when expanding the electric scalar and vector potentials.

5 / 35

Alexander Ferk 17.10.2022

where we identify the Hamiltonian of the bare system as 𝐻0 and the interaction Hamiltonian
as 𝐻1. We further assume the interacting light to be a plane wave [2, 5]

𝐸𝐸𝐸 (𝑡) = 𝐸0

2

(
𝜖𝜖𝜖𝑒−𝑖(𝜔𝑡+𝜙) + 𝜖𝜖𝜖∗𝑒𝑖(𝜔𝑡+𝜙)

)
with the polarization vector 𝜖𝜖𝜖 , amplitude 𝐸0, frequency 𝜔 and phase 𝜙. We obtain

𝐻1 = −𝐸0

2

(
`̀̀∗(𝜖𝜖𝜖𝑒−𝑖(𝜔𝑡+𝜙) + 𝜖𝜖𝜖∗𝑒𝑖(𝜔𝑡+𝜙))𝜎+ + `̀̀ (𝜖𝜖𝜖𝑒−𝑖(𝜔𝑡+𝜙) + 𝜖𝜖𝜖∗𝑒𝑖(𝜔𝑡+𝜙))𝜎−

)
.

Here we apply a unitary transformation U into the rotating frame of 𝜔 yielding

𝐻1 = −𝐸0

2

(
`̀̀∗(𝜖𝜖𝜖𝑒−𝑖𝜙 + 𝜖𝜖𝜖∗𝑒𝑖(2𝜔𝑡+𝜙))𝜎+ + `̀̀ (𝜖𝜖𝜖𝑒−𝑖(2𝜔𝑡+𝜙) + 𝜖𝜖𝜖∗𝑒𝑖𝜙)𝜎−

)
where we apply the rotating wave approximation, neglecting the fast rotating terms with a
frequency of 2𝜔 [5]. This yields for the full Hamiltonian

𝐻 ≈ ℏ
𝛿

2
𝜎𝑧 − ℏ

Ω

2
(
𝑒−𝑖𝜙𝜎+ + 𝑒𝑖𝜙𝜎−

)
(3)

Here we identify the detuning 𝛿 = 𝜔 − 𝜔𝑒𝑔 = 𝜔 − (𝜔𝑒 − 𝜔𝑔) and the Rabi frequency

Ω =
𝐸0

ℏ
`̀̀∗𝜖𝜖𝜖 =

𝐸0

ℏ
| ⟨𝑔 | 𝑑𝑑𝑑 · 𝜖𝜖𝜖 |𝑒⟩ |

where we have chosen the phases of `̀̀ and 𝜖𝜖𝜖 such that Ω is real.[5, 11]

1.2 Atomic Level Structure

Trapped ion experiments begin with a (neutral) atom source (e.g. an oven3 or an ablation
target4). The neutral atoms are then ionized with a photo-ionization laser, cooled (with e.g.
Doppler cooling) and trapped in an electric field. One common atom to employ is 40Ca, which
due to its electron configuration of [Ar]4s2 yields one valence electron after ionization (spin
quantum number 𝑆 =1/2).

Figure 1 shows the structure of a 40Ca+ atom with the electronic levels denoted as 𝐿𝐽 (total
orbital angular momentum 𝐿 and total angular momentum J). In addition, Zeeman effect splits
each level 𝐿𝐽 into sublevels of 𝑚 𝑗 = (−𝐽,−𝐽 + 1, ..., +𝐽).[11]

Dipole transitions can be driven according to Equation 3. These transitions follow the dipole
selection rules:

Δ𝐿 = ±1; Δ𝐽 = 0,±1; Δ𝑚 𝑗 = 0,±1

3 A piece of the chosen element is heated until atoms are emitted
4 A powerful laser pulse ablates the atoms from a target made of the chosen element which can also ionize

the atoms directly.

6 / 35

Alexander Ferk 17.10.2022

𝑆1/2

𝑃3/2

𝑃1/2

𝐷5/2

𝐷3/2397
729
732

866

854

Figure 1: Electronic structure (states denoted as 𝐿𝐽) of the Ca+ atom with laser wavelengths
(in nm). Dipole transitions are marked in and , quadrupole transitions are marked
in . Figure partially from [11]

Hence, the 𝑆1/2 ↔ 𝐷3/2 and 𝑆1/2 ↔ 𝐷5/2 transitions are dipole forbidden, which leads to
longer lifetimes of ≈ 1.1 s, making these levels suitable for storing information. [11]

However, these transitions couple to the next order expansion of the field (see [8] for a
derivation). These quadrupole transitions follow the selection rules:

Δ𝐿 = 0,±2; Δ𝐽 = 0,±1,±2; Δ𝑚 𝑗 = 0,±1,±2

These allow us to access the longer lived 𝐷3/2 and 𝐷5/2 levels. But they do not allow
𝐷5/2 ↔ 𝑃1/2 decay. This makes the 𝐷5/2 ↔ 𝑆1/2, together with the cycling transition
𝑆1/2 ↔ 𝑃1/2 driven by a 397 nm laser for readout (state dependent fluorescence), ideal to
encode a qubit. [11]

1.3 Single Qubit Gates

For optical qubits5, we have seen that we can use the the states |𝑒⟩ = 𝐷5/2 and |𝑔⟩ = 𝑆1/2, with
the 𝑆1/2 ↔ 𝑃1/2 transition for readout. Initialization is performed by optical pumping into the
ground state6.

For the purposes of quantum computing, we want to implement a rotation[15, 6]

𝑅(\, 𝜙) = 𝑒𝑖
\
2 (𝑒

𝑖𝜙𝜎++𝑒−𝑖𝜙𝜎−) = 1 cos \/2 + 𝑖(𝜎𝑥 cos 𝜙 − 𝜎𝑦 sin 𝜙) sin \/2 (4)

5 Other options to encode a qubit in an atom/ion exist, e.g. Zeeman qubits, Rydberg states, ...
6 Population from slow decaying levels may be pumped into faster decaying levels to improve the initialization

time. Furthermore, the ion is trapped in a (harmonic) electrical potential, which must also be cooled to the
ground state. Refer to [5] and [11] for further details.

7 / 35

Alexander Ferk 17.10.2022

allowing us to rotate towards any angles (\, 𝜙) on the Bloch sphere. We can now utilize
the resonantly driven quadrupole interaction to perform single qubit gates. From the time
independent Hamiltonian in Equation 3 we can obtain the unitary transformation [11]

𝑈 (𝑡) = 𝑒−𝑖𝐻𝑡/ℏ = exp
(
−𝑖 𝛿𝑡

2
𝜎𝑧 + 𝑖

Ω𝑡

2
(𝑒−𝑖𝜙𝜎+ + 𝑒𝑖𝜙𝜎−)

)
. (5)

If we now drive this interaction on resonance (𝛿 = 0), we obtain the desired rotation as

𝑈 (𝑡) = exp
(
𝑖
Ω𝑡

2
(𝑒−𝑖𝜙𝜎+ + 𝑒𝑖𝜙𝜎−)

)
. (6)

with \ = Ω𝑡, and the phase 𝜙 between laser and qubit. From this general rotation, we can
obtain rotations around the 𝑥- and 𝑦-axis as

𝑅𝑥 (\) = 𝑅(\, 𝜙 = 𝜋); 𝑅𝑦 (\) = 𝑅(\, 𝜙 = 𝜋/2) (7)

where we can represent 𝑧-rotations in terms of phase-shifts for the following 𝑥- and 𝑦-rotations
(virtual Z gate). [11, 12, 6] We can control these parameters by modulating the laser beam
through an Acousto-Optic Modulator (AOM). The Radio Frequency (RF) phase, relative to the
qubit, changes 𝜙 and the on-time and amplitude of the pulse modify \ ∝ 𝑡Ω ∝ 𝑡𝐸0. [6, 4]

1.4 AC Stark Shift

As we have seen above, driving gates requires precise control of the phase of any applied
pulses. Errors in the phase lead to rotations around the wrong axis and therefore logical errors.
So far we only considered the on-resonant case with the states of the bare Hamiltonian |𝑒⟩ and
|𝑔⟩. However, due to the interaction with the laser, these states are no longer eigenstates of the
Hamiltonian. We consider a two level system, as shown in Figure 2. [5, 11]

|𝑔⟩

|𝑒⟩

𝜔

𝛿

Ω𝑒𝑔

Figure 2: Off resonant drive 𝜔 in a two level system {|𝑒⟩, |𝑔⟩} with detuning 𝛿.

We again start from the Hamiltionian (3), where we set 𝜙 = 0 and obtain

𝐻 =
ℏ

2

(
𝛿 Ω𝑒𝑔

Ω𝑒𝑔 −𝛿

)
=
ℏ

2

(
𝛿 0
0 −𝛿

)
+ ℏ

2

(
0 Ω𝑒𝑔

Ω𝑒𝑔 0

)
= 𝐻0 + 𝐻1 (8)

8 / 35

Alexander Ferk 17.10.2022

For this simple system, we can diagonalize 𝐻 and obtain

�̃�𝑔/ℏ = −1
2

√︃
Ω2

𝑒𝑔 + 𝛿2 ≈ −𝛿
2
−
Ω2

𝑒𝑔

4𝛿
, 𝛿 ≫ Ω𝑒𝑔 (9)

where we expanded for 𝛿 ≫ Ω𝑒𝑔 and identify the generalized Rabi frequency Ω̃𝑒𝑔 =

√︃
Ω2

𝑒𝑔 + 𝛿2.

In this expansion, we can see an additional shift of Δ�̃�𝑔 = −Ω2
𝑒𝑔

4𝛿 depending on the off-resonant
drive. This means, if the qubit is driven off-resonantly, its frequency changes, resulting in a
phase difference between the bare (undriven) qubit and the dressed (driven) qubit. We can also
express the energy shift as a function of intensity, using [5]

𝐼 (𝑟) = 𝜖0𝑐 |𝐸 (𝑟) |2
2

(10)

and obtain
Δ𝐸

(2)
𝑔 =

| ⟨𝑒 | 𝑑𝑑𝑑 · 𝜖𝜖𝜖 |𝑒⟩ |2
2ℏ𝜖0𝑐

𝐼 (𝑟)
𝛿

(11)

This means the energy shift we obtained in Equation 9 leads to a frequency change in the qubit
transition depending on the intensity of the drive, given 𝛿 ≫ Ω𝑒𝑔.

