
MSc Quantum Engineering - Master Thesis

RFSoC based Real-Time Control for
Trapped Ion Quantum Computing

Roger Serrat i Guevara

Supervised by

Alexander Ferk

Principal investigator

Prof. Jonathan Home

Trapped Ion Quantum Information Group

Swiss Federal Institute of Technology (ETH) Zürich

June 2024

[This page is intentionally left blank.]

Abstract

Real-time control over RF and digital signals plays a key role in trapped ion ex-
periments as well as other quantum computing platforms. Many control solutions
employ dedicated components requiring complex, high-speed communication and
high integration effort. The AMD RF System-on-Chip (RFSoC) integrates an RF
system together with digital processing capabilities on a single chip, making it an
ideal candidate to control these experiments.

In this thesis we present a full implementation of a control system for trapped ions
on a Gen3 RFSoC. The design is based on the current control system of the TIQI
group, called QuENCH. In our design, QuENCH’s multi-FPGA architecture has
been adapted for a single chip fully integrating the RF generation. The resulting
system features 16 RF DACs, capable of generating phase-synchronous RF signals
with up to 4 tones each at 4GSPS, together with 32 digital outputs and 4 digital
inputs. The device has been tested in an ion-trap experiment, successfully trapping
calcium ions and driving the optical qubit transition to observe Rabi oscillations.

ii

Acknowledgements

I would like to start by thanking Prof. Dr. Jonathan Home for allowing me into the
group not once, but twice, as I conducted my semester and master theses here. When
I first joined the masters I carried a great curiosity about trapped ion technologies,
and I a extremely grateful for the opportunities I have had to work closely to them.

I owe a great deal to my supervisor, Alexander Ferk, who has guided me throughout
the entire project. Since day one you have been available to answer even the stupi-
dest of my questions and point me in the right direction. At the same time, you have
made me feel trusted and respected, which has kept me going even when my confi-
dence was lowest. I want to thank you especially for the patience you showed during
my time away; in such hard times your attitude was reassuring. Even though I don’t
always understand your humour, it has been a great pleasure working alongside you.

I want extend my gratitude to Martin Stadler, who first introduced me to this
project. It is partly because of you that I understood the value that engineers
provide in supporting physics research. Also to Bahadir Dönmez, with whom I had
the pleasure to share an office, and who altruistically offered to help at any minor
inconvenience. I also acknowledge the rest of the TIQI control team – Michael,
Michi, Mose and Peter – for following along the process. It is not common for
research groups to have a dedicated engineering team, and I couldn’t have asked for
a better one.

My recognition goes to Kadir Akin for the interest he has taken in this project. I
sincerely appreciate our fruitful discussions in gateware development.

I cannot forget the people with whom I have spent my time outside of the studies.
In particular, I want to dedicate a special mention to my colleagues Luis, Raquel
and Pablo, as well as to my flatmates Victor and Pep. Thank you for making me
feel at home in this foreign country.

Finally, I want to thank my parents, Xavi and Montse, without whose unconditional
support I would not be writing these lines. Also my brother, Jordi, for always being
there to get a laugh out of me. And of course, to my beloved girlfriend, Anna, thank
you for staying next to me through all the highs and lows of these past few years.
Even from the distance, I feel us closer than ever.

iii

Contents

1 Introduction 1

2 Control system 3
2.1 Requirements . 3
2.2 Overview . 4
2.3 QuENCH . 5

2.3.1 Quench CTRL . 6
2.3.2 Pulseway . 6
2.3.3 RF generation . 6

2.4 Digital IO . 8

3 Target device 9
3.1 Evaluation board: RFSoC ZCU216 9

3.1.1 Processing system . 9
3.1.2 Programmable logic . 10
3.1.3 RF Data Converter . 11
3.1.4 Booting and configuration . 12
3.1.5 Connectivity . 12

3.2 Clocking board: CLK104 . 13
3.3 RF breakout board . 14

3.3.1 XM655 . 14
3.3.2 Custom breakout board . 15

4 Hardware architecture 16
4.1 Gateware overview . 17
4.2 Clocking structure . 18
4.3 Hardware components . 20

4.3.1 Processing System . 20
4.3.2 Quench CTRL . 21
4.3.3 Pulseway . 21
4.3.4 Quench RF . 22
4.3.5 RF data converter . 22

4.4 Constraints . 23
4.4.1 Physical constraints . 23
4.4.2 Timing constraints . 24

5 Software 25
5.1 Ionpulse . 25

iv

5.2 Extension to RFSoC . 26
5.2.1 Board Support Package . 26
5.2.2 Initialization sequence . 27
5.2.3 CMake . 29

5.3 Additional considerations . 29
5.3.1 Vitis Classic vs Unified IDE 29
5.3.2 Ionpulse programmer . 31

6 Testing 32
6.1 Quench RF and the UART debugger 32
6.2 Breakout board baluns . 33
6.3 Ionizer test experiments . 33

6.3.1 Constant Frequency Output experiment 33
6.3.2 Digital IOs . 35
6.3.3 Quench Loop Testcase . 35

6.4 Full RF control in a real ion-trap experiment 36

7 Conclusion and outlook 41

A LMK configuration with TICS Pro 43

B Additional information on auxiliary boards 48
B.1 RF breakout board: TTL pin mapping 48
B.2 Buffer/trigger board: PMT output via FMC 48

C Hiway dummy mode 51

D Phase noise measurement 52

Acronyms 54

References 58

v

Chapter 1

Introduction

Trapped ions constitute one of the most promising platforms for quantum com-
putation [1]. Charged particles – individual atoms or even small molecules – are
confined in a potential well generated by a static electric field in combination with
either a magnetic field or an oscillating electric field. The qubits are then often
defined between two long-lived internal states of each ion. Common choices include
using the electronic ground state and an excited metastable state, separated by an
optical transition, or two Zeeman or hyperfine levels in the ground state, separated
by a microwave transition. Regardless of the choice of qubit, many of the relevant
operations rely on light-matter interaction, namely cooling, state preparation, co-
herent control and detection. As a consequence, lasers become an essential part of
the system.

Over the last years numerous advancements have been made in an effort to scale
up the number of (individually addressable) ions in the traps, as well as to improve
the fidelity and reliability of the operations performed on them. A popular solu-
tion are segmented surface-electrode trap architectures [2], comprising an increasing
amount of electrodes, and employing integrated optics to implement quantum con-
trol [3]. However, such improvements on the traps also come with the cost of adding
complexity to the auxiliary engineering systems.

Specifically, a large number of electric signals are used to manage all electrical and
optical devices [4]. The most relevant problematic comes from real-time compo-
nents1 which require precise synchronous control. These include acousto-optic mod-
ulators (AOMs) and acousto-optic deflectors (AODs)2 for modulating laser pulses,
radio frequency (RF) and DC trap voltages, digital signals for monitoring and
triggering, and readout of peripherals such as cameras and photo-muliplier tubes
(PMTs). Additionally, a few other devices must be managed asynchronously, at
slower timescales, with less precise timing.

Related technologies such as neutral atoms [5] also employ a similar set of control
signals. There, the main trapping mechanism consists of static optical tweezer arrays

1Real-time components are designed to perform tasks that must be executed within specified
timing constraints.

2AOMs and AODs are intrinsically the same device, just operated differently. The distinction
is often made to note that AOMs are primarily used to change the intensity and frequency of the
laser, while AODs are optimized to affect the beam position.

1

created by an asynchronously controlled spatial light modulator (SLM) for example.
In turn, AODs are used for atom transport in addition to performing operations on
the qubits. While some operations in neutral atom systems are similar to trapped
ions, the differences in electrical and optical requirements lead to a new range of
requirements for the control system.

The currently existing control solution in the Trapped Ion Quantum Information
(TIQI) group follows a modular approach [6]. The RF pulses are generated phase-
synchronously by dedicated direct digital synthesis (DDS) cards, each with its own
field-programmable gate array (FPGA), that are managed by a common main con-
troller together with other inputs and outputs. The workload on the main controller
is distributed between an FPGA and a central processing unit (CPU), in an effort
to obtain a design that is fast, yet flexible.

Despite its proven practicality and ongoing maintenance, this system still has a few
drawbacks. Namely, it only supports up to 32 single-tone channels with stringent
timing constraints. A new system has been developed to mitigate these drawbacks,
using high speed digital-to-analog converters3 (DACs) as RF frontend. These DACs
require a high-speed interface (JESD204B) to transfer data from an FPGA to the
DAC for waveform generation, which introduces considerable complexity in terms
of clocking and synchronization. Another option are the RFSoC chips from Xil-
inx/AMD4 [7], highly programmable system-on-chip (SoC) devices purposely de-
signed for cutting-edge applications in telecommunications. In particular, the Zynq
UltraScale+ RFSoC ZCU216 Evaluation Kit, which includes a Zynq™ Ultrascale+™
RFSoC of 3rd generation, was already used in an earlier project in the group [8] to
test synchronous RF generation.

The goal of this thesis is to adapt the core of the control system, namely the soft-
ware for the main controller and the gateware for RF generation, to the ZCU216.
The project is based on the DAC-based version of the control system, called Quan-
tum Experiment Next-generation Control Hub (QuENCH) [9]. The project involves
adapting the distributed architecture onto one device, (partially) removing the com-
munication layer, as well as improving the software and gateware to be more device
agnostic.

This document is structured as follows. Chapter 2 provides an overview of the
current control system, focusing on the RF generation. Chapter 3 describes the most
relevant features of the target device. Chapter 4 presents the hardware architecture
implemented in the FPGA. Chapter 5 lists the changes applied to the software to
make it compatible with the new device. Chapter 6 shows some of the tests carried
out during development, including a trial in a real ion-trap experiment. Lastly,
chapter 7 summarizes the achievements accomplished throughout the thesis and
mentions potential further developments.

3AD9154
4AMD recently acquired Xilinx, the original provider of these chips and related devices.

2

Chapter 2

Control system

Over the last decade TIQI has implemented a custom solution to control its multiple
experiments, originally developed by Vlad Negnevistky and others under the name
Modular Advanced Control of Trapped IONs (M-ACTION) [6]. Since its creation
this system has been continuously maintained and improved, and it has ultimately
evolved into the Quantum Experiment Next-generation Control Hub, QuENCH for
short, designed by Martin Stadler and others [9]. In this chapter we provide a general
description of the control system, focusing on the latest iteration, as it constitutes
the basis for our adaption to the RFSoC.

2.1 Requirements

A particularity of trapped-ion experiments with respect to other quantum tech-
nologies is the concurrent use of electric, magnetic and optical fields. The goal to
perform computations with the ions involves having the ability to precisely control
said fields, such that arbitrary pulses and waveforms can be generated.

Paul traps – the most widely used way of trapping ions for the purpose of quantum
computing – achieve axial confinement by means of a static electric potential, while
radial trapping is provided by an oscillating quadrupole electric field. In the simplest
configuration this is managed with asynchronous devices, namely a few DACs to
select the trap electrodes’ voltage and fixed-frequency RF sources. However, ion
transport and the excitation of motional modes via modulation of trap electrodes
requires synchronous control over the voltages on the trap electrodes.

On the other hand, a variety of optical and microwave fields are used to address
specific transitions in the ions. In general, lasers beams would only have to operate
at a single frequency, targeted towards a particular transition or Doppler cooling, far
Doppler cooling, etc. Still, some applications benefit from the flexibility to detune or
pulse them. Especially gate operations require precise control, not just in frequency,
but also in phase and amplitude. This control is provided by RF-driven AOMs.

The set of control signals is completed with several digital IOs, including digital
outputs for monitoring and triggering purposes, and digital inputs for readout de-
vices (cameras and PMTs). An example of all signals used for a specific experiment
can be found in [4], whereas a rough estimation of the general requirements for the
current experiments is given in table 2.1.

3

Table 2.1: Estimated requirements for the control system in TIQI experiments. Based
on [6] but updated for the modern setups.

Type Requirements Timing Quantity

RF output 100 kHz – 500MHz freq, <20 ns resolution 10 – 30
phase coherent <1 ps jitter

Analog output 10V, ∼1MHz bandwidth <100 ns jitter 10 – 40
Digital output LVTTL (0 – 3.3V) <100 ns jitter 5 – 20
Digital input LVTTL (0 – 3.3V), <20 ns resolution, 1 – 4

count and timestamp <10 µs readout latency

2.2 Overview

The basic idea behind TIQI’s control system is to employ a hybrid FPGA/CPU
architecture, where the real-time sequencing is handled on multiple FPGAs, while
an ARM CPU running a custom baremetal application coordinates the sequences
that are executed on each node. A high-level diagram of the entire control system
is depicted in fig 2.1.

AOMs

PMT
Camera

Shutters

RF signal
cards

main
controller

FPGA
FPGA

DACDAC

CPU

Electrode
voltages

32 - 128

32 digital outputs

96 RF channels

laser source

Ethernet
(custom RPC protocol)

Analogue voltage
AWGs

light delivery

vacuum
chamber

fixed frequency
RF sources

Shim/cavity DACs

PID
-

Control PC experiment
library

ionpulse
link

Python
plugins

Figure 2.1: Overview of the entire control system. A description of the main components
is provided in the main text. In the lower left corner, a cryostat with a surface-electrode
trap is shown; the violet dots represent two ions. Image by Martin Stadler.

The central component is the main controller1, a SoC that comprises both a CPU
and an FPGA. The processor runs Ionpulse, a C++ baremetal application in which
experiments can be defined and parameterized. These are then translated into a
sequence of instructions describing the pulses to be generated.

The instructions are sent via a backplane to the dedicated RF cards, where an
FPGA-based sequencer decodes and executes the instructions. A similar sequencer

1Avnet Zedboard

4

on the main controller takes care of photon counting and time-tagging (digital in-
puts), as well as controlling 32 digital outputs.

