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Abstract

In the present thesis the development of an optical ion trap was continued
[M. Marinelli, Master Thesis, ETH Zurich (2014)]. A narrow linewidth Nd:YAG
laser was frequency doubled in a quasi phase-matched crystal and partially stabi-
lized to a high finesse build-up cavity. It could be shown that the locking time was
limited by mechanical vibrations of the optical table, making either passive damping
or active beam-pointing stabilization necessary.

Furthermore, a novel ion trap design, incorporating both static electric and opti-
cal potentials, was developed and simulated using a Verlet-type integrator for solving
the classical equation of motion.
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1 Introduction

Efficient simulation of quantum systems on classical computers is in general not possible
due to the exponential growth of the equation order that has to be solved [1]. Having
on the other hand a fully controllable quantum system A, as proposed by R.P. Feynman
in 1981 [2], it is possible to simulate a different system B by tuning the interaction in
system A correctly and then measuring a suitable observable [3].

Ion strings kept in radio-frequency traps offer a naturally strong interaction due to
their Coulomb repulsion and can also be very well controlled by the use of lasers [4].
Therefore, they provide an ideal system for simulating of a wide range of Hamiltonians
containing either spin-spin interaction like the Ising Hamiltonian [5] or spin-oscillator
couplings encountered for example in the Jaynes-Cummings model in cavity QED [4].

More recently experiments have been conducted in which single ions were trapped
in optical fields produced by strongly focused lasers [6], [7], [8], a technique used so far
only for trapping of neutral atoms [9]. Such traps offer new possibilities for simulating
hybrid systems simultaneously containing both neutral atoms and ions. Furthermore,
thanks to the much lower heating rate of the ion, the regime of ultracold chemistry could
become accessible [8].

In this thesis a narrow linewidth laser system was set up, whose eventual purpose will
be trapping of ions in the Gaussian mode of an optical cavity. This work is based on
previous results by M. Marinelli, showing that such a laser is necessary in order to cou-
ple light stably into a build-up cavity used for trapping [10]. Furthermore numerical
simulations were carried out, investigating a novel type of trap utilizing static electric
as well as optical fields to spatially confine ions.

The first chapter of this thesis introduces the theory of radio-frequency trapping of
charged particles and presents two different methods for numerical calculation of the
potential generated by the trap electrodes. Implementations of these two methods were
then compared using analytically solvable electrostatic problems as a benchmark.

In the second chapter the methods used for simulating the electro-optic hybrid trap
as well as the results are presented. Furthermore dipole trapping of quantum systems
in general as well as its applications and advantages in ion trapping are discussed.

The last part of this thesis describes the experimental setup. The theory of second
harmonic generation in periodically polled crystals is discussed, which was then used
for the generation of a green light source, following the description in [11]. Finally, this
laser was coupled into the build-up cavity designed by M. Marinelli. These results are
presented in the last section.
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2 The Radio Frequency Ion Trap

This chapter begins with an introduction to radio-frequency trapping of charged parti-
cles. Thereby the alternating electric field is replaced by an effective potential acting
on the particle. This approximation greatly simplifies the analysis of ion traps, yielding
most experimentally important parameters such as position of the potential minimum,
depth of the trap and secular frequencies of the ion.

The second part of the chapter covers the numerical analysis of arbitrary ion trap
geometries. A method for calculating the effective potential is presented and its imple-
mentation in two different numerical solvers is discussed. These implementations are
then compared using two problems which possess analytical solutions.

2.1 Trapping of Charged Particles

Thanks to their strong interaction with an electric field, charged particles such as ions
can be confined to precisely defined points in space with ease. Placing the particles in
vacuum facilitates storing then for nearly infinite time in the trap. Furthermore, good
controllability is achieved by the use of lasers, enabling their study with high precision
as well as their use in quantum information experiments [12].

However, as it will be shown in the following, trapping with solely static (dc) fields
is not possible. This problem can be overcome by either using radio-frequency (rf) fields
(called a Paul trap) or a combination of static electric and magnetic fields (Penning
trap) [13].

In this section the case of a static quadrupole potential generated by a linear Paul
trap is studied. These results are then extended to an oscillating drive field, yielding
a static approximation of the dynamic rf confinement in an ion trap. In the end a
brief outlook to a more precise approach which involves solving of the so-called Mathieu
equations is given.

2.1.1 Ions in a Static Electric Potential

Maxwell’s first equation in vacuum implies that

∇E(x) = −∇2Φ(x) = 0 (2.1)

Therefore, for a quadrupole potential of the form

Φ(x) =
U1

2
x2 +

U2

2
y2 +

U3

2
z2 (2.2)

for example produced by a Paul mass filter [14], the Laplace equation ∆Φ = 0 imposes

U1 + U2 + U3 = 0 (2.3)

Thus, at most two directions can be confined by a static electric potential while the third
is anti-confined, manifested in a negative value of Ui.

2.1.2 Ions in a Radio-frequency Field

A fully confining potential can be achieved by the use of rf drive fields instead of static
potentials. In the case of the Paul trap depicted in Figure 2.1 the time-dependent
potential is of the form [14]

Φrf (x, t) =
Ur
R2

(x2 − y2) cos (Ωrf t) (2.4)
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when the rf field is applied to two opposing electrodes while keeping the other two
grounded. The coefficient Ur is proportional to the radial potential strength and R is
the distance to the electrodes.

At each instance in time the dc potential is of the previously discussed form, and
therefore only confining in at most two spatial dimensions. However, due to the change
of sign of the cosine term, the anti-confining axis alternates periodically between the x̂
and ŷ axis.

The equation of motion (eom) of a charged particle in the Paul trap is given by the
Lorentz force F (x, t) = qE(x, t) = −q∇Φrf (x, t). In the radial direction it reads

m
d2xi
dt2

= ±2Ur
R
xi cos(Ωrf t) (2.5)

where i denotes the equation in x̂ and ŷ direction, respectively.
Since the position of the ion can be assumed to be constant over one oscillation cycle

of the rf drive, the eom can be integrated once, yielding the radial velocity of the ion

vi(t) =
dxi
dt
≈ ± qUr

mΩrfR
xi sin(Ωrf t) (2.6)

The rf potential is confining only along one axis at each instance in time and therefore
a confining static potential in the axial direction is allowed.

The same approximation as above can also be used for calculating the axial velocity
vz(t). Now, the average kinetic energy of an ion in the Paul trap

〈Ekin〉 =
1

2
m〈(v(t))2〉 ≈ 1

2
m
(
ω2
r (x

2 + y2) + ω2
az

2
)
≡ Φeff (x) (2.7)

can be calculated. Here, ωr and ωa are called the secular frequencies of the ion which
describe the oscillation of the ion in the rf field, similar to the trajectory of a harmonic
oscillator. This is called the adiabatic approximation and the effective potential described
by the mean kinetic energy is called the pseudo-potential [30].