We have now seen that an off-resonant drive produces a shift in frequency between two levels.
If we drive any transition in an atom, due to the presence of other transitions (both dipole and
quadrupole), we are always driving these spectator transitions off-resonantly. We will now
consider the three-level system shown in Figure 3 to discuss the effects of the off-resonant
coupling on the driven transition.[11]

|𝑔⟩

|𝑒⟩

| 𝑓 ⟩

𝜔

𝛿

Δ𝑒 𝑓

Ω𝑒𝑔

Ω 𝑓 𝑔

Figure 3: AC Stark shift with a spectator transition. To drive the transition |𝑔⟩ ↔ |𝑒⟩ with Rabi
frequency Ω𝑒𝑔 the drive frequency 𝜔 is on resonance with the transition (detuning
𝛿 = 0). This drive, off resonant by Δ𝑒 𝑓 , produces an AC Stark shift on the |𝑔⟩ ↔ | 𝑓 ⟩
transition. We assume no coupling between |𝑒⟩ and | 𝑓 ⟩. Figure modified from [11]

9 / 35

Alexander Ferk 17.10.2022

If we want to drive Rabi oscillations between |𝑔⟩ ↔ |𝑒⟩, we set the detuning 𝛿 = 0. Then, the
laser drive couples off-resonantly to the transition |𝑔⟩ ↔ | 𝑓 ⟩ with detuning Δ𝑒 𝑓 . Furthermore,
we assume that there is no coupling |𝑒⟩ ↔ | 𝑓 ⟩ in the system. The Hamilton describing the
interaction between the three levels in the frame of the drive is then given as

𝐻 = ℏ
©«

0 Ω𝑒𝑔/2 Ω 𝑓 𝑔/2
Ω𝑒𝑔/2 −𝛿 0
Ω 𝑓 𝑔/2 0 Δ𝑒 𝑓 − 𝛿

ª®¬ (12)

= ℏ
©«

0 Ω𝑒𝑔/2 0
Ω𝑒𝑔/2 −𝛿 0

0 0 Δ𝑒 𝑓 − 𝛿

ª®¬ + ℏ

(
0 Ω 𝑓 𝑔/2

Ω 𝑓 𝑔/2 0

)
{|𝑔⟩,| 𝑓 ⟩}

= 𝐻0 + 𝐻1 (13)

where we set 𝐸𝑔 = 0. With this more complex system, we solve 𝐻0 and treat 𝐻1 as a
perturbation and obtain for 𝐸𝑔

Δ𝐸
(2)
𝑔 /ℏ =

| ⟨ 𝑓 (0) | 𝐻1 |𝑔(0)⟩ |2

𝐸
(0)
𝑔 − 𝐸

(0)
𝑓

=
Ω2

𝑓 𝑔
/4

𝛿 − Δ𝑒 𝑓

With our assumption that |𝑒⟩ ↔ | 𝑓 ⟩ are not coupled, the | 𝑓 ⟩ level will only produce a shift on
𝐸𝑔. If we assume the transition to the third level to be far off-resonant, we can approximate
the energy shift Δ�̃�𝑒𝑔 as

Δ�̃�𝑒𝑔/ℏ ≈ −𝛿 +
Ω2

𝑓 𝑔

4Δ𝑒 𝑓

, Δ𝑒 𝑓 ≫ 𝛿 (14)

Hence, for Ω 𝑓 𝑔 = 0 we obtain a dressed state splitting of Δ𝐸 = ℏΩ𝑒𝑔 with the resonance at
𝛿 ≈ 0, similar to the two level system above. However, for Ω 𝑓 𝑔 > 0 we see the resonance of

the transition shifts to 𝛿 ≈
Ω2

𝑓 𝑔

4Δ𝑒 𝑓
.[11]

This means, in the presence of spectator transitions, we need to adjust the drive frequency
to resonantly drive Rabi oscillations. For the 40Ca+ ion, with several transitions present, we
need to consider all driven dipole and quadrupole transitions in the total shift. For an ion in a
(harmonic) trap potential we need to additionally consider motional sideband transitions.[19]

The total Stark shift (often on the order of a few kHz) can be measured via a Ramsey experiment
with an off-resonant pulse driving the desired transition. Figure 4 shows the AC Stark shift
measured for the 𝑆1/2 ↔ 𝐷5/2 transition.[7]

The major contribution stems from the dipole transitions, which can be compensated by a
simultaneous laser pulse at another frequency [7] or positioning the ion in a standing wave
[19]. Shifts from the quadrupole transitions are more difficult to compensate with the latter
method, but could be minimized by increasing the Zeeman splitting with higher magnetic
fields [19].

10 / 35

Alexander Ferk 17.10.2022

and !!3=2, which are "#2!$8:4MHz in the experiment.
An explicit calculation of the matrix elements of quadru-
pole transitions is given in Refs. [16,17]. The coefficients
a%1=2, a%5=2, and a3=2 are the squares of the relative
coupling strengths. We define a%1=2 to be one, since the
Ramsey spectroscopy is carried out on this transition.
From the laser polarization and laser axis with respect
to the magnetic field axis, we calculate [17] a%5=2&0:278
and a3=2&0:0556. The factor of 2 in the contribution of
the m&%1

2 to m0&%1
2 transition appears because the

Ramsey method is applied on this transition such that
the shift of both the upper and the lower states is detected.
From the other Zeeman components, however, only the
shift of the lower state jSi becomes apparent. The con-
stant b in Eq. (1) contains the squared relative coupling
strengths to all other dipole transitions. No dependence
on the laser detuning appears since the transitions are far
off-resonant.

The optimum fit of Eq. (1) to the data in Fig. 3 is ob-
tained with a%5=2 & 0:32 #2$, a!3=2 & 0:05 #2$, b &
0:112#5$=2! #MHz$%1, and "ac=2! & 357#3$ kHz . We
independently measured a%5=2 & 0:36#2$ and a!3=2 &
0:05#1$ with resonant Rabi oscillations. These values
agree within their error margins with those obtained
from the fit to the Stark shift data.

Most of the current proposals for quantum computa-
tion require that the ion is driven on the motional side-
bands. Applying a laser on the blue axial sideband of
the jSi $ jDi transition (‘‘gate laser’’) at a detuning of
!=2! & !1:7 MHz results in a negative ac-Stark shift.

However, shining in a second light field at a frequency
whose ac-Stark shift is positive can compensate for this
unwanted phase shift [14]. As discussed in the intro-
duction, such an ac-Stark shift cancellation is a pre-
requisite for any quantum algorithm. Our method to
determine the optimum setting of the compensation laser
consists of the following steps: First we detune the gate
laser by ’ 80 kHz from the sideband resonance to avoid
excitation into the D state (its ac-Stark effect, however,
is still practically identical to that of a laser field reso-
nant with the sideband). Then we minimize the total ac-
Stark effect by adjusting the intensity and detuning
of the compensation laser field such that the oscilla-
tions in PD disappear. Both light fields are generated
from the outut of a single Ti:Sapphire laser by driv-
ing a broadband acousto-optical modulator (in double
pass configuration) with the two rf frequencies simul-
taneously. Since both light fields are derived from the
same laser, intensity fluctuations do not affect the
compensation.

The accuracy to which the ac-Stark effect can be nulled
is proportional to #2TR$%1S=N, where TR denotes the
Ramsey interrogation time (here 200 "s) and S=N the
signal to noise ratio of the state measurement. Integrat-
ing this measurement for long times, to improve S=N,
is limited by the frequency drift of the laser source
near 729 nm (typically ' 1 Hz=s), since a drift of the
relative phase of the Ramsey pulses mimics a residual ac-
Stark effect. To overcome this problem, we optimize the
Rabi frequency and detuning of the compensation laser
by alternating Ramsey experimental sequences with
& 0 and # ’ 200 "s. Thus, a slow drift is discrimi-
nated against a residual phase shift due to imperfect
compensation. Limited by the shot noise of PD##$, any
ac-Stark effect can be cancelled to within ’ 2! (30 Hz
in 60 s. See Fig. 2(b) for the compensation data over the
course of time, each data point corresponding to 100
repetitions of the experimental sequence and a time dura-
tion of 2 s.

As an application of the compensation method, we
demonstrate the sign change of a wave function, a simple
building block frequently required in quantum algo-
rithms. A driven spin-1=2 system transforms into its
initial state by only a 4! rotation, whereas a 2! rota-
tion leads to a sign change of the wave function. This
phase shift of pi is the central part of the Cirac–Zoller
proposal [8] for quantum gates with trapped ions [18].
Similarly, Ramsey experiments on Rydberg atoms have
been performed in the microwave regime to investigate
the ac-Stark shift of the electromagnetic vacuum field
[19] and to perform a tunable phase gate [20].

In our experiment, the ion is first prepared in the vibra-
tional and electronic ground state and then driven reso-
nantly between the jS; n & 0i and jD; n & 1i states (blue
axial sideband near ! & !1:7 MHz), with the ac-Stark
compensation laser field switched on. Figure 4(a) shows
the corresponding Rabi oscillations.

-10 -5 0 5 10 15

-100

-50

0

50

100

A
C

 S
ta

rk
 s

hi
ft

δ/
2π

 Ι/
Ι 0

(k
H

z)

Detuning at 729nm ∆/2π (MHz)

8.4-8.4

FIG. 3. The measured ac-Stark shift data [see Fig. 2(a)] are
normalized according to the measured laser power I#!$=I#0$
which varies by about 50% over the whole tuning range of !.
This normalized data (squares) and calculated (line) Stark shift
$ac [Eq. (1)] are plotted versus the detuning !ac of the Stark
pulse from the jSi–jDi resonance. The divergences are due to
the #m & % 1

2$ $ #m0 & % 5
2 ;% 1

2 ;! 3
2$ resonances (from left to

right). Two data points at large detunings are not shown. They
read $ac=2! & 5:88 and 8.49 kHz for detunings !ac=2! & 40
and 60 MHz, respectively, and are equally well described by
the theoretical curve.