In the original design, RF generation was done by means of standalone DDS cards
that employed a single DDS chip (AD9910) per RF channel. However, they could
only generate a single sine wave tone using parameters provided by the custom se-
quencer. In QuENCH these cards have been replaced by the commercially available
AFCK2 with custom FMC DAC modules featuring a high speed DAC (AD9154).
Waveform synthesis is then implemented in the FPGA, currently configured for up
to 4 different frequency tones per physical output, in addition to improving some
timing limitations on the pulses given by the serial interface of the DDS chip.

The main controller spawns a server that can be accessed from the control PC,
connected via Ethernet. There, the Ionizer GUI allows users to start and stop
experiments, customize their parameters and visualize the results.

Asynchronous devices are controlled independently with their own Raspberry Pis,
connected to the control PC through Ethernet. These are not relevant for this
project and hence will not be discussed further.

2.3 QuENCH

The core of the system, i.e. the main controller and RF generation, is designed in
a modular manner, as depicted in fig. 2.2. The main building blocks for QuENCH
are the following:

Figure 2.2: QuENCH functional block diagram. In the main controller, the software
application provides the instructions for quench ctrl and pulseway via AXI. From there,
instructions are serialized by bitumen and sent to the RF cards over the backplane, to-
gether with a trigger signal, where they are deserialized and used to configure sequencers
which in turn control the DDS cores.

Ionpulse is the top-level software application that constitutes the entry point to
the system. It manages the other modules in order to run the experiments
defined by the user, as well as to communicate with Ionizer on the control PC.

2AMC FMC Carrier Kintex

5

Pulseway encloses the functionalities related to digital IO, including a pulse se-
quencer for the digital outputs, pulse counters for the PMTs and a trigger
generator for the RF cards.

Quench CTRL manages communication between the CPU and the RF cards. Be-
sides direct AXI writes it can also use direct memory access (DMA) to retrieve
the instructions and distribute them.

Bitumen implements a serial communication protocol with error correction for
backplane instructions.

Quench RF encapsulates the RF signal generation. Instructions received from the
backplane are interpreted by the bp codec3 and used to write to the parameter
and instruction block RAMs (BRAMs) or perform control actions.

2.3.1 Quench CTRL

The control firmware implemented in quench ctrl uses DMA to fetch the instruc-
tion sequence from the processing system’s (PS) random-access memory (RAM)
via the master AXI interface4. The instructions are sent over the backplane, with
asynchronous FIFOs being used to handle the clock domain crossing between the
management and the backplane clock. This configuration allows streaming data to
multiple cards simultaneously. One bitumen core per card serializes the data stream
for transmission.

2.3.2 Pulseway

In pulseway, instructions for output generation are stored by the PS in a BRAM,
accessed via a slave AXI interface. From there, the instructions are interpreted by
a sequencer and used to configure a timer which manages the status of the digital
outputs, including the TTL lines and the trigger for quench rf. FIFO updates, i.e.
parameter changes for loops, may be sent via DMA.

Each PMT channel is monitored by two pulse counters: one keeps track of the
number of pulses it receives, while the other implements a time-tagging functionality
that stores the timestamp when each event is received. The counters push data to
a FIFO which is polled from the PS. Additionally, the module offers support for an
external trigger input for line triggering as well as a camera.

2.3.3 RF generation

The RF cards implementing quench rf, as depicted in fig. 2.3, have access to 8
DAC channels, each individually controlled by a quench rf channel. In turn, each
of these channels has 4 independent sine synthesizers implementing the DDS cores.
Access to 3 arbitrary waveform generator (AWG) channels, streaming from a RAM
at 1600MT/s with a width of 32 bits, is also available. Note that these are shared
between all 8 physical outputs; each DAC channel can select whether to use the sine
synthesizers or the AWG.

3The instructions are encoded for the bp codec directly in the software driver.
4A slave AXI interface is used to configure the master AXI. It may also be used as an alternative,

slower method for the PS to send instructions to the FPGA or over the backplane.

6

Figure 2.3: Schematic of the quench rf module. It comprises 8 channels implementing
4-tone DDS, which also have access to 3 AWG channels. A backplane codec inteprets the
instructions from the main controller. The module’s main components are described in
the main text.

7

Inside a quench rf channel, three dedicated interpolation engines provide the pa-
rameters for each sine synthesizer. These implement linear frequency interpolation,
phase stepping and cubic spline amplitude interpolation, allowing the generation of
chirped pulses and smooth amplitude shapes.

The basic operation of the DDS cores is as follows. Based on the fact that the
phase is the integral of the frequency, a 32-bit binary counter – the so-called phase
accumulator – is kept, representing the instantaneous phase of the signal. The phase
parameter is included as an offset on this counter. At every clock cycle, the counter
is incremented by a 32-bit frequency control word F , given as a fraction of the DDS
clock frequency fclk, i.e.

F = 232 × fout
fclk

(2.1)

where fout is the target frequency parameter. Note that F is rounded to the nearest
integer, resulting in a frequency resolution of fclk/(2

32). This rounding is already
done in the software, before the parameter is sent to the FPGA.

The instantaneous phase is converted from an angle into an (16-bit) amplitude ac-
cording to a sinusoidal pattern. This step is implemented by means of a 9-bit look-up
table (LUT), addressed with the most significant bits of the phase accumulator and
extended to 12 bits based on the symmetry of sine and cosine, and a linear interpo-
lator. The sampling rate is increased with respect to the DDS clock by generating
multiple samples per cycle with the proper phase offset. Finally, the different tones
are combined together and scaled according to the amplitude parameter before being
sent to the output DACs.

2.4 Digital IO

The 32 digital outputs coming out from the Zedboard are routed to two DSUB-25
connectors, 16 signals to each. These can be used to easily connect to a custom
TTL breakout box that shifts the voltage level up to 5V and provides convenient
BNC connectors, as well as power isolation and a LED indicator showing the level
of each individual channel.

The PMT signals, together with an external input trigger, are fed into a small
breakout board with SMA connectors. At the time of writing, two different boards
can be found in the lab for this purpose. The legacy solution simply level-shifts the
signals from 5V to 3.3V, with single-ended outputs. The new board uses LVDS
buffers, which can handle pulses shorter than 10 ns, a separate circuit for the line
trigger and an option to use one of the channels for time tagging.

8

Chapter 3

Target device

In this chapter we provide an overview of the most relevant characteristics and
components of the AMD Zynq Ultrascale+ RFSoC ZCU216 Evaluation Kit used in
this project, as well as the auxiliary parts that are specifically used with it. The
information presented here is largely taken from the ZCU216 user guide [10] and the
Zynq Ultrascale+ RFSoC data sheet [11]; further details can be found there.

3.1 Evaluation board: RFSoC ZCU216

The ZCU216 is an evaluation board designed for radio-telecommunication appli-
cations with frequencies below a few GHz, featuring the ZU49DR AMD Zynq™
Ultrascale+™ RFSoC Gen3 device1. The chip is split up into three main parts: the
processing system (PS), the programmable logic (PL) and the RF Data Converter
(RFDC).

3.1.1 Processing system

The Zynq UltraScale+ processor consists of two separate processing units: a 64-
bit quad-core ARM Cortex-A53 application processing unit (APU), based on the
ARMv8-A architecture, and a 32-bit dual-core ARM Cortex-R5F real-time process-
ing unit (RPU), based on ARMv7-R.

It provides dedicated modules for a number of peripherals related to external mem-
ory interfacing, high-speed interfacing and general connectivity. The latter includes
a pair of USB2.0 controllers, an I2C controller, a UART, four triple-speed Ethernet
MACs and 128 bits of general purpose IO. Peripherals can be assigned to a pre-
defined group of pins among the 78 dedicated multiplexed IO (MIO) pins. Since
these may not be enough to allocate all the required peripherals, 98 extended mul-
tiplexed IO (EMIO) pins are available, allowing unmapped PS peripherals to access
the PL IO.

The PS-PL interface also contains several AMBA AXI42 interfaces for primary data
communications, most notably including 4 high-performance (HP) slave AXI inter-
faces to the PS DDR memory, 2 high-performance coherent (HPC) ports to the

1Throughout this thesis, the term RFSoC will be used to refer to this particular chip.
2Arm Advanced Microcontroller Bus Architecture, Advanced eXtensible Interface v4 [12, 13]

9

cache coherent interconnect (CCI), which allow access to the same data as the CPU
without having to flush caches, and 2 HP master AXI interfaces from PS to PL.
Additionally, there are 4 PS clock outputs and 4 PS reset outputs to the PL.

3.1.2 Programmable logic

Programmable logic is available by means of an UltraScale+ FPGA. It comprises
∼50k configurable logic interconnects (CLBs), each containing 8 6-input LUTs and
16 flip-flops, ∼4k digital signal processing (DSP) slices with 27× 18 multipliers and
48-bit accumulators, ∼1k 36Kb BRAMs with built-in FIFO support, and 80 4k
× 72-bit UltraRAM blocks. All these elements are connected with a network of
high-performance, low-latency interconnects. In addition to logical functions, the
CLB provides a shift register, multiplexer and carry logic functionality as well as the
ability to configure the LUTs as distributed memory to complement the configurable
BRAMs. The DSP slice may also perform additional independent functions making
use of its 96-bit-wide XOR functionality and 27-bit pre-adder.

The PL provides ∼400 configurable IO pins supporting multiple standards. They are
divided between high-performance (HP) and high-density (HD) banks, with some-
what different capabilities [14]. Additionally to single-ended mode, most pin pairs
can be configured as differential input or output pairs, and optionally terminated
with a 100Ω internal resistor. Double data rate (DDR) is supported by all inputs
and outputs.

Clock generation and distribution components are located adjacent to the columns
that contain the memory interface and input and output circuitry, providing low-
latency clocking to the IO. Within every clock management tile (CMT) resides
one mixed-mode clock manager (MMCM), two phase-locked loops (PLLs), clock
distribution buffers and routing, and dedicated circuitry for implementing external
memory interfaces.

The MMCM can serve as a frequency synthesizer for a wide range of frequencies
and as a jitter filter for incoming clocks. At its center is a voltage-controlled oscil-
lator (VCO), whose speed depends on the input voltage it receives from the phase
frequency detector (PFD). Three sets of programmable dividers can be configured
to provide the desired output frequency while keeping the VCO within the specified
range. The output phase is also configurable under certain limitations. In turn, the
PLLs offer fewer features than the MMCM, and are primarily present to provide
the necessary clocks to the dedicated memory interface circuitry. Aside from the
ones in the CMTs, the RFSoC is equipped with five additional PLLs in the PS for
independently configuring the four primary clock domains within the PS: the APU,
the RPU, the DDR controller and the IO peripherals.

Clocks are distributed throughout the PL via buffers that drive a number of vertical
and horizontal tracks. There are 24 horizontal and 24 vertical clock routes per clock
region, with 24 additional vertical clock routes adjacent to the MMCM and the PLL.
Within a clock region, clock signals are routed to the device logic (CLBs, etc.) via
16 gateable leaf clocks. Clocks can also be transferred from the PS to the PL using
dedicated buffers.

10

3.1.3 RF Data Converter

The RF Data Converter Gen3 [15] subsystem integrates 16 14-bit 9.85GSPS DACs3

and 16 14-bit 2.5GSPS ADCs. It implements efficient digital up-conversion (DUC)
and digital down-conversion (DDC), comprising programmable interpolation and
decimation, a numerically controlled oscillator (NCO) and a complex mixer.

The analog circuitry for the RF-DACs supports the ability to adjust the output
power, which is combined with digital control to implement the RF-DAC Variable
Ouput Power (VOP) feature. The output current can be adjusted arbitrarily up to
40.5mA (or 6.5 dBm at 50Ω). Furthermore, the RF-DACs offer a mix-mode feature
to optimize their output response to the second Nyquist zone by mixing the RF-DAC
data with the sampling clock. As for normal operation in the first Nyquist zone,
the output suffers a roll-off sinc response. An inverse sinc filter is made available to
counteract this effect in applications that require a flat-output response over a wide
bandwidth.

The RF-DACs and RF-ADCs are arranged in tiles4 of 4 channels each. Each tile
includes a clocking system with its own PLL. An external reference clock is required
as either the sampling clock or as a reference clock to the internal PLL; one such
differential clock is to be provided per tile5, with an internal 100Ω termination and
a clock buffer already implemented in the tile architecture. Alternatively, tiles can
forward their sampling clock to adjacent tiles, under certain constraints, through an
on-chip distribution network. An optional user-configurable clock may be output
from each tile to the PL.

Communication with the PL occurs by means of a single AXI4-Lite configuration
interface and multiple AXI4-Stream data interfaces, one per channel. The AXI-
Lite clock is to be driven by the system CPU and is common to all tiles, whereas
each tile has its own AXI-Stream clock, which must be frequency-locked to the
RF-DAC/RF-ADC sampling clock.

The aforementioned clocking and data interface offers great flexibility, allowing each
tile to be driven with individual sample rates and PL data-word widths. The con-
verters within a single tile share the same infrastructure, so the sample rates and
latency are the same. However, for applications that require more than one tile, or
even more than one device, matching latency across tiles is critical. The multi-tile
synchronization (MTS) feature can be used to achieve relative and deterministic
multi-tile and multi-device alignment. Its implementation is based on a simplified
version of the standard JESD204B scheme, which uses a SYSREF clock to measure
and correct the non-deterministic latency in the FIFOs that transfer data between
the PL clock domain and the converter sample clock domain. For that purpose,
the reference has to be provided to both the tiles and the PL, and is conveniently
referred to as analog SYSREF and PL SYSREF, respectively.

3These are sometimes referred to as RF-sampling digital-to-analog converter (RF-DAC); idem
for RF-ADCs.

4Tiles are numbered 0 – 3 or, equivalently, 224 – 227 for ADCs and 228 – 231 forDACs.
5While this is true for the RFSoC, the ZCU216 only provides reference clock connections for

ADC tiles 225 and 226, and DAC tiles 229 and 230.

