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Abstract

The sensitivity afforded by quantum sensors is often limited by decoherence. Quantum
error correction (QEC) can enhance sensitivity by suppressing decoherence, but it has a
side-effect: it biases the sensor’s output in realistic settings. If unaccounted for, this bias
systematically reduces the sensor’s performance in experiment, and also give misleading
values for the sensitivity in theory. This thesis analyzes this effect in the setting of
continuous-time QEC, showing both how one can account for it, and how incorrect results
can arise when one does not.
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Chapter 1

Introduction

Curiosity has always been a driving force for Humans to expand our understanding
of nature by observing it. Indeed, scientific theories are built upon peoples’ current
perceptions of the world and these theories are then invalidated by new ones shaped by
new observations. This process is known as scientific revolution. A perfect example of
it is the development of our knowledge about gravity. From Copernicus who proposed
a heliocentric model of the solar system up to Einstein’s theory of general relativity,
including Kepler’s, Galileo’s and Newton’s works; all of them were made possible thanks
to better observational techniques and devices.
Quantum mechanics has also derived from new physical observations such as the pho-

toelectric effect monitored by Hertz in 1887 [1] and Gerlach’s and Stern’s experiment
from 1922 [2], to mention just a few. These measurements gave rise to the development
of quantum science and technologies. These in turn have led to the emergence of a wide
range of new detectors that we now refer to as the first generation of quantum sensors.
Photomultiplier tubes, atomic clocks, and semiconductor detectors are some examples of
them. This first generation produced more precise observations than its classical prede-
cessors and helped to validate some of the current physical theories such as the standard
model of particle physics.
Over the past decades, new types of quantum sensors have generated a growing interest

in the research community. In contrast to the first generation of quantum sensors which
utilized the consequences of quantum effects, these detectors have the particularity of
having quantized energy levels and using some direct quantum effects like coherence and
entanglement. Usually referred to as “second generation quantum sensors” or “quantum-
enhanced sensing”[3–5], they promise to have a better sensitivity than those from the
first generation. They are now playing a part in major scientific advances as in the Laser
Interferometer Gravitational Wave Observatory (LIGO) [6].

1.1. Quantum sensing

In this work, quantum sensors will be considered as belonging to this second genera-
tion. As mentioned above, they directly depend on quantum systems and effects. In
particular, we consider that these quantum sensors satisfy the four criteria stated by
Degen, Reinhard, and Cappellaro [7], mainly they are made of systems which:

1. Have discrete and resolvable energy levels. These are often restricted to only
two (denoted by |0〉 and |1〉) in which case we speak of qubits.
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1. Introduction

2. Can be initialized in a fiducial state and we can read out their state.

3. Can be manipulated coherently.

4. Are able to interact with their environment and in particular with a relevant
physical quantity V (t).

Relevant physical quantities, as mentioned in point four, can range from the most com-
mon ones such as electro-magnetic fields up to temperature or pressure which have been
less studied by the quantum sensing community. It is worth mentioning that the choice of
parameters to detect is directly linked to the type of quantum system. Indeed, each phys-
ical system is more sensitive to some particular signals than others; for instance trapped
ions are more suitable for sensing electric and magnetic fields, whereas optomechanical
systems are appropriate for measuring forces and accelerations.
Finally, a crucial part of any quantum detector is the sensing protocol, which consists

of a sequence of operations that result in measurements of the desired quantity V (t).
It can often be divided into three steps: initialization, interaction and read out [7].
These can be linked to the steps of quantum computing protocols. The first and last
steps remain identical, whereas the intermediate phase, responsible for the acquisition
of information about V (t), can be seen as the processing step. The two most common
protocols are Ramsey interferometry and Rabi measurement. In this work, we will focus
on the former which will be presented in greater detail in the next chapter. However,
conclusions drawn in the following chapters will also concern other sensing protocols as
long as required assumptions are fulfilled.
A key criterion characterizing the efficiency of a sensor is its sensitivity. It is defined

as the minimum detectable signal per unit time, which, put in other words, means the
minimal variation δV (t) that leads to a unit signal-to-noise ratio (SNR). An ideal sensor
would thus be a device which gives an infinite response to fluctuations of the quantity
to sense and, at the same time, remains robust to undesirable input signals. However,
quantum systems are intrinsically susceptible to any type of disturbances induced by their
environment. It is thus challenging to make them sensitive to the desired signal and at
the same time robust against unwanted noise and decoherence. The competition between
these two contributions is what fundamentally limits the sensitivity of a quantum sensori.

1.2. Quantum error correction

One method to limit effects of noise and decoherence on a quantum system is to make
use of so-called quantum error correction (QEC). Like its classical counterpart, it rests
on two elements: detection of errors and their correction. While classical error correction
used in classical computation relies largely on the redundancy of information (e.g. in a
repetition code), QEC cannot due to three natural obstacles [8]:

(a) The no-cloning theorem forbids duplication of quantum information.
iWe do not consider initialization and manipulation errors which could potentially be fully eliminated.
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1.3. Error-corrected quantum sensing

(b) Errors in quantum systems are not discrete processes but occur in a continuous
manner.

(c) Every read-out of the system’s state destroys it together with the quantum
information it retains.

A way to overcome these restrictions is to use a specific encoding for representing the
two quantum states of a qubit. We will refer to them as logical quantum states denoted
by |0〉L and |1〉L. The first proposal of such encoding was made by Shor [9] in 1995.
One of Shor’s main contributions was to encode one logical qubit using N physical ones
in the following way : |0〉L = |0〉⊗N and |1〉L = |1〉⊗N . This code can be seen as the
quantum variant of the classical error correction mentioned above since in both cases the
detection of errors is performed via majority vote, i.e. information held by the majority
of the qubits prevail. There is however a fine distinction between both implementations:
in the quantum case, information is not processed by one instance and then copied onto
several qubits, but rather embodied by many two-level systems and processed using
logical operations implemented collectively. We will refer to this encoding as (quantum)
repetition code.
Immediately following Shor’s proposal, a variety of new encodings were suggested such

as the seven qubit code by Steane [10]. In this work, we will nevertheless focus only on
a simple three-qubit code that will be explained in more detail in the next chapter.

1.3. Error-corrected quantum sensing

As mentioned above, QEC is one technique which allows to filter out the decoherence
noise. It can be applied in quantum sensing to eliminate the unwanted noise and thus
to increase the SNR. However, the major restriction of error-corrected quantum sensing
comes from the fact that one cannot use QEC to correct all types of errors. Since
the crucial part of a sensing protocol is to sense V (t), we are restricted to correct for
errors perpendicular to the signal, otherwise we would unintentionally deteriorate the
information about the signalii. Although experimentally V (t) and decoherence noise often
couple to the system through the same operators [12–17], one can engineer some systems
which could be used for error-corrected quantum sensing. On this basis, various QEC
schemes have already been proposed for sensing purposes [18–26] and two experimental
implementations [27, 28] have been realized. The latter have shown that QEC enhances
the sensing time of the protocol but do not exhibit any significant improvement of its
sensitivity.
Another techniques for filtering out the decoherence noise in a quantum system is

the so-called dynamical decoupling (DD). While being widely used in quantum sensing
[29–36], it presents some disadvantages, like its inability to directly sense DC signals
or its dependence on the noise frequency [37]. Error-corrected quantum sensing is not

iiThis condition is thoroughly studied in the PhD thesis of David Layden [11] and it turns out to be in
general wrong. In this thesis, we will however assume only errors perpendicular to the signal.
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1. Introduction

affected by these limitations which makes it a preferable technique to DDiii. The noise
and error-correction models chosen for this work will be presented in the next chapter.

iiiDD can nevertheless be useful in other situations than QEC, e.g. fast coherent noise.
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Chapter 2

Model

2.1. Continuous model

One of the four criteria that a quantum sensor has to satisfy, mentioned in Section 1.1,
is the ability to interact with a relevant physical quantity V (t). This mathematically
means that there exists a Hamiltonian which couples the qubit to the signal to sense [7]

HV (t) = ξRe[V⊥(t)]σx + ξ Im[V⊥(t)]σy + ξ V‖(t)σz (2.1)

where σ are the Pauli operators and ξ – the coupling constanti. Here V (t) has been
decomposed into a parallel component V‖(t) which affects the energy levels of the sensor
and a perpendicular one V⊥(t) which can swap its state. Since the quantum sensor
could be made of multiple qubits, the interaction of the sensor with the signal would be
represented as the sum over all the qubits of Hamiltonians like the one given in Eq. (2.1).
For the sake of simplicity, we assume that the signal to sense is a direct current (DC),

meaning V (t) = V . On top of that, we consider that it couples to the qubits of the
system through the same operators as their transition energy ωq, in other words the
system’s Hamiltonian can be written as following

H =
∑
j

ωq
2
σ(j)
z + ξV σ(j)

z =
∑
j

ω

2
σ(j)
z , (2.2)

where the j index refers to a particular qubit. The second equality synthesizes both the
static and dynamic parts of the Hamiltonian in one parameter ω = ωq + 2 ξ V . The goal
of a quantum sensing protocol is then to estimate the latter parameter. Throughout this
work, we will refer to it as (true) frequency or just ω.
In order to utilize QEC for sensing one has to assume that the noise model is perpen-

dicular to the signal to sense, otherwise one could corrupt the information accumulated
within the sensor about V . Following Refs. [18, 20, 21, 25, 28], we assume that the
noise is predominantly due to bit flips which in the Lindbladian framework are repre-
sented by the jump operators L(j)

err =
√

Γerr σ
(j)
x , with Γerr being the rate at which bit

flips occur. Lindblad dynamics, i.e. Markovian trace-preserving and completely positive
master equations [38], represents a pessimistic noise model for quantum sensors. It thus
describes noise devoid of the temporal correlations exploited by many noise-suppression
schemes for sensing, such as dynamical decoupling. Note that we consider the qubits to

iNote that this work uses ~ = 1
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2. Model

be identical which means that they have the same transition energy and error rate, as
opposed to mixed species systems in Refs. [23, 24, 26, 27].
Correcting for single bit-flip errors requires the use of codewords of distance greater

than or equal to two. We therefore choose to use a three-qubit repetition code, i.e., the
codespace of interest is {|0〉L , |1〉L} ≡ {|000〉 , |111〉}. We assume that quantum error
detection and correction are implemented in a continuous dissipative manner using the
following jump operators [25]

, L(j)
qec =

√
Γqec σ

(j)
x

1− σ(j)
z σ

(k)
z

2

1− σ(j)
z σ

(l)
z

2
, (2.3)

with j, k, l ∈ {1, 2, 3} such that all of them are different, and where the first index
indicates which qubit is corrected. Moreover, the correction rate Γqec reflects the strength
of the correction process (i.e. the transfer of erroneous states back into logical ones). This
parameter can in principle be engineered [25]. Moreover, the operators given in Eq. (2.3)
are constructed in a way such that the correction σ(j)

x is applied if and only if the parity
of the j-th qubit is inverted with respect to the parity of the two other qubits.
It is worth to mention that often instead of considering H ∝ σz and Lerr ∝ σx, some

works looked at the problem from the opposite point of view by taking H ∝ σx and
Lerr ∝ σz. This only changes the codewords used by the sensing protocol but not the
conclusions of our work since the signal and the noise remain perpendicular in both cases.
In the Lindbladian framework, the evolution of the system is given by the following

master equation

d

dt
ρ = −i [H, ρ] +

∑
j

D[L(j)
err ](ρ) +

∑
j

D[L(j)
qec ](ρ) (2.4)

where ρ is the system’s density matrix and D[Lk ] represents the dissipator, a superop-
erator defined as

D[L
(j)
k ](ρ) := L

(j)
k ρL

(j) †
k − 1

2

(
L

(j) †
k L

(j)
k ρ + ρL

(j) †
k L

(j)
k

)
(2.5)

where L(j)
k is a jump operator. The master equation given in Eq. (2.4) can be rewritten

in a more reduced form using the so-called Liouvillian L

ρ̇(t) = L ρ where L = −iH+ D̃err + D̃qec . (2.6)

Here H denotes the superoperator responsible for the unitary evolution and D̃err and
D̃qec are the system’s dissipators for errors and QEC.
A typical quantum sensing protocol is standard Ramsey interferometry [39]. In our case

it starts with initializing the system in the logical 0 state, applying a logical Hadamard
transform which brings the state into the superposition 1√

2
(|0〉L + |1〉L). In the quantum

optics community, this step is sometimes referred to as Ramsey or π/2 pulse. Then
the state evolves freely for a sensing time τ (also known as Ramsey time) according to
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2.2. Discrete model

the Liouvillian L. The last two stages of the sequence are a second logical Hadamard
transform and a measurement of the state’s parity P1 ≡ 〈1|L ρ |1〉L. Repeating the
experiment for several runs and for different sensing times gives rise to an oscillating
function P1(τ) that we will refer to as parity function or parity signal. The frequency
of this signal will exactly correspond to the frequency ω that we aim to determine. An
example of such a function is given in Fig. 3.1.