P H Y S I C A L R E V I E W L E T T E R S week ending
11 APRIL 2003VOLUME 90, NUMBER 14

143602-3 143602-3

Figure 4: Measured AC-Stark shift data (squares) for a 40Ca+ ion normalized according to
the measured laser power 𝐼/𝐼0. The calculated Stark shift 𝛿 (line) is plotted vs.
the detuning Δ from the 𝑆1/2 ↔ 𝐷5/2 resonance, with the divergences due to the
(𝑚 = 1/2) → (𝑚′ = −5/2,−1/2, +3/2) resonances (from left to right). Figure from
Häffner et al. [7].

2 Trapped Ion Control System

QIP with trapped ions requires coordinated Direct Current (DC), RF and digital signals for
trapping, coherent control and readout. The control system used in the Trapped Ion Quantum In-
formation (TIQI) group employs a hybrid Central Processing Unit (CPU) / Field Programmable
Gate Array (FPGA) system, where a sequencer on the FPGA is used for real time processing
while readout processing and decision making is done on the CPU. This section will give an
overview over the components of the control system. Then, we will see how pulse sequences
are structured and compressed on the low-level systems. Finally, we will see how coherent
pulses are currently achieved. [14, p26ff][17]

2.1 Overview

An overview of the systems components is given in Figure 5. Ions in the ion trap (lower left)
are trapped in a dynamical electrical field. RF electrodes are driven by an RF source with
frequencies on the order of 10s of MHz (not pictured). DC electrode voltages are controlled by
the Direct Ethernet-Adjustable Transport Hardware (DEATH) Arbitrary Waveform Generators

11 / 35

Alexander Ferk 17.10.2022

AOMs4

PMT

Camera
Shutters

Milldown
DDS cards

Zedboard
main
controller

Electrode
voltages

32 - 128

32

32

Ethernet
(custom RPC2 protocol)

Fastino and
DEATH1 AWGs

fixed RF sources

Shim/cavity DACs

PID-

Ionizer GUI Python
interface

ionpulse
link

tiqiplugin
client

Figure 5: General overview and connections between the components of the control system.
See text for details. Figure adapted from Martin Stadler following [14, p32]

(AWGs) and vary on longer timescales in order to perform tasks such as transport of ions
through an array of traps. Coherent control and cooling of the ions is achieved with lasers
modulated (pulsed) by Acousto-Optic Modulators (AOMs) , where the AOMs are controlled
with RF signals from the Direct Digital Synthesis (DDS) cards. Readout with PhotoMultiplier
Tubes (PMTs) or camera7 is controlled directly via the Zedboard, which also acts as the main
controller and provides the interface to the control Personal Computer (PC) hosting the Ionizer
Graphical User Interface (GUI). Asynchronous devices, such as Rasperry Pis (RPis) interacting
with other parts of the experimental setup are driven with a custom Python client (tiqi-plugin)
directly from the control PC.

With this CPU centered design, experiments are orchestrated from the Zync System on Chip
(SoC)[22] on the Zedboard [21] acting as a main controller. Experiments are written in C++,
compiled, linked to a single executable and then programmed (together with the synthesized
FPGA design) onto the Zedboard (or in many cases run with the Xilinx Vitis debugger). The
user then interacts with the IonizerGUI to set parameters, start experiments, and collect and
save data. The IonizerGUI on the control PC can also interact with several asynchronous
devices in other parts of the experimental setup. When an experiment is started from the PC,
the Zync-SoC creates and communicates a series of instructions to the sequencer on the Znyc-
FPGA part (Pulseway) and to the sequencers on DDS cards (one sequencer (called idecoder)
for each channel) via the Back Plane (BP). Each DDS card contains four RF channels with
one AD9910 [1] each and a Spartan 6 [16] FPGA programmed with the synthesized FPGA

7 Pre-Processing of the camera is done on another FPGA, where only the binned counts are transmitted to the
Zedboard.

12 / 35

Alexander Ferk 17.10.2022

design (Minotaur). To start the sequence, Pulseway sends the trigger to start all sequencers
simultaneously. The FPGA design for both Zedboard and DDS cards is written in the Hardware
Description Language (HDL) Verilog. For a further in depth description of the components
of the control system, developed by Negnevitsky [14] and Stadler [17] and others, refer to [14,
17].

2.2 Experimental Sequence Structure

An experiment consists of 𝑛 shots. Each shot executes the same sequence (here called "main se-
quence"). Creating a sequence requires a set of instructions for the above described sequencers
to operate. These instructions have to be stored on each FPGA in the "working memory"
of each sequencer. However, memory on the FPGAs is limited which leads to the need of
compressing an experimental sequence. The control system achieves this compression through
re-use of events, sequences and loops. Events (Edges) are the smallest building blocks - a
collection of parameters and a wait time. After the wait time, an action is triggered, e.g. the RF
channel is switched on with certain frequency, phase and amplitude (FPA) parameters. Wait
times can also be added by adding wait blocks. These will not change the output parameters
of the system and can be used to synchronize pulses of different lengths between channels.

To demonstrate how compression helps conserve memory, we analyse the example sequence
shown in Figure 6. If we were to simply execute the sequence in a linear fashion, storing all

RF CH 0
Amplitude

𝑡
RF CH 1
Amplitude

𝑡

Figure 6: Simple control sequence on two RF Channels with uniform maximum amplitude.
Two ’RF Edges’ and one ’RF Wait’ are marked, turning the signal on , off and
leaving it in the current state . (see text)

edges, we would need 9 elements for CH 1 and 21 elements for CH 0. In this simple example,
we are only looking at the amplitude and time. To fully parametrize a pulse, FPA and time
(duration or wait time until the change) must be set, which we would have to individually
store for each element, leading to 4 parameters per edge. However, we can identify repeating
elements within this sequence. All three marked elements in Figure 6 are just repeated 3 times,
referencing the same parameters. This means our linear sequence for CH 1 still needs to store
9 references to the pulses, but not 36 FPA parameters (for all 9 pulses) but only 12 parameters.
Furthermore, we can collect these three pulses into one loop sequence, which we repeat 3

13 / 35

Alexander Ferk 17.10.2022

times. Then, our main sequence for CH 1 only contains one looped sequence with 3 iterations
referencing the three pulses. For CH 0 we can collect the first two identical pulses (4 Edges)
and the first edge of the next pulse into one linear sequence of 5 edges, as shown in Figure 7.

RF CH 0
Amplitude

𝑡
RF CH 1
Amplitude

𝑡

Figure 7: Simple control sequence on two RF Channels with uniform maximum amplitude.
Repeating sequences are marked in , two parametrized edges are marked in . (see
text)

However, we can not collect them in a loop, as one of the pulses is changing over the three
repeated cycles. For this case, our control system features parametrized loops. Parameters
can be updated during a loop ("looped parameter"), resulting in a changing behaviour for each
loop cycle. This means, with an ’intelligent’ sequencer, we can compress this sequence on CH
0 from a collection of 84 parameters down to

• 1 loop with 6 parameter (time) updates8,

• 2 ’ON’ RF Edges (fixed),

• 2 ’OFF’ RF Edges (one fixed, one with looped parameters) and

• 1 RF Wait (with looped parameters9).

Therefore we only need to store the 4 parameter updates, as well as parameters for 5 edges, a total
of 24 parameters, giving us a reduction to below 30% even for such a short sequence. However,
this makes the sequencer more complex. We need to store the references to the elements (Edges,
...), be able to count iterations and be able to keep track of which ’subsequence’ we are currently
executing.

Another important element for recent QIP is measurement based feedback. For this purpose,
the sequencers include ’forks’ to perform actions conditioned on a readout. A simple example
with a measurement dependent wait time on the second pulse is given in the Figure 8.

Here, depending on a measurement result, a different subsequence ’path’ is chosen. The fork
therefore includes a conditional (e.g. a certain threshold reached) and a measurement channel.

8 Note that all other parameters except the time can already be passed with the first iteration. For all following
iterations, only the updated parameters need to be overwritten. After the last iteration, the updated parameters
have to be reset to the initial value.

9 This wait time is variable to keep the overall time of the pulse (RF OFF + RF Wait) constant.

14 / 35

Alexander Ferk 17.10.2022

RF CH 0
Amplitude Path 0

𝑡

Path 1

𝑡 𝑓

Figure 8: Simple control sequence with a fork depending on a readout result at time 𝑡 𝑓 (see
text).

For this, the Zedboard SoC processes the raw readout counts from the PMT or camera and
makes a decision based on the outcome, i.e. choosing a ’path’ (sequence) to execute. This
decision is then communicated to the sequencers. While this approach also has limits, it is
a good compromise between latency (due to re-sending parts of the sequence) and required
memory.[14, 17]

2.3 Experimental Sequence Generation

From the sequence elements discussed in the last section, we now have to create an experimental
sequence. While it is possible to create a sequence from just the basic subblocks, it is far more
convenient to have a higher level interface for the user.

This interface is provided in the C++ framework of Ionpulse SDK. With this compilation based
approach, the experiments are written in C++ and then compiled and linked with the Ionpulse
SDK and programmed onto the Zedboard SoC.

However, writing experiments in C++ and programming the Zedboard for any (non parametrized)
changes to the sequence is inconvenient. Quick trial and error is not possible due to the compile
time, and when uploading a new sequence, the Zedboard is reset. As an alternative interface to
the Zedboard, a different, description based approach with a high level Python library has been
developed. The user writes the sequence using Pycrystal [13] (high level library) which in turn
uses the Ionpuse Sequence Generator to provide sequence elements understood by the control
system. The Ionpulse Sequence Generator10 has been initially developed by Stucki [18] as an
interface between Qiskit and the control system. Figure 9 illustrates both approaches.

10 The Ionpulse Sequence Generator has been developed earlier by Martin Stadler and Marco Stucki and was
then modified during this thesis while keeping the original interface to the high level intact. Additional
modifications to the generator were then made by Mose Müller, introducing features for pycrystal and
improving the speed of the library.

15 / 35

Alexander Ferk 17.10.2022
Ionpulse Sequence Generator
Experiment Interface

main
controller

script
server

ionpulse
link

tiqiplugin
client

22.08.22TIQI - Control - Alexander Ferk, Mose Müller 1

Results,
Experiment Pages

Executable

Experiment

Ionpulse SDK

(a) An experiment, compiled and linked with Ionpulse SDK library, is programmed onto the
Zedboard (main controller). Experiments (pages) are communicated to the control PC,
which triggers an experiment. When the sequence is finished, the Zedboard sends the
results to the control PC.