11

3.1.4 Booting and configuration

Zynq Ultrascale+ RFSoCs use a multi-stage boot process governed by the PS. Upon
reset, the device mode pins are read to determine the primary boot device to be
used. One of the CPUs executes code out of an on-chip ROM and copies the first
stage boot loader (FSBL) from the boot device to the on-chip memory (OCM).
Afterwards, the FSBL is executed, which initiates the boot of the PS and can load
and configure the PL. This step may also be deferred to any later stage. The FSBL
will typically load either a user application or, optionally, a second stage bootloader
(SSBL) such as U-Boot. The SSBL will then continue the boot process by loading
code from any of the primary boot devices. The entire boot flow is discussed in
detail in [16].

In the ZCU216, available booting methods are using the 4Gb dual Quad-SPI flash
memory, a Micro-SD card, the USB-to-JTAG bridge and a JTAG pod flat cable
header. Note that JTAG only supports non-safe booting and is recommended only
for debugging, though it is the most convenient and thus most commonly used mode
of operation during active development. The configuration mode is set through a
dedicated 4-position DIP switch.

3.1.5 Connectivity

The ZCU216 complements the RFSoC by offering external connectors for a number
of peripherals, including, but not limited to:

• Ethernet

• USB3.0

• JTAG

• UART

• 5x user push-buttons

• 8x PL user DIP switches

• 8x PL user RGB LEDs

• Power and status LEDs

• PS DDR4 4GB, 2x PL DDR4 4GB

• 2x PL PMOD (2x6 receptacles, 3V3 level-shifted)

• PL FMC+ HSPC

A USB-to-Quad-UART bridge collects the available UART peripherals, as well as
the JTAG chain, into an easily accessible micro-USB connector. Its port assignment
is given in table 3.1.

The FMC+ interface, based on the VITA 57.4 specification, offers a subset imple-
mentation of the high serial pin count connector (HSPC). In particular, it provides
connectivity for 68 single-ended or 34 differential user-defined signals (LA[00:33]), 8
transceiver differential pairs. 2 transceiver differential clocks, 2 differential clocks,
and 239 ground and 16 power connections.

12

Table 3.1: Port assignment between the USB-to-UART bridge and the RFSoC.

USB-to-UART bridge Zynq Ultrascale+ RFSoC

Port A - JTAG ZCU216 JTAG Chain
Port B - UART0 PS UART0
Port C - UART2 PL UART2
Port D - UART3 System Controller UART

I2C connectivity is distributed along two separate buses. One connects specific banks
in the PS and the PL, and the system controller, to a GPIO 16-bit port expander,
that enables controlling some resets and power system pins, as well as accepting
various input alarms without requiring the PL-side to be configured. It also reaches
power controllers and power monitors through an I2C switch. The second bus
connects the same sources to another two I2C switches that enable communication
with various I2C capable target devices such as the configurable clocks, the FMC
connector or the PS DDR.

Several clocking options are offered. Those integrated in the board itself include
a 100MHz and a 125MHz fixed-frequency clocks, a 33.33MHz PS reference clock
and three user-configurable SI570 oscillators. Furthermore, a dedicated connector
provides additional clocks for the PL and the RFDC from an external clocking board.

The RF signals are taken out through two special connectors, labelled as RFMC
2.0, together with 32 digital IOs, to be accessed with an external break-out board.

3.2 Clocking board: CLK104

The CLK104 RF clock add-on card [17] provides an ultra low-noise, wideband RF
clock source for the ADCs and DACs, as well as the PL. Its complete block diagram
of is given in fig. 3.1.

The main component is the LMK04828B clock distribution chip which spawns all
the necessary differential clock signals, including the PL clock, the analog and PL
SYSREF, and four DAC/ADC reference clocks. Regarding the latter, two of them
are taken directly to tiles 226 and 230. The other two, that correspond to tiles 225
and 229, each have their own dedicated LMX2594 PLL RF synthesizer, offering a
higher output frequency, and reach the ZCU216 by means of external Carlisle SSMP
connectors.

A 10MHz reference clock is to be provided to the LMK; its source can be chosen
between an external single-ended SMA connector, an internal TCXO crystal, or a
clock from the RFSoC PL. Optionally, an external synchronization signal can also
be used for multi-board designs.

All three chips can be configured through an I2C bus. Note that there are separate
connections to write to the registers of each component, but reading from them
is done through a single, shared bus. The chip to be read must then be selected
through a multiplexer, where the select signal is set via serial peripheral interface
(SPI) from a dedicated GPIO pin in the PS.

13

Figure 3.1: CLK104 RF clock add-on card block diagram. Several clocks for the PL and
the RFDC are generated in the LMK chip (blue). In turn, two LMX PLLs (green) allow
to obtain higher clock frequencies for the DAC and ADC reference clocks. Configuration
of the board is carried out via an I2C bridge (purple). Figure taken from [17].

From a user perspective, two methods are available to upload the configuration:
manually with the Board User Interface (BUI)6 or via software using the RFCLK
driver. Only a small set of example configuration values is provided by default.
Custom configurations can be obtained using the TICS Pro software. A small guide
is provided in the appendix A.

3.3 RF breakout board

As mentioned above, the ZCU216 incorporates two connectors specifically for the RF
components which comprise connectivity for the analog signals from the RF-DACs
and to the RF-ADCs, together with 32 digital IO signals, an I2C bus and several
power lines. These are originally expected to be used with the XM650 or the XM655
boards, depending on the desired application. The latter was used during the early
development stage for this thesis. However, as described below, its particular choice
of baluns is sub-optimal for our needs, resulting in the design of a custom PCB.

3.3.1 XM655

The XM655 balun add-on card is a full break-out board of 16 DAC channels and 16
ADC channels to SMA connectivity using Carlisle-CoreHC2 assembly connections.

6These tool is found in the ZCU216 Board Interface Test (BIT), available from the board
resource files.

14

Table 3.2: Specifications for the baluns in the XM655 and custom break-out boards. All
the listed baluns present a balanced to unbalanced configuration with a 50Ω termination.

Label Part Frequency range

XM655
Low-freq. (10MHz – 1GHz) Minicircuits TCM2-33WX+ 10MHz – 3GHz
Mid-freq. (1 – 4GHz) Anaren BD1631J50100AHF 1.6 – 3.1GHz
High-freq. (4 – 5GHz) Anaren BD3150N50100AHF 3.1 – 5GHz
High-freq. (5 – 6GHz) Anaren BD4859N50100AHF 4.8 – 5.9GHz

Custom
A Minicircuits TCM2-33WX+ 10MHz – 3GHz
B (low-freq.) Minicircuits ADT2-1T 4 – 450MHz

It comprises four different sets of four baluns, each targeting a different frequency
range, as reported in table 3.2.

Four pin headers break out up to 40 digital IOs. Note that 8 of these pins on the
headers are not connected. Additionally, these headers also expose the I2C bus and
various power and ground lines.

3.3.2 Custom breakout board

The XM655 baluns were chosen to span as much of the frequency range of operation
as possible, in order to provide maximum flexibility. However, the required signals
for our trapped ion experiments rarely go above a few hundreds of MHz.

The new board comprises dedicated baluns for the 16 DAC channels: (A) 12 of
the original low-frequency ones, and (B) another 4 operating at a lower nominal
frequency (see table 3.2). In addition, all 16 ADC channels were connected via an
instrumentation amplifier7 offering a theoretical input range from DC to 22 MHz.
Consequently, we now have access to all 32 RF channels, instead of only 16 as with
the XM655.

The pin-header strips on XM655 were replaced by two DSUB-25 that expose the
digital IOs, offering direct compatibility with the digital output isolator currently
used in the control system. Since these connections were planned to be used solely
as outputs, unidirectional buffers were placed. In this case, no connections were
made available for the I2C bus and the power lines.

We highlight that this is only the first version of the board and it is likely subject
to considerable changes in the future. Some upgrades are already planned for a
revision, such as changing some of the digital outputs into inputs for the PMTs,
or routing the RF output through a PCB edge connector for simplified front panel
connectivity with lower losses.

7INA851RGTR

15

Chapter 4

Hardware architecture

In the process of porting the system from a multi-FPGA to a single-FPGA config-
uration – sketched within the full control system in fig. 4.1 – the gateware has to
undergo significant changes. Most significantly, backplane communication is to be
removed. Furthermore, the use of a processor and FPGA from a new family entails
a new set of available components and new constraints that need to be considered
carefully. The adaptation of the hardware design constitutes the bulk of the tasks
carried out for this thesis, the result of which is presented in detail throughout this
chapter, together with the most relevant issues encountered during its development.

AOMs

PMT
Camera

vacuum
chamber

light delivery

laser source

Shutters

RFSoC

FPGA

CPU
2x8
DACs

Electrode
voltages

32 - 128

32 digital outputs

16 RF
channels

Ethernet
(custom RPC protocol)

Analogue voltage
AWGs

Control PC user
interface

control
link

experiment
library

Figure 4.1: Schematic of the complete control system using the RFSoC, highlighted in
red, to replace the main controller and RF cards. Here, 16 DACs are integrated in the
main controller, divided into two separate virtual slots. The surrounding elements remain
the same as in fig. 2.1.

16

4.1 Gateware overview

At a functional level, the module structure is still fairly similar, as depicted in fig.
4.2. The main difference resides in the removal of the serial communication layer, i.e.
bitumen and the entire backplane. This functional description, however, overlooks
important details.

Figure 4.2: Overview of the gateware implementing QuENCH in the RFSoC. As in the
original quench system, the PS prepares the instructions for pulseway and quench ctrl.
From there, however, the instructions and the trigger signal are sent directly to quench rf,
skipping serialization and the exernal backplane. The DACs are handled by the RFDC
IP, where data is to be provided by an AXI-Stream interface.

At the centre of the design resides the new processor, an ARM Cortex A53. On the
one side, two master HP AXI interfaces are used to transfer data from the PS to
quench ctrl and to pulseway respectively, and to dynamically set the configuration
of the RF Data Converter. On the other side, two slave HP AXI interfaces enable
receiving feedback and output data from quench ctrl and pulseway. Several AXI
SmartConnects are placed to automatically translate between interfaces that use
different versions of the AXI protocol. The Address Editor in Vivado can be used
to automatically assign the AXI address range for each component based on the
address width of each interface, such that address overlaps are avoided.

Since the RF generation is now done on the main controller, a wrapper for quench rf

is instantiated. Data is sent directly from quench ctrl without the need for serial-
ization. Therefore the bitumen module can be removed. For compatibility with the
gateware and software on the rack-based system, the bp codec instruction decoder
is kept. Alternatively, one could remove the decoder and directly expose the in-
struction and data BRAMs to the software driver. A single trigger signal runs from
pulseway to quench rf to mark the start of the sequence. Furthermore, the PL
UART is set up for the UART debug functionality; its usage is presented in section
6.1.

A dedicated IP is available for the RFDC. For now, only the 16 DAC channels are
instantiated; ADCs can be added in a future extension of the project. Samples

17

Table 4.1: Configuration for the user LEDs.

LED index Signal

LED0 MMCM locked
LED1 Down-converted clock
LED2 Constant LOW
LED3 PMT3
LED4 PMT2
LED5 PMT1
LED6 PMT0
LED7 TTL0

are sent from the quench rf wrapper through individual AXI-Stream buses to the
RFDC.

The design is completed with 8 green LEDs, mainly for debugging purposes, allo-
cated according to table 4.1. The clock down-conversion is done by a simple clock
counter, that toggles the output signal every fixed number of positive edges – in our
case matching the clock frequency for a resulting period of 1 s.

Early on in development the decision was made not to include the two GPIO out-
put signals required for the CLK104 multiplexer select SPI, as it normally requires
an AXI-to-GPIO interface [18] that unnecessarily clutters the design if one is not
going to read the clocking configuration. The only reason for reading back the
configuration would be to ensure that communication is working or validate what
was previously written. The implications of this decision on the software driver are
discussed in section 5.2.2.

4.2 Clocking structure

The entire PL clocking structure, depicted in figure 4.3, is generated from a single
MMCM in order to guarantee phase alignment between all clocks. The input clock
PL CLK is provided at a rate of 125MHz, the maximum frequency allowed by the
input clock buffers. All other clocks are derived from the input clock. The safe clock
startup option is enabled, as recommended by Vivado, and the locked signal is made
available to check from the PS when the clock is stable during the initial setup.

The management clock MGMT CLK at 125MHz is common for all AXI interfaces. Even
though a MGMT CLK of 250MHz would work for most of the system, there is currently
a design flaw related to the FIFOs in quench ctrl that causes some unexpected
behaviour when processing looped parameters if the clock is too fast. Lowering the
AXI clock only represents a temporary solution until this issue is properly addressed.

Most clocks are related to the RFDC, and hence their rate is determined by its
desired configuration. For the settings given in section 4.3.5, the IP prompts the
required AXI-Stream clock at 250MHz. Thus, the DAC CLK is provided to tile 230 at
that frequency and distributed from there to the other three tiles, without it being
modified in any of the tile PLLs. The analog DAC reference clock DAC REF CLK is
conveniently set to the same frequency.

18

Figure 4.3: Schematic of the clock distribution structure. The LMK04828B in the
CLK104 is used to generate the main clock for the FPGA, as well as the DAC reference
clock and the SYSREF. A single MMCM derives the internal clocks for the FPGA, keeping
them synchronous. Two PL resets are generated from the PS. Further details on the clocks
involved are given in the main text.

19

Since MTS is enabled, the RFDC also imposes strict requirements on the SYSREF,
as discussed in [15]:

1. SYSREF must be a high-quality, free-running, low-jitter signal.

2. SYSREF must be an integer submultiple of all PL clocks that sample it, and
be less than 10MHz.

3. SYSREF must be safely captured by the PL, before passing to the core. In
particular, setup/hold of the PL SYSREF to PL clock must be handled as
part of the user design

4. Analog SYSREF and PL SYSREF must be the same frequency and have a
constant phase relationship.

5. For MTS synchronization, the analog SYSREF and PL SYSREF must be a
continuous clock for the duration of the MTS procedure.

Both clocks are generated from the CLK104, which already covers some of these
points, at a suitable frequency of 5MHz. To capture the PL SYSREF, it is sam-
pled by two consecutive flip-flops, clocked with the PL clock and the DAC clock,
respectively.