It is important to note that the pseudo-potential is proportional to

Φeff (x) ∝ 1

Ω2
rf

|∇Φdc(x)|2 (2.8)

where Φdc(x) ≡ Φrf (x, t = 0) is the static potential generated by the trap electrodes at
the beginning of each oscillation cycle.

By tuning the potentials correctly, it is possible to achieve a pseudo-potential which
is confining in all three spatial dimensions, that is, both secular frequencies are real
and much smaller than the frequency of the rf drive, validating the approximation in
equation (2.6).

Mathieu’s Equation The equation of motion can also be solved analytically. By
applying a change of variables, it can be brought to the form of the well-studied Mathieu
equation of the form [15]

d2xi
dζ2

+
(
ai + 2qi cos(2ζ)

)
xi = 0 (2.9)

A complete treatment can be found for example in [15], which leads to an important
result: On top of the slow secular motion of the ion with a frequency ωi there is an
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Figure 2.1: Geometry of the Paul trap. The two opposing rf electrodes are connected to
an oscillating field while the remaining two electrodes are grounded. Image taken from
[13].

additional modulation at the drive frequency Ωrf and 2Ωrf , i.e.

xi(t) ≈ Ai

(
cos(ωit+ φi)

[
1 +

qi
2

cos(Ωrf t+
q2
i

32
) cos(2Ωt)

]

+ βi
qi
2

sin(ωit+ φi) sin(Ωrf t)

) (2.10)

This is called the micromotion which leads to heating, i.e. an increase of kinetic energy
of the ion. It is possible to minimize the micomotion [15], but it cannot completely
compensated [16].

2.2 Radio-frequency Ion Trap Simulation

Solving Mathieu’s equation for an arbitrary electrode geometry is complicated and the
additional information that can be gained is very limited. To estimate the important
trap parameters of a new trap geometry such as trap-depth and position of the potential
minimum as well as of the required drive voltages and frequencies, it is sufficient to
simulate the trap in the adiabatic approximation.

Since the time-averaged potential seen by the ion is solely determined by the dc
potential of the trap electrodes (cf. equation (2.8)), it is sufficient to numerically find
the static electric potential as well as the electric field generated by the trap electrodes.

Thanks to the linearity of electric potential and field, each electrode can be simu-
lated individually with a test voltage of 1 V. In a second step, an arbitrary electrode
configuration can be simulated by scaling each (pseudo-)potential accordingly. The total
potential is then simply given by the sum of all individual potentials.

The static potential in free space generated by an electrode at a voltage U is deter-
mined by the solution of the Laplace equation

∆Φdc(x) = 0 (2.11)

with Dirichlet boundary conditions Φ
(i)
dc (x′) = U for all points x′ lying on the surface of

the electrode [19].
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Many physical processes are described by partial differential equations (PDEs) like
equation (2.11) and therefore a variety of computer programs exist for solving such
problems. Most of these algorithms are either based on the finite difference (FDM),
finite element (FEM) or boundary element (BEM) method [20].

In the following, the advantages and disadvantages of FEM, a very common all-
purpose method, and BEM, a method particularly suited for solving electrostatic prob-
lems, are discussed.

2.2.1 Finite Element Method

Particularly in engineering the method of choice for simulating physical effects such as
strain or temperature on components is FEM [13]. Thus, many highly optimized com-
mercial products are available, providing many more simulation tools than are needed
to solve the electrostatic problem imposed by the trap electrodes.

The FEM algorithm divides the whole space into a tetrahedral mesh – called finite
elements. Then, the so-called shape function W (i)(x) is defined, which approximates the

potential Φ
(i)
dc (x) piecewise on each tetrahedron i. By minimizing the weighted residual

function ∫
d3xW (i)(x)

(
∆Φ

(i)
dc (x)

)
(2.12)

the coefficients of the shape function can be found on each finite element [17]. The
accuracy hence depends on the size of the finite elements as well as the functional form
of the shape function. Finding suitable settings requires experience and is crucial for
both precision and computational time [13].

2.2.2 Boundary Element Method

The finite element method is very versatile and can be used to solve any physical problem
governed by PDEs. In the special case of finding an electrostatic potential generated by
the trap electrodes there is, however, a much simpler solution: if the charge distribution
ρ(x) on the electrodes is known, the potential is given by the well-known formula [18]

Φdc(x) =
1

4πε0

∫
d3x′

ρ(x′)

|x− x′|
(2.13)

This idea is implemented in the BEM algorithm. Initially, only the surface of the elec-
trode is meshed by a triangular grid and the charge on each mesh element is calculated.
Next, equation (2.13) is written as a discrete sum over the mesh elements and the po-
tential is calculated [13].

Since the algorithm is only evaluating two-dimensional surfaces instead of the whole
three-dimensional space, BEM is potentially much faster than FEM. The downside of
BEM is that only the potential can be calculated. FEM on the other hand also allows
for studying of additional physical properties such as for example mechanical strain in
the electrode structure [13].

2.2.3 Benchmarking of FEM and BEM

As shown for example in [13] and [20], BEM is superior to FEM in both precision and
computational speed at the calculation of static electric potentials. Therefore, in our
group an implementation of the BEM algorithm using the fast multipole method (see e.g.
[21]) developed by R. Reichle and co-workers at NIST is used for trap simulation.
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At the same time, COMSOL Multiphyics R© [22], a commercial FEM solver is avail-
able.

Since commercial products are highly optimized and the benchmark in [20] dates back
to 1999, the two solvers at hand were compared with analytically solvable problems to
benchmark their precision.

Plate Capacitor The first electrode configuration that was tested was a large parallel
plate capacitor oriented along the ẑ axis. When the potential difference between the two
plates is V , the electric field and potential in between the plates are given by the well-
known formulas

E(x) =
V

d
ẑ (2.14)

Φ(x) = −V
d
z (2.15)

where d�
√
A is the separation of the two plates and A is their surface area.

The potential and electric field of a capacitor with a plate spacing of 10 mm were
evaluated with both the BEM and FEM algorithm on a three-dimensional grid with a
side length of 10 mm, centred at the origin. The results of this simulation are summarized
in Table 2.1.

The root-mean-square (RMS) error of both potential and field obtained by the FEM
algorithm are below 10−16 for all sizes of the mesh elements tested. BEM on the other
hand showed an error of ∼ 0.4% for the potential on a grid centred around the origin
of the capacitor. By decreasing the size of the mesh elements the error was slightly
decreased at the expense of a much longer simulation time.