Ionpulse Sequence Generator
Experiment Interface

main
controller

script
server

ionpulse
link

tiqiplugin
client

22.08.22TIQI - Control - Alexander Ferk, Mose Müller 2

Results

Sequence description

Experiment

JSON

(b) The Ionpulse Sequence Generator (Python) on the control PC generates a sequence de-
scription which is sent to the Zedboard (main controller). This sequence is triggered from
the main PC, executed and results are communicated back to the control PC.

Figure 9: Paradigm change from compilation-based (a) experiments to description-based ex-
periments (b). C++ Logo [9]. Python Logo [20]. File images from macOS 12.6.

With the Ionpulse Sequence Generator, the experimental sequence is written in Python and
can be exported in an intermediate format. For this interface format, we use JavaScript Object
Notation (JSON) (for human readability), but other (binary) formats are also possible. The
resulting description is then sent to the Zedboard, where it is interpreted and translated to driver
instructions for the various parts of the control system. The software on the Zedboard SoC
(Ionpulse) only needs to be programmed once and just provides an interface which accepts this
interface format.

16 / 35

Alexander Ferk 17.10.2022

2.4 Coherent Pulses

As we have seen, coherent pulses and good control of the phase are important to drive gates
on trapped ions. As discussed in 1.4, the qubit frequency 𝜔𝑒𝑔 and the drive frequency 𝜔 of
the laser are not always the same. This difference in frequency translates to accumulation of
a difference in phase Δ𝜙 which affects subsequent pulses. Therefore, if we implement a gate,
which requires a fixed phase 𝜙𝑝𝑢𝑙𝑠𝑒 relative to the qubit phase 𝜙𝑞, we need to adjust the phase
of the pulse by Δ𝜙 prior to the gate in order to ensure that the phase is correct. Figure 10 shows
an example sequence with the qubit frequency evolution.

RF
Amplitude

𝑡
Qubit
Frequency

𝑡

𝑓1

𝑓2

𝜙𝑞

𝜙1 = 𝑡 · 𝑓1
𝜙2 = 𝑡 · 𝑓2

𝜙𝑐𝑎𝑙𝑐

Phase

𝑡

Figure 10: Control Sequence consisting of two RF Pulses with different amplitude shifting the
frequency of a qubit. Phases are indicated as an integrated frequency over time and
a phase diagram at the start of each pulse. The phase of the qubit 𝜙𝑞 differs from
both drive phases 𝜙1 and 𝜙2. 𝜙𝑐𝑎𝑙𝑐 indicates the phase calculated by the control
system (see [14, p42]), multiplying elapsed time 𝑡 with the RF frequency 𝑓

(𝑅𝐹)
𝑁

of
the current pulse 𝑁 .

Due to AC Stark shifts, the qubit frequency 𝑓𝑞 is shifted proportional to the intensity of the
laser light, which is dependent on the RF amplitude, via the modulation of the AOM. In order
to compensate for it, this shift must at first be calibrated. This can be performed by applying a
pulse with low intensity and measuring the offset for the same pulse with higher intensity.

In the current control system, the DDS card calculates 𝜙𝑐𝑎𝑙𝑐 (see [14, p42]), by multiplying the

17 / 35

Alexander Ferk 17.10.2022

elapsed time 𝑡 with the current RF frequency 𝑓
(𝑅𝐹)
𝑁

.

𝜙𝑐𝑎𝑙𝑐 = 𝑓
(𝑅𝐹)
𝑁

𝑡 = 𝑓
(𝑅𝐹)
𝑁

𝑛=𝑁−1∑︁
𝑛=0

𝑡𝑛 (15)

The DDS card then calculates the phase of the pulse as

𝜙′′𝑝𝑢𝑙𝑠𝑒 = 𝜙𝑝𝑢𝑙𝑠𝑒 + 𝜙𝑐𝑎𝑙𝑐 (16)

and outputs 𝜙′′
𝑝𝑢𝑙𝑠𝑒

to the DDS chip. In this simple picture, the calculated phase 𝜙𝑐𝑎𝑙𝑐 has an
error of

Δ𝜙𝑒𝑟𝑟 =

𝑛=𝑁−1∑︁
𝑛=0

(𝑓𝑞𝑛 − 𝑓
(𝑅𝐹)
𝑁

)𝑡𝑛 + Δ𝜙𝑛, (17)

where we multiply the frequency differences to the current frequency 𝑓
(𝑅𝐹)
𝑁

from each pulse
(𝑓𝑞𝑛 − 𝑓

(𝑅𝐹)
𝑁

) with the respective pulse time 𝑡𝑛 to obtain the phase difference for each pulse.
Δ𝜙𝑛 is added for e.g. shaped pulses with varying amplitude and therefore non-constant 𝑓𝑞𝑛,
where Δ𝜙𝑛 =

∫ 𝑡𝑛+1

𝑡𝑛
𝑓𝑞 (𝑡)𝑑𝑡 and 𝑓𝑞𝑛 = 0. Experimentally, Δ𝜙𝑛 of a particular shaped pulse is

usually determined directly. The phase shift of the qubit is described by

Δ𝜙 =

𝑛=𝑁−1∑︁
𝑛=0

𝑓𝑞𝑛𝑡𝑛 + Δ𝜙𝑛 = 𝜙𝑐𝑎𝑙𝑐 + Δ𝜙𝑒𝑟𝑟 . (18)

To compensate for the error in 𝜙𝑐𝑎𝑙𝑐, we can adjust the phase of the pulse transmitted to the
DDS card to

𝜙𝑝𝑢𝑙𝑠𝑒 → 𝜙′𝑝𝑢𝑙𝑠𝑒 = 𝜙𝑝𝑢𝑙𝑠𝑒 + Δ𝜙𝑒𝑟𝑟 (19)

resulting in a phase output from the DDS card of

𝜙′′𝑝𝑢𝑙𝑠𝑒 = (𝜙𝑝𝑢𝑙𝑠𝑒 + Δ𝜙𝑒𝑟𝑟) + 𝜙𝑐𝑎𝑙𝑐 (20)

However, as we have seen in subsection 2.2, this makes almost all coherent pulses unique and
therefore does not allow for compression of pulses. This becomes even worse for forks, where
each path has a different sequence of pulses. Here, we need to pre-calculate the phase for each
path, having to store all phases for all paths in memory. At the end of the fork paths (as shown
in Figure 8), each path can result in a different phase difference Δ𝜙. Of course, we need to
take Δ𝜙 into account for the following pulses, effectively extending the paths until the end of
the whole sequence. This scheme is either very memory (and computationally) intensive for
forks or leads to higher latency when selecting a path, as phases have to be recalculated and
updated.

18 / 35

Alexander Ferk 17.10.2022

3 Phase Tracker Implementation

3.1 Design Considerations

For coherent operations, qubit gates, and therefore RF events, need to take the accumulated
frequency and phase shifts of the qubit during the sequence into account. In the following, I
will discuss four possible approaches:

Pre-calculating the qubit phase for the whole sequence

Incremental pre-calculating updates of the qubit phase for each gate

Calculation with a separate sequencer of the qubit phase in real-time

Calculation with an RF sequencer of the qubit phase in real time

Currently, the pre-calculating approach is implemented. It adapts the phase for each gate, as
discussed in 2.4. This approach has two main disadvantages. First, events with different phase
shifts can not be compressed efficiently, making long sequences unfeasible (the sequencers on
the DDS cards are currently limited to approx. 160 unique pulses)11. Second, pre-calculating
phases with forks is computationally expensive as it requires each path to be computed.
Furthermore, all following sequences must either be split into paths or all phases must be
updated at the beginning of the fork increasing the latency (as described in subsection 2.4).

The incremental pre-calculating approach requires an additional phase accumulator for each
qubit on the FPGA. Then, from the sequence of phase and frequency shifts the incremental shifts
for each event can be pre-calculated. Each event updates the phase accumulator and retrieves
the current qubit phase from it. This overcomes both disadvantages of the first approach.
Events can be compressed with the same parameters where updates can, for example, be stored
in a First In First Out (FIFO) accessed by each event. Forks can be treated by applying an
update before the beginning and at the end of each fork path, with the accumulator carrying
the phase from the chosen path. The major disadvantage of this system is that it limits access
to the accumulator to one channel during a time-slot. For example, we want to apply two
events starting at the same time 𝑡 on two different channels to the same qubit (e.g. two AOMs
switching on). Then, these events may have different wait times 𝑡0 < 𝑡2. Phase updates on the
accumulator can then be ordered with 𝑡0 and 𝑡2, resulting in the correct behaviour. However,
a third event on the first channel starting at 𝑡1 with 𝑡0 < 𝑡1 < 𝑡2 leads to two issues. This
sequence is depicted in Figure 11.

The first issue is parallel updates of the accumulator. Updating the accumulator from two
different channels will result in an incorrect phase for the third event in the example above.
This can be overcome by limiting the updates of the accumulator to one channel, limiting the
overall capabilities of the system. An alternative is splitting the updates into two parts, an

11 Note that this can be, and is in a recent implementation by Martin Stadler, overcome by updating parameters
during the sequence. This however produces additional communication frames on the backplane.

19 / 35

Alexander Ferk 17.10.2022

RF
Channel 1

RF
Channel 2

𝑡0 𝑡1 𝑡2 𝑡3

Figure 11: Example sequence for incremental pre-calculation with 𝑡0 < 𝑡1 < 𝑡2. Updates and
reads from the phase accumulator at the start of each RFEdge will cause an incorrect
phase on channel 2. See text for further details.

update of the accumulator (Δ𝜙([𝑡0, 𝑡1])) and an update before the event (Δ𝜙([𝑡1, 𝑡2])), to be
added to the phase of the accumulator to get the phase offset for the event.

The second issue stems from the mitigation of the first. We need to pre-calculate the phase
offset for the event on channel two for the time interval [𝑡1, 𝑡2]. The phase offset on channel
two needs to take all offsets from channel one into account. This creates dependencies between
sequences on separate channels and increases the complexity of the pre-calculation. Otherwise,
if a channel is reading the accumulator value at an intermediate time, the accumulator value
will not represent the correct qubit phase. In other words, with this scheme, the accumulator
only represents the correct qubit phase only directly after an update. This limits the overall
capabilities of the system, as this system would either need to handle multiple sources for the
qubit phase or limit itself to one source.