Last, the MMCM generates two additional clocks for pulseway: P CLK, at half the
frequency of DAC CLK (125MHz), and P CLK 2, at a half of that (62.5MHz). These
are used for input double data rate (IDDR) synchronization (see section 4.3.3).
P CLK and DAC CLK are also sent to pulseway, where the latter is considered the
double-rate clock.

Two active-low resets are generated from the PS. First, pl resetn0 enables resetting
the MMCM alone, which is recommended after updating the input clock during the
CLK104 configuration. After the clock is locked, a second reset (pl resetn1) is
sent to all PL components. A Processor System Reset module synchronizes the
reset signal to the slowest synchronous clock, in this case P CLK (since all clocks in
the design are synchronous and P CLK 2 doesn’t actually sample any component with
a reset, only clocking an IDDR register). From there, dedicated reset signals are
distributed to the interconnects, and to peripherals with an active-high or active-low
reset.

4.3 Hardware components

4.3.1 Processing System

Configuring the PS with its numerous peripherals and tight coupling to the board
constraints is a complex task. Fortunately, Vivado already provides a board preset
[19] for the ZCU216. After the PS is instantiated in the board design, a Run Block
Automation option is offered to automatically apply the preset configuration. Doing
so ensures that the UART, I2C and other peripherals are properly configured, but
the user can still customize the configuration freely.

For this project, only a few modifications are required. First, we need to enable the
two PL reset signals. Up to four such signals are supported which, if enabled, are
assigned to the last 4 EMIO pins. In our case, this corresponds to EMIO 95 and 94,

20

located in bank 5, for plreset0 and plreset1, respectively. Second, we configure two
HP slave and two HP master AXI interfaces, all in the full power domain (FPD),
where the DMA unit is managed by the APU1. Finally, a single GPIO input pin is
used to read out the locked signal from the MMCM (EMIO 0).

4.3.2 Quench CTRL

The current implementation of quench ctrl already provides an option to exclude
bitumen and expose the parallel interface instead. To do so, the EXCLUDE BITUMEN

flag must be set, which we define in a Verilog header file that is globally included.
No further changes are required on this module.

4.3.3 Pulseway

Aside from the management clock, two main clocks are used in pulseway: a slow
clock P CLK, used for the FIFOs, and a fast clock P CLK X2 at double the slow clock’s
speed, used for the scheduler and counters. The instruction decoder can work with
either of them.

In our design, P CLK is sourced by the homonymous clock at 125MHz, with P CLK X2

being associated to DAC CLK. The double-rate clock is selected for decoder. Further-
more, we disable the AC trigger and the camera, and configure 4 PMT inputs.

A major difference with the design for the Zedboard (Zynq 7 Series FPGA) is that
IDDR registers use a different component, i.e. IDDR for the Zynq 7 [21, 22] and
IDDRE1 for the UltraScale [23, 24]. While Vivado is, in principle, able to implement
the appropriate module even if the other is used in the HDL description, some
constraints apply to their arguments. Therefore, it is more convenient to support a
separate description depending on the hardware in use.

IDDR is used to synchronize the PMT and sync (external line trigger) inputs. This
is completely detached from the rest of the pulseway functionality, and thus the
decision was made to take it out of the module. This change was applied not only
to this project, but also to the Zedboard. However, the mode of operation is slightly
different.

In the Zedboard, the IDDR is clocked at the desired input frequency (P CLK for sync
and P CLK X2 for PMTs), and the input is sampled only in the rising edges. That is,
the double-rate feature is not used, but only the inherent synchronization it provides.
We cannot do the same due to the fact that the input buffers cannot be clocked at
our higher clock speeds (>125MHz in HD banks [14]). The solution is to actually
take advantage of the double data rate, sampling at both edges of a clock at half
the target speed, and then sample them alternately at the faster clock rate. Note
that in order to take the samples in the correct order, regardless of the clock phase,
the IDDRE1 must be used in OPPOSITE EDGE mode.

1The FPD can be shut down while still operating the low power domain (LPD) to reduce power
consumption drastically [20].

21

4.3.4 Quench RF

The quench rf wrapper in the current control system is very specific to the AFCK,
providing, for instance, specific controllers for the JESD204 interface to the DACs,
an internal configuration manager (ICM), and an interface between the AWG and an
external DDR (MIG). However, the DDS cores are encapsulated in the qu rf main

module, which we can use without having to modify it.

A qu rf main instance is composed of the 8 qu rf channels, with bp codec pro-
viding the input interface. The output is given in a single array, with the number
of samples per clock cycle being configurable. In our new quench rf wrapper, we
generate two qu rf main instances for 16 RF channels total. In order to maintain
compatibility with the software, we consider them as virtually two separate slots.
Any remaining signals related to the ICM or MIG are ignored or set to a constant
zero.

The UART debug module and the trigger capture from the original wrapper are
also included. However, special care needs to be taken to distribute the UART
instructions to the two virtual cards; the slot mask is used for this purpose (for
backplane instructions, this information is already provided from quench ctrl).
Output data is also multiplexed according to the slot mask, only if exactly one slot
is selected, to avoid conflicts.

Since we remove the JESD interfaces, we must adapt the parallel output bus to
the RFDC AXI-Stream interface. The samples are already provided as an array of
16-bit signed integers, ordered as expected by the RFDC, so we can partition the
bus into individual channel arrays and feed them to the corresponding AXI-Stream
tdata. It is assumed that the DDS cores provide valid data at all times. Hence, the
only restriction on the AXI-Stream tvalid signal is that it has to be asserted at
least one cycle after a reset [25]. A flip-flop with a synchronous reset may be used
for that, momentarily deasserting tvalid whenever a reset is received. Since both
sides are using the same clock, no clock domain crossing is needed.

Parameters such as the number of samples per channel per clock cycle are derived
from the target DDS sampling rate and clock frequency. Therefore only a couple
parameters have to be considered to adjust quench rf in conjunction with the RFDC
settings.

4.3.5 RF data converter

The RF Data Converter is configured to instantiate all the DAC channels, with MTS
enabled and the DAC reference clock being received through tile 230 and forwarded
from there to the rest of the tiles. The rest of the configuration is shared by all 16
DACs, as they are to be used indistinguishably.

The settings were chosen at first to suit a target sampling rate of 4GSPS2. Consid-
ering the default 16 samples per AXI-Stream cycle and no DUC, this results in the
250MHz reference clock requirement discussed in the clocking section. We use real
output data (no digital mixing), no interpolation, and the sinc filter enabled.

2While DAC speeds of around 10GSPS – near the limit for our device – are necessary for super-
conducting experiments, that is not the case for our trapped ion experiments. Currently QuENCH
uses a sampling rate of 1GSPS, so increasing that to 2 – 4GSPS is already an improvement.

22

Throughout most of the development, the system was used with a sampling rate of
1GSPS to reduce logic resource consumption on the FPGA, for decreased imple-
mentation time. In an effort to keep the required changes on the clock structure to a
minimum the reference clock has not been modified, but rather we enabled the DUC
datapath mode to use 4 samples per AXI-Stream cycle, instead of the compulsory
16 samples per cycle when DUC is disabled.

4.4 Constraints

Design constraints define the requirements that must be met by the compilation flow
in order for the design to be functional on the board [26]. These can be divided into
physical constraints, used during the implementation steps to place the components
into the given location, and timing constraints, used to verify that the timing require-
ments are fulfilled. For the purpose of this section, physical constraints regarding
clocking components (e.g. clock buffers) are described under timing constraints.

4.4.1 Physical constraints

Physical constraints are provided in the ZCU216 master XDC file. Most of the
signals are already fixed to specific peripherals as described there. This includes
the differential PL and PL SYSREF clocks, the PL UART, the DIP switches and
the LEDs. Note that the analog RF and clock connections are hardwired and thus
not defined in the constraints. The digital IO signals offer some more flexibility.
For the first version of the custom breakout board, the 32 TTLs are constrained to
the DACIO and ADCIO pins, following the mapping specified in appendix B.1. The
pulseway trigger line is received from pin 1 in the PMOD1 header.

The PMT inputs were originally planned to go on the PMOD0 header. However,
those pins are not directly connected to the FPGA, but rather go through a level
shifter3 to reduce the voltage from 3.3V to 1.8V. The provided component is not
compatible with LVDS, which would prevent us from using differential signals. While
this is not critical – currently the Zedboards work with the single-ended buffer board
(see section 2.4) – it would be desirable. Furthermore, this particular level shifter
is too slow for our purposes. According to the datasheet [27], it has a rise time of
around 15 ns for an internal voltage of 1.8V, whereas the PMTs in our test setup4

sends 10 ns pulses for every detected photon [28]. A possible alternative would be to
replace some of the outputs in the breakout board for inputs, and move those TTLs
to the PMOD. However, this is more of a mid-term solution, as it would require a
redesign of the board since the buffers are unidirectional, which would exceed the
time-frame for this thesis.

Instead, we opted to receive the PMTs signal through the FMC+ connector present
in the ZCU216. For that, we use an FMC XM105 Debug Card [29], which provides
a large number of general-purpose pins. Hence, it offers a convenient interface to
the differential buffer/trigger board. Further details, including the pin mapping
and notes on the FMC connector, are given in appendix B.2. An important fact

3Texas Instruments TXS0108E
4PMT H10682-210 from Hamamatsu. Refer to section 6.4 for details on the test setup.

23

to consider here is that the FMC is connected to HP pins on the RFSoC. Unlike
HD pins, these allow using the internal 100Ω termination, so external terminations
do not need to be soldered onto the buffer board. They are enabled by setting the
DIFF TERM ADV constraint to TERM 100.

4.4.2 Timing constraints

External clocks need to be created in the constraints and their period specified; this
applies to the PL and DAC clock. Generated clocks that are derived from them do
not need to be included, as the MMCM automatically takes care of that.

Another relevant set of constraints is related to the clock resources location and
routing. In our design the PL clock is routed to the MMCM through a differential
input buffer (IBUFDS) and a global clock buffer (BUFG), as it is input through
HD global clock (HDGC) pins [30]. If no such constraints are provided, Vivado
raises an error during implementation. In the error message it is suggested to set
the CLOCK DEDICATED ROUTE to ANY CMT COLUMNS on the output of the IBUFDS,
which will turn the error into a warning but is not advised as it is sub-optimal.
In the reference it is said to set this constraint to FALSE instead, but this is in
general discouraged [31]. The warnings were finally resolved by constraining the
CLOCK DEDICATED ROUTE to ANY CMT COLUMN for the output of the BUFG.

Constraining a GCIO automatically places its destination BUFG in the same clock
region, but placing a BUFG does not result in a predictable placement of its desti-
nation MMCM. Therefore, Xilinx recommends specifying its location by means of a
LOC constraint. To find a suitable tile, we first implemented the design without any
such constraint, and used the location chosen by Vivado as its fixed value.

24

Chapter 5

Software

In this chapter we focus on Ionpulse, the software application that runs on the
processing system and interfaces with the hardware through AXI. Even though a
large part of it is agnostic to the underlying hardware, a few device-specific mod-
ifications had to be made for the RFSoC. We start off by giving an overview of
the application´s structure and main ideas. This is by no means meant to be an
exhaustive description – for that the reader can refer to Vlad Negnevitsky’s [6] or
Martin Stadler’s [9] thesis – but rather to provide some context before presenting the
extensions that the project has required to include compatibility with the RFSoC.
Last, we discuss a couple additional considerations that do not strictly concern the
application, but are somewhat related to its development and execution.

5.1 Ionpulse

The C/C++ code is structured hierarchically, following the block diagram in fig.
5.1, with several layers of abstraction. The lowest level is comprised of the drivers
for the various communications components (Ethernet, serial) and FPGA modules
(hiway1, pulseway and quench).

The second API layer, referred to as ionpulse sdk core, encompasses the imple-
mentation of the main features. These include the creation of RF and digital pulse
sequences, PMT read-out, communication with the PC and DEATH2,3, and cre-
ating experiments and remote parameters. Some auxiliary mathematical libraries
and algorithms are also provided. One of the main components of interest here is
the experiment class, containing the API for the creation of experiments. These
are shown as graphical pages in the Ionizer GUI, whose remote parameters can be
modified and scanned (i.e. run repeatedly while changing a parameter). Another
relevant component is the bp dds API, which interfaces with the drivers to create
synchronized digital and RF pulses. An additional class, bp dds cache, has been
introduced to optimize the storage of parameters.

The third level, ionpulse sw, is unique to each experimental setup, where the re-
searchers configure the code for their hardware and implement their own experiments

1hiway is a legacy module from the M-ACTION system, not relevant for QuENCH.
2Direct Ethernet-adjustable Transport Hardware
3AWGs used to control trap dc electrode voltages

25

Figure 5.1: Ionpulse software hierarchy. The application for the main controller is based
on a layered structure, with several levels of abstraction. At the top level a server handles
requests from the PC to receive instructions from the GUI and exchange data.

and custom parameters. Global functions can also be added, to be used by multi-
ple experiments. This is convenient for sequences that are run frequently, such as
cooling, state preparation or detection. A development repository, ionpulse sw

test is used by the control team to implement and test new features before they
are made available to the rest of the group.

Finally, the top layer consists of the Ethernet server that handles requests from the
control PC, where the Ionizer GUI is run. It is used for sending commands to control
the execution of experiments, updating parameter values and returning experiment
results.

5.2 Extension to RFSoC

5.2.1 Board Support Package

The board support package (BSP) provides the software interface between the PS
and the hardware. For the RFSoC, it can be obtained using the AMD Vitis IDE.
The BSP sources are automatically generated when a platform component is created
using the .xsa file exported from Vivado. In the process of building the platform, the
BSP is compiled; the resulting files and headers can be included from the Ionpulse
CMake. Currently two versions of the BSP are available, corresponding to two
different IDEs: Vitis Unified uses the new system device tree (SDT), while Vitis
Classic offers support for the legacy BSP. The differences between them are explored
in section 5.3.1.