VRMS [%] |E|RMS [%] time [min]

BEM 0.44 / 0.38 0.08 / 0.09 1.0 / 8.4

FEM < 10−16 < 10−16 1.0

Table 2.1: RMS value of the relative errors of the electric potential and field in a box
with a side-length of 10 mm centred at the origin. The size of the mesh elements was
9.5 mm (5.1 mm for the second values in the BEM simulation).

The relative error of the electric field for BEM is plotted in Figure 2.2, showing that
the electric field error (and the potential error as well) close to the boundary of the
electrodes is larger than further away. This is due to the meshing of the surface which
is not fine enough as mentioned in [13].
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Figure 2.2: Relative error of the electric field simulated in BEM. The distance between
the two plates of the capacitor aligned along the ẑ axis was 10 mm.

Charged Sphere Next, the potential and electric field of a sphere with radius R =
1 mm and charge1 q, which are given by

Φ(x) =
1

4πε0

q

r
(2.16)

E(x) = − 1

4πε0

q

r2
(2.17)

were numerically calculated. This problem is much more challenging than the plate
capacitor because a curved surface has to be meshed.

The potential and the electric field were evaluated on a three-dimensional grid around
the sphere, yielding the results presented in Table 2.2. Again, FEM performed better,
i.e. giving more precise results in less time. Furthermore, the BEM results showed an
overall offset (c.f. Figure 2.3), only slowly decreasing with a finer mesh.

The FEM results on the other hand showed discontinuities, especially in the electric
field. For this reason the RMS error did not decrease when increasing the number of
mesh elements. The problem is related to the choice of the shape function introduced
previously. For the benchmarks presented so far, a quadratic shape function was used
for calculating the potential. This is an appropriate choice in the case of the linear
potential of a capacitor but not for the potential generated by the sphere simulated
here. By increasing the polynomial degree of the shape function, the result can be
improved.

VRMS [%] |E|RMS [%] time [s]

BEM 3.6 / 1.2 3.6 / 1.3 19 / 55

FEM 0.1 / 0.1 0.3 / 0.3 38 / 44

Table 2.2: RMS value of the relative errors of the electric potential and field in a box
with a side length of 100 mm centred at the origin. The size of the mesh elements was
set to be at most 2.5 mm / 0.5 mm.

1The charge q on the sphere for a given potential V can be calculated from the condition that the
potential on the surface must be V , i.e. V = q/(4πε0R).
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Figure 2.3: Relative errors for BEM and FEM. The FEM results are closer to the analytic
solution but are not as continuous as the BEM results

Conclusions Both benchmarks showed that COMSOL is at the moment the better
choice for trap simulation. Its precision and computational speed are unmatched by the
implementation of BEM used at the moment. Furthermore, the meshing algorithm is
better optimized such that the simulation of curved surfaces yields more accurate results.
This most likely also explain the discrepancy of ∼ 1% between the results obtained by
BEM and the analytical solution for both potential and electric field.

The BEM implementation used for this benchmark was not optimized for modern
computer systems, i.e. no multi-core CPUs were supported and the memory was limited
to ∼ 2 GB. COMSOL on the other hand can even be run on cluster systems, compen-
sating algorithmic disadvantages with sheer computational power.

The results obtained with COMSOL also showed that it is very important to choose
the appropriate functional form of the shape function in FEM simulations. In practice, a
quartic function was found to be the best option for the simulation of rf ion traps where
the potential cannot be approximated precisely enough by the quadratic function used
by default.
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3 Electro-Optical Trap Simulation

Section 2.2 described how charged particles can be trapped by radio-frequency fields
utilizing their naturally strong interaction. Another technique, mainly used for trapping
neutral particles, is the dipole trap [9], forming an optical lattice. It relies on the dipole
interaction between the electro-magnetic field of light and the atomic dipole of an atom.

In the following a short introduction to dipole trapping is given. Then, a hybrid trap
geometry is presented which combines a static electric potential and a dipole trap, able
to trap ions, but potentially neutral atoms at the same time as well.

3.1 The Optical Dipole Trap

To date, most experiments with trapped ions are performed in rf traps as described
in the previous chapter. More recently, experiments have been conducted in which an
ion trapped in a Paul trap was sympatheticly cooled by a cold bath of bosonic atoms
[23]. It was shown that the micromotion induced by the rf drive limited the minimum
temperature of the ion to ∼ 0.5 mK, which is one order of magnitude larger than what
is needed to conduct quantum information experiments [16].

For these reasons, ion traps have been proposed which confine the ion in an optical
lattice, as it is already practised in cold atom experiments [9]. Such traps do not suffer
from heating due to micromotion, but have the downside of a much shallower trapping
potential, making loading more challenging.

First proof-of-principle experiments with single ions have been performed in focused
beam [6] and counter-propagating beam [7] close-to-resonance dipole traps as well as
far detuned traps [8]. In this thesis however, a potential generated by the far detuned
mode of a build-up cavity was studied which allows for a larger spot size and therefore
possibly ion confinements in three-dimensional lattices.

Additionally, dipole traps allow for simultaneous trapping of charged and neutral
particles which is of particular interest in the simulation of quantum many-body systems
and cold-chemistry experiments [6].

Theory of Optical Trapping in a Far Detuned Field In optical dipole traps,
a laser beam detuned far from any transition is used to trap a particle just by its
dipole interaction with the field. Since the laser is far detuned, optical excitation of the
particle and hence transfer of momentum is very low and the interaction can be treated
perturbatively [9]. The dipole interaction leads to an AC Stark shift of the energy
levels which is modulated by the intensity of the laser [9]. Having a Gaussian beam
profile thereby creates regions where the energy of a certain atomic state is lower, hence
providing a confining trap for the particle. This is schematically sketched in Figure 3.1
where the strength of the AC stark shift is plotted as a function of distance from the
centre of the beam.

The formal derivation is carried out in [9], yielding for a certain level i a potential of
the form

Φ
(i)
D (x) ≈

∑
j

3πc2

2ω3
ij

Γij
∆ij

I(x) (3.1)

where the sum is taken over all energy levels that have allowed transitions to level i.
Here, I(x) is the intensity of the laser beam, ∆ij is the detuning of the laser with respect
to the atomic transition between the energy levels i and j, ωij = ωj − ωi is the energy
difference between the levels and Γij the decay rate of the upper state.
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A B
Figure 3.1: (A) AC Stark shift of the ground and excited state of a two-level system.
(B) AC Stark shift as a function of position in a Gaussian beam, leading to a confining
potential for the ground state. Images taken from [9].