Calculation with a separate sequencer requires a sequencer and a phase accumulator for each
qubit. The sequencer will then feed the accumulator with the sequence of phase and frequency
shifts for the qubit. An RF event can then read the phase from the accumulator of its target
qubit. This approach requires more hardware than the previous approach but but allows us to
run an arbitrary phase and frequency sequence on the qubits, completely decoupled from the
rf sequences. This also enables us to use the same compression and architecture already used
for RF sequences.

Similarly, calculation with an RF sequencer uses the already existing sequencers, which
orchestrate the RF sequence, on the DDS cards to generate the frequency sequence for the
qubit. This requires adding additional instructions for these sequencers to address changes in
qubit frequency on top of setting the RF parameters. This results in potentially less hardware
usage but has the disadvantage that qubit frequency changes will put additional load on the
sequencers and must be synchronous to RF events.

We chose to perform the phase calculation with a new sequencer, as it allows us to model
the full phase evolution of the qubit. Additionally, if implemented as a separate module, this
design remains easily portable to future systems.

20 / 35

Alexander Ferk 17.10.2022

3.2 Design Overview

Implementing the phase tracker in the existing design, as described in Figure 5, requires
changes to the different logical layers of the control system. Figure 12 provides an overview
over the layers modified and added. The following sections will then treat the changes in each
layer in depth.

H
ig

h
Le

ve
lP

yt
ho

n
Li

br
ar

y
(p

yc
ry

st
al

)

Io
np

ul
se

Se
qu

en
ce

G
en

er
at

or

JS
O

N
Pa

rs
er

JSON Ph
as

e
Tr

ac
ke

r
M

an
ag

er

Ph
as

e
Tr

ac
ke

r
In

st
ru

ct
io

ns

D
D

S
M

an
ag

er

DDS
Instructions

Fi
rm

w
ar

e
(M

in
ot

au
r)

Ph
as

e
Tr

ac
ke

r
D

D
S

Se
qu

en
ce

r

Control PC

Io
ni

ze
rL

in
k

Zedboard (Zync SoC)
B

ac
kp

la
ne

DDS Card

Figure 12: Modified layers of the control system. Sequences written by the user in Python are
translated to JSON, parsed by the control system and then split into two paths for
phase tracker instructions and RF instructions. These are then passed on to the DDS
card via the DDS manager and executed on the phase tracker and DDS sequencer
to produce an RF sequence.

The user writes the sequence in a high level python library (pycrystal, refer to Müller [13] for a
description of this library), which includes setup information and uses the Ionpulse Sequence
Generator[18] to translate the sequence information into objects which can be transferred to and
interpreted by the control system. These objects are then exported to JSON and parsed12 by the
main controller on the Zedboard, generating the driver instructions and configuration. Phase
events are passed on to the Phase Tracker Manager and translated to low-level instructions.
They are forwarded to the DDS Manager, which sends the instructions to Minotaur where
they are passed on to the phase trackers themselves. RF events are directly passed to the
DDS Manager, translated to low-level instructions and sent to the DDS boards where they are
forwarded to the control unit of the respective RF channel. These modifications are based on,

12 The JSON Parser was originally written by Martin Stadler and has been largely rewritten in the scope of this
thesis, keeping the driver interface intact.

21 / 35

Alexander Ferk 17.10.2022

include and modify existing parts of the control system mainly designed by Negnevitsky [14]
and Stadler [17].

3.3 Python Sequence Generation - Ionpulse Sequence Generator

The Ionpulse Sequence Generator has been initially developed by Stucki [18] as an interface
between Qiskit and the control system. The generator is part of a paradigm change for writing
experiments within the control system, as discussed in 2.3.

The JSON generation and different aspects of the generator have been adapted while keeping
(mostly) the same python interface functions.

The identification of sequence elements has been changed from names (strings) to array indices
for parameters and sequence elements (events, sequences), in order to represent the structure
on the Ionpulse SDK side and improve performance. This allows us to directly use those
indices to e.g. find events in a sequence without searching in a map.

In addition to the already mentioned changes to sequence element identification, changes
necessary for controlling the phase tracker have been made. The QubitEdge (qubit event) has
been adapted. It takes frequency, phase, time, qubit address and an optional phase tracker
reset, which are passed through the control system to control the phase tracker of the specified
qubit.

3.4 Interface Format - JSON Structure

As mentioned above JSON is used as an interface format. JSON uses objectswith key:value
pairs to store information. Sequence objects discussed in 2.2 (e.g. RF event, linear sequence,
loop, fork, ...) and parameters for these objects are stored in this JSON format in a way that
allows a parser to reconstruct the main sequence.

This JSON structure has been modified from the previous version (see [18, p57ff]). The
previous JSON structure used the parameter and sequence element names (string) as keys.
This approach had the considerable downside that the key did not specify the type of the
element. Therefore, one had to keep track of the context in which the key is parsed to identify
the correct type of object.

The new format replaces name strings with array indices (names can be added for debugging
purposes). Sequence objects and events are now stored in separate arrays. For easier indexing,
object types are only partially specified by array membership (e.g. Event, Sequence). An
additional type field is used for the full specification (e.g. RF Event, Linear Sequence).
Figure 13 shows the structure of this new JSON structure.

22 / 35

Alexander Ferk 17.10.2022

Experiment Description

Header

Frequency

Phase
Amplitude

Time
Qubit Address

Events

Sequences

Version
Settings

User Fields

RF Event (DDS System)
Digital IO Event (Zync FPGA)

Readout Event (Zync SoC)
Qubit Event (Phase Tracker)

Linear Sequence
Loop

Fork

Pa
ra

m
et

er
sa

nd
Lo

op
ed

Pa
ra

m
et

er
s

e.
g.

e.
g.

Figure 13: Structure of the JSON file generated by the Ionpulse Sequence Generator. Objects
are shown with thick lines, subobjects of the experiment description (except the
header) contain an array of objects. The header stores the generator version,
specific settings and user definable fields (not parsed). Parameters, Events and
Sequences are stored in separate arrays, where the last element of the sequence
array is interpreted as the main sequence.

3.5 Sequence Interpretation - JSON Parser

With the changes to the JSON structure, the parser has also been largely rewritten. The parser is
still based on the RapidJSON C++ library and uses the Simple API for XML (SAX) interface.
Using a SAX-based parser compared to a Document Object Model (DOM)-based parser allows
the application to sequentially parse the document instead of parsing the whole document and
then filtering for objects of interest.

The new parser uses a state design pattern. This approach yields a more modular parser, where
each (sub-)module implements its own parsing methods. For this approach, in addition to

23 / 35

Alexander Ferk 17.10.2022

the JSON Handler which handles the JSON stream, an interface, JSON SequenceObject, is
defined. This interface is implemented by all classes parsing JSON objects.

Parsing the new JSON format works as follows: The JSON stream is passed to the jsonhandler
class. It expects the keys Header, Parameters (see Figure 13) or Event or Sequence. If a key
is found, it creates a new object from the respective class and forwards all parsing events (e.g.
key, value, end object, ...) to that object until this object finished parsing. Upon receiving
an end object event, the object will construct the corresponding driver-object and store it in a
vector. Events and sequences will then use these vectors to retrieve referenced sub-objects.

3.6 Sequencer Driver - Pulseway

For processing sequence instructions a sequencer (domain specific processor, as outlined
in 2.2) is used. We chose pidecoder (from the already existing Pulseway FPGA design,
written by Vlad Negnevitsky and Martin Stadler) as the sequencer for the phase tracker (see
subsection 3.8). pidecoder reads instructions from a memory and executes these instructions.
These instructions include more complicated jump and conditional jump instructions for loops
and forks as well as basic input-output (IO) operations with 24 bit payload. To translate
the sequence elements into instruction for pidecoder, a driver (manager) is used. From the
Pulseway driver, pwy::Manager and pwy::Edge are adapted, handling the QubitEdge objects
created by the parser. The Manager requires a different method to send objects to the sequencer,
as we need to pass them to the DDS cards through Hiway (see below). The new Edge class
needs to use different functions for frequency and phase conversion from Hiway (DDS cards
have a 125 MHz clock) as well as add new instructions for pidecoder.

The frequency and phase conversion of Hiway targets the AD9910 DDS chips on the DDS
boards, which have a 16 bit phase and 32 bit frequency resolution and receive a 𝑓𝑑𝑑𝑠 = 1 GHz
input clock. In order to keep the same resolution on the phase tracker at a 𝑓𝑐𝑙𝑘 = 125 MHz
clock, the resulting frequency conversion is given by

𝑓𝑝𝑡 =
Δ 𝑓𝑞 · 232

𝑓𝑐𝑙𝑘
=

8 · Δ 𝑓𝑞 · 232

𝑓𝑑𝑑𝑠
(21)

where Δ 𝑓𝑞 is the qubit frequency offset and 𝑓𝑝𝑡 the accumulation value per clock cycle on the
DDS card.

Since the pwy::Manager does not feature channels (pidecoder is the only sequencer on the
Zedboard), a way of addressing the independent phase tracker channels has to be added. For
the first version, this is done by a separate manager for each channel which includes the qubit
index when passing information to Hiway.

24 / 35

Alexander Ferk 17.10.2022

3.7 Communication - Hiway

Sending information to the DDS cards is handled by Hiway, which also includes the driver
with the appropriate generation of message frames for the DDS cards. The dds::Manager has
been modified with a method to accept the new instructions from the phase tracker Manager.
Instructions from the dds::Manager are encoded in message frames and sent over the BP to
the DDS cards. The BP communication layer implements all low-level communication and
offers 56 bit payload for message frames. To address the phase tracker channels, these message
frame have been adapted, as shown in Figure 14.