2.2. Discrete model

The dissipators (2.5) together with the jump operators given in Eq. (2.3) represent a
continuous way to look at QEC with Γqec being the correction rate. We can also imple-
ment it in a discrete way, where QEC is performed by perfect quantum gates R which
are applied every δτ time step (cf. Fig. 2.1). These gates then have the role of detection
and correction of errors in the system. If such a procedure is repeated for c cycles and the
gate time is assumed to be negligible, then the total free evolution period in the Ramsey
experiment would be given by τ = c δτ . In-between QEC gates, the system evolves by a
Lindblad equation ρ̇ = L ρ where the Liouvillian includes only the unitary evolution and
the error dissipators, L = −iH+ D̃err.
The system’s evolution for a single cycle is given by R eLδτ and that of the entire

sensing period is (R eLδτ )c. Due to the complexity of this expression, it is convenient
to describe the dynamics of the system through an effective Liouvillian Leff defined as
eLeffδτ = R eLδτ . The expansion on the latter in power series leads to the following
expression for Leff ,

Leff =
1

δτ
ln
[
R eLδτ

]
=

1

δτ
ln

[
1 + δτ RL+

δτ2

2!
RL2 +O(δτ3)

]
=

= RL+
δτ

2!
RL2 − 1

δτ

1

2

[
δτ RL+

δτ2

2!
RL2

]2

+O(δτ3) =

= L0 + δτ L1 +
δτ2

2!
L2 + . . . ,

where:
L0 = RL and L1 =

1

2
RL2 − (RL)2 .

The main idea behind QEC is to correct the decoherence induced by the dissipator D
and not the action of the Hamiltonian H. This means in our case that the QEC superop-
erator R has the property that RD ≡ 0 and RH ≡ Heff where the latter is the projection
of H onto the logical subspace. This ensures that for δτ → 0 (i.e. continuous and ideal
QEC), the effective dynamics becomes unitary and is generated by L0 = −iωHeff . The
correction rate that was introduced in the previous section would then be inverse propor-
tional to the QEC time step, i.e. Γqec ∝ (δτ)−1, and thus the effective Liouvillian Leff

can be seen as the expansion of the continuous evolution (cf. Eq. (2.4)) in the regime of
very good error-correction.
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2. Model

In this work, we decide to focus on exclusively the continuous evolution instead of the
discrete one and will thus not go further in its derivation. We will however argue in
Section 4.3 that the discrete point of view leads to the same effects and conclusions.

c - cycles

QEC cycle

δt δt . . . δt

|1〉L
|0〉L HL R R R HL

Figure 2.1.: Error-corrected Ramsey sequence. A quantum circuit representing
the Ramsey sequence enhanced with quantum error correction (QEC). The HL

gates are the so-called Hadamard gates, whereas the R embody the detection
and correction gates. One QEC cycle is constituted of a free evolution time δt
as well as a R gate. The whole sequence is composed of c-cycles such that the
total sensing time is τ = c δt. The sequence concludes with a measurement of
the system in the logical 1 state.
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Chapter 3

Objective

3.1. Estimation problem

As we have discussed in the previous chapter, the goal of a Ramsey interferometry ex-
periment is to assess the frequency of the parity signal P1(τ) which holds information
about the signal to sense. The problem can then be restated as an estimation problem
where we aim to find an estimator ω̂ of the frequency such that the expectation value of
this quantity is equal to the true value ω plus eventually a bias b(ω):

E[ ω̂ ] = ω + b(ω) .

Since the bias corrupts the information about the frequency, we would like to either fully
understand or entirely eliminate the bias, in which case we obtain an unbiased estimator.
In this work, we are using non-linear least squares regressions as estimators,

ω̂ = arg min
ω

∑
τ

[
Xτ − P1(τ, ω,Γerr,Γqec)

]2
, (3.1)

where Xτ are interferometry data points obtained experimentally or via a simulation. We
allow here the parity function to also depend on the error rate Γerr and on the correction
rate Γqec. However, the problem is still considered as univariate, since these parameters
remain constant during the minimization process. Moreover, due to the non-linearity
of P1, Eq. (3.1) does not have a straightforward closed-form solution. Two distinct
estimators will then differ in their accuracy only by the choice of the parity function.
The motivation of this work is to show that some functions are better candidates for P1

in Eq. (3.1) than others.

3.2. Preliminary observations

Let us start with the previously proposed solutions for the parity function and some pre-
liminary observations. First, we must consider the ideal noiseless situation. It is straight-
forward to see how the equal superposition state would unitarily evolve under the action
of the Hamiltonian in Eq. (2.2). This unitary operator is given by U(τ) = exp (−iHs τ)

9



3. Objective

Figure 3.1.: Expected parity functions. The parity signal P1 as a function of the
free evolution time τ for three different sensing models: ideal (blue), uncorrected
(orange) and error-corrected (green). While the first plot is based on an actual
calculation, the others are plotted from calculation explained in the main text.
The arrows show the expected trend for increasing correction rate.

and the state evolution reads (up to a global phase) as

1√
2

(|0〉L + |1〉L)
U(τ)−−−−−−→ 1√

2

(
|0〉L + e−i 3ω τ |1〉L

)
. (3.2)

After the second Hadamard transform, the state measurement in the logical 1 basis leads
to the parity function

P1(τ) =
1

2
+

1

2
cos[3ω τ ] . (3.3)

In Fig. 3.1, this function is shown in blue.
However, this perfect parity signal gets damped in the presence of decoherence. In

fact, with every bit flip, the information contained originally in the factor exp(−i 3ω τ)
in Eq. (3.2) is slowly damped by the noise over the course of the waiting time. Ultimately,
if τ is long enough such that a sufficiently large number of quantum jumps has occurred
during this sensing period, the state ends up in a equal superposition of |0〉L and |1〉L.
Thus, the function which represents the parity signal is expected to be

P1(τ) =
1

2
+

1

2
e−3 Γerr τ cos[ 3ω τ ] . (3.4)

Here the factor 3 in the damping exponential comes from the number of qubits in the sys-
tem. This function is plotted in orange in Fig. 3.1. While Eq. (3.4) is, here, empirically in-
ferred, it was first derived by Huelga, Macchiavello, Pellizzari, Ekert, Plenio, and Cirac [40]
as an exact solution to a Ramsey experiment in the presence of phase-flip noise. Through-
out this work, we will refer to this equation as the well-established, canonical or standard
formula.

10



3.2. Preliminary observations

With the introduction of QEC into the system, we would naturally expect that the
only element that gets modified in the previous equation is the damping term which
would be attenuated and eventually, for an infinitely large correction rate Γqec, would be
driven to zero. This would mean that a good approximation to the parity function in
this situation is

P1(τ) =
1

2
+

1

2
e−3 Γeff(Γerr,Γqec) τ cos[ 3ω τ ] . (3.5)

Here, Γeff denotes an effective decay rate and is a function of the error and correction
rates. If Eq. (3.5) represents the true nature of the error-corrected signal, one can con-
clude that the estimator from Eq. (3.1) is unbiased since ω is a decoherence-independent
variable.
The preliminary observations show, however, a different behavior. They are synthe-

sized in Fig. 3.2. A summary of the error-corrected Ramsey protocol that has been ex-
plained in Section 2.1 can be seen in Fig. 3.2A. It shows simulations of Ramsey sequences
in three different situations: the ideal one; a case with only errors and an error-corrected
situation. These simulations were performed using the Quantum Toolbox in Python
(QuTiP) [41]. From Fig. 3.2B, we observe a difference in the frequency of the ideal and
the corrected parity signals, which we emphasize with the shaded areas. This points out
the fact that the assumption of a decoherence independent frequency is seemingly wrong

Figure 3.2.: Overview of the preliminary observations. A. Error-corrected Ram-
sey sequence represented as a quantum circuit where HL is a logical Hadamard
gate and Lτ illustrates a free evolution of duration τ . B. The parity function
P1 as a function of the free evolution time τ for three different sensing models:
ideal, uncorrected and error-corrected. C. The Fourier transform of the parity
functions from Fig. 3.2B denoted as P̂1(Ω).

11



3. Objective

or at least that it depends nontrivially on the correction rate. This bias is even more
pronounced on the Fourier transform plot showed in Fig. 3.2C. If we only had knowledge
of the error-corrected curve and not the ideal case, the error on the frequency that we
would obtain using Eq. (3.5) is approximately 3%. This would be a non-negligible error
especially for sensors meant for precision metrology.
This shift in the frequency can also be observed in some previous works about error-

corrected quantum sensing (cf. Fig. 2 in Arrad, Vinkler, Aharonov, and Retzker [21] or
Fig. 6 in Reiter, Sørensen, Zoller, and Muschik [25]). Nevertheless, there exists neither
a mathematical nor a physical explanation of this phenomenon in the literature. In the
next two sections, we rewrite the master equation (cf. Eq. (2.4)) to a more applicable
form. The next chapter presents its solutions and their physical meaning.

3.3. Simplifying the master equation

In order to simplify the master equation given in Eq. (2.4), we must determine the
components of the density matrix ρ on which the parity function depends. A perfect
Hadamard gate transforms an arbitrary logical density matrix according to[

1− p q
q∗ p

]
L

−→
[

1
2 − Re(q) 1

2 − p+ iIm(q)
1
2 − p− iIm(q) 1

2 + Re(q)

]
L

, (3.6)

where p and q are respectively the excited population 〈1|L ρ |1〉L and the coherence
〈1|L ρ |0〉L. Note that logical 0 and 1 populations of the density matrix do not in general
sum up to 1, but as explained in the next Section 3.4, this does not affect the sensing of
the frequency ω. In this section, and for the remainder of this thesis, we will therefore
assume that it is the case.
The parity function is equal to P1 = 1

2 + Re(q) which means that one has to solve the
master equation solely for q. This problem reduces to finding the solution of a system of
first-order differential equations,

q̇ = (−3i ω − 3 Γerr) q + (Γerr + Γqec)(e1 + e2 + e3) ,

ė1 = Γerr q + (−iω − 3 Γerr − Γqec) e1 + Γerr (e∗2 + e∗3) ,

ė2 = Γerr q + (−iω − 3 Γerr − Γqec) e2 + Γerr (e∗1 + e∗3) ,

ė3 = Γerr q + (−iω − 3 Γerr − Γqec) e3 + Γerr (e∗1 + e∗2) ,

ė∗1 = Γerr q
∗ + (iω − 3 Γerr − Γqec) e

∗
1 + Γerr (e2 + e3) ,

ė∗2 = Γerr q
∗ + (iω − 3 Γerr − Γqec) e

∗
2 + Γerr (e1 + e3) ,

ė∗3 = Γerr q
∗ + (iω − 3 Γerr − Γqec) e

∗
3 + Γerr (e1 + e2) ,

q̇∗ = (3i ω − 3 Γerr) q
∗ + (Γerr + Γqec)(e

∗
1 + e∗2 + e∗3) .

(3.7)

It involves the matrix elements q := 〈111| ρ |000〉 , e1 := 〈011| ρ |100〉, e2 := 〈101| ρ |010〉,
e3 := 〈110| ρ |001〉 ; and the dots denote their temporal derivatives. By noting that the
system is invariant under permutation of erroneous components {e1, e2, e3}, it can be

12



3.4. Offset of the parity function

further reduced to only four differential equations. In the matrix form these are

d

dτ


q
e
e∗

q∗

 =


−3iω − 3Γerr Γerr + Γqec 0 0

3Γerr −iω − 3Γerr − Γqec 2Γerr 0
0 2Γerr iω − 3Γerr − Γqec 3Γerr

0 0 Γerr + Γqec 3iω − 3Γerr



q
e
e∗

q∗


,

(3.8)

where e := e1 + e2 + e3 can be seen as a generalized error state. This reduced matrix
differential equation is solved for uncorrected sensing in Section 4.1, and for the error-
corrected situation in Section 4.2.