In the BSP settings, we need to enable the lwIP library, which handles network
communication. Libmetal is already enabled in the default configuration to access
devices such as the RFDC. Besides, the proper timer must be selected for the sleep
functionality. By default Vitis uses TTC0, one of the 32-bit triple-timer counters
(TTCs) [20]. However, this register overflow roughly every 42 seconds when running
at the standard rate of 100MHz. Instead, we opt for the Default timer4, which

4Admittedly, the naming is confusing, with Default not actually being selected by default.

26

uses the 64-bit System Clock. A clock overflow could cause PMT reads to time out,
consequently crashing the ongoing experiment.

Two additional files are required: the spec file (Xilinx.spec) and the linker script
(lscript.ld). Both are generated by Vitis when an application component is cre-
ated, for instance using the Empty Application template. A newly created linker
script allocates only a small memory range for the stack and heap, which is not
enough for our application and can lead to unexpected behaviour. Reasonable val-
ues for these settings were obtained from the Zedboard’s linker script (STACK SIZE

0x1000000 and HEAP SIZE 0x1F000000).

5.2.2 Initialization sequence

When Ionpulse is first executed, several initialization tasks need to be carried out.
These include configuring the host platform and setting up the network, both of
which are highly hardware-dependent. The project is already structured in such
a way that different implementations can be provided for the corresponding func-
tions, using CMake to include and compile only the relevant files. For the RFSoC,
this procedure concerns three main components: network, clocking and multi-tile
synchronization.

It is common to find examples (usually targeting other device families) that use this
stage to configure the PS UART0 and set it as the standard output stream (stdout)
peripheral. In our case this is already done, as can be verified from the corresponding
definitions in xparameters.h. We may thus use the standard printf function to
output debug information and receive it on the control computer by monitoring the
appropriate serial port (see table 3.1).

Network

Network configuration on the Zynq UltraScale+ is done very similarly to the Zed-
board’s Zynq7000, primarily due to the use of lwIP to handle the low-level implemen-
tation. The library’s initialization procedure follows from its multiple examples5.

The first step is to enable interrupts, which are used by the Ethernet MAC driver.
The main difference between both devices relies on the fact that the interrupt struc-
ture in ARMv8 underwent some changes from its predecessor [32]. In particular,
the various interrupt types were grouped and renamed into just two kinds of excep-
tions: synchronous and asynchronous. Optionally, interrupt initialization could be
skipped altogether when paired with the BSP from Vitis Unified, as the library uses
a newly-introduced interrupt driver wrapper.

The remainder of the network procedure applies to both devices, given that the
peripheral name is identical. As per the library’s instructions, one must initialize a
slow and a fast TCP timer, as well as an Ethernet reset timer. Restrictions apply
on their timeout value that are not discussed here. The status of these timers is
periodically polled, instead of using interrupts.

5Examples on the usage of lwIP are provided by Vitis.

27

Clocking

Configuration of the CLK104 can be done via software using the XRFCLK driver
[18]. This driver is not provided in the BSP, but it is available on GitHub6. Un-
fortunately, at the time of writing this thesis it has not been updated to support
compatibility with the Vitis Unified IDE. As a result, we had to apply a small fix
to stop the I2C initialization from failing.

The base driver requires the device ID (or peripheral address) corresponding to the
SPI bus, which is used to select the input chip for the readout multiplexer. Since we
do not plan on reading the clock configuration, we prepare a custom initialization
function that skips this step. This removes the requirement for the two additional
GPIO pins that we deliberately did not include in our hardware design (section 4.1).

As we also mentioned before, the driver only provides a very limited set of possible
configurations, none of which matches our required settings exactly. Therefore, we
have extended the list of available configurations for the LMK with an additional
set of values that we exported from TICS Pro (appendix A). This way we set the
proper values for the SYSREF, PL CLK and DAC reference clock, as well as select
the external 10MHz reference. Additionally, for debugging purposes, we forward
SYSREF to the reference output pin in the CLK104.

After the clock configuration sequence is completed, a reset pulse is sent to the
MMCM. Since the PL resets are mapped to the last bits of EMIO, in GPIO bank 5,
their output value can be set by writing the GPIO DATA 5 register [33]. For instance,
in the case of the MMCM, one would clear the most significant bit in that register,
wait for an arbitrary amount of time, and set it again, thus creating the reset pulse.
Next, we can monitor the MMCM status by checking the GPIO DATA 3 RO register
[34], where the EMIO0 input (GPIO bank 3, bit 0) is stored. As a reminder, that is
where we connected the MMCM’s locked signal. Once the clock is locked, we send
a second reset pulse, now to the rest of the PL.

Multi-tile synchronization

The full MTS sequence is described in the RFDC product guide [15]7. After con-
figuring the SYSREF clocks and setting up the XRFDC driver, we initialize the
MTS functionality for all tiles, using tile 0 as the master reference. We then call
the XRFdc MultiConverter Sync method, which executes the entire procedure for
measuring and configuring the internal latencies. Since, for now, we are only consid-
ering single-device synchronization, we do not need to specify a target latency; the
algorithm will choose an appropriate value. Nonetheless, we do set the logging level
for the metal library to DEBUG, and report the results at the end of the initialization
sequence.

To implement multi-device synchronization, the latency in the FIFOs needs to be
measured, which can be obtained from the debug logs, and used together with some
margin as the target latency. Furthermore, synchronization of digital features (mixer

6https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/

drivers/board_common/src/rfclk
7For a more practical description, we refer the readers to the official blog post written on the

topic [35]

28

https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/drivers/board_common/src/rfclk
https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/drivers/board_common/src/rfclk

Table 5.1: CMake cache variables to be configured in the presets when compiling for the
RFSoC.

Name Value Meaning

RFSOC ON Compile for RFSoC instead of Zedboard. Selects
proper compiler, platform sources and BSP.

SDT ON/OFF Consider the SDT version of the BSP. Must be
ON only if the BSP was compiled using the Vitis
Unified IDE.

HWY DUMMY MODE ON Enable hiway’s dummy mode9.
quench slot mask 0b00000011 Select which backplane slots contain QuENCH

cards. For the RFSoC, we have two virtual slots.
no of pmts 4 Number of PMT inputs configured in Pulseway.

settings, NCO phase reset, coarse delay, etc.) requires a significantly more complex
procedure, especially in the multi-device case. Such features are not employed in
our application.

5.2.3 CMake

The incorporation of new or alternative files for the RFSoC, as well as the use of the
new processor, have implications on the compilation process. As a result, various
files along the CMake structure had to be modified or replaced.

First, the new 64-bit PS architecture entails that the 32-bit compiler8 is not valid
anymore. Instead, to target the Cortex-A53 we need to build our baremetal ap-
plication using the aarch64-none-elf compiler. For that purpose we prepared a
separate toolchain file, which also selects the proper system processor and spec file.

Second, some RFSoC-specific files need to be included in place of their Zedboard
counterparts. This involves the sources for platform initialization, the BSP and the
linker script. An RFSOC flag indicates the target device, in order to conditionally
select them. Furthermore, an SDT flag is used to support any BSP version, regardless
of whether it was compiled with Vitis Unified or Classic, accordingly adjusting which
libraries and directories are linked.

Last, the ionpulse sw test CMake presets have been extended to include release
and debug configurations for the RFSoC. These are set up to point to the appropriate
toolchain file and define all required cache variables. A full list of said variables is
given in table 5.1.

5.3 Additional considerations

5.3.1 Vitis Classic vs Unified IDE

Ionpulse was originally developed using the Xilinx SDK (later rebranded as Vitis)
and by the start of this thesis it was fully compatible with Vitis 2022.2. The first

8arm-none-eabi
9Refer to apendix C.

29

test project for the RFSoC was built using Vitis 2023.1. Soon after, Xilinx released
Vitis 2023.2, which represented a major update as the Vitis Unified IDE, launched
with version 2023.1, would become the default. In turn, support for the old IDE –
renamed as Vitis Classic – would be limited and eventually dropped. In light of this
event, an interest arose to explore and test the new environment.

The first important feature is the transition from Makefile to CMake as the base
engine for compilation. However, the CMake workflow already showed some prob-
lems early on. For instance, source files inside subfolders are not compiled unless
the top-level CMakeLists is modified, requiring a custom CMake structure even for
simple projects. Furthermore, the file explorer tree in the GUI does not reflect the
underlying directory structure of the project, in particular not showing CMake files
in subdirectories.

Another promising upgrade is that the internal API is not based on Tcl anymore,
but on Python. As the language is more accessible, it is now easier to automate tasks
such as creating and building projects dynamically. However, this feature is in an
early stage of development, therefore it is functionally still limited and unexpected
issues are common to find.

The most significant issue we encountered is caused by the server that Vitis Unified
uses to internally run tasks. When a workspace is created from a Python script,
a file called repo.yaml is created in the root folder. Seemingly, the server binds
this file to the client. If the same workspace is later opened in the Unified IDE (i.e.
another client), many actions attempt to open this fail, always unsuccessfully. For
instance, this prevents the IDE from accessing the BSP configuration, displaying an
error message instead (internal 13: error opening bsp settings because .repo.yaml is
being used by another process). A possible workaround is to delete the file, as it
will be automatically generated again. However, doing so from the Python script
itself requires waiting for the server to be completely closed, which the API does
not directly report.

The last relevant change is related to the BSP. Instead of using a device ID, now a
system device tree is created, and peripherals are identified by their base address.
This entails major changes in the drivers; the ones provided in the BSP were already
adjusted, but their examples or external drivers might not be. In particular, the
XRFCLK driver was obsolete, and we had to manually adapt it to use the base
address when initializing the I2C driver.

Additionally, the SDT adds a compulsory requirement for the Xiltimer library, which
cannot be disabled. A direct implication is that some files are actually replaced, as is
the case for the sleep.h header. This file’s version from the standalone BSP provides
functions specific to each processor, whereas the one in Xiltimer is designed to be
hardware-independent and thus only the generic functions are available. Moreover,
the timer functions are now found in xiltimer.h instead of xtime l.h; this is taken
into account in the code by means of a conditional import, based on which file exists
in the include path10.

Ultimately, a known issue11 exists in Vitis Unified 2023.2 by which the RFSoC
cannot be detected properly. This has critical implications, such as the FSBL not

10This is implemented using the has include preprocessor operator.
11Even though this is a known issue, it is not mentioned in the official list of known issues.

30

being generated12 or not being able to program and run the application on the PS.

For this reason, we had to abandon using the Unified IDE to run the test project
on the board. We also discarded the idea of linking Vitis’ CMake to our own
CMake structure for Ionpulse, in favor of using an entirely standalone CMake-based
workflow. However, Vitis Unified was used to build the test project via Python and,
most importantly, to compile the BSP.

5.3.2 Ionpulse programmer

The group decided some time ago to progressively stop offering support for Vitis in
favor of maintaining their own CMake structure for compiling the project. However,
doing so requires a custom solution for programming the device. With that in
mind, Bahadir Dönmez built the Ionpulse Programmer, a tool that connects to the
Zedboard and uploads the bitstream and gateware. Following a similar reasoning,
and motivated by the issues with Vitis, we decided to also make use of it to program
Ionpulse onto the RFSoC.

The tool allows selecting an available JTAG target, and a serial port to receive the
UART output. The user simply needs to provide a file (.xsa) with the exported
hardware description and the binary file (.elf) of the compiled application to be
run on the PS. It is worth noting that it uses some files from the Vivado installation
which are shared with Vitis; therefore, it is important that the IDE is closed or
unexpected issues may occur.

The procedure to program the UltraScale+ is different from the Zynq7000, and so
it required a separate implementation. The programming sequence for the RFSoC,
executed via XSDB, is the following:

1. Connect to host and list available targets

2. Select target: APU*13

3. Generate system reset

4. Load bitstream (obtained from the XSA)

5. Run PS initialization script (psu init.tcl, obtained from the XSA)

6. Remove PS-PL power isolation

7. Generate PS-PL reset

8. Configure PSU14 protection settings

9. Select target: Cortex-A53* #0

10. Reset active processor and clear registers

11. Download ELF

12. Optionally resume execution (done on run mode, not on debug)

12If we were to flash the RFSoC, we would need to either generate it with Vitis Classic or build
it manually from the corresponding example application.

13The APU may enter a cache reset state, which is noted by an extension to the name. The star
allows accounting for such different possible names.

14The ARM APU and RPU are grouped under PSU.

31

Chapter 6

Testing

The goal for the developed system is to be used in the lab to control experiments,
and therefore reliability is of importance. To ensure functionality before a test with
an experiment, a number of tests and measurements have been performed which
are summarized in this chapter. Additionally, a measurement of the phase noise is
reported in appendix D.

6.1 Quench RF and the UART debugger

The quench rf module features a UART debugger that enables standalone testing
the DDS system, offering access to quench rf in isolation from the rest of the
gateware. It uses the FPGA’s PL serial port to establish communication with the
PC and can receive a set of instructions and distribute them to the DDS cores, same
as if they would have been received from the backplane and deserialized.

Note, however, that the implementation of quench rf alone already requires most
clocks to be set up, especially if the RFDC is also used. For this purpose, the CPU
was included in the design early in development to program the CLK104 board. A
minimal project was prepared in Vitis, based on [8], which only implemented the
clock initialization sequence described in section 5.2.2. This project was later used
to test MTS, play with the Vitis Unified IDE and to generate the BSP for Ionpulse.

On the PC side, a C++ tool – called the bp cmd generator – uses part of the
Ionpulse code to generate the sequence of instructions for a set of user-defined pa-
rameters. One may choose the frequency, phase and amplitude of the signal per
channel and per tone. The generated sequence is stored in a binary file .hex. An
auxiliary Python script is used to connect to the serial port, and send the instruc-
tions from the given file to quench rf. A custom protocol is used, with a command
being sent first to indicate which action the system should take, e.g. setting an
internal signal or expecting a new instruction. To acknowledge reception of the
commands, a copy is sent back from the FPGA and compared against the original
value.