55:52 51 50:46
word_page req dds_ch

51 50 49:46 45 44 43 42 41:39 38 37 36 35 34:32 31 27:18 17:0

00
00

re
q_

od
ec

_s
ta

tu
s

dd
s_

ch
_m

as
k_

va
lid

dd
s_

ch
_m

as
k

cf
g_

va
lid

cf
g_

tr
ig

cf
g_

id
ec

_r
st

cf
g_

m
ti

m
_r

st

em
pt

y

cf
g_

dd
s_

ex
t_

pw
r

cf
g_

dd
s_

m
st

r_
rs

t

Br
am

_i
ns

t_
va

lid

br
am

_s
el

_h
ig

h_
va

lid

br
am

_s
el

_h
ig

h

br
am

_f
ifo

_i
ns

t

br
am

_a
dd

r

br
am

_d
at

a

55:52 51 50:46
word_page req dds_ch

51 50 49:46 45 44 43 42 41:39 38 37 36 35 34:30 29 28

00
00

re
q_

od
ec

_s
ta

tu
s

dd
s_

ch
_m

as
k_

va
lid

dd
s_

ch
_m

as
k

cf
g_

va
lid

cf
g_

tr
ig

cf
g_

id
ec

_r
st

cf
g_

m
ti

m
_r

st

em
pt

y

cf
g_

dd
s_

ex
t_

pw
r

cf
g_

dd
s_

m
st

r_
rs

t

Br
am

_i
ns

t_
va

lid

pt
_s

el

qu
bi

t_
ad

dr

pt
_f

ifo
_s

el

pt
_b

uf
fe

r_
se

l

pt
_p

ay
lo

ad

cfg bram_inst
30:28

br
am

_s
el

_l
ow

45:37 36:0

45:37 36:0

cfg bram_inst
27:0

Figure 14: Minotaur Message Frames, (a) original message frame [17] and (b) phase tracker
frame with the changed fields highlighted in green. Two payloads are concatenated
to obtain a 24 bit address and 32 bit data for pidecoder. Numbers on top indicate
the bit-position in the frame. See text for further details.

The phase tracker message frame uses the unused bram_sel_high_valid bit in the original
message frame as a select bit (pt_sel). If this bit is set, the following bits are interpreted
qubit address (qubit_addr, 5 bit, max. 32 channels), FIFO select (pt_fifo_sel) for selecting
the FIFO as write target, buffer select (pt_buffer_sel) and payload (pt_payload). In order
to get 56 bit width (32 bit data, 24 bit address) for pidecoder, two consecutive payloads are
concatenated. If the buffer select is high, the payload is interpreted as 24 bit address and upper
4 bit of data. Buffer select low writes the instruction to BRAM or FIFO, where the payload is
interpreted as the lower 28 bit of data. In addition to these changes, the dds::Edge class has

25 / 35

Alexander Ferk 17.10.2022

also been adapted to accept a qubit address. This allows the DDS sequencer to read the qubit
phase from a certain phase tracker.

3.8 DDS-Card FPGA Design - Minotaur

The DDS card FPGA design (Minotaur) needs to incorporate the logic blocks for the phase
tracker. Figure 15 shows a schematic of Minotaur (refer to [17] for further details).

125 MHz

odecoder

fifo
odec

idecoder

mdds

mtim

mvga

idec
bram

spi
bram

mvga
bram

mtim
bram

mvga
LUT
bram

LVDS to
single-ended

+
-

bitumen
tx
rx

minotaur dds

time

co
n
tr

o
l

VGA
DACs

DDS
phase

DDS
SPI

control

4x

backplane domain

odecoder
instructions

USB
debugging

b
ac

kp
la

n
e

LVDS to
single-ended

+
-

LVDS to
single-ended

+
-

single-ended
to LVDS

+
-

56

18

18

18

18

18

14

16

133/166 MHz

36

PLL

minotaur

250 MHz
from DDS

4x

dds domain

pid
channel

oenc
fifo

2x

oencoder

phase_tracker

oencoder
data

14

14

ADC A

ADC B

14
trigger

LP filter output
backplane
trigger

odecoder
status

8

34

pidecoder pt_timer
pt
bram 56 48

16x

fifo
pt

16x

4

1
6

Figure 15: Schematic of the Minotaur FPGA design. Additional modules for the phase tracker
module are highlighted in green. odecoder passes instructions to the pt bram.
These are executed by the pidecoder sequencer, passing information to the timer
and trigger unit pt_timer. The DDS interface mdds then selects which phase
register information to pass to the DDS chip depending on the qubit address setting
of the pulse. This figure is adapted from [17]

.

Minotaur accepts 56 bit message frames (see Figure 14) from the BP (the FPGA design for the
de/serializer interface is called Bitumen). These control words are interpreted by odecoder
and written to the respective submodule Block Random Access Memorys (BRAMs) or FIFOs

26 / 35

Alexander Ferk 17.10.2022

for idecoder or phase tracker. The DDS channel design (Minotaur DDS) includes a
sequencer (idecoder), timer unit (mtim), DDS chip interface (mdds) and a Variable Gain
Amplifier (VGA) interface. idecoder executes the sequence instructions from the idec bram
, controlling the other modules and starting the timer. The timer then triggers actions on
these modules, previously programmed by idecoder. The DDS interface mdds communicates
with the DDS chips via Serial Peripheral Interface (SPI). SPI frames are constructed using
FPA information from the spi bram. Loops and forks are executed by idecoder with jump
instructions to different addresses in the idec bram, storing the next adress as the return
address, equivalent to functions in C. Updates during a loop are handled with FIFO pops,
where the odecoder fifo updates the BRAMs. Communication back to the Zedboard via the
backplane are done via the oencoder module. [17, 14]

For the phase tracker, odecoder has been modified to accept additional instructions (see
Figure 14) filling the phase tracker BRAM and FIFO. The FIFOs are managed by the Zedboard,
which needs to monitor FIFO fill levels to prevent overflows. For this purpose, a status bit has
been added to encode the status of the phase tracker FIFOs.

16 phase tracker modules have been added, each containing the BRAM, pidecoder and the
pt_timer module. Due to the high utilization and lower speed grade (-2) of the Spartan 6
FPGA [16], the original pidecoder design does not meet the timing constraints in the 125
MHz domain on the DDS card. Therefore, pidecoder jump instructions had to be modified to
include an additional clock cycle of latency. Further modifications have been made by Martin
Stadler to improve the calculation pipeline and instruction execution. Meeting the timing
constraints on the Spartan 6 FPGA with the added 16 phase tracker modules also requires
additional buffering of signals, as the mapping to the FPGA often produces long connection
paths between logic elements.

The timer module interacts with pidecoder to execute the sequence of programmed frequen-
cies and phases synchronously. Analogous to Equation 2.4, we need to accumulate phase
differences, defined by phase and frequency deltas to get Δ𝜙 of the pulse. For the 𝑁-th pulse
this is given by

Δ𝜙 =

𝑛=𝑁−1∑︁
𝑛=0

𝑓𝑞𝑛𝑡𝑛 + Δ𝜙𝑛. (22)

However, since the accumulator works on discrete timesteps defined by a clock cycle, we have
to convert frequency 𝑓𝑞𝑛 to a 32-bit frequency 𝑓𝑝𝑡 according to Equation 3.6. Δ𝜙𝑛 is converted
to a 16 bit phase 𝜙𝑝𝑡 = Δ𝜙𝑛 · 216/(2𝜋). These are added in a first stage adder. Then a second
stage adder accumulates this result and therefore integrates the frequency, yielding the tracked
phase for this channel, as shown in Figure 16a. Δ𝜙𝑛 is non-zero only for a single clock cycle
at a time to avoid adding the phase delta multiple times.

The accumulator works very similarly to a DDS core, for example from the AD9910 [1], shown
in Figure 16b. The DDS core accumulates the frequency control word and adds a constant
offset. This phase output is then converted to a digital sine, using a sine table or other methods,

27 / 35

Alexander Ferk 17.10.2022

+ +
𝑓𝑢𝑝𝑑𝑎𝑡𝑒

𝑓𝑝𝑡 Δ𝜙

𝜙𝑝𝑡

(a)

AD9910 Data Sheet

Rev. E | Page 22 of 64

FUNCTIONAL BLOCK DETAIL
DDS CORE
The direct digital synthesizer (DDS) block generates a reference
signal (sine or cosine based on CFR1[16], the select DDS sine
output bit). The parameters of the reference signal (frequency,
phase, and amplitude) are applied to the DDS at its frequency,
phase offset, and amplitude control inputs, as shown in Figure 27.

06
47
9-
01
0

DDS_CLK

32 19FREQUENCY
CONTROL

ANGLE-TO-
AMPLITUDE

CONVERSION
(SINE OR
COSINE)

PHASE
OFFSET

CONTROL

TO DAC(MSBs)

D Q

R

ACCUMULATOR
RESET

32

16

MSB ALIGNED

AMPLITUDE
CONTROL

14

DDS SIGNAL CONTROL PARAMETERS

16

1419

32

32 14

14
32-BIT

ACCUMULATOR

Figure 27. DDS Block Diagram

The output frequency (fOUT) of the AD9910 is controlled by the
frequency tuning word (FTW) at the frequency control input to
the DDS. The relationship among fOUT, FTW, and fSYSCLK is given by

SYSCLKOUT fFTWf

= 322

 (1)

where FTW is a 32-bit integer ranging in value from 0 to
2,147,483,647 (231 − 1), which represents the lower half of the
full 32-bit range. This range constitutes frequencies from dc to
Nyquist (that is, ½ fSYSCLK).

The FTW required to generate a desired value of fOUT is found
by solving Equation 1 for FTW, as given in Equation 2.

=

SYSCLK

OUT

f
f

FTW 322round (2)

where the round(x) function rounds the argument (the value of
x) to the nearest integer. This is required because the FTW is
constrained to be an integer value. For example, for fOUT =
41 MHz and fSYSCLK = 122.88 MHz, then FTW = 1,433,053,867
(0x556AAAAB).

Programming an FTW greater than 231 produces an aliased
image that appears at a frequency given by

SYSCLKOUT fFTWf

 −= 322
1 (for FTW ≥ 231)

The relative phase of the DDS signal can be digitally controlled
by means of a 16-bit phase offset word (POW). The phase offset
is applied prior to the angle-to-amplitude conversion block
internal to the DDS core. The relative phase offset (Δθ) is given by

=

16

16

2
360

2
2

Δ
POW

POWπ
θ

where the upper quantity is for the phase offset expressed as
radian units and the lower quantity as degrees. To find the POW
value necessary to develop an arbitrary Δθ, solve the previous
equation for POW and round the result (in a manner similar
to that described previously for finding an arbitrary FTW).