3.4. Offset of the parity function

In the previous section, we mentioned that the general formula for the parity signal is
equal to 1

2 +Re(q(τ)). However, this is true if and only if populations to the logical states
|0〉L and |1〉L sum to one. Unfortunately, this is not the case when the logical states are
encoded in multiple qubits, since they also decay due to decoherence noise. Yet, as we
show below this effect can be either corrected or, in some cases, even neglected.
In the situation where there is only one qubit in the system, both the logical and

the full description of a density matrix coincide, such that the population in the excited
state equals one minus the population in the ground state, i.e. 〈1| ρ |1〉 = 1 − 〈0| ρ |0〉.
However when one considers systems with more qubits, this statement no longer holds
true since probabilities can be distributed across all the populations of ρ. Thus, after
the free evolution, one should consider populations p0 = 〈0|L ρ |0〉L and p1 = 〈1|L ρ |1〉L
as independent quantities. The second Hadamard gate (cf. Fig. 3.2A) transforms this
density matrixp0 · · · q

...
. . .

q∗ p1

 −→


1
2(p0 + p1)− Re(q) · · · 1

2(p0 − p1) + i Im(q)
...

. . .
1
2(p0 − p1)− i Im(q) 1

2(p0 + p1) + Re(q)


.

(3.9)

Unlike Eq. (3.6), this transformation implies that the parity function is given by

P1(τ) =
1

2

(
p0(τ) + p1(τ)

)
+ Re(q(τ)) (3.10)

so that we have to determine not only the free evolution of the coherence q but also of
p0 and p1. The dynamics of the latter are also dictated by the master equation (2.4).
The particularity is, however, that it is not affected by the frequency ω, meaning that
the first term in Eq. (3.10) can be seen as an offset, and the second as oscillations. The
permutation invariant system of equations for p0 and p1 terms is given by Eq. (3.11)
with r0 = 〈100| ρ |100〉 + 〈010| ρ |010〉 + 〈001| ρ |001〉 and similarly for r1, but with two
excited and one ground states. Hence, r0 and r1 represent the single error subspaces
for populations p0 and p1 (similar to the e and e∗ terms in Eq. (3.8)). The system of

13



3. Objective

equations is then given by:

d

dτ


p0

r0

r1

p1

 =


−3Γerr Γerr + Γqec 0 0
3Γerr −3Γerr − Γqec 2Γerr 0

0 2Γerr −3Γerr − Γqec 3Γerr

0 0 Γerr + Γqec −3Γerr



p0

r0

r1

p1


.

(3.11)

Since the system is homogeneous, it is solvable based on the eigenanalysis of the
matrix. The solution consists of a linear combination of products of each eigenvector
with the exponential of the corresponding eigenvalue. The initial value of the problem is
(1/2, 0, 0, 1/2). The offset in the parity signal (3.10) is then:

1

2

(
p0(τ) + p1(τ)

)
=

1

2

(
1 + 3 e−τ(4 Γerr+Γqec)

)
Γerr + Γqec

4 Γerr + Γqec
. (3.12)

Several points can be observed in this formula. First of all, in the case of no errors
and no correction (i.e. Γerr = Γqec = 0), the offset is equal to 1

2 which is exactly what
we expect from an ideal Ramsey signal (cf. Eq. (3.3)). Secondly, this quantity decays
over time such that it will reach a steady state, which in the case of no correction (i.e.
Γqec = 0) will be 1

8 . The error rate Γerr does not influence this value, it only controls
how quickly this state is reached. Thirdly, one can also notice that for nontrivial Γqec,
the offset reaches values closer to 1

2 and with a perfect correction (i.e. Γqec →∞) it will
be exactly equal to the ideal line. Finally, the dynamics of q and p0/ p1 have different
time scales. Indeed, the oscillating part Re(q(τ)) is mainly dictated by the frequency ω,

Figure 3.3.: Dynamics of the parity function’s offset. It corresponds to half of
the sum of the populations in |0〉L and |1〉L states. It dynamics is shown for
several correction rates Γqec as well as for the ideal case (dashed), i.e. no errors
and no correction.
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3.4. Offset of the parity function

whereas the offset is mostly determined by Γqec. Since we usually consider that Γqec > ω,
it follows that the populations p0 and p1 reach their steady state within one period of
signal oscillation. This is the reason why in the scope of this work we assume the offset
to be constant and equal to 1

2 . Moreover, this offset does not affect the sensing power of
the Ramsey experiment, since a given time series can be first baseline corrected before
being estimated with Eq. (3.1).
Fig. 3.3 shows the dynamics of the offset for different regimes. It is important to

highlight that Γqec ∈ {1, 2, 4, 8}[ω] is a low correction rate. A more realistic and still low
Γqec would be approximately 20ω, the offset using this value could then be considered
ideal.
To conclude, Eq. (3.12) can also be used to study the asymptotic logical population

as a function of error and correction rates. This is what is shown in Fig. 3.4 where the
dashed line corresponds to the parameters for which this quantity is equal to 2/3. We
can observe that the probability of finding our system in the logical subspace increases
very quickly with Γqec which justifies our assumption from above.

Figure 3.4.: Asymptotic logical population. Logical population lim
τ→∞

p0(τ) + p1(τ)

derived from Eq. (3.12) plotted as a function of Γerr and Γqec. The dashed line
represents parameters for which this quantity is equal to 2/3.
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Chapter 4

Solutions

In this chapter, we present the solutions of the permutation invariant problem given by
Eq. (3.8) for various sensing situations. We then look at one intuitive physical interpre-
tation of the parity functions that ensue from these solutions. At the end, we conclude
with the validity of the simplified problem.

4.1. Uncorrected sensing

In a faulty but uncorrected Ramsey experiment, in other words for Γerr > 0 and Γqec = 0,
the system of equations presented in the previous chapter (cf. Eq. (3.8)) reads

d

dτ


q
e
e∗

q∗

 =


−3iω − 3Γerr Γerr 0 0

3Γerr −iω − 3Γerr 2Γerr 0
0 2Γerr iω − 3Γerr 3Γerr

0 0 Γerr 3iω − 3Γerr



q
e
e∗

q∗


.

(4.1)

This system can be, like for the populations p0 and p1 in Section 3.4, solved using the
eigenanalysis of the matrix. The four eigenvalues of the matrix are

−3Γerr ± 3
√

Γ2
err − ω2 − 3Γerr ±

√
Γ2

err − ω2 .

Based on the reasonable assumption that Γerr < ω, the square roots can be rewritten
such that the eigenvalues will have an imaginary part. The latter would be the cause of
the oscillation of the Ramsey signal. The associated eigenvectors are not specified for
the sake of simplicity. Solving the resulting linear system of equations with the initial
value (1/2, 0, 0, 1/2) and taking its real part leads to the following expression,

Re(q(τ)) =
1

2

ω2

D
e−3Γerrτ cos

(
3
√
D τ
)
−

− 1

2

Γ2
err

(
√
D)3

e−3Γerrτ
(√

D cos3(
√
D τ) + Γerr sin3(

√
D τ)

)
,

(4.2)

where D = ω2 − Γ2
err. One can see that the first term follows from the first eigenvalue

since it oscillates with 3
√
D, while the second term contributes less to the signal because

it scales as Γ2
errD

−1 whereas the first one as ω2D−1.
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4. Solutions

Let us now assume that ω � Γerr, then the expansion of the scaling term gives:

Re(q(τ)) =
1

2
e−3Γerrτ cos

(
3
√
D τ
) [

1 +

(
Γerr

ω

)2

+O
(

Γerr

ω

)4
]
−

− 1

2
e−3Γerrτ cos3(

√
D τ)

[(
Γerr

ω

)2

+O
(

Γerr

ω

)4
]
−

− 1

2
e−3Γerrτ sin3(

√
D τ)O

(
Γerr

ω

)4

Following up on the previous observations about the importance of each element in
Eq. (4.2), this expression shows that the second term starts to contribute only at second
order in Γerr/ω. Moreover, it shows that the function Re(q(τ)) does not have a first-order
approximation; in other words the 0-th order is true up to the second order.

0th order terms :
1

2
e−3Γerrτ cos

(
3
√
D τ
)

2nd order terms :
1

2
e−3Γerrτ

(
Γerr

ω

)2 [
cos
(

3
√
D τ
)
− cos3(

√
D τ)

]
In addition to this expansion, we expand the frequency of the trigonometric functions:

√
D = ω

(
1− 1

2

Γ2
err

ω2
+O(

Γ4
err

ω4
)

)
We finally can conclude that the parity function for an uncorrected sensing is given, up
to second order in Γerr/ω, by

P1(τ) =
1

2
+

1

2
e−3Γerrτ cos[ 3ωeff τ ] , (4.3)

where the effective frequency is ωeff = ω
(

1− 1
2

Γ2
err
ω2

)
. It is reasonable to consider such

an expansion since it ensures a good enough contrast of the Ramsey signal, otherwise
P1(τ) would be damped too quickly to observe any oscillations.

Interestingly, Eq. (4.3) highlights the presence of a bias that the well-established for-
mula in Eq. (3.4) does not capture. Even though, in most cases, the scaling factor
1− 1

2
Γ2

err
ω2 in Eq. (4.3) is relatively lowi. It can decrease to 0.94 in a worst case, where the

error rate is three times lower than the frequencyii. For high precision sensing, it is thus
important to take this bias into account.

iIn preliminary observations (cf. Fig. 3.2), this factor is equal to 0.995 which is sufficiently small to be
unnoticeable in the orange curve.

iiFor 3Γerr > ω, we assume that the contrast of Ramsey oscillation is too bad for sensing purposes.
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4.2. Error-corrected sensing

4.2. Error-corrected sensing

In the situation where the correction rate Γqec is nontrivial, the matrix differential equa-
tion describing the evolution of the coherence q is given in Eq. (3.8) (also presented
below). This permutation invariant system leads to a complicated set of rate equations
which do not have, due to the presence of complex coefficients, a simple solution. A
way to bypass this issue is to consider a slightly simpler problem given by the following
matrix equation without the orange terms:

d

dτ


q
e
e∗

q∗

 =


−3iω − 3Γerr Γerr + Γqec 0 0

3Γerr −iω − 3Γerr − Γqec 2Γerr 0
0 2Γerr iω − 3Γerr − Γqec 3Γerr

0 0 Γerr + Γqec 3iω − 3Γerr



q
e
e∗

q∗


.
(4.4)

This approximation (i.e. removing the orange terms) can be understood as following:
if a single-error state (e.g. |010〉 or |001〉) undergoes an additional bit flip on another
qubit before being corrected, then the state is said to be lost, i.e. it ends up to be in
a non-recoverable subspace of the Hilbert space. In reality, such a subspace does not
exist and the system would remain in the single-error subspace but of opposite parity
(using the previous example: the states become |110〉 and |010〉 if for instance σ(1)

x has
occurred).
Mathematically, this means that the error components e and e∗ of the density matrix

ρ can only decay through bit flips into an additional virtual leakage subspace l. If one
wants to monitor this variable, Eq. (4.4) has to be expanded by one equation to include
l. We present this in Section 4.4. Conversely, replacing the −3Γerr e term by −Γerr e
would lead to a closed system where double errors could not occur at all. The latter is a
more restrictive assumption and was therefore not considered.
The problem together with the assumption explained above comes down to finding the

eigenvalues and eigenvectors of the upper 2x2 matrix from Eq. (4.4). They are

λ± = −1

2
Γqec − 3 Γerr − 2iω ± 1

2

√
D

~v± ≡

vq±
ve±

 =

 1
6 Γerr

(
Γqec − 2i ω ±

√
D
)

1


.