The first tests for quench rf on the RFSoC are to set up the clocking structure,
followed by a set of instructions generated with different parameters. The output
of the DAC channels is observed with an oscilloscope to test that all channels could
be addressed, and that their frequency, amplitude and phase were correct.

32

6.2 Breakout board baluns

As mentioned in section 3.3, only one of the four sets of baluns available in the
XM655 has a nominal frequency span overlapping with our range of operation.
Even the low frequency baluns do not reach the lower end of our spectrum. A quick
survey of the market showed that the original “low-frequency” baluns offered the
best compromise of bandwidth and insertion loss. Available components with a
wider nominal bandwidth were designed for telecommunications applications with
much less strict performance requirements, and therefore suffered from higher inser-
tion losses and phase imbalance. On the other hand, baluns targeting frequencies
below 1MHz offered a rather limited range, not suitable for our higher frequencies.
Nonetheless, one set of the latter was included in the new design for testing purposes.

We measured the RFSoC output power, including losses through the baluns. The
measurement consisted in generating single tone signals, through UART debugger
first and from Ionizer later on, and obtaining their power using the spectrum ana-
lyzer integrated in an oscilloscope1. The DAC was run at half the maximum power
(VOP current at 20mA) – or, equivalently, signal generated at 50% amplitude – to
avoid potential damage to the RFSoC due to reflections of the signal in the baluns,
especially for frequencies outside their range of operation.

The results are shown in fig. 6.1. The low frequency baluns (ADT2-1T) performed
slightly better over the measured range, although they show bigger losses for higher
frequencies. On the custom breakout board the original baluns (TCM2-33WX+)
show higher losses, even though the overall behaviour is the same. In principle,
measurements above 500MHz are possible with the system, but we limited mea-
surements to the first Nyquist zone sampling at 1GSPS. The decay in power as the
signal approaches the Nyquist frequency is partially caused by the behaviour of the
DACs themselves, even though the sinc filter is enabled [15].

Most amplifiers used for AOMs offer a power of 5W with a gain +30 dB to +35 dB,
meaning we could have a full range of 37 dBm if we are able to provide 7 dBm at
the input. With 4 dBm we can use most or all of the range of the amplifier.

6.3 Ionizer test experiments

As a preliminary step before taking the RFSoC to the lab once the software and
hardware adaptations were complete, we tested some specific parts or components
of the system separately. For that, we used some of the features provided in Ionizer
and prepared simple experiments based on the already existing ones.

6.3.1 Constant Frequency Output experiment

One of the test experiments present in the development version of Ionpulse is the
“Constant Frequency Output” experiment. Essentially, it allows enabling individual
channels and setting frequency, amplitude and phase (FPA) values for them. We
implemented a modified version of it that uses solely quench channels – two slots (16

1Tektronix MDO4054C

33

Figure 6.1: Power measured at the output of the baluns, for both breakout boards. Each
point corresponds to a single-tone signal generated with at half power (DAC VOP current
40mA, signal amplitude 50%). The DAC sampling rate is 1GSPS, with the sinc filter
enabled. Measurement was done on a Tektronix MDO4054C oscilloscope, configured with
resolution bandwidth 100Hz and span 2.5 kHz.

34

channels) – and outputs an edge2 with a single tone for each of them. This offers an
interface to generate simple pulses, which in turn serves as a basis for further tests
(e.g. balun power measurements). In other words, it provides a similar functionality
to the UART debugger but with a more convenient usage, at the expense of going
through a larger portion of the system.

6.3.2 Digital IOs

There are two ways to test the digital outputs3. On the one hand, Ionizer already
provides a functionality to enable or disable individual channels. On the other hand,
when pulses are created with the bp dds interface one can define a target channel
mask. The digital outputs selected by this mask are then gated following the pulse
shape, with their value being set according to a given pattern.

We extended the Constant Frequency Output experiment to test the second method.
Essentially, it creates a pulse in a selected quench channel, using the FPA parameters
set for such channel. At the same time, it generates a wait on the bp dds driver
with one digital output enabled. Thus, this is the simplest possible example using
both elements in sync. The index of the quench channel and the digital channel can
be defined from the GUI, while the pulse time is fixed to 5 µs.

This small experiment was used to measure the delay between the digital output
and the RF channels. We generate a digital pulse and a quench pulse at the same
time, and observe the difference in the scope, as shown in fig. 6.2. The measure-
ment yielded a delay of approximately −0.27 µs, deterministic between consecutive
executions. Selecting different quench/digital channels remains within less than 1 ns
away from that result. Note that ionpulse already applies a correction between both
pulses, for which we included a new RFSoC-specific default. This can only be set
with a resolution of 4 ns, so a deterministic delay of 3 ns still remains, but that is
acceptable for our applications.

Readout from the PMTs is enabled following a similar idea to the digital outputs,
where a counter for PMT pulses is gated with a digital signal. Incoming pulses
(10 ns long) from the PMT are counted and time-tagged, whereas pulses received
outside the temporal window are ignored. We modified an existing experiment to
alternatively enable and disable one of the digital outputs, which we connected to
the PMT input. This experiment was then executed continuously to verify the
reported number of counts. It is relevant to note that the counter in pulseway is
implemented to detect rising edges, not the level of the input, so simply keeping the
digital output at HIGH during the time that the PMT gate is active would always
result in zero counts.

6.3.3 Quench Loop Testcase

Most of the advanced features, like forks, are used only in more complex exper-
iments. However, even the simplest experiments that are actually useful in the

2In Ionpulse, an edge simply toggles the amplitude of the output once. In contrast, a cap (or
simply a pulse) is comprised of a rising and a falling edge that confers it sort of a baseball cap
shape (hence its name).

3In the group, digital outputs are colloquially referred to as TTLs. While this terminology is
not completely accurate, it is commonly found in the code and in the GUI.

35

Figure 6.2: Delay between a digital output (TTL, green) and an RF (blue) channel
generated synchronously. A compensation of −0.27 µs is already applied by the sequencer.
The orange strip highlights the remaining delay, which is <5 ns. A 50Ω termination was
placed on the digital connection to reduce the overshoot and ringing caused by reflections
in the cable, reducing the output voltage to approx. 4V.

lab require sideband cooling, which makes use of loops. Parameterized loops are
used for running a given sequence multiple times, but changing a parameter in each
execution.

To test this, we created an experiment consisting of a simple loop using only quench

and digital IOs. In the experiment we prepare loops over an array of amplitude
values. In each iteration, a single pulse is generated, after which a wait is added
before skipping to the next value. The wait time is set to a few seconds, such that
the evolution of the pulses could be clearly seen on the scope.

The initial tests with this experiment allowed us to find and fix a bug in the creation
of looped tones. It also uncovered an issue in the quench ctrl state machine,
limiting us from using a faster AXI clock. The exact cause and resolution of the
issue falls outside the scope of this thesis.

6.4 Full RF control in a real ion-trap experiment

To demonstrate the capability of the RFSoC to control a real experiment, we per-
formed an end-to-end test in the Cryo setup [3, 36]. This setup, sketched in fig. 6.3,
is centered around a cryogenic, segmented surface electrode trap with integrated
photonics, designed to operate with calcium ions. The trap features three zones of
operations where the ions can be trapped and controlled. For the purpose of our
test, we consider only zones 1 and 2, respectively referred to as working zone and
loading zone.

The preceding step before any experiment is trapping an ion. The Ca oven is heated
up to emit neutral calcium atoms. In the trap, a two-stage Doppler cooling scheme is
continuously applied, where the laser beam is red-detuned from the calcium’s 397 nm
transition to slow down the atoms. After a certain period of time – of the order
of a few hundreads of µs – the detuning is reduced to cool the atoms even further.
Two auxiliary beams at 854 nm and 866 nm are used for repumping. Simultaneously,
the electrode voltages are configured such that a confining potential is formed on

36

Figure 6.3: Schematic of the Cryo setup. The trap is placed inside a cryostat, allowing
access for multiple free-space (blue) and fibre (red) lasers. A magnification of the trap
highlights the free-space beams available in each of the zones considered in this project.
Fibre light is provided to both zones by means of the in-couplers. Figure adapted from
[3] and [36]

the loading zone, where two free space photoionization (PI) beams4 at 423 nm and
389 nm are used to ionize neutral Ca from the oven.

During our experiment a single PMT was used for detection, placed in the working
zone. A transport procedure has to be executed to displace the potential well from
the loading zone to the working zone, effectively moving any captured ion. In
the working zone, qubit readout is done via state-dependent fluorescence using the
397 nm and 866 nm laser light. If an ion is indeed confined, the number of counts
received in the PMT is significantly increased, as shown in fig. 6.4. The oven and
ionizing beams have to be shut down as soon as the presence of the ion is confirmed.

A common benchmark for new quantum system is to perform a Rabi experiment.
Essentially, it consists of preparing the qubit in the ground (or excited) state and
driving it resonantly, effectively rotating its state around the X axis in the Bloch
sphere representation. The qubit is then expected to exhibit a well-defined periodic
behaviour over time, oscillating between the ground and excited state.

In our setup, several AOMs, listed in table 6.1, are used to modulate the laser beams
in order to implement the complete sequence depicted in 6.5. The sequence starts
by cooling the ions close to their Doppler limit, following the procedure described
above. A short pulse of circularly-polarized light at 397 nm is applied to prepare
the qubit in the ground state. Next, a pulse of varying duration addresses the qubit
transition (729 nm) resonantly. Finally, the PMT is gated and the 397 nm readout
beam is switched on. The final state of the ion is determined by applying a threshold
to the resulting number of counts, such that we minimize the effect of dark counts,
i.e. detections caused by environmental photons or other lasers. Note that, by the
end of the sequence, the cooling procedure is activated again, otherwise heating of
the ions will lead to higher ion loss rates.

The complete Rabi experiment involves scanning over the qubit (729 nm) pulse du-

4The PI beams are controlled by associated digital outputs, toggled manually from Ionizer.

37

Figure 6.4: Trace of the PMT counts over time, when the detection sequence is run con-
tinuously and an ion is trapped. The change in fluorescence corresponds to the transport
of the ion from the working zone (where the PMT is placed) to the loading zone.

Table 6.1: Settings for the AOMs used in the Cryo experiment.

Label Type Central frequency Order

397-working double-pass 80MHz 1
397-loading double-pass 80MHz 1
397-sigma single-pass 200MHz 1
854 single-pass 350MHz 1
866 single-pass 300MHz 1
729-1 single-pass 320MHz -1
729-2 single-pass 150MHz 1

38

0

200

400

0

50

100

0

200

400

0

50

100

0

200

400

0

50

100

0

200

400

0

50

100

0

200

400

0

50

100

0

200

400

0

50

100

0

200

400

40003800 3900 4100 4200 4300
0

50

100

f
r
e
q

a
m
p

f
r
e
q

a
m
p

f
r
e
q

a
m
p

f
r
e
q

a
m
p

f
r
e
q

a
m
p

f
r
e
q

a
m
p

f
r
e
q

a
m
p

PMT0

39
7-
lo
ad
in
g

39
7-
w
or
ki
ng

86
6

85
4

39
7-
si
gm

a
72
9-
1

72
9-
2

Cooling
State
Prep.

Qubit
drive Detection

Figure 6.5: RF pulse sequence for the Rabi experiment. Each AOM modulates the
corresponding laser, with the exception of the 729 nm laser, where the two AOMs are
placed sequentially along the beam. The sequence may be divided in four stages: cooling,
state preparation, qubit drive and detection. The first part of the cooling pulse has been
skipped here. Note that, by the end of the sequence, the cooling lasers are switched on,
such that the cooling procedure is kept active until the next experiment execution.

39

ration. For each possible value, the sequence is executed multiple times to obtain
statistics and estimate the probability of the ion being in either state (note that it
is actually in a superposition). The results for a full scan are plotted in fig. 6.6,
showcasing the expected periodic behaviour. We highlight that the poor contrast
is mainly due to the bad optimization of the experimental parameters. Nonethe-
less, the observed pattern is an indication that the RFSoC successfully managed to
generate all the RF pulses to control the experiment.

Figure 6.6: Rabi experiment, where the qubit transition (729 nm) is driven resonantly
for a variable amount of time. Each data point is the average of 50 shots. The result is
fitted to a sinusoidal. The characteristic Rabi oscillations are observed, albeit with limited
contrast due to the poor optimization of the experimental parameters.

40

Chapter 7

Conclusion and outlook

In this work we have successfully carried out the task of adapting the QuENCH
control system to the ZCU216 Evaluation Kit, centered around a Zynq UltraScale+
RFSoC Gen3. The original design was built with a modular architecture in mind,
were the main controller and the RF generation system were split into two separate
FPGAs that communicated through a backplane. We reused some of the submodules
to implement the entire design using a single FPGA, thus removing the backplane.
We have made the necessary adjustments to make the system compatible with the
new hardware, considering the new PL architecture, a new processing unit and an
entirely new RF data converter subsystem.

Furthermore, we have adapted the Ionpulse software application to allow it to run
on the new processor, featuring a 64-bit ARM architecture. This has meant em-
ploying a different compiler and a unique BSP, adjusting the hardware settings and
implementing a completely new initialization sequence. The latter has most notably
been necessary to set up the external clocking board, which generates all the clock
signals for the main board, and to run the multi-tile synchronization procedure that
aligns the output from the DACs.

During the development process, the device has undergone a preliminary evalua-
tion, with simple tests focused on key aspects of the design. Among them, we have
isolated quench rf to assess DDS generation by means of the UART debugger in-
terface, prepared small pulses from the GUI going through quench ctrl, verified
the response of PMT inputs and TTL outputs managed by pulseway, and ran non-
trivial experiments with looped sequences. Finally, we have been able to use the
RFSoC in a real lab setting, accomplishing the significant goal of trapping an ion.

This thesis represents the first stage for a project, mainly establishing a proof of
concept that the RFSoC is actually suitable to run experiments. The current im-
plementation offers the same RF capabilities as the current QuENCH system, with
the exclusion of the AWG. Future work could include, for instance, the integration
of the ADCs (e.g. for feedback loops) or even AWGs. For the latter, one may use
the two PL DDR memories offering a bandwidth of 2666MT/s each, supporting up
to 10 channels total with a target sampling rate of 1GSPS.