The relative amplitude of the DDS signal can be digitally scaled
(relative to full scale) by means of a 14-bit amplitude scale
factor (ASF). The amplitude scale value is applied at the output
of the angle-to-amplitude conversion block internal to the DDS
core. The amplitude scale is given by

=

14

14

2
log20

2
ASF

ASF

ScaleAmplitude (3)

where the upper quantity is amplitude expressed as a fraction of
full scale and the lower quantity is expressed in decibels relative
to full scale. To find the ASF value necessary for a particular
scale factor, solve Equation 3 for ASF and round the result (in
a manner similar to that described previously for finding an
arbitrary FTW).

When the AD9910 is programmed to modulate any of the DDS
signal control parameters, the maximum modulation sample
rate is ¼ fSYSCLK. This means that the modulation signal exhibits
images at multiples of ¼ fSYSCLK. The impact of these images
must be considered when using the device as a modulator.

14-BIT DAC OUTPUT
The AD9910 incorporates an integrated 14-bit, current output
DAC. The output current is delivered as a balanced signal using
two outputs. The use of balanced outputs reduces the potential
amount of common-mode noise present at the DAC output,
offering the advantage of an increased signal-to-noise ratio. An
external resistor (RSET) connected between the DAC_RSET pin
and AGND establishes the reference current. The full-scale
output current of the DAC (IOUT) is produced as a scaled version
of the reference current (see the Auxiliary DAC section). The
recommended value of RSET is 10 kΩ.

Attention should be paid to the load termination to keep the
output voltage within the specified compliance range; voltages
developed beyond this range cause excessive distortion and can
damage the DAC output circuitry.

(b)

Figure 16: (a) Phase accumulator for the phase tracker module with input frequency 𝑓𝑝𝑡 and
phase 𝜙𝑝𝑡 accumulates 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 with frequency 𝑓𝑑𝑑𝑠/8 to calculate Δ𝜙. (b) DDS
core from AD9910. The frequency control input is accumulated with frequency
𝑓𝑑𝑑𝑠 (’DDS_CLK’), offset by the phase offset control and converted to a digital
sine-amplitude. This is then multiplied by the amplitude control and sent to the
Digital-to-Analog Converter (DAC) to produce the analogue sine signal. Figure
from the AD9910 datasheet [1].

multiplied with the amplitude control and converted to an analog signal with a DAC.

Apart from not converting the phase to a sine wave, the main difference to the phase tracker is,
that it has to sum phase deltas into the accumulator as these offsets are relevant for the future
evolution of the phase.

With this implementation of the phase tracker, we obtain frequency and phase resolutions of

𝛿 𝑓
(𝑝𝑡)
𝑞 =

𝑓𝑑𝑑𝑠

8 · 231 ≈ 0.06 Hz,

𝛿𝜙
(𝑝𝑡)
𝑞 =

360𝑜

216 ≈ 0.005𝑜 .

The phase resolution in the HDL design can be chosen arbitrarily. The usable resulution is
limited by the DDS chip to 16 bit, but it can be improved if other systems are used. Note that
this is only resolution from quantization and does not represent an error estimate.

Finally, the Δ𝜙 output of the phase tracker has to be sent to the DDS chip. For this, the mdds
module has been adapted to accept an additional setting for the qubit address, which will be
read after the FPA entries in the spi bram. This allows the mdds module to switch to the
correct phase tracker register and add the phase of the pulse, similar to the previous design.
The phase output to the DDS chip is then given by

𝜙′′𝑝𝑢𝑙𝑠𝑒 = 𝜙𝑝𝑢𝑙𝑠𝑒 + Δ𝜙. (23)

28 / 35

Alexander Ferk 17.10.2022

4 Results

In order to test the implemented phase tracker, we use the Ionpulse Sequence Generator to
produce a test sequence plotted in Figure 17. In a real experiment, we would drive the
transition on resonance, shifting the frequency of the channel to match the frequency of the
transition. For testing, this would make extracting the phase shift more difficult, hence the
frequency of the RF channel is kept constant, while the phase tracker receives a sequence with
changing frequencies. In addition, another channel is set at the same frequency and amplitude
as a reference. With these considerations a showcase sequence to test the phase tracker is
implemented, as shown in Figure 17.

0 5 10 15 20 25 30
0

50

100

CH
4

 A
 /

1

0 5 10 15 20 25 30

120.000
120.025
120.050

CH
4

 f
/ M

Hz

0 5 10 15 20 25 30
t / s

120.000
120.025
120.050

Q1

 f p
t /

 M
Hz

Figure 17: Test sequence plotted from Ionpulse Sequence Generator data. RF CH4 (and CH5,
not shown) pulses 4 times between 50% and 100% amplitude, while the frequency
is set to 120 MHz. Phase tracker Q1 is set to a frequency of 120.05 MHz for the
first and 120.025 MHz for the last two pulses. See text for further details.

The phase shift for each pulse is given by Δ𝜙 = 360 · 𝑓𝑝𝑡 · 𝑡, resulting in 90𝑜 for the first two
pulses and 45𝑜 for the second two pulses, where we reset the phase tracker before the first and
before the second two pulses to test the reset and separate the two groups of pulses.

The first step of full system testing happens in the Ionpulse emulator. Components of the
system have been individually tested using pre-existing or adapted testbenches and test cases
to catch major bugs.

For the emulator, the FPGA design is compiled with Verilator in order to emulate both the
Zedboard and DDS system. Then, the resulting C++ library is linked against the compiled
driver code to obtain an executable, which emulates the time-coherent part of the control
system. The advantage of the emulator compared to testing directly on the rack is improved
debugging, as all signals in the FPGA design are recorded. Bugs in the design are easier to

29 / 35

Alexander Ferk 17.10.2022

find with access to signals in multiple levels of the design. On the DDS card itself, one has
to resort to including a logic probe in the design to record signals. This logic probe is limited
in memory depth and input signal count by the timing constraints and resources in the FPGA.
Furthermore, triggering on the events of interest is often difficult and might require additional
logic. With the emulator recording all signals, triggering is not a problem. However, running
the emulator is computationally intensive and requires more memory the more signals (trace
depth) are recorded and the longer it is run. Therefore, runtime is usually limited to 50 ms
which equals a few shots of the experiment.

When running the test sequence shown in Figure 17 in the emulator, we obtain the signals
shown in Figure 18.

0 5 10 15 20 25 30
0.0
0.5
1.0

CH
4

A
/ 1

13.5 14.0 14.5

0 5 10 15 20 25 30
0

45
90

180

CH
4 /

o

13.5 14.0 14.5

0 5 10 15 20 25 30

120.000
120.025
120.050

Q1

f p
t /

 M
Hz

13.5 14.0 14.5

0 5 10 15 20 25 30
0

180
360

Q1
 /
o

13.5 14.0 14.5

0 5 10 15 20 25 30
t / s

0

1

Re
se

t

13.5 14.0 14.5
t / s

Figure 18: Test sequence from Figure 17 created by emulating Zedboard and DDS system.
(left column) Amplitude (𝐴) of CH4 (and CH5, not shown) pulsing between 100%
and 50%, frequency (not shown) is set to 120 MHz. Phase tracker Q1 is set to a
frequency of 120.05 MHz for the first and 120.025 MHz for the last two pulses. The
phase accumulator output of Q1 (Δ𝜙) changes on a timescale of 𝑓𝑑𝑑𝑠/8 (see right
column) and is registered at each edge of CH4, resulting in the offset Δ𝜙 at CH4.
The reset signal resets the phase tracker before the first and after the second pulse.
Note that the phase tracker signals are ahead of the pulses. See text for further
details.

30 / 35

Alexander Ferk 17.10.2022

In the left column of Figure 18, the phase shift on RF CH4 from the phase tracker is shown.
We see the expected shifts of 90𝑜 and 180𝑜 for the first two pulses. Then, the reset sets the
phase accumulator to 0𝑜 (magnified in the right column). For the last two pulses we obtain
again the expected phase shifts of 45𝑜 and 90𝑜, from the pulse time and the applied frequency
shift. In the right column the time frame around the reset is magnified and the steps of the
phase accumulator are clearly visible. The phase accumulator sums 𝑓𝑝𝑡 with a frequency of
𝑓𝑑𝑑𝑠/8 = 125 MHz and overflows from 2𝜋 back to 0. In this case, with 𝑓𝑝𝑡 > 𝑓𝑑𝑑𝑠/16 the
accumulator overflows every clock cycle, resulting in the visible ’down slope’. The reset to the
phase accumulator is set at 𝑡 ≈ 13.9 µs and results in the phase accumulator being forced to 0.
This reset and other signals from the phase tracker occur shifted by ≈ 0.1 µs to the RF edge
because of the internal delays of the emulated model of the DDS chip.

4.96 4.98 5.00 5.02 5.04
t / s 1e 6

0.4

0.2

0.0

0.2

0.4

U
/ V

RF CH 5: pulse = 0
RF CH 4: pulse =
Simulation: pulse =

Figure 19: End of the first pulse of the test sequence, measured output from the DDS card.
Phase reference CH 5 with phase offset Δ𝜙 = 0 and shifted CH 4 with phase offset
Δ𝜙 from the phase tracker. Both channels output sine waves at 𝑓 = 120 MHz. The
simulation adds a phase shift of Δ𝜙 = 90𝑜 at the end of the first pulse compared to
the reference channel CH5. See text for more details.

After the successful tests in the ionpulse emulator, the phase tracker has been tested on hardware
with the same test sequence. The control system is set up with Zedboard, backplane and a
single DDS card. FPGA gateware and software are programmed onto the hardware. The test
sequence JSON file is sent to the Zedboard to run the sequence. Outputs from the DDS card

31 / 35

Alexander Ferk 17.10.2022

are connected to an oscilloscope to record the RF signals. The outputs as well as simulated
data with the expected phase offset are shown in Figure 19. The output from the DDS system
shows the expected offset of 90𝑜 after the first pulse to the reference signal. The simulated
signal (taking FPA of CH5 as reference) with the expected phase offset fits the measured
signal. Deviations from the simulation around 𝑡 = 5 µs are a result from a 4ns shift between
the amplitude and phase change together with bandwidth limitations and filtering.