Using the Gaussian mode of an optical cavity, as will be discussed in the following, is
advantageous compared to using a single beam [6] or the standing wave pattern of two
counter-propagating beams [7]. The power build-up in a cavity leads to a factor-of-four
deeper potential than in a focused beam trap [9] and therefore allows for looser focusing
or further detuning from the transition.

As shown in [9] the standing wave pattern of a mode inside a cavity leads to a fully
confining optical lattice and the intensity of the beam when the cavity is aligned along
the ẑ axis is given by [10]

I(r, z) =
8P

πw2(z)
cos2(kz) exp

(
− 2r2

w2(z)

)
(3.2)

with the usual definitions2 of beam waist w0, beam width w(z), Rayleigh range z0 and
average power P .

Therefore, the dipole potential acting on particles inside the mode of an optical cavity
is given by

Φ
(i)
D (r, z) ≈

∑
j

12Pc2

w2(z)w3
ij

Γij
∆ij

cos2(kz) exp

(
− 2r2

w2(z)

)

≡ − U
(i)
0

η2(z)
cos2(kz) exp

(
− 2r2

w2(z)

) (3.3)

where η(z) = w(z)/w0 and the AC Stark shift U
(i)
0 determines the maximum potential

depth for a certain energy level i and a given optical lattice.

3.2 Geometry of the Electro-Optical Trap

To my knowledge, among all the published experiments performed with ions in an optical
lattice so far, only single ion were trapped [6], [7], [8]. Interesting physical systems
however involve lattices filled with multiple ions, for example for scaling the ion quantum
computer in two dimensions or the simulation of quantum many-body models. Such

2see e.g. B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics. 2nd edition (John Wiley & Sons,
Hoboken, 2007), p.77.
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systems have so far only been studied in rf-optical hybrid traps (e.g. [24]) which are
limited by the micromotion as outlined before.

Therefore, in this section a new trap design is presented, utilizing the confinement
of a dc electric field in two dimensions and the optical lattice in the third. Such a
trap geometry does not suffer from rf heating and additionally allows scaling in two
dimensions as well as simultaneous trapping of neutral and charged particles.

Besides the linear Paul trap presented in Section 2, there is a wide range of possible
geometries producing similar potentials. One design commonly used in single-ion spec-
troscopy is the cylindrical trap [25]. The cylinders defining the trap are easier to machine
and to align than a Paul trap [26]. Furthermore, the trap provides good optical access
to the ion due to the large aperture of the cylinders. By applying a radio-frequency
signal to the middle ring electrode (see Figure 3.2a), a quadrupole-like potential can be
generated in the centre of the trap [26]. Additionally, the endcap electrodes can be used
to add a static offset to the potential.

Endcap

Endcap

Ring

(a)

Endcap

Endcap

Optical Lattice

(b)

Figure 3.2: (a) Sketch of a cylindrical ion trap following [26]. The radio-frequency
voltage is applied to the ring electrode and the endcaps can be used to apply a constant
potential offset. (b) The hybrid electro-optical trap. The ring electrode is replaced with
an optical lattice generated by a Gaussian cavity mode.

The optical trap is aligned along the cylinder axis as depicted in Figure 3.2b. This is
the only geometry in which both electric and optical potential can be used for trapping
ions. Due to the symmetry of the cylinder trap, the radial potential direction is always
completely confining or anti-confining. Therefore, if the dipole trap is oriented in radial
direction, one of the anti-confining axes of the electric potential will coincide with one
of the weakly confining axes of the dipole potential, leading to a very unstable trap.

To gain perpendicular access to the trap centre with control and cooling beams, the
ring electrode has to be either removed or replaced by a segmented ring. The latter
would be advantageous in the sense that ions could be trapped in a radio-frequency
trap with a deeper potential and then adiabatically transferred to the hybrid trap as
shown for example in [6]. The downside of this geometry is that the electrode loses its
cylindrical symmetry and hence the quadrupole-like potential. For correction, additional
electrodes have to be used for compensation [26], making the trap more complex and
less accessible with further diagonal lasers, e.g. for Doppler cooling.
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3.3 Electro-Optical Trap Simulation

This section describes the techniques used to simulate the dynamics of charged parti-
cles in an electro-optical trap. The simulation solves the classical equation of motion of
charged particles in the presence of an electrical as well as an optical potential. Fur-
thermore, the Coulomb interaction between the particles and the damping due to a
Doppler-cooling laser beam are considered. Since the cooling term introduces a damp-
ing, certain sets of parameters will lead to an equilibrium state of the system. For
solving the equation of motion, a modified version of the Verlet algorithm, typically
used in molecular dynamics simulations, is used.

3.3.1 Numerical Solving of Equations of Motion: The Verlet Algorithm

The simulation of the dynamics of interacting N -body systems is a problem often en-
countered in numerical physics. A classical physical system can be described by a set
of differential equations (equations of motion) which are derived from the net force Fi
acting on each particle i

mi
d2xi
dt2

= Fi (3.4)

where xi is the position coordinate of particle i and mi is its mass.
Many different algorithms for solving differential equations exist, for example the

important class of Runge-Kutta methods. However, most of these integrators are not
well suited for solving physical systems since quantities like total energy and momentum
are not long-time conserved.

This is illustrated in Figure 3.3 where the Runge-Kutta method is used to solve
the Kepler problem. For large numbers of time steps the trajectory diverges from the
analytical solution. On the other hand, the solution obtained by the so-called Verlet
method3 is oscillating about the correct trajectory and is not diverging. It turns out
that the Verlet algorithm is symmetric with respect to changing the direction of time
and therefore conserves the total energy in periodic problems [27].

A further advantage of the Verlet method is that it is explicit, i.e. the solution at time
tn+1 can be explicitly calculated from the solutions at previous time steps. In contrast,
in each step of an implicit method (for example a Runge-Kutta solver) the solution of a
nonlinear equation must be found.

For these reasons, the Verlet algorithm is the preferred method for simulating physical
systems of any size, ranging from finding the trajectories of planets to the dynamics of
single atoms [29].