(4.5)

where D = Γ2
qec + 12 Γqec Γerr + 12 Γ2

err − 4iΓqec ω − 4ω2 can be seen as a discriminant
term. As mentioned in Section 3.4, the solution of the matrix differential equation is then
given by the linear combination of the product of the eigenvectors with the exponentials
of the respective eigenvalues,q(τ)

e(τ)

 = A eλ+ τ ~v+ + B eλ− τ ~v−
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4. Solutions

where A and B have to be determined based on the initial values q(0) = 1/2 and
e(0) = 0iii. It leads to the following expression for the coherence

q(τ) = C+ e
1
2
τ(−Γqec−6Γerr−4iω+

√
D) − C− e

1
2
τ(−Γqec−6Γerr−4iω−

√
D) , (4.6)

with the normalization constants

C± =
Γqec

4
√
D
− iω

2
√
D
± 1

4 .
(4.7)

Finally, as mentioned in the previous chapter, the parity function corresponds to the real
part of Eq. (4.6) offset by 1/2, thus:

P1(τ) =
1

2
+ Re

(
C+ e

1
2
τ(−Γqec−6Γerr−4iω+

√
D) − C− e

1
2
τ(−Γqec−6Γerr−4iω−

√
D)
)
. (4.8)

Due to a nontrivial
√
D termiv in the exponential of the coherence q(τ), the parity

function cannot take a simpler form than the latter one without being approximated.

4.3. Physical interpretation

In an error-corrected sensing situation, the solution presented above does not seem to
have an intuitive physical explanation. Indeed, one can hardly distinguish a decaying
part cause by errors from a growing part resulting from the error-correction. This is
caused by the presence of the square-root term in the exponential. A way to circumvent
this is to use an approximation to this term. Let us rewrite it as following:

√
D = Γqec

√
1 +

12 Γqec Γerr + 12 Γ2
err − 4iΓqec ω − 4ω2

Γ2
qec

. (4.9)

Here, we have chosen to consider that the correction rate Γqec dominates over the rest
of the terms in the square root. We expand it up to the second order of the fraction in
the square root. The convergence of this expansion is ensured when the absolute value
of this ratio is strictly lower than one; stated differently:

(12 Γqec Γerr + 12 Γ2
err − 4ω2)2 + 16 Γ2

qec ω
2 − Γ4

qec < 0

(12 Γqec Γerr + 12 Γ2
err − 4ω2)2 + 16 Γ2

qec ω
2 + Γ4

qec > 0
(4.10)

have to be satisfied by the parameters of the system. While the bottom condition is
always satisfied if Γerr < ω, the top one has a nontrivial valid parameter space. Its
validity limit is shown in Fig. 4.1 as a dashed line. Parameters inside the red region

iiiAs a remainder, we assumed that the logical Hadamard gates were ideal and transform therefore the
initial |0〉L into the equal superposition 1√

2
(|0〉L + |1〉L).

ivThe discriminant is a complex number whose square root has no simple algebraic formula in terms of
of ω, Γerr and Γqec.
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4.3. Physical interpretation

violate this condition meaning that the expansion does not converge. Assuming that we
are in the green region, the coherence q(τ) given in Eq. (4.6) becomes:

q(τ) ≈C+ exp

[
τ
(
− i(3ω − 6

Γerr

Γqec
ω)− 6

Γerr

Γqec
Γerr

)]
︸ ︷︷ ︸

Evolution in the logical subspace

−

−C− exp

[
τ
(
− i(ω + 6

Γerr

Γqec
ω)− Γqec − 6 Γerr + 6

Γerr

Γqec
Γerr

)]
︸ ︷︷ ︸

Evolution in the erroneous subspace

.

where we have considered only terms of the order O(1/Γqec). In this assumption, the
normalization constants become C+ = 1

2 −
3
2

Γerr
Γqec

and C− = −3
2

Γerr
Γqec

. Written in this way,
one can identify two types of evolution:
The first one corresponding to the term C+ is the evolution in the logical subspace

which in the ideal case has a frequency of 3ω. Here, the frequency is biased such that its
effective value (to first order in Γerr

Γqec
) is ωeff = ω(1− 2 Γerr

Γqec
). In this situation, the scaling

factor has a greater impact on the frequency than the one in the uncorrected case: if,
as in Fig. 3.2, the correction rate is 50 times bigger than the error rate, then this factor
equals 0.96. Moreover, in the uncorrected case oscillations decay at a rate 3 Γerr, whereas
in the presence of correction it decays at three times the effective error rate identified as

Figure 4.1.: Validity range. The validity condition (cf. top inequality of
Eq. (4.10)) of the approximation given in Eq. (4.11) expressed in units of ω.
The green region represents the valid parameter space and the red one – param-
eters which violate the condition. The dashed line is the limit between these
areas.
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Γeff = 2 Γerr
Γqec

Γerr.
The second evolution given by C− denotes the evolution in the erroneous subspace

which oscillates at a lower frequency. We observe that the correction considerably in-
creases its frequency and decay rate. The latter as well as the small value of C− will
make this evolution quickly inconsiderable for the parity function.
All this allows us to reduce the previously stated parity function to only

P1(τ) =
1

2
+

1

2
e−3 Γeff τ cos[ 3ωeff τ ] , (4.11)

where the effective parameters are

ωeff = ω

(
1− 2

Γerr

Γqec

)
,

Γeff = 2
Γerr

Γqec
Γerr .

(4.12)

The measurement result in the presence of QEC can thus be cast into a form similar
to the well-established equation (cf. Eq. (3.4)) but with a modified error rate and fre-
quency. This shows us that the expected parity signal given in Eq. (3.5) is ultimately an
incomplete and biased model of the situation.
At this point, a pertinent question is: how to explain such a bias in the parity signal?

For answering this question, a discrete picture of the QEC process (cf. Fig. 2.1) can
be helpful. As we mentioned above, the Hilbert space can be divided into logical and
erroneous subspaces which evolve at different frequencies. The former is spanned by
the logical states |0〉L and |1〉L, whereas the latter by all the error states. A perfectly
prepared equal superposition |0〉L + |1〉L will evidently start in the logical subspace and
will evolve at its frequency until a bit flip occurs. This error creates a channel connecting
both subspaces. The state will then no longer evolve with 3ω but only with ω until a
second bit flip on the same qubit or until the next QEC operation. Since the correction
rate Γqec is larger than the error rate Γerr, the probability that the state is corrected
through the QEC channel is higher. This implies that in the free evolution interval δt
in-between two detection and correction operations, an extensive amount of it will be
spent in the logical subspace, and the remainder in the erroneous subspace. Finally, the
total phase the state has accumulated at the end of the waiting time simply corresponds
to the time spent in each subspace multiplied the respective frequency. The disparity in
the frequencies is thus the origin of the bias.
The scheme presented in Fig. 4.2 summarizes the physical interpretation described

above. The chronometers portray the time spent in the subspaces and the speedometers
their frequency. The size of the bubbles emphasizes the probability of finding the system
in the corresponding subspace, while the arrows depict the channels connecting these two
regions.
In the uncorrected sensing, the bias results from the same effect as in the corrected

case, namely the dissimilarity in the evolution in each subspace. However, here the
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4.4. Validity of the simplified problem

Figure 4.2.: Physical interpretation of the logical and erroneous subspaces. The
chronometers portray the time spent by the system in the subspaces and the
speedometers – the frequencies of the evolution in the corresponding region.
The disparity between the evolution-frequencies in the logical and erroneous
subspaces is the reason for the bias, since the total phase acquired by the state
is the time spent in each subspace times the respective frequency.

situation would be symmetrical (i.e. bubbles of same size), since only the error channels
allow the transfer of the state from one subspace to the other.

4.4. Validity of the simplified problem

As mentioned in Section 4.2, the proposed solution (cf. Eq. (4.8)) has been derived from
a much simpler problem than the original one. The simplified matrix differential equation
was constructed such that it ensures the existence of a subspace from which the coherence
q cannot be recovered. We refer to the population of this subspace as l. The initial
system of ODEs (cf. Eq. (3.7)) would then acquire an additional equation describing the
dynamics of this population. After applying the permutation invariance as well as the
assumption from Section 4.2, we end up with the matrix equation:
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4. Solutions

d

dτ


q
e
l
e∗

q∗

 =


−3iω − 3Γerr Γerr + Γqec 0 0 0

3Γerr −iω − 3Γerr − Γqec 0 0 0
0 2Γerr 0 2Γerr 0
0 0 0 iω − 3Γerr − Γqec 3Γerr

0 0 0 Γerr + Γqec 3iω − 3Γerr



q
e
l
e∗

q∗


,

(4.13)

It has mostly the same form as Eq. (4.4) but with coupling terms in orange now pop-
ulating the leakage subspace l. Moreover, it can still be seamlessly solved using the
eigenanalysis of the matrix, because l does not participate in any way in the dynamics of
q or e. In other words, l decouples the upper two equations (q, e) from the bottom two
(q∗, e∗).
The matrix in Eq. (4.13) has five eigenvalues: a trivial one λ0 = 0, two eigenvalues

λ1,2 = λ±, and the last two, λ3,4 = λ∗± with λ± as defined in Eq. (4.5). The last two
eigenvalues are the eigenvalues of the lower 2x2 block of the matrix. The solution of
the differential equation with initial parameters (q, e, l) = (1/2, 0, 0) is then identical to
Eq. (4.6) for the coherence q. The solution for the error component e reads

e(τ) =
3 Γerr

2
√
D

e
1
2
τ(−Γqec−6Γerr−4iω+

√
D) − 3 Γerr

2
√
D

e
1
2
τ(−Γqec−6Γerr−4iω−

√
D) (4.14)

and is very similar to evolution of the coherence component (cf. Eq. (4.6)).
An interesting quantity to look at is the leakage subspace population and its dynamics.

As for q and e, it has some time-dependent terms which will lead to decaying oscillations
when we consider their real part. However, it also has a constant term which means that
after a long enough time τ :

l(τ) −−−→
τ→∞

4 Γ4
err − 2ω2 Γ2

err

ω4 + 12ω2 Γ2
err + 8ω2 Γerr Γqec + 4 Γ4

err + ω2 Γ2
qec

.

This is an unnatural behavior since in a real situation this subspace would not exist but
would instead be expressed as fluctuations between e and e∗. This constant typically
needs to be much lower than the population of the other subspaces taken individually
during the sensing time. To ensure the validity of the reduced problem one can take an
even stronger constraint, namely |l(τ =∞)| � 1, which means solving the inequality:

4 Γ4
err − 2ω2 Γ2

err

12ω2 Γ2
err + 4 Γ4

err + 8ω2 Γerr Γqec + ω2 Γ2
qec + ω4

� 1 .

This leads to the condition:

Γqec � −4Γerr ±
√

2Γ 2
err − ω2 along with Γerr (ω2 − 2Γ 2

err) 6= 0 .

Knowing that we typically have Γerr � ω and Γqec ∈ R, we can claim that this stronger
constraint is usually satisfied.
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4.4. Validity of the simplified problem

The dynamics of |q(τ)|, |e(τ)|, |l(τ)| for a very low correction rate are shown in Fig. 4.3.
This plot also shows the simulations of |q(τ)| and |e(τ)|. They agree well with the
analytically derived functions except for small oscillations which come from the coupling
of the two pairs of equations (q, e) and (q∗, e∗) in Eq. (3.7). These fluctuations disappear
for larger correction rates.

Figure 4.3.: Dynamics of the subspaces. Dynamics of the populations of the
coherence (q), the single-error (e) and the leakage (l) subspaces as dictated by
the matrix differential equation (4.13). A very low correction rate was chosen
to emphasize oscillations in the simulations which, for higher correction rates,
get damped.
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Chapter 5

Solution analysis

In this chapter, we analyse the solutions of the estimation problem mentioned in Sec-
tion 3.1. In particular, we argue in the first section that, due to the form of the solutions
derived in the previous chapter, there is a need to switch from a univariate estimation
problem given by Eq. (3.1), to a multivariate one, i.e. where the estimator is no more a
scalar but a vector. Then, using a biased estimator theory, we show that the canonical
form of the parity function (cf. Eq. (3.4)) leads to a biased estimator. Moreover, impacts
of the proposed solution (cf. Eq. (4.8)) on the protocol’s sensitivity and on the Fourier
transform of P1 are also discussed. Finally, in the last section, we propose an adaptive
sensing protocol which optimizes the number of measurements needed for the estimation
problem.