32 / 35

Alexander Ferk 17.10.2022

5 Conclusion and Outlook

In conclusion, we have designed and tested a phase modelling system fitting the requirements
from both the qubit evolution and the control system.

The qubit phase evolution requires a system to replicate the frequency changes from Stark
shifts and phase offsets induced from transport (changes of the trap potential) and shaped
pulses. This becomes particularly important for longer sequences where phase errors as a
result frequency deviations on the order of a few kHz can no longer be ignored.

The control system requires as few as possible unique pulses to stay within memory limitations
of the DDS cards. Hence, offsetting the phase for each pulse is not an option, as a sequence of
multiple 𝜋-pulses needs to store each pulse individually due to its unique phase offset.

We have discussed four options for implementation to fulfill these requirements, where we
chose to implement the phase calculation with a new sequencer. This implementation offers
the most flexibility when modelling the phase and allows the different RF channels to offset
the pulses by the accumulated phase of the targeted qubit.

The design was integrated in the control system, which involved significant changes to many
layers from the high-level sequence description to the low-level HDL code. The final design
was tested in the emulator as well as on the hardware. Here, we found the measured offsets in
good agreement with the programmed offsets.

With the drivers and FPGA designs tested and functioning, some tasks still remain. For better
usability of the system, Pycrystal needs to be adapted with high-level functions including phase
tracker instructions. The original plan to test the phase tracker with randomized benchmarking
on an actual experiment had to be abandoned due to a lack of time. Before it can be used
productively in the lab, the phase tracker still has to be tested in an actual experiment.

As a further outlook, the current system supports only 16 phase trackers per rack. With
increasing system size in quantum computation, a modular approach (with 16 phase trackers
per DDS card) is more appropriate. As an intermediate step, decoupling of the phase trackers
per card is possible, by addressing each card’s phase trackers individually. This allows us
to use the full 16 phase trackers per card for all RF channels of this card. However, for
full flexibility, exchanging phases between phase trackers must be possible. This scheme is
compatible with the current implementation, but requires some additional modifications. The
additional communication delays have to be compensated when communicating phases from
one DDS card to another via the Zedboard.

33 / 35

Alexander Ferk 17.10.2022

6 References
[1] AD9910 Datasheet and Product Info | Analog Devices. url: https://www.analog.

com/en/products/ad9910.html (visited on 05/04/2022).
[2] S. M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics. Oxford

Series in Optical and Imaging Sciences 15. Oxford : New York: Clarendon Press ;
Oxford University Press, 1997. 284 pp. isbn: 978-0-19-856362-4.

[3] Claude Cohen-Tannoudji et al. Photons and Atoms: Introduction to Quantum Electro-
dynamics. Physics Textbook. Weinheim: Wiley-VCH, 2004. 468 pp. isbn: 978-0-471-
18433-1.

[4] E. A. Donley et al. “Double-Pass Acousto-Optic Modulator System”. In: Review of
Scientific Instruments 76.6 (June 2005), p. 063112. issn: 0034-6748, 1089-7623. doi:
10.1063/1.1930095. url: http://aip.scitation.org/doi/10.1063/1.
1930095 (visited on 10/28/2022).

[5] Christoph Fischer. “Quantum Non-Demolition Readout for Optically Trapped Alkaline-
Earth Rydberg Atoms”. Doctoral Thesis. ETH Zurich, 2022. doi: 10.3929/ethz-b-
000546638. url: https://www.research-collection.ethz.ch/handle/20.
500.11850/546638 (visited on 10/08/2022).

[6] H. Häffner, C. F. Roos, and R. Blatt. “Quantum Computing with Trapped Ions”. In:
Physics Reports 469.4 (Dec. 1, 2008), pp. 155–203. issn: 0370-1573. doi: 10.1016/
j.physrep.2008.09.003. url: https://www.sciencedirect.com/science/
article/pii/S0370157308003463 (visited on 10/27/2022).

[7] H. Häffner et al. “Precision Measurement and Compensation of Optical Stark Shifts
for an Ion-Trap Quantum Processor”. In: Physical Review Letters 90.14 (Apr. 9, 2003),
p. 143602. issn: 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.90.143602.
url: https://link.aps.org/doi/10.1103/PhysRevLett.90.143602 (visited
on 10/22/2022).

[8] D.F.V. James. “Quantum Dynamics of Cold Trapped Ions with Application to Quantum
Computation”. In: Applied Physics B: Lasers and Optics 66.2 (Feb. 1, 1998), pp. 181–
190. issn: 0946-2171, 1432-0649. doi: 10.1007/s003400050373. url: http://
link.springer.com/10.1007/s003400050373 (visited on 10/30/2022).

[9] Jeremy Kratz. English: The Officially Endorsed Logo of Isocpp.Org. Jan. 30, 2017. url:
https://commons.wikimedia.org/wiki/File:ISO_C%2B%2B_Logo.svg (visited
on 11/15/2022).

[10] Rodney Loudon. The Quantum Theory of Light. 3rd ed. Oxford Science Publications.
Oxford ; New York: Oxford University Press, 2000. 438 pp. isbn: 978-0-19-850177-0
978-0-19-850176-3.

34 / 35

https://www.analog.com/en/products/ad9910.html
https://www.analog.com/en/products/ad9910.html
https://doi.org/10.1063/1.1930095
http://aip.scitation.org/doi/10.1063/1.1930095
http://aip.scitation.org/doi/10.1063/1.1930095
https://doi.org/10.3929/ethz-b-000546638
https://doi.org/10.3929/ethz-b-000546638
https://www.research-collection.ethz.ch/handle/20.500.11850/546638
https://www.research-collection.ethz.ch/handle/20.500.11850/546638
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://www.sciencedirect.com/science/article/pii/S0370157308003463
https://www.sciencedirect.com/science/article/pii/S0370157308003463
https://doi.org/10.1103/PhysRevLett.90.143602
https://link.aps.org/doi/10.1103/PhysRevLett.90.143602
https://doi.org/10.1007/s003400050373
http://link.springer.com/10.1007/s003400050373
http://link.springer.com/10.1007/s003400050373
https://commons.wikimedia.org/wiki/File:ISO_C%2B%2B_Logo.svg

Alexander Ferk 17.10.2022

[11] Maciej Malinowski. “Unitary and Dissipative Trapped-Ion Entanglement Using Inte-
grated Optics”. ETH Zurich, 2021, 396 p. doi: 10.3929/ETHZ-B-000516613. url:
http://hdl.handle.net/20.500.11850/516613 (visited on 04/04/2022).

[12] David C. McKay et al. “Efficient Z Gates for Quantum Computing”. In: Physical
Review A 96.2 (Aug. 31, 2017), p. 022330. doi: 10.1103/PhysRevA.96.022330.
url: https://link.aps.org/doi/10.1103/PhysRevA.96.022330 (visited on
10/27/2022).

[13] Mose Müller. A Flexible Python Framework for Generating Pulse Sequences for Multi
Zone Operations in Ion Traps. In Preparation. Oct. 2022.

[14] Vlad Negnevitsky. “Feedback-Stabilised Quantum States in a Mixed-Species Ion Sys-
tem”. ETH Zurich, 2018, 165 p. doi: 10.3929/ETHZ-B-000295923. url: http:
//hdl.handle.net/20.500.11850/295923 (visited on 04/04/2022).

[15] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation. 10th anniversary ed. Cambridge ; New York: Cambridge University Press, 2010.
676 pp. isbn: 978-1-107-00217-3.

[16] Spartan-6 FPGA Family. Xilinx. url: https://www.xilinx.com/products/
silicon-devices/fpga/spartan-6.html (visited on 05/04/2022).

[17] Martin Stadler. Integrated Laser Amplitude Stabilization for Mixed Species Trapped-Ion
Experiments. Sept. 2018.

[18] Marco Erwin Stucki. “Enabling a Quantum-Gate-Level Interface with a Trapped Ion
Control System”. In: (Dec. 2021), p. 102.

[19] Alfredo Ricci Vasquez et al. Control of an Atomic Quadrupole Transition in a Phase-
Stable Standing Wave. Oct. 5, 2022. arXiv:2210.02597[physics, physics:quant-ph].
url: http://arxiv.org/abs/2210.02597 (visited on 10/30/2022).

[20] www.python.org. English: Python Logo. Aug. 6, 2008. url: https://commons.
wikimedia.org/wiki/File:Python-logo-notext.svg (visited on 11/15/2022).

[21] ZedBoard | Avnet Boards. url: https://www.avnet.com/wps/portal/us/
products / avnet - boards / avnet - board - families / zedboard/ (visited on
10/08/2022).

[22] Zynq-7000 SoC. Xilinx. url: https://www.xilinx.com/products/silicon-
devices/soc/zynq-7000.html (visited on 10/08/2022).

35 / 35

https://doi.org/10.3929/ETHZ-B-000516613
http://hdl.handle.net/20.500.11850/516613
https://doi.org/10.1103/PhysRevA.96.022330
https://link.aps.org/doi/10.1103/PhysRevA.96.022330
https://doi.org/10.3929/ETHZ-B-000295923
http://hdl.handle.net/20.500.11850/295923
http://hdl.handle.net/20.500.11850/295923
https://www.xilinx.com/products/silicon-devices/fpga/spartan-6.html
https://www.xilinx.com/products/silicon-devices/fpga/spartan-6.html
https://arxiv.org/abs/2210.02597
http://arxiv.org/abs/2210.02597
https://commons.wikimedia.org/wiki/File:Python-logo-notext.svg
https://commons.wikimedia.org/wiki/File:Python-logo-notext.svg
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

	Theory
	Atom Light Interaction
	Atomic Level Structure
	Single Qubit Gates
	AC Stark Shift

	Trapped Ion Control System
	Overview
	Experimental Sequence Structure
	Experimental Sequence Generation
	Coherent Pulses

	Phase Tracker Implementation
	Design Considerations
	Design Overview
	Python Sequence Generation - Ionpulse Sequence Generator
	Interface Format - JSON Structure
	Sequence Interpretation - JSON Parser
	Sequencer Driver - Pulseway
	Communication - Hiway
	DDS-Card FPGA Design - Minotaur

	Results
	Conclusion and Outlook
	References