However, the standard Verlet method requires a conservative force, which implies
that the force depends solely on the position of the particles, i.e. Fi = Fi(x1, . . . , xN ).
In order to solve an equation of motion of the form

mi
d2x

dt2
= Fi(x1, . . . , xN )− γvi (3.5)

with a velocity-dependent friction term γvi, the Verlet method can be extended to the

3This method is also known in slightly different forms as Störmer, Störmer-Verlet, Encke or leapfrog
method [29].
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Figure 3.3: Comparison of the Verlet and the Runge-Kutta method for the Kepler
problem. The dashed line is the exact solution. Image taken from [29].

following algorithm [28]

x
(n+1)
i − x(n)

i = bi∆t

(
v

(n)
i +

∆t

2m
F

(n)
i

)
(3.6)

v
(n+1)
i − v(n)

i =
∆t

2m

(
F

(n)
i + F

(n+1)
i

)
− γ

m

(
x

(n+1)
i − x(n)

i

)
(3.7)

where F
(n)
i = F

(n)
i (x1, . . . , xN ) is the position-dependent force term at time step n. The

constant bi is given by

bi =
1

1 + γ∆t/(2mi)
(3.8)

for a given time step ∆t, damping coefficient γ and mass mi.
This algorithm was used throughout this thesis for simulating the equation of motion

of ions trapped in an electro-optical hybrid trap as discussed in the next section.

Time Step Size Due to the very small mass of the ions on the order of ∼ 10−26 kg,
great care must be taken when choosing the size of the time steps ∆t.

If the time steps are too fine, finding the equilibrium configuration of the system
becomes impractical since the computational time scales as ∆−1

t .
On the other hand, choosing too-large time steps violates the underlying assumptions

of the algorithm. The terms mostly affected are those scaling as ∆t/m which occur in

the calculation of ∆v
(n+1)
i = v

(n+1)
i − v(n)

i . Hence, a time step which is too coarse will

violate the assumption ∆v
(n+1)
i � v

(n+1)
i , implicitly required when approximating the

integral
tn+1∫
tn

dt vi(t) ≈
∆t

2

(
v

(n)
i + v

(n+1)
i

)
(3.9)
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using the trapezoidal rule (see equation (15) in [28]).
From (3.7), a simple criterion for finding an appropriate step size can be derived by

requiring that both terms are small, i.e.

∆t

2mi

(
F

(n)
i + F

(n+1)
i

)
≤ ∆t

mi
max |Fi(t)| � v

(n+1)
i (3.10)

γ

mi

(
x

(n+1)
i − x(n)

i

)
≤ γbi

(
∆t

mi
max |vi(t)|+

∆2
t

2m2
i

max |Fi(t)|
)
� v

(n+1)
i (3.11)

Since

γbi
∆t

mi
=

mi

mi(1 + γ∆tmi)
= 1 +O(γ∆tmi) (3.12)

the condition for the maximal allowed step size can be reduced to

∆t �
mi

max |Fi|
(3.13)

which results in ∆t ≈ 1 ns for max |Fi(t)| ∼ 10−18 N.

3.3.2 The Equation of Motion

The net force acting on particle i in an ensemble of N charged particles is given by
the sum of Lorenz and Coulomb forces as well as the force due to the dipole trapping
potential and the Doppler cooling beams. Formally

Ftot
i = FL(xi) +

∑
i 6=j

FC(xi,xj) + FD(xi) + FDC(vi)

≡ Fi(x1, . . . ,xN ) + FDC(vi)

(3.14)

where xi is the position of particle i and vi is its velocity. All except the force simu-
lating the Doppler cooling are solely position dependent and thus collected in the term
Fi(x1, . . . ,xN ) in resemblance to equation (3.5).

Lorentz Force A particle with charge q experiences a Lorentz force

FL(x,v) = qE = −q∇Φ(x) (3.15)

in an electrical field E.
The methods described in Section 2 can be used to numerically calculate the potential

generated by arbitrary electrode configurations. However, the simulation yields only
values for the potential on a discretized grid in space. Hence, an approximation for
points in between must be found.

In the case of the hybrid-trap, the dc potential in the xy plane can be well described
by the quadratic, radially symmetric function

Φ(x, y) ≈ Pr(x2 + y2) + Pa (3.16)

as shown in Figure 3.4c.
For each axial position zi on the discrete grid, the potential can be fitted by Φ(x, y)

and the coefficients Pr(zi) and Pa(zi) can be found. This is shown in Figures 3.4a and
3.4b implying the following z dependence of the parameters Pr and Pa

Pr(z) = r1e
−
(

z−r2
r3

)2

(3.17)

Pa(z) = a1z
2 + a2 (3.18)
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This choice leads to a total potential

Φ(x, y, z) = r1e
−
(

z−r2
r3

)2

(x2 + y2) + a1z
2 + a2 (3.19)

In cases where the potential is too complicated to fit, a feasible approach would be to
simulate the potential on a very fine grid and then use the nearest grid point as an
approximation. This method was implemented as well but turned out to slow down the
simulation considerably and hence not used.
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(red dashed line).
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Figure 3.4

Optical Dipole Force The potential generated by an optical lattice is given by equa-
tion (3.3). In order to get a fully trapping potential with maximal depth, the laser was
aligned along the anti-confining axis of the electrical potential, i.e. along the cylinder
axis.

15



The dipole force acting on state i generated by this optical lattice is then given by

F
(i)
D (x) = ∇ΦD(x)

=
2U

(i)
0 cos(kz)

w2(z)
exp

(
− 2r2

w2(z)

) 2x cos(kz)
2y cos(kz)

−2z cos(kz)
z20η(z)

+
w2

0z cos(kz)

z20η(z)
+ kw0w(z) sin(kz)


(3.20)

Coulomb Force The Coulomb force acting on charge i in an ensemble of N particles
at positions rj and with charges qj is given by

F
(i)
C =

N∑
i 6=j

1

4πε0

qiqj
|rj − ri|2

r̂ji =
N∑
i 6=j

1

4πε0

qiqj
|rj − ri|3

(rj − ri) . (3.21)

In each time step, the distance between all particles must be calculated which makes the
Coulomb force the most time-consuming calculation.

Doppler Cooling A widely used method for cooling ions to a temperature in the mil-
likelvin range is Doppler cooling [30]. It relies on the Doppler shift of the frequency of
photons seen by an ion with velocity v. In the reference frame of the ion, the frequency
of a counter-propagating photon is increased, ideally shifted to the transition frequency
of the ion to a fast decaying (dipole-allowed) energy level. The photon emitted subse-
quently due to spontaneous emission will have little correlation4 with the direction of the
absorbed photon and since energy and momentum must be conserved, the ion effectively
loses energy when scattering many photons.