5.1. Principal component analysis

The estimation problem as stated in Eq. (3.1) is univariate, which means that the error
and correction rates on which ω̂ depends remain constant throughout the minimization
process. This raises a fundamental question: How do we compare estimators which
result from different parity functions P1? Indeed, if the expected parity function, given
in Eq. (3.5), reflects the true outcome of any Ramsey experiment, it would mean that
the decay rate Γeff is always decoupled from the frequency ω. In other words, fixing
the former to a certain value would not affect much the estimation power of the other.
On the contrary, if the proposed solution (cf. Eq. (4.8)) is a closer representation of the
true parity function, then Γeff and ωeff are both dependent on each other (as showed in
Eq. (4.12)) which means that fixing one of them could be detrimental for the estimation
of the other.
A multivariate estimation problem would then be a solution to these concerns, because

a two-dimensional minimization problem is able to, using appropriate algorithms, capture
the variability of parameters which are estimated. The problem reads[

θ̂1

θ̂2

]
= arg min
{θ1 , θ2}

∑
τ

[
Xτ − P1(τ, θ1, θ2,Γqec)

]2
, (5.1)

where now the estimator is a two-dimensional vector. An important aspect to highlight
is that, with this expression, we assume the correction rate Γqec to be a known and fixed
parameter. This is a reasonable assumption, because as mentioned in Chapter 2.1 it can
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5. Solution analysis

in principle be engineered and thus set by the experimenter before proceeding with the
sensing protocol. Moreover, the multivariate estimation solves the issue of determining
the value of the decay rate which could be experimentally arduous.
Both the well-established and the proposed parity functions can be summarized by a

unique expression,

P1(τ, θ1, θ2,Γqec) = 1
2 + 1

2 e−3 fΓ(θ1,θ2,Γqec) τ cos[3 fω(θ1, θ2,Γqec) τ ]

fΓ(θ1, θ2,Γqec) = 2
θ1

Γqec
θ1

fω(θ1, θ2,Γqec) = θ2 (1− 2
θ1

Γqec
)

fΓ(θ1, θ2,Γqec) = θ1

fω(θ1, θ2,Γqec) = θ2

The decay rate together with the frequency are now functions of these new variables
θ̂1 and θ̂2. The definition of these functions is given in the left box (dark red) for the
standard P1 (cf. Eq. (3.4)) and in the right one (dark green) for the proposed parity
(cf. Eq. (4.8)). We preserve this color code for the rest of the chapter. We can now
proceed with testing the estimation power of these functions.
First, we conduct a principal component analysis (PCA). This is a widely used tech-

nique in data analysis which aims to “reduce the dimensionality of a dataset, while
preserving as much ‘variability’ (i.e. statistical information) as possible” [42]. Here we
use this technique for determining the directions that maximize the variance of our es-
timator. We start by simulating a set of data points using a Monte Carlo simulation of

θ̂1

θ̂2

1

−1

−1 1
[

0.999
−0.004

]

[
0.004
0.999

]θ̂1

θ̂2

1

−1

−1 1

[
−0.839
−0.544

] [
−0.544
0.839

]

Figure 5.1.: Principal components analysis. Arrows points toward the directions
that maximize the variance of the estimator given in Eq. (5.1). The left (dark
red) box shows the result for the estimator resulting from the well-established
parity function and the right (dark green) box – for the proposed function.
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5.2. Numerical comparison

the problem. Then, using the non-linear least square solver from the Python NumPy
library [43], we obtain an estimate of the vector [θ̂1 , θ̂2]T, as well as its covariance ma-
trix. The trends of the variance, the so-called principal components, are given by the
eigenvectors of this matrix. Fig. 5.1 represents these directions for both estimators. We
see that the principal components of the canonical estimator do not lay on the axis of θ̂1

and θ̂2, meaning that the obtained estimates are linearly correlated. Conversely, this is
not the case for the proposed estimator; here the two directions coincide with the system
of coordinates.
It is important to keep in mind that this analysis only considers the result of one esti-

mation process. For another set of data points, the covariance matrices will be different
and thus the position of the arrows might change. However, after performing the PCA on
multiple data sets with various values of simulation parameters (ω, Γerr, Γqec), no diver-
gences from this conclusion have been observed. From now on, we will refer to [θ̂1 , θ̂2]T

as to [Γ̂err , ω̂]T to avoid confusion when speaking of parity function’s parameters.

5.2. Numerical comparison

A first measure of the estimators’ performance is the absolute error between a reference
signal and its closest fit. Fig. 5.2A shows this quantity for both estimators as a function
of the sensing time τ . The reference signal was produced by a master equation solver
from the QuTiP [41] library. The figure highlights that the estimator resulting from the
proposed solution consistently outperforms the canonical one by at least one order of
magnitude.
The same performance comparison is also shown in Fig. 5.2B where the reference data

points were no longer calculated via QuTiP but taken from Reiter, Sørensen, Zoller, and Muschik [25],
Fig. 6. In this paper, the authors presented a continuous and dissipative QEC scheme for

Figure 5.2.: Absolute error between a reference Ramsey signal and the
fitted functions. The fitted function were the canonical equation (3.4)
(dark red) and the proposed solution (4.8) (dark green). Reference
data were: A. numerically calculated using QuTiP; B. obtained from
Reiter, Sørensen, Zoller, and Muschik [25].
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5. Solution analysis

a trapped ion quantum system. Their simulation is arguably more sophisticated than our
previous one, since it takes into account various couplings and auxillary modes. These
data can thus be seen as a robustness test for both estimators. Despite a higher absolute
error than in Fig. 5.2A, the proposed estimator still produces a closer fit to the reference
data.
Another important performance metric is the root-mean-square error (RMSE) is de-

fined as

RMSE(Pref
1 ,P1) =

√√√√ 1

N

N−1∑
τ

∣∣Pref
1 (τ)− P1(τ)

∣∣2 . (5.2)

Here N – the total number of time step, measures the expected value of the square
error between the reference signal Pref

1 and an arbitrary function P1 over the time τ .
For instance, the RMSE for the red and green fits from Fig. 5.2B are respectively 0.8%
and 0.3% confirming the conclusions we draw above. This metric can also help to verify
that the proposed Ramsey signal follows, in different regimes, an expected behavior:
that is for perfect QEC, it should equal the ideal signal and for weak QEC, the signal
should tend toward the uncorrected parity function derived in Eq. (4.3). The former can
be straightforwardly concluded from the reduced solution (cf. Eq. (4.11)), since, in the
limit Γqec →∞, effective parameters defined in Eq. (4.12) tend to Γeff → 0 and ωeff → ω.
The regime of an uncorrected Ramsey signal is characterized by a correction rate

which is significantly lower than the error rate, Γqec � Γerr. In this situation, the parity
function resulting from the coherence q(τ) given in Eq. (4.6) takes the following form

P1 (τ) =
1

2
+

1

2
e−3Γerr τ cos [3ωeff τ ] +O

(
e−Γerr τ

(
Γerr

ω

)2
)

(5.3)

when expanding it under the assumption of Γqec → 0 and Γerr � ω. As mentioned in
Section 4.1, the reason for the expansion in orders of Γerr/ω is that this ratio is directly
related to the contrast of the Ramsey signal. Once this gets close to 1, the oscillations
are damped more quickly. Here the effective frequency is equal to

ωeff =
ω

3

2 +

√
1− 3

(
Γerr

ω

)2
 = ω

(
1− 1

2

(
Γerr

ω

)2

+O
(

Γ 4
err

ω4

))
.

This expansion is exactly the same as the one derived for the uncorrected sensing,
meaning that up to the second order in Γerr/ω both Eq. (5.3) and Eq. (4.3) are equal.
Fig. 5.3 shows the RMSE between an ideal Ramsey signal (reference) and the proposed

parity function for different Γqec. For weak correction, the RMSE is constant due to the
fact that the parity is mainly equal to the constant function P1 = 0.5. However, when
the correction becomes strong enough the error converges also toward a constant value
due to rounding errors.
Finally, the ultimate performance comparison is the absolute error between the ref-

erence parameters and the estimates Γ̂err and ω̂ because these are the quantities we
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5.2. Numerical comparison

Figure 5.3: Regime of perfect QEC.
Root-mean-squared error (RMSE), as
defined in Eq. (5.2), between an ideal
Ramsey signal (cf. Eq. (3.3)) and the
proposed parity function (cf. Eq. (4.8))
for different correction strengths. As
Γqec approaches the perfect QEC, the
discrepancy reaches the level of round-
ing errors.

seek, especially the frequency which contains the information about the signal to sense.
Fig. 5.4 illustrates how this error for ω̂ looks like for a fixed error and an increasing cor-
rection rates. We can observe that here again the proposed estimator beats the standard
one by at least one order of magnitude. The figure also contains the same analysis for
a three-parameter estimator which was realized with the modified parity function but
with no prior knowledge about the correction rate. Overall, it shows a worse perfor-
mance than in the two-parameter case, i.e. the green line is most of the time below
the dashed one. Nonetheless, it is always better or equal to the two-parameter estima-
tor built upon the canonical formula. Its performance could eventually be improved by
tuning hyper-parameters of the minimization algorithm.

Figure 5.4.: Absolute error of frequency estimate. Absolute error between the
frequency of the reference parity signal and its estimate ω̂. Full lines represent
two-parameter estimators built upon the standard equation (3.4) (dark red) and
the proposed solution (4.11) (dark green). The dashed line shows a three param-
eters estimator using also the proposed function but with the third parameter
being Γqec.
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5. Solution analysis

5.3. Biased estimator theory

In this section, we aim to show that the estimator derived from Eq. (4.8) is unbiased,
whereas the established parity function Eq. (3.4) gives a biased estimator of the true
frequency ω. In statistics and more precisely in the estimation theory, any unbiased
estimator has to satisfy the so-called Cramèr-Rao lower bound (CRB) [44] which limits
the variance of the estimator to be at least as large as the inverse of the Fisher information
(FI). For the univariate case stated in Eq. (3.1), the theorem reads

Var(ω̂) ≥ (n I(ω) )−1 . (5.4)

In this expression, n denotes the total number of observations. The FI can be seen as the
total information accessible by the system and thus depends only on the true frequency
ω. These two quantities are defined by

Var(ω̂) = E[(ω̂ − E[ω̂])2] and I(ω) = E

[(
∂

∂ω
log P(X|ω)

)2
]
. (5.5)

Some optimized and finer bounds have been previously derived [5], based on the use
of the quantum Fisher information. Nevertheless, as our measurement scheme is chosen
and fixed, such technicalities are not necessary and the lower bound given by Eq. (5.4)
is adequate.
The inequality in Eq. (5.4) can be exploited to establish whether an estimator is

biased. Practically, if for a given probability density function P(X|ω), one observes that
the variance is lower than the CRB, one can claim that ω̂ is biased. We will refer to
this specific case as the violation of the CRB. Conversely, if the bound is satisfied, no
further conclusion can be drawn. Stated differently, this is a sufficient but not necessary
condition.
However, as argued previously, we must consider a two-parameter least-squares regres-

sion such that the estimation problem is not univariate anymore. Nevertheless, the CRB
can be naturally extended [45] to the unbiased multivariate case. It takes the form of
a matrix condition where the variance and the Fisher information are replaced by their
matrix counterparts, respectively the covariance Cov(Θ̂) and the Fisher information I(Θ)
matrices,

Cov(Θ̂)− 1

n
I(Θ)−1 ≥ 0 (5.6)

where Θ̂ = [ θ̂1 , θ̂2 ]T is an unbiased estimator. This condition is often difficult to verify,
but due to the fact that both matrices are positive semi-definite, the following corollary
is directly derived from Eq. (5.6) [46],

Tr
(
Cov(Θ̂)

)
= Var(θ̂1) + Var(θ̂2) ≥ 1

n
Tr
(
I(Θ)−1

)
≥ 1

n

(
I(θ̂1)−1 +I(θ̂2)−1

)
. (5.7)

Here the left-hand side can be seen as the total variance of the estimator. In this ex-
pression, Tr( · ) denotes the trace of a matrix. We now derive an expression for the FI
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5.3. Biased estimator theory

knowing that the random variable X can take only two values, x ∈ {0 , 1}:

I(θ) =
1∑

x=0

P(X = x|θ)
[
∂

∂θ
log P(X = x|θ)

]2

=

= P(X = 1|θ)
[
∂

∂θ
log P(X = 1|θ)

]2

+ P(X = 0|θ)
[
∂

∂θ
log P(X = 0|θ)

]2

=

=
1

P(X = 1|θ)

[
∂

∂θ
P(X = 1|θ)

]2

+
1

1− P(X = 1|θ)

[
∂

∂θ
P(X = 1|θ)

]2

=

=
1

P(X = 1|θ)(1− P(X = 1|θ))

[
∂

∂θ
P(X = 1|θ)