In terms of development, the RFSoC is still lacking a simulator for the gateware. One
could be implemented with the Verilator tool, which is already used to emulate the
FPGA from the Zedboard. That would allow the engineers to debug the gateware

41

without having to go through the inconvenience of using Vivado’s Integrated Logic
Analyzer (ILA) on the physical device.

Another important feature of QuENCH is its ability to scale, offering up to 96 RF
channels. While a single RFSoC is limited to 16 output channels, it allows for multi-
device synchronization following an extended implementation of the MTS protocol.
Specifically, an external reference should still be used to align the tiles, but a global
deterministic latency would have to be negotiated between all synchronized devices.
This would also require the synchronization of the internal clocks, especially the
SYSREF, for which the CLK104 offers a SYNC input. The clock-sharing infrastruc-
ture will need to be carefully engineered1.

Going a step further, the system is also not up to its full potential in terms of
performance. For most of the development some signals have been deliberately kept
at a lower rate, either to reduce implementation times (thus offering a more agile
development when working on the gateware) or due to issues in the HDL code that
were deemed to complex to tackle in the available time frame. The AXI management
clock or the DAC sampling rate are both relevant figures that could be improved.
Pushing these to higher clock frequencies would greatly boost performance and
potentially open a new range of possible applications for the RFSoC and QuENCH.
In particular, our target device could be a potential solution to make TIQI’s control
system available to other research groups, offering a more plug-and-play and robust
solution with respect to the current rack based solution.

To conclude, we have demonstrated that the RFSoC is a suitable candidate for
controlling trapped-ion experiments, and that it has the capability to compete with
(or, in some aspects, even improve on) the current hardware. We anticipate its usage
as experiment control system in our and other labs, and most definitely encourage
its future development.

1For a large-scale example of a clock synchronization infrastructure, we refer the reader to the
White Rabbit Project hosted by CERN [37]

42

Appendix A

LMK configuration with TICS Pro

According to the CLK104 User Guide [17], there are two methods to configure
the clock chips on the board: manually using the BUI tool, or dynamically from
the APU. However, neither case offers a user-friendly interface to update specific
parameters, but instead rely on an entire configuration set being exported from
the Texas Instruments Clocks and Synthesizers (TICS) Pro software [38]. Here, we
provide a small guide on how to use this software to obtain the configuration values
for the LMK chip, and how to apply them using the APU.

Select device

Upon launching TICS Pro, we must first select the device we want to configure.
In our case, go to Select Device > Clock Generator/Jitter Cleaner (Dual Loop) >
LMK0482x > LMK04828B.

A menu on the left of the window will show the components that the user can
configure: user controls, CLKin and PLLs, SYNC/SYSREF, Clock Outputs and
burst mode. It also offers a tool to set predefined modes, a current calculator and
an interface to read and write the raw registers.

Initial configuration

With so many configurable options, accidental errors are rather likely to occur,
especially for the inexperienced user. It is therefore much safer to start from a
predefined configuration that is close to our target, which can be imported from a
text file.

In our case we found a suitable configuration in the clock driver (XRFCLK) source
code. It sets the DAC reference clock to 250MHz, the PL clock to 125MHz and the
SYSREF (both analog and digital) to 10MHz. It also sets the ADC reference clock
and the LMX input clock, which we do not care about. To import it, we need to
convert the C++ array to the format accepted by TICS Pro:

43

TICS Pro
R0 (INIT) 0x000090
R0 0x000010
R2 0x000200
R3 0x000306

...

←→

C++
{ 0x000090,

0x000010,
0x000200,
0x000306,

... }

Registers are labeled according to their address, which corresponds to the first two
bytes of their value. The register data is given in the 8 least significant bits.

Update parameters

Once the configuration is imported, we only have to check that the parameters are
set to suit our application, and otherwise update them. As an example, the changes
we manually applied are listed below, with the full settings being shown in the
corresponding figure. For the input and output clocks, one can compare the signal
names from TICS Pro to those given in the CLK104 schematics (see fig. 3.1).

• CLKin and PLLs (fig. A.1)

– Select CLKin0 (external reference) as clock input for PLL1

– Disable CLKin1 (internal oscillator reference) and turn off its multiplexer
output.

– Set CLKin0 to 10MHz. While doing so doesn’t actually modify any regis-
ters, it affects the calculation of the derived frequencies, which is impor-
tant to make sure all components are operated in the permitted range.

• SYNC/SYSREF (fig. A.2)

– Set SYSREF frequency to 5MHz

• Clock Outputs (fig. A.3)

– Power down CLKout0 1 (ADC LMX)

– Power down CLKout4 5 (DAC LMX)

– Power down CLKout10 11 (external reference output)

– Power down CLKout12 13 (ADC reference clock)

Apply configuration with XRFCLK

The configuration is now ready to be exported into a text file. This can be used
directly in the BUI if desired. For the driver, it needs to be formatted into a C++
array a described above. Registers between R386 and R395 (readback registers)
must be removed from the exported values to match the array length expected by
the driver.

To place the new array in the driver we opted to extend the LMK CKin array in
the xrfclk LMK conf.h header file, where all the available configurations are listed
[18]. Doing so requires the LMK FREQ NUM constants to be updated accordingly in
the top-level header (xrfclk.h).

The configuration is uploaded to the LMK chip with

44

Figure A.1: LMK configuration in TICS Pro: CLKin and PLLs.

Figure A.2: LMK configuration in TICS Pro: SYNC/SYSREF.

45

Figure A.3: LMK configuration in TICS Pro: Clock Outputs.

46

XRFClk SetConfigOnOneChipFromConfigId (RFCLK LMK, 2)

where the first arguments determines the chip where the configuration will be up-
loaded (i.e. LMK or LMX), and the second the index of the target configuration in
the aforementioned array.

Optional: update single registers from XRFCLK

While debugging the system it may be convenient to apply small temporary changes
to the configuration, for which it could become tedious to follow the same process
repeatedly. An alternative solution is to write single registers directly.

To exemplify this, consider the case where we want to test that SYSREF is set up cor-
rectly. A dedicated external reference output connector is provided in the CLK104.
However, we previously disabled the corresponding LMK output (CLKout 11). From
fig. A.3 we see that we only need to disable the corresponding clock branch power
down, which translates to toggling one bit in register R302. From the APU, we can
do that like so:

XRFClk WriteReg (RFCLK LMK, 0x012EF0)

Once again, the first parameter identifies the target chip, whereas the second is the
new value for the register. Note that the address is already contained within it.

A small window in TICS Pro offers information on the registers, in particular about
the meaning of their bits. It is shown either when selecting an entry in the register
map or when hovering the mouse over a setting in the diagrams. What is more,
whenever a setting is modified (i.e. a button is pressed, checkbox toggled or nu-
merical parameter entered) the application logs which register has been written and
what is its new value.

47

Appendix B

Additional information on
auxiliary boards

B.1 RF breakout board: TTL pin mapping

The 32 digital outputs are currently all routed from the RFSoC to the RF breakout
board, from which they are distributed between two DSUB-25 connectors. Each
DSUB is then planned to take 16 of the digital signals to one of TIQI’s TTL boxes.
The complete mapping is provided in table B.1. Note that the pinout for the DSUBs
was chosen to match the TTL box schematics, but the pin order is not preserved in
order to ease the signals routability. Any missing pins not present in the table are
grounded, except for pin 15 in each DSUB, which is left unconnected.

B.2 Buffer/trigger board: PMT output via FMC

With the digital IOs in the RF breakout board being occupied by the output chan-
nels, and the PMODs being routed through slow a slow level-shifter, the only re-
maining option to the input the PMT signals is via the FMC. The FMC XM105
Debug Card is then used to interface with the differential buffer/trigger board. Table
B.2 contains the pin mapping that we have used.

As described in section 3.1.5, the FMC+ connector in the ZCU216 gives access to
34 differential signals, corresponding to the 34 LA pairs. In principle, we are free to
choose (almost) any pins in the LA bus. However, some minor features are offered
in different headers in the XM105. For instance, J16 provides two ground and two
configurable power pins, which are rather convenient to power the buffer/trigger
board. The output voltage is configurable by placing two jumpers on J6. To select
3.3V, we need one between J6.1 and J6.3, and one between J6.2 and J6.4. On a
separate note, we placed two debug on signals — outputs set to constant HIGH for
debugging purposes — in J15, where each pin is connected to its own LED.

In the RFSoC, the FMC IO pins are located in bank 66 and 67. These have the
particularity that they are powered at a voltage VADJ, which is determined by an
internal system controller [10]. If no card is present on the FMC connector, VADJ
is set to 1.8V. When an FMC card is attached, its IIC EEPROM is read to find a
voltage supported by both the ZCU216 and the FMC module, within the available

48

Table B.1: Pin mapping for the digital outputs (TTLs), from their number in Ionpulse
to the TTL box, through the custom breakout board. The outputs for the TTL box are
numbered left to right, starting from 1.

TTL RFSoC Breakout TTL box
index pin DSUB pin output

TTL 00 ADCIO 00 J1.17 5
TTL 01 ADCIO 01 J1.13 4
TTL 02 ADCIO 02 J1.1 8
TTL 03 ADCIO 03 J1.12 3
TTL 04 ADCIO 04 J1.14 7
TTL 05 ADCIO 05 J1.11 1
TTL 06 ADCIO 06 J1.2 16
TTL 07 ADCIO 07 J1.10 2
TTL 08 ADCIO 08 J1.3 15
TTL 09 ADCIO 09 J1.9 9
TTL 10 ADCIO 00 J1.4 14
TTL 11 ADCIO 11 J1.8 10
TTL 12 ADCIO 12 J1.6 12
TTL 13 ADCIO 13 J1.7 11
TTL 14 ADCIO 14 J1.16 6
TTL 15 ADCIO 15 J1.5 13

TTL 16 DACIO 16 J2.17 5
TTL 17 DACIO 17 J2.5 4
TTL 18 DACIO 18 J2.16 8
TTL 19 DACIO 19 J2.4 3
TTL 20 DACIO 20 J2.3 7
TTL 21 DACIO 21 J2.2 1
TTL 22 DACIO 22 J2.14 16
TTL 23 DACIO 23 J2.13 2
TTL 24 DACIO 24 J2.1 15
TTL 25 DACIO 25 J2.9 9
TTL 26 DACIO 26 J2.6 14
TTL 27 DACIO 27 J2.11 10
TTL 28 DACIO 28 J2.7 12
TTL 29 DACIO 29 J2.8 11
TTL 30 DACIO 30 J2.10 6
TTL 31 DACIO 31 J2.12 13

49

Table B.2: Pin mapping for the PMTs. Beware that the pin pairs for PMT0 and PMT3
in the buffer/trigger board are physically inverted with respect to the XM105 pinout.

Signal FMC XM105 Buffer/trigger Buffer/trigger
name pin pin PMOD pin SMA input

pmt 0 n LA 29 N J16.11 3 J1
pmt 0 p LA 29 P J16.9 1
pmt 1 n LA 31 N J16.12 2 J2
pmt 1 p LA 31 P J16.10 4
pmt 2 n LA 30 N J16.8 6 J3
pmt 2 p LA 30 P J16.6 8
pmt 3 n LA 28 N J16.7 7 J4/J8
pmt 3 p LA 28 P J16.5 5
GND J16.3/J16.4 9/10
3V3 J16.1/J16.2 11/12

debug on[0] LA 33 N J15.6 (LED DS1)
debug on[1] LA 33 P J15.5 (LED DS2)

choices of 0.0V, 1.2V, 1.5V and 1.8V. Unfortunately, the XM105 only accepts
2.5V, so this process fails and VADJ is automatically set to 0.0V.

The above behaviour can be overridden via the system controller user interface, for
which the BUI contains a dedicated page. This tool allows not only to read the
current value of VADJ, but also to manually set it to one of the available options.
Even further, it lets the user select an on-boot value. Since we do not wish to use
any complex component (i.e. LVDS buffer or clock) in the debug card, we simply
configure VADJ to be 1.8V.

An important note when using the FMC is that it sometimes takes control of the
JTAG. When that happens the board starts behaving unexpectedly. For instance,
Ionpulse is not be able to detect it anymore. It also causes the EFUSE test in the
BUI to fail, even if it seems to pass other tests. An effective workaround is to add
a jumper between the TDI and TDO pins in the JTAG header of the XM105.

50

Appendix C

Hiway dummy mode

In the M-ACTION control system, the hiway module is responsible for backplane
communication. It buffers single-channel data retrieved from the CPU and broad-
casts it to the DDS cards via individual bitumen cores. For a detailed description,
we refer the reader to Vlad Negnevitsky’s thesis [6].

In QuENCH, this module is replaced by quench ctrl, which offers a revised func-
tionality. However, there are still some remnants of it in the software. In particular,
bp dds was planned to be only an interface with the hiway and pulseway drivers,
but over time an increasing number of features were implemented relying in it. As
a result, it became very intertwined with the rest of the code. In an ideal case, we
would have preferred to remove this dependency altogether when compiling for the
RFSoC, but that would have represented an unfeasible amount of work.

Instead, as a temporary solution, we decided to add a dummy mode to the hiway

driver, which can be selected by setting the HWY DUMMY MODE in the CMake. Its main
purpose is to skip all gateware-related actions, specifically read and write operations
to hardware registers. In that sense, it is similar to the existing x86 emulator mode1.
The difference between them is that the emulator mode provides logging capabilities,
which the dummy does not.

From the perspective of the ionpulse sdk core, this change implies that the driver
can be initialized without having to specify an actual peripheral address. The
dummy mode allows all functions to be called without crashing, but prevents any
uses of the undefined peripheral. Hence, no changes in bp dds or in its usage are
required.

1In fact, it has been implemented so that enabling the emulator mode will automatically activate
dummy mode.