The force due to the cooling laser acting on the ion is given by the photon momentum
~k (|k| = 2π/λ is the wavenumber of the photon) times the absorption rate R [31].
From the steady-state condition of the optical Bloch equations for a two-level system
the scattering rate

R = Γ
Ω2/4

δ2 + Ω2/2 + Γ2/4
(3.22)

can be derived [32]. Here, Γ is the decay rate of the upper level state, Ω is the Rabi
frequency of the cooling laser and δ the detuning from the transition. Due to the Doppler
effect the detuning δ = δ0 ± kv is shifted according to the relative motion of the ion
with respect to the cooling beam (positive sign for a counter-propagating beam).

Expanding the force in the velocity v yields [32]

FDC = ~kΓ
Ω2/4

(δ0 − kv)2 + Ω2/2 + Γ2/4

= ~kΓ
Ω2/4

δ2
0 + Ω2/2 + Γ2/4

+
~k
2

2s

(1 + s)2︸ ︷︷ ︸
A

δ0Γ

δ2
0 + Γ2/4︸ ︷︷ ︸

B

kv +O
(
v3
)

≈ FDC,0 −
γ

2
v

(3.23)

4Since a dipole transition is used for cooling, the probability of emission along the dipole axis is lower
than in the perpendicular direction. For the analysis performed here, the correction factor can, however,
be neglected and the emission can assumed to be isotropic.
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where

s =
Ω2/2

δ2
0 + Γ2/4

(3.24)

The result from (3.23) is exactly of the form of a damping force with a damping rate γ/2
with an additional constant force in the direction of the cooling beam. This constant
term can be cancelled out by retro-reflecting the cooling laser. The velocity dependent
terms thereby do not cancel because the reflected beam is Doppler-shifted in the opposite
direction.

The maximum damping can be found by simultaneously maximizing parts A and
B in (3.23). From B the optimum detuning δ0 = −Γ/2 can be found. Plugging this
result back into A yields the optimal Rabi frequency Ω = Γ. Hence, for two counter-
propagating beams

Fmax
DC ≈ −

~
4
k2v = − πh

2λ2
v (3.25)

3.3.3 Magnesium in an Optical Lattice

As shown in [10], both 40Ca and 9Be which are currently used in our lab are not well
suited for optical trapping because some levels used in the common qubit schemes are not
confined in an optical lattice generated by a laser with a wavelength of λ = 532 nm. Out
of the alkali earth elements often used in trapped ion quantum information experiments,
25Mg is the best suited candidate for optical trapping because all relevant energy levels
are confined [10].

Due to the residual magnetic moment of the nuclear spin of 25Mg (as opposed to
the more common 24Mg) the energy eigenstates of the electronic system are split up in
hyperfine levels, according to the total angular momentum operator F̂ = Î + Ĵ of the
composite system of nuclear and electronic spin.

The qubit levels are chosen in the F = 3 (pseudo-spin state | ↓〉) and F = 2 (| ↑〉)
manifold of the 3S1/2 ground state [33]. The splitting of the qubit levels is on the order
of gigahertz and therefore the levels are either coupled by Raman-transitions [10] or
microwave fields [33].

Depending on the strength of the magnetic field that is required to lift the degeneracy
of the states, different first-order field-independent qubits can be identified [33].

For the simulations of magnesium ions in the electro-optical trap, presented in the
next section, the qubit was defined as | ↓〉 = |F = 3,mf = −2〉 and | ↑〉 = |F = 2,mf =
−2〉 as schematically depicted in Figure 3.5. This choice leads to an AC stark shift of
the ground state of U0 = −3.33615× 10−25 J ≈ −kB × 24 mK [10] with the experimental
parameters presented in Table 3.1a.

λ Pavg w0

532 nm 1 kW 30µm

(a) Parameters of the trapping laser used for
the Simulation of 25Mg in an optical lattice.

ωz ≈ 2π × 7.69 MHz

ωr ≈ 2π × 30.7 kHz

(b) Axial and radial trapping frequencies of
the qubit ground state |F = 3,mf = −2〉

Table 3.1: Simulation parameters.

The same parameters for the trapping laser were chosen as M. Marinelli designed the
build-up cavity for, which will be presented in the next chapter. The reason for choosing a
frequency doubled Nd:YAG laser with a wavelength of 1064 nm for generating the optical
lattice is that such lasers are widely used in industry, hence very stable and powerful
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commercial products exist. Additionally, the second-harmonic generation efficiency of a
Nd:YAG laser is comparably large and efficiencies of > 30% can be achieved by single-
passing a quasi-phasematched nonlinear crystal [11].

It would be also possible to use the fundamental harmonic of the Nd:YAG, but then
higher intra-cavity powers are required due to the larger detuning ∆ij . Therefore the
chosen wavelength is a compromise between low laser power needed to create a deep-
enough trapping potential, and effort required to generate the light.

Figure 3.5: The qubit levels were chosen in the hyperfine manifold of the 3S1/2 ground
state of 25Mg. Image from [10].

3.3.4 Simulation Results

A drawing of the cylinder trap which was used for the simulation is shown in Figure 3.6.
The aspect ratios of the cylinders

r1 = 1.8r0 (3.26)

2z0 = 1.12r0 (3.27)

were chosen in accordance with the optimal values reported in [25]. Here r0 and r1

denote the inner and outer radius of a cylinder, respectively and 2z0 is its height as
depicted in Figure 3.6.

The exact dimensions of the trap must, however, be chosen with great care. On the
one hand, the larger the electrode spacing d, the smaller the axial potential becomes.
This is favourable because the repelling ions otherwise cannot be stopped by the optical
lattice and are accelerated by the static electric field out of the trap. One the other
hand, the radial potential must be made as large as possible, i.e. r0 must be decreased.
This is because the optical potential in radial direction is on the order of ∼ 10−22 N
whereas the force exert on the ions due to Coulomb interaction is initially on the order
of ∼ 10−18 − 10−20 N. Hence, if the axial potential is too weak, the ions cannot be kept
as well.

These consideration led to a inner cylinder radius of r0 = 3.5 mm and a separation of
d = 10 mm. The static electric potential produced by the cylinders was then simulated
using the method described in Chapter 2 and used throughout all simulations presented
in the following.

For the simulation a certain number of ions were “loaded” to the centre of the trap in
a Coulomb-crystal like structure [30] and their evolution was studied for different initial
spacings and electrode potential. One example of such a starting configuration is shown
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Figure 3.6: Drawing of the cylinder trap.

in Figure 3.7a. The distance r between individual ions was set to be between 5− 10µm
by adding a random uncertainty factor to each initial position.

For the first simulations a static electric field was applied to the electrodes and the
evolution in the hybrid trap was studied. Figure 3.7b shows a typical trajectory of an
ion, showing that it was not trapped.