]2

In our case, the estimator is defined as Θ̂ = [ Γ̂err , ω̂ ]T and the conditional probabilities
P(X|θ) correspond to the parity function P1(τ) with all the parameters fixed, except θ.
To be explicit, we can express elements on the right-hand side of inequality (5.7) as

I(θ)−1 = P1(τ) (1− P1(τ))

[
∂P1(τ)

∂θ

]−2

, (5.8)

with θ ∈ {Γerr, ω }. For the frequency, this formula is known as the sensitivity (squared).
As mentioned above, the violation of the CRB is a sufficient condition for an estimator

to be biased, that is, if one monitors a transgression of inequality (5.7), one can infer
that ω̂ does not equal the true value. A Monte-Carlo simulation is appropriate for this
because it allows to choose the number of observations n, in contrast to a master equation
simulation. This is what was used in Fig. 5.5A. It shows the total variance for estimators
obtained with the parity functions Eq. (3.4) (diamonds) and Eq. (4.6) (circles) as well as
the right-hand side of Eq. (5.7) (dashed). Each point on this plot embodies one regression
for a total of 1500. One observes that the estimator obtained from the standard parity
function consistently violates the CRB. Hence, we come to the conclusion that it is biased.
The modified estimator using the proposed parity function also transgresses the lower
bound for τ ' 250, but this happens when the system’s parity is around 0.5, i.e. when
the quantum information is fully corrupted.
Fig. 5.5B shows the value of the frequency bias which was obtained using

Bias(ω̂) = E[(ω − ω̂)2]−Var(ω̂) . (5.9)

The former term characterize the mean square deviation of the estimate ω̂ from its true
value ω. From Fig. 5.5, we can see that the proposed solution has a lower bias but a
greater total variance compared to the well-established parity function. This reflects the
so-called bias-variance tradeoff [47]. It is, however, important to highlight that the main
contribution to the total variance comes from Var(Γ̂err) and that Var(ω̂) is minimal for
the proposed parity function. Lastly, the flatness of the bias for the well-established
function comes from the simplicity of the model which makes it converge to a stable and
constant local minimum.
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Figure 5.5: A. Total variance
as a function of the sens-
ing time τ for estimators en-
sued from Eq. (3.4) (dia-
monds) and Eq. (4.8) (cir-
cles). The plot also shows
the right-hand side of the
Cramèr-Rao lower bound as
stated in Eq. (5.7). The well-
established formula consis-
tently violates this inequal-
ity. B. Bias (cf. Eq. (5.9)) of
the frequency estimate ω̂ as
a function of τ . Each point
was obtained from a multi-
variate least-squares regres-
sion of data simulated with
the Monte-Carlo method.

5.4. Sensitivity

The sensitivity is a key quantity in any sensing experiment. It is defined as the minimum
detectable signal per unit time. In a Ramsey protocol it translates into the minimum
detectable variation of the frequency ω, often labelled |δω|(τ). The lower bound of the
sensitivity is called the Standard Quantum Limit (SQL) and is obtained by inserting the
ideal parity function into Eq. (5.8) and taking its square root. In our case, the SQL takes
the form

|δω|(τ) = (9n τ2)−1/2 , (5.10)

which in a logarithmic coordinate system is a decreasing line. Stated differently, in
an decoherence-free situation, the precision of the frequency estimate improves for long
waiting times τ .

In the presence of errors, this no longer holds true. For the standard parity function
given by Eq. (3.4), the sensitivity is equal to [40]

|δω|std(τ) =

√
1− e−6 Γerr τ cos2[ 3ω τ ]

n 9 τ2 e−6 Γerr τ sin2[ 3ω τ ]
(5.11)

for which the minimum is attained at the optimal sensing time

τopt =
π

2

kopt

3ω
with kopt =

⌊
2

π

ω

Γerr

⌉
(5.12)
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5.4. Sensitivity

where kopt is the optimal integer and b · e indicates the rounding to the nearest integer.
Roughly speaking, τopt can be inferred with (3 Γerr)

−1.

The sensitivity for the proposed parity function (4.8) can also be derived from Eq. (5.5)
(for θ ≡ ω). For this, we must derive an analytical formula for the differential of P1(τ)
with respect to ω:

∂P1

∂ω
= Re (−2iτ q(τ) + ∆q(τ)) , (5.13)

with

∆q(τ) = ∆C+ e
1
2
τ(−Γqec−6Γerr−4iω+

√
D) − ∆C− e

1
2
τ(−Γqec−6Γerr−4iω−

√
D)

∆C± =
1

4(D)3/2

[
−2i(D − Γ 2

qec)− τ
√
D(iΓqec + 2ω)(±Γqec ∓ 2iω +

√
D)
]
.

Due to the complexity of this formula, we obtain at the end a much more elaborate
sensitivity than the one presented in Eq. (5.11). To be explicit, the full expression of the
sensitivity for an error-corrected Ramsey experiment is given by the following equation

|δω|mod(τ) =

√
1

n
P1(τ) (1− P1(τ))

[
∂P1(τ)

∂ω

]−1

, (5.14)

where P1(τ) has to be substituted with the proposed parity function in Eq. (4.8) and the
partial derivative with Eq. (5.13).

As an alternative, we can also derive the sensitivity using the reduced form of P1 which
is presented in Eq. (4.11). Due to the requirement of performing a partial derivative with
respect to ω, we must opt for higher order approximations of the effective decay rate and
frequencyi. That is to say that Γeff and ωeff have to be considered as functions of ω.
Thus, the sensitivity is given by

|δω|mod(τ) =

√
1− e−6 Γeff τ cos2[ 3ωeff τ ]

n 9 τ2 e−6 Γeff τ
(
(∂ωΓeff) cos[ 3ωeff τ ] + (∂ωωeff) sin[ 3ωeff τ ]

)2 . (5.15)

Fig. 5.6 shows how this equation deviates from the full expression presented above. We
can see that the first-order approximations in 1/Γqec of the effective parameters give a
very loose approximation of the expected curveii. The precision, however, converges to
1 when we increase the approximation order.

An important aspect to mention is that this formula has almost the same form as the
standard sensitivity derived in Eq. (5.11), except that now we have ∂ωωeff and ∂ωΓeff

terms in the denominator. A numerical study of the ratio of this terms i shows that in
the validity range (cf. Fig. 4.1) the former extensively dominates over the second one.

iSee details in Appendix B
iiEven though all the parameters satisfy the validity conditions settled by inequalities (4.10).
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Figure 5.6: Error-corrected Ramsey ex-
periment’s sensitivity. The exact curve
was obtained by plugging the proposed
parity function (4.8) into Eq. (5.8) and
taking its square root. The other curves
where obtained in the same way but with
different orders of approximation of the
proposed parity function where the first
order corresponds to the reduced equa-
tion (4.11).

Figure 5.7.: Optimal sensing time and sensitivity. Plots of the optimal sensing
time τopt (A) and sensitivity |δω|opt (B) as functions of the correction rate Γqec.
These data were obtained numerically based on Eq. (5.14).

We then conclude the relationship

|δω|std(τ) ≈ |∂ωωeff | |δω|mod(τ) =

∣∣∣∣1− 2
Γerr

Γqec

∣∣∣∣ |δω|mod(τ) . (5.16)

This relation highlights the fact that depending on the model we chose for describing the
system, the sensitivity of the protocol is potentially overestimated, i.e. better (lower)
than the true one, since the partial derivative of ωeff with respect to the frequency is less
than one.

Moreover, this description indicates that we can calculate the optimal sensing time in
a similar manner as in Eq. (5.12).

τopt =
π

2

kopt

3ωeff
with kopt =

⌊
2

π

ωeff

Γeff

⌉
(5.17)
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but, as mentioned previously, it can as well be roughly inferred with (3 Γeff)−1. Fig. 5.7
illustrates how τopt and the optimal sensitivity |δω|opt ≡ |δω|(τopt) evolve with the cor-
rection rate. Unsurprisingly, both quantities get enhanced when Γqec increases. It is,
however, worth noting that |δω|opt exhibits a steeper improvement for low corrections
than for high ones, which demonstrates that QEC has a non-negligible impact on the
sensitivity of the protocol even if it induces a systematic bias.
A reasonable question to ask now is: how do can we determine if the sensitivity is

under- or overestimated? A method to verify this is to directly compare the theoretical
curves |δω|std(τ) and |δω|mod(τ) to the sensitivity calculated with raw data. However,
the latter can be sometimes difficult to evaluate since it requires the reconstruction of
the Ramsey signal and thus a large number of measurement rounds. We propose here an
alternative method:
Consider a set of observations for which a frequency ω̂ and an error rate Γ̂err were

estimated using the well-established parity function Eq. (3.4). Then, in the biased sce-
nario ω̂ ≡ ω and Γ̂err ≡ Γerr, we can directly insert them in Eq. (5.11) and calculate a
first curve. If instead we assume the existence of a bias, then the estimated parameters
stand for ωeff and Γeff , respectively, which substituted into Eq. (5.14) give a second curve.
These two functions are presented in Fig. 5.8 as dashed and dotted lines, respectively.
Although both of them satisfy the standard quantum limit, only one reflects the true
sensitivity of the system. The tool which helps to discriminate it is the optimal sensing
time τopt. Indeed, in both situations, the estimated τ̂opt depends only on Γ̂err and is
calculated by (3 Γ̂err)

−1. As we can see in Fig. 5.8, τ̂opt coincides with the minimum of
only one of the two curves. Thus, one can conclude that, in this instance, the second
model is the more faithful approximation to the true sensitivity.

Figure 5.8.: Sensitivities comparison. Two different models are compared: bi-
ased sensitivity (dashed) and modified one (solid) obtained with Eq. (5.11) and
(5.14),respectively. Both functions were plotted for the same values of ω and Γ.
The optimal sensing time τopt, estimated from (3 Γ̂err)

−1, helps to discriminate
which model reflects the true sensitivity of the system.
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5.5. Fourier transform of a Ramsey signal

Since the goal of Ramsey interferometry is to sense the frequency of the measured sig-
nal, discrete Fourier transform (DFT) seems to be an appropriate technique for this as
displayed in Fig. 3.2C.
Let us use this technique to highlight how the bias evolves for an increasing correction

rate. This evolution is shown in Fig. 5.9. While the reduced parity function given
in Eq. (4.11) can help to approximate this curve for large Γqec, for low values, the
validity conditions (cf. Eq. (4.10)) are not satisfied anymore. We can observe that after
reaching a minimum, the effective frequency starts to increase again. This is an expected
phenomena since, in the limit Γqec → 0, the bias should tend toward the expression from
the uncorrected solution presented in Eq. (4.3). A justified question to ask is: why does
the bias increase, in the first place, for low correction rates?
This arises from the nature of the measurement we are using. Indeed, when the

measurement basis is made of logical states, qubits from the erroneous subspace do not
corrupt the outcome, such that the only way they bias the measurement is due to multiple
bit flips. However, the probability of these events is low, since, as shown in Fig. 3.3, the
qubits population, initially in the logical states, will quickly and equally spread among all
the possible states of the Hilbert space. When QEC becomes significant, this probability
starts to increase together with the logical population (cf. Fig. 3.4). A non-negligible
fraction of the latter has, however, spent some time in the erroneous subspace and thus
evolved at a different frequency (as explained in Section 4.3). As we keep increasing Γqec,
this time decreases, which consequently reduces the bias.
We now analyse the Fourier transform (FT) of various solutions to the Ramsey se-

quences. For an ideal parity signal (cf. Eq. (3.3)), it will simply correspond to a delta
function which peaks at 3ω. The FT of the proposed solution is however much more
arduous. To find it, we can consider the reduced solution given in Eq. (4.11). Then, our
goal is to calculate the FT of the function: f(τ) = e−3 Γeff τ cos(3ωeff τ) The resulting

Figure 5.9: Bias vs QEC. Evolution of
the effective frequency in terms of cor-
rection rate. Numerical data were ob-
tained using a discrete Fourier transform
of the proposed solution (cf. Eq. (4.8)).
The curve is well approximated by the
first order expression of ωeff derived in
Eq. (4.12). The limit of this approxima-
tion is set by inequalities (4.10).
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5.6. Adaptive sensing protocol

FT then readsiii:

f̃(ω) =
1

2
√

2π

(
1

3 Γerr + i(ω − 3ωeff)
+

1

3 Γerr + i(ω + 3ωeff)

)
.