51

Appendix D

Phase noise measurement

Electronic signals are subject to noise, both in amplitude and in phase. In prac-
tice, phase noise dominates in terms of power, with amplitude noise contributing
significantly less. Phase noise is evaluated by means of the power spectral density
of the signal’s phase, which can be measured with a signal source analyzer (SSA). It
is given in units of dBc/Hz, denoting the noise power in a 1Hz bandwidth relative
to the carrier. A detailed discussion on phase noise, and its effect in trapped-ion
systems, can be found in [39].

An in-depth analysis of the phase noise is outside the scope of this thesis. However,
a measurement was taken to gain some insight on how the RFSoC compares with
other devices employed in the group. The phase noise measurement for the RFSoC
and a QuENCH DAC card are given in fig. D.1. As a reference clock, we used the
Synchrona14 system clocking device from Analog Devices. Additionally, we include
the results from a previous measurement on a Texas Instruments AFE8000EVM
card, reported in [39], which used a HMC7044 as the reference clock (the same card
included in the Synchrona14).

52

Phase noise measurement

102 104 106

Offset frequency (Hz)

-180

-160

-140

-120

-100

-80

-60

-40

P
h
a
s
e
 n

o
is

e
 d

e
n
s
it
y
 (

d
B

c
/H

z
)

(a)
Synchrona14

HMC7044

102 104 106

Offset frequency (Hz)

-180

-160

-140

-120

-100

-80

-60

-40

P
h
a
s
e
 n

o
is

e
 d

e
n
s
it
y
 (

d
B

c
/H

z
)

(b)
QuENCH DAC FMC Rev1

RFSoC

101 102 103 104 105 106 107

Offset frequency (Hz)

-180

-160

-140

-120

-100

-80

-60

-40

P
h
a
s
e
 n

o
is

e
 d

e
n
s
it
y
 (

d
B

c
/H

z
)

(c)
Synchrona14

QuENCH DAC FMC Rev1

RFSoC

HMC7044

AFE8000EVM

Figure D.1: Comparison of the phase noise for (a) the reference clock devices used during
the measurements; (b) a QuENCH DAC and the RFSoC; and (c) these four components
as well as the AFE8000EVM DAC card. All measurements were made with a Keysight
A5052B SSA, at a carrier frequency of 150MHz. Here, the reference for the RFSoC and
the QuENCH DAC is taken from the Synchrona14, while the AFE8000 uses the HMC7044.

53

Acronyms

AC alternating current

ADC analog-to-digital converter

AFCK AMC FMC Carrier Kintex

AMBA Arm Advanced Microcontroller Bus Architecture

AOD acousto-optic deflector

AOM acousto-optic modulator

API application programming interface

APU application processing unit

AWG arbitrary waveform generator

AXI Advanced eXtensible Interface

BIT Board Interface Test

BNC Bayonet Neil-Concelman

BRAM block RAM

BSP board support package

BUFG global clock buffer

BUI Board User Interface

CCI cache coherent interconnect

CLB configurable logic interconnect

CMT clock management tile

CPU central processing unit

DAC digital-to-analog converter

DC direct current

DDC digital down-conversion

DDR double data rate

DDS direct digital synthesis

DEATH Direct Ethernet-adjustable Transport Hardware

54

DIP dual in-line package

DMA direct memory access

DSP digital signal processing

DSUB D-subminiature

DUC digital up-conversion

ELF Executable and Linkable Format

EMIO extended multiplexed IO

FIFO First In, First Out

FMC FPGA Mezzanine Card

FMC+ FPGA Mezzanine Card plus

FPA frequency, amplitude and phase

FPD full power domain

FPGA field-programmable gate array

FSBL first stage boot loader

GCIO global clock-capable IO

GPIO general-purpose IO

GSPS giga samples per second

GUI graphical user interface

HD high-density

HDGC HD global clock

HDL hardware description language

HP high-performance

HPC high-performance coherent

HSPC High Serial Pin Connector

I2C Inter-Integrated Circuit

IBUFDS differential input buffer

ICM internal configuration manager

IDDR input double data rate

IDE integrated development environment

ILA Integrated Logic Analyzer

IO input-output

IP intellectual property

55

LED light-emitting diode

LPD low power domain

LUT look-up table

LVDS low-voltage differential signaling

LVTTL low voltage TTL

lwIP lightweight IP

M-ACTION Modular Advanced Control of Trapped IONs

MIG Memory Interface Generator

MIO multiplexed IO

MMCM mixed-mode clock manager

MTS multi-tile synchronization

NCO numerically controlled oscillator

OCM on-chip memory

PC personal computer

PCB printed circuit board

PFD phase frequency detector

PI photoionization

PL programmable logic

PLL phase-locked loop

PMOD peripheral module

PMT photo-muliplier tube

PS processing system

QSPI Quad-SPI

QuENCH Quantum Experiment Next-generation Control Hub

RAM random-access memory

RF radio frequency

RF-ADC RF-sampling analog-to-digital converter

RF-DAC RF-sampling digital-to-analog converter

RFDC RF Data Converter

RGB red, green and blue

ROM read only memory

RPU real-time processing unit

56

SDK software development kit

SDT system device tree

SLM spatial light modulator

SMA subminiature version A

SoC system-on-chip

SPI serial peripheral interface

SSA signal source analyzer

SSBL second stage bootloader

SSMP subminiature push-in

stdout standard output stream

Tcl Tool Command Language

TCP Transmission Control Protocol

TCXO temperature-compensated crystal oscillator

TICS Texas Instruments Clocks and Synthesizers

TIQI Trapped Ion Quantum Information

TTC triple-timer counter

TTL transistor-transistor logic

UART universal asynchronours receiver/transmitter

USB universal serial bus

VCO voltage-controlled oscillator

VOP Variable Ouput Power

XDC Xilinx Design Constraints

XOR exclusive or

XSA Xilinx Support Archive

XSDB Xilinx System Debugger

57

References

[1] H. Häffner, C.F. Roos, and R. Blatt. “Quantum computing with trapped ions”.
In: Physics Reports 469.4 (2008), pp. 155–203. issn: 0370-1573. doi: 10.1016/
j.physrep.2008.09.003.

[2] Steven A Moses et al. “A race-track trapped-ion quantum processor”. In: Phys-
ical Review X 13.4 (2023), p. 041052. doi: 10.1103/PhysRevX.13.041052.

[3] Alfredo Ricci Vasquez et al. “Control of an atomic quadrupole transition in
a phase-stable standing wave”. In: Physical Review Letters 130.13 (2023),
p. 133201. doi: 10.1103/PhysRevLett.130.133201.

[4] Maciej Malinowski. “Unitary and dissipative trapped-ion entanglement using
integrated optics”. PhD thesis. ETH Zurich, 2021. doi: 10.3929/ethz-b-
000516613.

[5] Dolev Bluvstein et al. “Logical quantum processor based on reconfigurable
atom arrays”. In: Nature 626.7997 (2024), pp. 58–65. doi: 10.1038/s41586-
023-06927-3.

[6] Vlad Negnevitsky. “Feedback-stabilised quantum states in a mixed-species ion
system”. PhD thesis. ETH Zurich, 2018. doi: 10.3929/ethz-b-000295923.

[7] AMD. AMD Zynq UltraScale+ RFSoCs. url: https://www.amd.com/en/
products / adaptive - socs - and - fpgas / soc / zynq - ultrascale - plus -

rfsoc.html (visited on 05/31/2024).
[8] Ali Doruk Bekatli and Sevket Baturay. “A 16 channel DDS implementation for

the ZCU216 RFSoC evaluation board”. Bachelor’s thesis. ETH Zurich, 2022.
[9] Martin Stadler. “Classical control for trapped-ion quantum physics”. PhD

thesis. ETH Zurich. To be published.
[10] ZCU216 Evaluation Board User Guide. UG1390. v1.2. AMD. Dec. 2023.
[11] Zynq UltraScale+ RFSoC Data Sheet: Overview. DS889. v1.14. AMD. June

2023.
[12] Learn the architecture - An introduction to AMBA AXI. 102202 0300 03 en.

Issue 03. Arm. Oct. 2022.
[13] Vivado Design Suite: AXI Reference Guide. UG1037. v4.0. Xilinx. July 2017.
[14] Zynq UltraScale+ RFSoC Data Sheet: DC and AC Switching Characteristics.

DS926. v1.12. AMD. May 2023.
[15] Zynq UltraScale+ RFSoC RF Data Converter v2.6 Gen 1/2/3/DFE LogiCore

IP Product Guide. PG269. v2.6. AMD. May 2024.
[16] Nekija Dzemaili. “A reliable booting system for Zynq Ultrascale+ MPSoC

devices”. Bachelor’s thesis. HU University of Applied Sciences Utrecht, 2021.
[17] CLK104 RF Clock Add-on Card User Guide. UG1437. v1.1. Xilinx. Aug. 2022.

58

https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1103/PhysRevX.13.041052
https://doi.org/10.1103/PhysRevLett.130.133201
https://doi.org/10.3929/ethz-b-000516613
https://doi.org/10.3929/ethz-b-000516613
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.3929/ethz-b-000295923
https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-ultrascale-plus-rfsoc.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-ultrascale-plus-rfsoc.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-ultrascale-plus-rfsoc.html

[18] Xilinx. Zynq UltraScale+ RFSoC Gen3: Programming the CLK104 module
from the RFSoC APU. url: https://support.xilinx.com/s/article/
1192842 (visited on 05/21/2024).

[19] Zynq UltraScale+ MPSoC Processing System v3.5 LogiCore IP Product Guide.
PG201. v3.5. AMD. June 2023.

[20] Zynq UltraScale+ Device Technical Reference Manual. UG1085. v2.4. AMD.
Dec. 2023.

[21] 7 Series FPGAs SelectIO Resources User Guide. UG471. v1.10. Xilinx. May
2018.

[22] Vivado Design Suite 7 Series FPGA and Zynq 7000 SoC Libraries Guide.
UG953. v2024.1. AMD. May 2024.

[23] UltraScale Architecture SelectIO Resources User Guide. UG571. v1.15. AMD.
Mar. 2023.

[24] UltraScale Architecture Libraries Guide. UG974. v2024.1. AMD. May 2024.
[25] AMBA AXI Protocol Specification. ARM IHI 0022. Issue K. Arm. Sept. 2023.
[26] Vivado Design Suite User Guide Using Constraints. UG903. v2022.1. AMD.

June 2022.
[27] TXS0108E 8-Bit Bi-Directional, Level-Shifting, Voltage Translator for Open-

Drain and Push-Pull Applications. SCES642K. Rev. K. Texas Instruments.
Apr. 2024.

[28] Photon counting heads H10682 series. TPMO1075E03. Hamamatsu Photonics.
Mar. 2024.

[29] FMX XM105 Debug Card User Guide. UG537. v1.3. Xilinx. June 2011.
[30] UltraScale Architecture Clocking Resources User Guide. UG572. v1.10.2.

AMD. Feb. 2023.
[31] UltraFast Design Methodology Guide for FPGAs and SoCs. UG949. v2023.2.

AMD. Nov. 2023.
[32] ARM cortex-A Series Programmer’s Guide for ARMv8-A. ARM DEN0024A.

Issue A. arm. Mar. 2015.
[33] Xilinx. 68962 - How can I get a Zynq MPSoC PS pl resetnx port’s control

address? url: https://support.xilinx.com/s/article/68962 (visited on
05/28/2024).

[34] Zynq UltraScale+ Devices Register Reference. UG1087. v1.10. AMD. Mar.
2024.

[35] Xilinx. Getting in Synch with RF Data Converters. url: https://support.
xilinx.com/s/article/1071111 (visited on 05/31/2024).

[36] Carmelo Mordini et al. “Multi-zone trapped-ion qubit control in an integrated
photonics QCCD device”. In: arXiv preprint arXiv:2401.18056 (2024). doi:
10.48550/arXiv.2401.18056.

[37] CERN. The White Rabbit Project. url: https://white-rabbit.web.cern.
ch (visited on 05/31/2024).

[38] Texas Instruments. TICS Pro Software. url: https://www.ti.com/tool/
TICSPRO-SW (visited on 05/30/2024).

[39] Simon Dörrer. “Impact of RF noise on trapped-ion quantum gate fidelity”.
MA thesis. ETH Zurich, 2023.

59

https://support.xilinx.com/s/article/1192842
https://support.xilinx.com/s/article/1192842
https://support.xilinx.com/s/article/68962
https://support.xilinx.com/s/article/1071111
https://support.xilinx.com/s/article/1071111
https://doi.org/10.48550/arXiv.2401.18056
https://white-rabbit.web.cern.ch
https://white-rabbit.web.cern.ch
https://www.ti.com/tool/TICSPRO-SW
https://www.ti.com/tool/TICSPRO-SW

	Introduction
	Control system
	Requirements
	Overview
	QuENCH
	Quench CTRL
	Pulseway
	RF generation

	Digital IO

	Target device
	Evaluation board: RFSoC ZCU216
	Processing system
	Programmable logic
	RF Data Converter
	Booting and configuration
	Connectivity

	Clocking board: CLK104
	RF breakout board
	XM655
	Custom breakout board

	Hardware architecture
	Gateware overview
	Clocking structure
	Hardware components
	Processing System
	Quench CTRL
	Pulseway
	Quench RF
	RF data converter

	Constraints
	Physical constraints
	Timing constraints

	Software
	Ionpulse
	Extension to RFSoC
	Board Support Package
	Initialization sequence
	CMake

	Additional considerations
	Vitis Classic vs Unified IDE
	Ionpulse programmer

	Testing
	Quench RF and the UART debugger
	Breakout board baluns
	Ionizer test experiments
	Constant Frequency Output experiment
	Digital IOs
	Quench Loop Testcase

	Full RF control in a real ion-trap experiment

	Conclusion and outlook
	LMK configuration with TICS Pro
	Additional information on auxiliary boards
	RF breakout board: TTL pin mapping
	Buffer/trigger board: PMT output via FMC

	Hiway dummy mode
	Phase noise measurement
	Acronyms
	References