By careful analysis of the individual components of the force acting on each ion, two
regimes were found

• The initial spacing of the ions was too small which resulted in an strong repulsion
away from the trap centre. The optical potential slowed the ions down, but was not
strong enough to stop them. At some point, the anti-confining electrical started to
dominate over the optical potential, resulting in an unstoppable acceleration along
the anti-confining axis.

• The initial spacing was too large. This resulted in a situation in which each
ion found the nearest potential minimum of the optical lattice and no Coulomb
interaction took place. Therefore, the final state of the trap was determined solely
by the initial condition.

These observations led to the conclusion that the initial spacing of the ions must be
made larger than ∼ 10µm otherwise not a single ion can be kept in the trap. However,
this regime is not very interesting to study, because only little interaction between the
ions takes place and the result is very similar to the initial conditions.

In a second step the model was extended to a more realistic simulation. Instead of
having a static electric potential which is anti-confining in one direction, the simulation
started with a fully confining rf-potential. The strength of that potential was then slowly
decreased while, at the same time, the dc potential was gradually turned on.

In this simulation, the ions were able to interact in the beginning without being
kicked out of the trap and slowly arranging themselves in the potential. Then, when the
confining axial potential was decreased, the ions adapted to the new potential landscape
without being unstoppably accelerated.
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(b) Tranjectory in ẑ direction of an escaping
ion. Initially, the Coulomb force pushes the ion
out of the trap centre where the anti-confining
potential then dominates over the optical lat-
tice.

Figure 3.7

Indeed, when for example having a transition time of ∆τ = 200µs, it was possible to
store 8 ions in the trap as shown in Figure 3.8. The ions arranged radially in a ordered
structure while the axial spacing was more disordered and also more stretched out.
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(a) Radial ion distribution
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(b) Axial ion distribution

Figure 3.8: Final ion position for a simulation with 8 ions using a transition time of
∆τ = 200µs and a static potential of V = −2.5 V.

The maximum number of ions that could be trapped was limited by the axial extend
of the outermost ions and the strength of the axial potential. The larger the distance of
the ions to the trap centre, the larger the potential force and hence, at some point the
optical lattice was no longer able to compensate for the axial anti-confinement.

Figure 3.9a shows the mean ion-ion distance for different transition times ∆τ as a
function of initial number of ions in the trap. For a fast ramping time the probability of
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loosing ions as well as the spacing between the ions was larger. For longer ramp times
the average separation became independent of ∆τ and the probability of loosing an ion
is also decreased.

Finally, Figure 3.9b shows the mean ion-ion distance for an initial configuration of
5 ions and an electrode voltage between −0.5 V and −2.5 V. As expected, the spacing
can be decreased by increasing the static electric potential.
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Figure 3.9

21



4 Optical Setup

In the following chapter the optical setup is described5. The setup is depicted in Figure
4.1 and can be split into two parts: the frequency doubling stage (upper part of Figure
4.1) following closely the scheme in [11], and the high-finesse cavity with its incoupling
optics (lower part).

First, an introduction to second harmonic generation and quasi phase matching in
periodically polled crystals is given. This section is followed by a description of the
experimental setup used for frequency doubling of a diode pumped Nd:YAG laser. The
results are then compared with the values reported in [11], where a similar setup was
used.

The third section covers the high finesse (hf) cavity designed for optical trapping
as described in Section 3.1. First, a method for stabilizing a laser to an optical cavity
is discussed, which was used in the experimental setup described in the following part.
The chapter is concluded with the experimental results found when trying to lock the
frequency-doubled laser to the build up cavity.

Nd:YAG
1064nm

Isolator

λ/ 2

PBS

Dump

Dicroic
Mirror

PPLN
crystal

Dump

λ/ 4 λ/ 2

Fibre

λ/ 2

EOM

λ/ 2λ/ 4

PD
PD

LowpassPI

Figure 4.1: Optical Setup. The red line indicates the beam path of the fundamental
harmonic at λp = 1064 nm and the green line the path of the second harmonic at
λs = 532 nm.

4.1 Second Harmonic Generation

This section gives an introduction to the theory of (type-I) second harmonic generation,
showing its limitations due to phase mismatch of the fundamental and the second har-
monic wave. In the second part, a technique called quasi phase-matching is discussed,
strongly relaxing the conditions imposed by phase-matching. In the last part, the exper-
imental setup used in this thesis for quasi-phase-matched second harmonic generation
of green light with a wavelength of 532 nm is presented and the results obtained are
compared with those found in literature with the similar setup.

5A complete list of all lenses used in the setup can be found in Appendix A.1.
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4.1.1 Theory of Second Harmonic Generation

The wave equation in a dielectric medium with polarization P(E) = ε0χE + PNL(E) is
[34]

∇2E − 1

c2

∂2E

∂t2
= −S (4.1)

where c = c0/n is the speed of light in the medium, n =
√

1 + χ is the refractive index
and the source term S is defined as

S = −µ0
∂2PNL(E)

∂t2
(4.2)

The nonlinear term PNL can be found by Taylor expansion of the polarization P. For
SHG, only the first-order term

PNL = 2dE2 (4.3)

is of interest. Here d is called the nonlinear second order coefficient of the dielectric
medium.

When the incident electric field is a plane wave, the field at a certain point z0 in the
crystal is E(t) = E0 cos(kz0 − ωt). Without loss of generality z0 can be set to zero and
the nonlinear polarization is given by

PNL(E) = 2dE2
0 cos2(ωt)

= dE2
0 + dE2

0 cos(2ωt)
(4.4)

where the well-known trigonometric identity cos2(x) = 1
2 (1 + cos(2x)) was used. Sub-

stituting this result back into equation 4.2 leads to a source term oscillating at 2ω,
generating a second field at twice the frequency of the incoming wave. This process is
called second harmonic generation (SHG).

Since energy must be conserved, two photons with frequency ω are needed to create
one photon at 2ω. Additionally, momentum must be conserved, yielding the so-called
phase matching condition

kp,1 + kp,2 = ks (4.5)

where k is the wavenumber in the medium with |k| = ωn. Here p denotes an incoming
pump photon and s the signal photon.

In the case of type-I SHG, i.e. only one pump beam with a certain polarization, the
phase matching condition simplifies to

2ωpnp = ωsns = 2ωpns ⇒ np = ns (4.6)

Due to the wavelength dependence of the refractive index, birefringent materials have to
be used under well-defined angles to achieve phase matching. However, the conversion
efficiency is determined by d which is not the same along different crystal axes, hence
only very few frequencies can be efficiently frequency-doubled along the axes with a
large second harmonic coefficient. Moreover, further problems arise such as inconvenient
phase-matching temperature or Poynting-vector walk-off by the birefringence, limiting
conventional SHG [35].
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4.1.2 Quasi Phase Matching in Periodically Poled Lithium Tantalate

The limitations due to phase-matching can be overcome by spatial modulation of the
second harmonic coefficient d ≡ d(z). This technique is known as quasi phase matching
(QPM) allowing for efficient SHG over the whole transparency region of a nonlinear
crystal [35].