In practice one usually considers the magnitude of a FT to determine the main frequencies
of the original signal. In our case that means:

|f̃(τ)| = 1

2
√

2π

4ω2 + 36 Γ2
eff

ω4 − 18(ω2
eff − Γ2

eff)ω + 81(ω2
eff + Γ2

eff)2
(5.18)

Notice that the numerator of this rational function is a constantly increasing function for
ω > 0 and that the denominator has no real rootsiv. |f̃ | will then peak at ω where the
denominator is at its minimum, because away from this point it will quickly dominate
over the numerator. The derivative of the denominator has three real roots but only
ωmax = 3

√
ω2

eff − Γ2
eff is pertinent in the given situation, since it is the only strictly

positive one. We can see that it conforms to what we expect, namely that it peaks at
ω ≈ 3ωeff in the validity range of the reduced parity function.

5.6. Adaptive sensing protocol

The sensing protocol that we have presented in Section 3.1 is the most basic usable pro-
tocol, when dealing with a Ramsey interferometry experiment. However, one requires a
lot of experimental data before starting to look at the estimation problem itself. Indeed,
each point from the set {Xτ} is one occurrence of the random variable X for a given
sensing time. This means that for being relatively confident about its value, we must re-
peat the experiment with the same interval τ several times and then average the resulting
values. The issue with this procedure is that the amount of information we accumulate,
while repeating the experiments, is used only once, at the end. Here we propose how it
can be optimized by efficiently extracting information about the system at each run of
the protocol.
Let us first look at the discrete QEC as stated in Section 2.2. In this situation, after

each measurement round, we have access to several quantities: First, we can roughly
estimate the correction rate Γqec. If the gates are applied periodically as shown in
Fig. 2.1, we divide the number of QEC gates nR by the sensing time τ that, at the end,
would simply correspond to (δt)−1. If otherwise the gates are distributed randomly in
time, the estimate is obtained through a weighted arithmetic mean where each correction
process is weighted by the time interval since a previous R gate.

iiiThe result does not exactly correspond to the Fourier transform of f(τ), but to f(τ) Π(τ) where Π(τ)
is known as window or pulse function. In our case, we have chosen a rectangular function which is
equal to identity in the interval (0, τ) and zero otherwise. Moreover, in Fig. 3.2C, the time series
were restricted exclusively to this interval which explains why we do not see a sinc behavior expected
for the Fourier transforms.

ivThe discriminant is negative and equal to −(6ωeff Γeff)4.
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5. Solution analysis

Secondly, we have access to all the syndromes which come along with QEC. These
quantities, produced during the error detection, are key elements that allow us to deter-
mine which qubit in the code word is erroneous and thus condition its correction. For a
three qubit repetition code, each syndrome is a two-bit string established by the eigen-
values of σ(1)

z σ
(2)
z and σ

(2)
z σ

(3)
z . If, for instance, the syndrome is 01, we conclude that

there is an error in the third qubit and, similarly, if it is equal to 11, then the second one
is erroneous. Knowing all the syndromes in one run of the protocol, we can assess, to a
certain extent, the error rate Γerr by dividing the number of erroneous syndromes nE (i.e.
different from 00) by the sensing time τ . Here, as for the estimation of Γqec, we can also
implement a weighted average with weights exponentially depending on the time interval
between R gatesv.
Having an estimate of these two rates makes it possible to evaluate the amount of bias

the Ramsey signal has. Indeed, the expression of the effective frequency ωeff given in
Eq. (4.12)vi lets us estimate this value without the need of knowing the true frequency.
Finally, in a similar way, we can approximate the effective decay rate Γeff . This in turn

helps to compute the optimal sensing time as τopt ∼ (3 Γeff)−1. This time is afterwards
used to adapt the protocol toward the optimal sensitivity point |δω|opt.
The algorithm presented with these four points will, at first, result in a very sparse

series of Ramsey experiments with various free evolution times but, as the protocol keeps
repeating, all the parameters presented above will eventually converge to their definite
value. Such convergence is due to the fact that before estimating ωeff/ω, Γeff and τopt,
we are also averaging Γqec and Γerr with all their estimates from previous runs. Fig. 5.10
depicts the whole sensing protocol where the adaptive steps explained above are indicated
as a calibration phase. Indeed, we can see it as such, because it allows us to infer some
parameters of the system but not to estimate the true frequency ω. For the latter, several
methods exist:
As already explained one may fit the proposed solution to several oscillations measured

by tweaking the sensing time around its optimal value τopt. Alternatively, a quantum
phase estimation algorithm can as well be implemented [7]. However, the quantum
sensing community is often interested in the detection of small signals, which in this
case, are considered as perturbations δV (t) of a known background V0(t). The two main
methods commonly utilized are the slope and the variance detection. The quantity, that
we are then interested in, is δP(τ) = P(τ) − P1(τ0) with a suitably chosen τ0. For the
slope detection, we pick this initial point such that it maximizes the slope of the parity
function, whereas for the variance detection, we select its crest (i.e. minimal slope). These
points lie around the optimal sensing duration τopt

vii due to its property of minimizing
the sensitivity |δω|. This justifies once again the name “Calibration” for the adaptive
algorithm presented above.

vThe longer is the time interval, the higher is the probability that a quantum jump occurs.
viFor a better approximation, see Appendix B.
viiFor the slope detection, this point is actually τ0 = τopt.
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5.6. Adaptive sensing protocol

This scheme, explained using a discrete implementation of QEC, can also be used
in a dissipative case with specific techniques of monitoring the environmental degrees of
freedom. In a trapped ion implementation, a solution would be to monitor photon recoils
as suggested by Plenio and Huelga [23].

Protocol’s
onset

Choose an
arbitrary

sensing time τ

Estimation
Proceed with:
- Phase

estimation
- Slope

detection
- Variance

detection

Restart the protocol if the signal to sense changed

Calibration

Run the i-th Ramsey
experiment of duration τ

Estimate:
Γ

(i)
qec = nR/τ

Γ
(i)
err = nE/τ

Update:
Γqec = E{Γ(i)

qec}
Γerr = E{Γ(i)

err}

Compute the bias ωeff/ω,
the decay Γeff and the time τopt

τ = τopt

Figure 5.10.: Adaptive sensing protocol. The adaptive part is implemented in
the Calibration phase where the length of the Ramsey experiment is tuned
depending on the quantities Γqec and Γerr estimated from previous measurement
rounds. nR and nE are respectively the number of QEC gates and the number of
detected errors during one run. Unlike in this scheme, one can as well implement
a weighted arithmetic mean for the estimators. The Update step is a simple
averaging over the previous runs’ values.

41





Chapter 6

Generalization

All the results presented so far concerned specifically the three-qubit repetition code.
It can, though, be consistently extended to other codewords as long as the evolution
frequencies in the logical and erroneous subspaces differ. In this chapter, we present how
the size of the repetition code (i.e. the number of two-level systems) influences the parity
signal and the proposed solution.

6.1. Larger repetition codes

Let us start to look at encodings involving more than three qubits, i.e. {|0〉L , |1〉L} ≡
{|0〉⊗N , |1〉⊗N}. The signal hamiltonian H(t) and the error jump operators L(j)

err are de-
fined in the same way as the three qubit case and the QEC jump operators (for correcting
single errors) can also be easily extended as following,

L(j)
qec =

√
Γqec σ

(j)
x

N−1∏
k 6=j

1− σ(j)
z σ

(k)
z

2
. (6.1)

Although the system of equations obtained from the master equation (2.4) would grow
exponentially with N , it can be lowered by assuming their permutation invariance as in
(3.8). That said, the system will not be simplified to only four equations, since we have to
consider the presence of higher-order error subspaces. Indeed, in the three-qubit case, the
double-error subspace, with respect to |1〉L, was spanned by {|100〉 , |010〉 , |001〉}, which
means that it overlapped with the single-error space of the logical 0 state. Mathematically
speaking, this overlap was translated as a coupling of e and e∗ in Eq. (3.8).

If instead we assume four-qubit code words, there exists a distinct double-error sub-
space which will be uncoupled from the logical one. It is spanned by the following
states {|1100〉 , |1010〉 , |1001〉 , |0110〉 , |0101〉 , |0011〉}. For a five-qubit repetition code,
the number of such subspaces would amount to two and to three for a six-qubit one. It is
straightforward to see that the number of equations in the permutation invariant system
will thus scale as N + 1.
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6. Generalization

For N = 4, this system of equations looks like:

d

dτ


q
e
d
e∗

q∗

 =


−4iω − 4Γerr Γerr + Γqec 0 0 0

4Γerr −2iω − 4Γerr − Γqec 2Γerr 0 0
0 3Γerr −4Γerr 3Γerr 0
0 0 2Γerr 2iω − 4Γerr − Γqec 4Γerr

0 0 0 Γerr + Γqec 4iω − 4Γerr



q
e
d
e∗

q∗


,

(6.2)

where d represents the double errors subspace discussed above. As with the previously
considered problem (cf. Eq. (3.8)), this system is convoluted and its solution is not trivial.
Yet, one can simplify it using the same procedure as before, i.e. decouple the single
errors subspaces e and e∗ from the double ones by removing the orange terms from their
equations. With this simplification, the system can be seamlessly solved. The eigenvalues
are then: λ0 = −4Γerr, λ1,2 = λ± and λ3,4 = λ∗± ; with λ± being equal to:

λ± = −1

2
Γqec − 4 Γerr − 3iω ± 1

2

√
D . (6.3)

The discriminant now has the following form:

D = Γ2
qec + 16 Γqec Γerr + 16 Γ2

err − 4iΓqec ω − 4ω2 . (6.4)

The eigenvectors are also similar to the previous ones such that the solution for the
coherence q(τ) is given by approximately the same expression as its three qubit analogue
derived in Eq. (4.6)

q(τ) =

(
Γqec

4
√
D
− iω

2
√
D

+
1

4

)
e

1
2
τ(−Γqec−8Γerr−6iω+

√
D)

−
(

Γqec

4
√
D
− iω

2
√
D
− 1

4

)
e

1
2
τ(−Γqec−8Γerr−6iω−

√
D)

(6.5)

We notice that the normalization constants did not change (cf. Eq. (4.7)) and only some
numerical factors got altered which could be linked to the number of qubits in the system.
The parity signal resulting from this expression naturally has a higher frequency due
to the signal’s Hamiltonian we considered (cf. Eq. (2.2)). Nonetheless, if we scale the
sensing time as in Fig. 6.1, we see that the decay rate is also higher if the code is larger.
Indeed, by increasing the size of the code words, we increase the number of possible
decoherence channels and thus the overall probability of a decay event.
Using observations drawn from previous cases, we can now generalize the proposed

solution to an arbitrary number of qubits N ≥ 3. To construct the (N + 1)x(N + 1)
matrix for the permutation-invariant system of equations we have to follow some specific
rules:
First, the error rates of each column should sum up to 0. Then, the diagonal elements

should always be made of N decay channels (−NΓerr term) plus the evolution frequency
in the given subspace. This frequency is easily determined from the states which span
the subspace: if we look for instance at |01011〉, it is a member of the double-error
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6.1. Larger repetition codes

subspace d for a five-qubit code word. As such, it evolves with only one ω because
each 0 contributes −ω and each 1 +ω. Finally, the upper diagonal of the matrix tells
how many high-order errors could become lower-order errors. The decay happens at a
rate equal to the number of erroneous qubits in this high order errors state (e.g. there
exist only three possibilities to end up in a double-error subspace starting from triple-
error one). Similarly, the lower diagonal expresses the opposite: how many low-order
errors can become higher-order errors. This happens at a rate equal to the number of
non-erroneous qubits in the low-order error state.

To be explicit, this matrix reads
−Niω −NΓerr Γerr + Γqec 0 0 · · ·

NΓerr −(N − 2)iω −NΓerr − Γqec 2Γerr 0 · · ·
0 (N − 1)Γerr (N − 4)iω −NΓerr 3Γerr · · ·
0 0 (N − 3)Γerr (N − 6)iω −NΓerr · · ·
...

...
...

...
. . .

 (6.6)

where the first few components, denoted by [ q , e , d , t , · · · ]T, correspond to coherence
and single, double and triple error subspaces respectively. As for Eq. (4.4) and Eq. (6.2),
this system is convoluted due to the presence of QEC, but it can be simplified using the
method explained in Section 4.2. It consists once again of removing the orange term
from the matrix above. The spectrum of the simplified matrix has as members the terms
λ± and λ∗± which are defined as:

λ± = −1

2
Γqec −N Γerr − (N − 1)iω ± 1

2

√
D , (6.7)

with the discriminant:

D = Γ2
qec + 4N Γqec Γerr + 4N Γ2

err − 4iΓqec ω − 4ω2 (6.8)

We find that the solution for the coherence is given by the following function.

q(τ) =

(
Γqec

4
√
D
− iω

2
√
D

+
1

4

)
e

1
2
τ(−Γqec−2NΓerr−2(N−1)iω+

√
D)

−
(

Γqec

4
√
D
− iω

2
√
D
− 1

4

)
e

1
2
τ(−Γqec−2NΓerr−2(N−1)iω−

√
D) .

(6.9)

As for the four-qubit code, we note that the normalization terms remain unchanged and
the numerical factors are now dependent on the number of qubits N .

For this generalized repetition code, we can derive the reduced solution, as we per-
formed it in Section 4.3 for the three-qubit case. The validity of this expression will be
imposed by the same two inequalities (cf. Eq. (4.10)) except that the factor 12 will be
substituted by 4N . The reduced form of the parity function is then

P1(τ) =
1

2
+

1

2
e−N Γeff τ cos[N ωeff τ ] (6.10)
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with the following effective parameters

ωeff = ω

(
1− 2

Γerr

Γqec

)
,

Γeff = (N − 1)
Γerr

Γqec
Γerr .

(6.11)

It is important to note that the total decay rate and frequency are not merely increasing
with the number of qubits N , but that this increase is quadratic for the former and only
linear for the latter. This confirms our previous observation about Fig. 6.1. Furthermore,
if we wanted to keep the contrast of the Ramsey fringes constant while increasing the
number of two level systems, we would need to increase the correction rate linearly with
(N − 1) which would consequently result in a linear reduction of the frequency bias.

6.2. Two-qubit sensing protocol

Let us now look at the special two qubit case. Unlike an N-qubit repetition code, it does
not have any double-error subspace and the single-error subspaces overlap with each
other, since |01〉 is an erroneous state of |00〉 and, at the same time, of |11〉. In order
to use such a system for quantum sensing, we must assume that one of the qubits has a
much larger coherence time than the other one. This type of encoding is not a novelty
and has already been previously studied [19, 21, 27, 48, 49]. Here we consider states
|ψs〉 ⊗ |ψp〉 where s and p indicate the sensing and protection qubits respectively, such
that Γ

(s)
err � Γ

(p)
err . This could be achieved using for instance two different species of ions

in a trapped ion setup. When considering a situation like this, one has to distinguish as

Figure 6.1.: Parity signal for larger codes. A. Ramsey signal for various sizes N
of repetition codes. It was obtained with the formula P1(τ) = 1/2 + Re(q(τ))
where the coherence q(τ) is given in Eq. (6.9). The only exception is the two
qubit case where we use Eq. (6.14). B. Discrete Fourier transform of the signals
from A.
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6.2. Two-qubit sensing protocol

well the transition energies of the qubits, i.e. ω(s) 6= ω(p). The system has then only one
QEC jump operator given by the following expression,

L(s)
qec =

√
Γqec σ

(s)
x

1− σ(s)
z σ

(p)
z

2
.

The full matrix differential equation describing the dynamics is given by

−i (ω(p) + ω(s))−
− (Γ

(s)
err + Γ

(p)
err )

Γ
(s)
err + Γqec Γ

(p)
err 0

Γ
(s)
err

−i (ω(p) − ω(s))−
− (Γ

(s)
err + Γ

(p)
err + Γqec)

0 Γ
(p)
err

Γ
(p)
err 0

i (ω(p) − ω(s))−
− (Γ

(s)
err + Γ

(p)
err + Γqec)

Γ
(s)
err

0 Γ
(p)
err Γ

(s)
err + Γqec

i (ω(p) + ω(s))−
− (Γ

(s)
err + Γ

(p)
err )


,

where the components are [ q , e , e∗ , q∗ ]T. To be explicit, the coherence term is equal to
q = 〈11| ρ |00〉 and the erroneous one to e = 〈01| ρ |10〉. Here, as in all the previous cases,
to solve the problem we simplify the matrix by removing selected terms. However, due
to the small number of qubits this has to be done in two places (see the orange elements
in the matrix). The logic behind this operation remains the same, though: decoupling
the upper block (q, e) of the matrix from the lower one (e∗, q∗). Then it becomes block
diagonal and seamlessly solvable. The four eigenvalues are λ± and λ∗± are determined as

λ± = −1

2
Γqec − (Γ(s)

err + Γ(p)
err )− iω(p) ±

√
D , (6.12)

with discriminants:

D = Γ2
qec + 4 Γqec Γ(s)

err + 4 Γ(s) 2
err − 4iΓqec ω

(s) − 4ω(s) 2 . (6.13)

The solution for the coherence q(τ) is then derived from the initial-value problem and is
equal to:

q(τ) =

(
Γqec

4
√
D
− iω(s)

2
√
D

+
1

4

)
e

1
2
τ
(
−Γqec−2(Γ

(s)
err+Γ

(p)
err )−2iω(p)+

√
D
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−

(
Γqec

4
√
D
− iω(s)

2
√
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4
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e

1
2
τ
(
−Γqec−2(Γ

(s)
err+Γ

(p)
err )−2iω(p)−

√
D
)
.

(6.14)

As expected, only the sensing qubit contributes to the frequency bias. We can see that
from the discriminant which has no dependence on ω(p). It is even more obvious when
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we consider the reduced solution,

P1(τ) =
1

2
+

1

2
e−Γ

(p)
err τ cos

[(
ω(p) + ω(s) − 2

Γ
(s)
err

Γqec

)
τ

]
. (6.15)

This equation also shows that the sensing qubit does not impact the decay rate, at least
in the scope of this approximation which is still given by inequalities (4.10)i.
Fig. 6.1 shows the Ramsey signal obtained using such an encoding. For the observed

comparison, the frequencies of the qubits were both set to 1. We can observe that signal
agrees with our conclusion from above: it has a better contrast and its bias increases
slower compared to the other encodings with the same correction rate Γqec.

iExcept that all Γerr must be replaced by Γ
(s)
err and the factor of 12 by only 4.
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Chapter 7

Conclusion & Outlook

In this thesis, I exposed the emergence of a systematic bias in an error-corrected quan-
tum sensing protocol and presented a theoretical explanation for it. The analysis was
performed from a purely quantum information perspective.
I started by broadly presenting the principles of quantum sensing and the main chal-

lenges behind the usage of quantum error correction (QEC). The Ramsey sequence was
my choice of sensing protocol for illustrating the bias. The sequence in the presence
of dissipative decoherence and QEC was analytically solved for non-corrected, as well
as corrected systems. Even though the latter needed a simplification, both solutions
showed a good agreement with the simulations and a deviation from a standard expected
formula. An approximation of these results exposed the origin of the bias and reduced
the equations to a more useful form. Finally, in the last two chapters, I presented various
analyses of the derived solutions, exposed consequences of the bias, and generalizations
to other types of repetition codes.
This work can be ultimately completed by engineering a method to compensate the

bias throughout the course of the sensing protocol. A first step towards this direction
was proposed in the Section 5.6 where I presented an adaptive sensing protocol. The
main challenge for this method is to answer to question: how to correct the bias with no
prior knowledge of the true frequency ω?
Another interesting outlook is to consider other types of encoding, rather than the

simple repetition codes studied in this work, with the aim of finding a bias-proof code
which would not need any compensation of the frequency. This could be achieved by
designing codewords for which the evolution frequency is the same in the logical and
erroneous subspaces.
Furthermore, one can as well investigate the correction of higher-order errors in rep-

etition codes which could eventually lead to fault tolerance in quantum sensing and
quantum computation.
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Appendix A

Proposed solution vs Simulation

An aspect not discussed in the main text is the precision of the proposed solution with
respect to a simulation of the protocol. Fig. A.1A shows the root-mean-square deviation
(RMSE) of the parity function given in Eq. (4.8) from the Ramsey signal simulated with
QuTiP [41]. We note that the error is consistently below 0.2% indicating that the function
is an equally accurate solution of the non-corrected and error-corrected problems. We
believe that this error is due to the assumption that we had to make to solve the problem
in the first place (cf. Section 4.2).
Furthermore, Fig. A.1 displays as well the RMSE of the proposed sensitivity formula

presented in Eq. (5.14) with respect to its simulation. Notwithstanding some discrepan-
cies for high correction rates, the baseline of the error curve depicts a very fast decrease
and crosses the cap of 1% already for low Γqec. The variations mentioned previously
as well as the trend of the error curve when Γqec → 0 could come from discretization
errors. Indeed, for the simulated data, we approximated the derivative ∂ωP1(τ) with a
finite difference method such that these errors could potentially be reduced with a finer
frequency discretization or a higher order method.

Figure A.1.: Error between the simulation and the proposed functions. The root-
mean-square error (RMSE) calculated as in Eq. (5.2) between the analytically
derived expressions and their simulations obtained with QuTiP. These expres-
sions are (A) the proposed parity function (cf. Eq. (4.8)), (B) the sensitivity
formula (cf. Eq. (5.14)).
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Appendix B

Convergence of the reduced parity
function

In Section 4.3, we approximate the full expression of an error-corrected Ramsey signal
given in Eq. (4.8) with a much simpler and closer to the standard form function. The lat-
ter, presented in Eq. (4.11), was derived by expanding the square root of the discriminant
D (cf. Eq. (4.9)) and considering only the first order terms in O(1/Γqec). This implies
that the effective parameters, stated in Eq. (4.12), are as well first-order approximations
of the true decay rate and frequency of the signal which, as we show it in Fig. 5.6, causes
a deviation of the approximated sensitivity from the true one.
However, this can be improved by refining the expression of ωeff and Γeff . The next

two approximation orders are the following:

ωeff = ω
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1 − 2
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qec︸ ︷︷ ︸
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(B.1)

We see that the effective decay rate now has a dependence on the true frequency ω
as well. To study the precision of these approximations, one can measure the root-
mean-square deviation (cf. Eq. (5.2)) of the resulting parity functions with respect to
the proposed onei. Fig. B.1A illustrates this quantity as a function of the correction rate
Γqec. The plot shows that the error between both functions is, in the scope of the validity
range, below 10% and for the 2nd and 3rd order approximations it even becomes very
quickly of the magnitude of 0.1%. The same measure can be done on with sensitivities as
depicted in Fig. B.1B. Here, the approximated sensitivities, calculated with Eq. (5.15),
were compared to the full expression given in Eq. (5.14). Unlike in the previous case, for
low Γqec, the sensitivity is better approximated by the 1st and 3rd order expressions of
the effective parameters than by the 2nd order one. All of them nevertheless converge
relatively quickly to a same value below 1%.

iWe do not compare these functions to their simulated counterparts as in Appendix A, because their
calculation is highly resource demanding.
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B. Convergence of the reduced parity function

Figure B.1.: Error between the proposed solution and its approximation. The
root-mean-square error (RMSE) calculated as in Eq. (5.2) between: (A) the
proposed parity function (cf. Eq. (4.8)) and its reduced form (cf. Eq. (4.11));
(B) the sensitivity (cf. Eq. (5.14)) and its approximation (cf. Eq. (5.15)). The
curves differ in the order of approximation of the effective parameters as pre-
sented in Eq. (B.1).

The last observation suggests that the high error of the 1st order approximation in
Fig. B.1A originates from a poor approximation of the exponential decay rather than the
oscillations’ frequency. We can confirm this hypothesis by investigating the deviation of
ωeff as stated in Eq. (B.1) from the true effective frequency obtained using a discrete
Fourier transform of the proposed parity function. Fig. B.2 shows how the absolute
value of this quantity changes with Γqec. Since for all orders the error is below 1% and
converges quickly to lower values, it constitutes an equivocal evidence of the proof of the
hypothesis, that the major part of the error comes from a loose approximation of Γeff .

Figure B.2: Error of the effective frequency.
Absolute deviation of the approximated ef-
fective frequency stated in Eq. (B.1) from
its true value, obtained using a discrete
Fourier transform of the proposed parity
function (cf. Eq. (4.8)).
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