At low pump power and conversion efficiency, the second harmonic in the case of
type-I SHG is given by [36]

Es(L) ∝
L∫

0

dz d(z)e−i∆k
′z (4.7)

where L is the length of the crystal and the phase mismatch is defined as

∆k′ = ks − 2kp =
π

λp/4(ns − np)
(4.8)

Substituting this result back in equation 4.7 reveals that the phase mismatch ∆k′ leads
to a change in sign after a distance lc = λ

4(ns−np) , called coherence length [36]. Hence,

for a constant nonlinear coefficient d the amplitude of the signal field is zero after a
propagation distance equal to an integer multiple of 2lc.

By inverting the sign of d every coherence length, the phase can be artificially
matched and SHG is possible. A periodic inversion of d can be easily obtained growing
a stack of thin wavers of the crystal, each rotated by 180◦ [36] because second-order
nonlinear crystals cannot have an inversion symmetry [34].

The effect of QPM is illustrated in Figure 4.2. The sign of the second-order nonlinear
coefficient d is periodically altered every coherence length lc, leading a growth of SH
intensity.

Figure 4.2: Second harmonic intensity for phase-matching (A), quasi-phase-matching
(B1) and phase mismatch (C). To achieve QPM the sign of the second-order nonlinear
coefficient is altered every coherence length lc. Image taken from [36].

The integral in equation 4.7 can be evaluated in the case of a periodic change of d,
yielding [36]

|Es|2 ≈
(
ωp|Ep|2

nsc

)2(
2|d|L
π

)2

sinc2

(
∆kL

2

)
(4.9)
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where ∆k = ∆k′ − 2π/Λ and Λ = 2lc.
For a Gaussian beam profile, |E0|2 = I0 = 2P/(πw2

0), where P is the average power
of the beam and w0 the waist size. Therefore,

Ps ≈
ω2
p|d|2L2

π3w2
0n

2
sc

2
P 2
p sinc2

(
∆kL

2

)
(4.10)

i.e. the SH power is proportional to the pump power squared, but attenuated by a
factor (2/π)2 compared to conventional phase-matching [35]. However, since QPM can
be achieved along any crystal axis, the direction with the largest nonlinear coefficient
can be chosen to be altered, yielding an effective increase of SH efficiency for most
wavelengths compared to conventional SHG. Furthermore, by tuning the temperature
of the crystal and hence its length, any wavelength that is transmitted can be brought
to QPM, without changing the angle of incidence of the pump beam.

The above formula is only valid for low powers. For high pump power, the SHG
efficiency ηSHG = Ps/Pp can be calculated using coupled-wave theory [34]

ηSHG = tanh2

2L

√
d2
effη

3ω2
pPp

πw2
0

 (4.11)

where η = η0/np is the impedance of the medium. For QPM, the second-order nonlinear
coefficient has to be scaled according to [36] by deff = 2|d|/π.

Periodically Poled Lithium Tantalate One crystal often used for QPM is period-
ically poled LiTaO3 (PPLT) due to its very large second-order nonlinear coefficient6 of
d33 ≈ 30 pm V−1 [37]. In the following, a model for the temperature dependence of QPM
in PPLT, which was used in this thesis, is derived.

The temperature dependence of the crystal length is described by the heuristic for-
mula

L(T ) ≈ L(T0)
(
1 + α(T − T0) + β(T − T0)2

)
(4.12)

with T0 = 298 K, α = 16.2× 10−6 K−1 and β = 5.9× 10−9 K−2 for PPLT [37].
The temperature of the crystal is tuned by an oven, but the absorption of light must

also be considered. The temperature change due to absorption of the fundamental and
second harmonic is [38]

∆T ≈ (αp · Pp + αs · Ps)·
2πw0κ

(4.13)

where the numerical values for both absorption coefficients αs = 2 × 10−5 m−1 and
αp = 5× 10−5 m−1 and the linear thermal expansion coefficient κ = 5 W m−1 K−1 were
taken from [37].

For the maximum intensity of the pump laser that was used in the experiment, the
Kerr effect, i.e. the change of refractive index due to a high electric field strength, is
negligible. Also the refractive index does not change significantly over the observed
temperature range required for achieving QPM.

Figure 4.3 shows the theoretical phase-matching temperature as well as the relative
SHG conversion efficiency. The measured temperatures diverge from the calculated
values, most likely because the absorption of the stacked crystal is higher than in bulk

6The second order nonlinear coefficient of PPLT is very similar to PPLN (periodically poled LiNaO3),
another widely used crystal for QMP [37]. Therefore it is possible to compare the results found in this
thesis using a PPLT crystal with what was reported in [11] for PPLN
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LiTaO3. Furthermore, the efficiency at a pump power of Pp ≈ 34.7 W is lower than
theoretically expected, indicating that the approximation of low power and conversion
efficiency is no longer valid.

Indeed, Figure 4.8 indicates, that the approximation of low power only holds up to
a pump power of ∼ 20 W, up to which the SH power increases quadratically with Pp.
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Figure 4.3: Theoretical phase-matching temperature dependence of the SHG efficiency
(solid lines) normalized to the efficiency at 20 W and the experimentally measured val-
ues. The dots mark the measured values corresponding to the theoretically calculated
efficiencies. Note that the temperature for the measured values is the temperature of the
oven containing the PPLT crystal and not the actual temperature inside the crystal. For
the theoretical curve the number of domains in the PPLT crystal was chosen such that
the phase-matching temperature at 6.7 W corresponded to the measured temperature.

4.1.3 Experimental Setup and Results

The laser used to generate the fundamental harmonic is a diode-pumped Nd:YAG laser
with four cascaded amplifying stages (Coherent Inc. Mephisto MOPA [39]) producing
56 W of output power at 1064 nm with a specified linewidth fluctuation of 1 kHz s−1.

As shown in Figure 4.4, the amplifier operates properly only at the maximum pump
current of Imax = 49.50 A as specified in the data sheet. Hence, the output power was
always set to its maximum value Pmax = 56.35 W. For controlling the amount of power
in the setup and thus the power of the second harmonic light, a half-wave plate and a
subsequent Glan-Laser7 polarizer were used. The wave plate was calibrated once and
allowed for reproducible control of the power between ∼ 10 mW and 43.1± 0.3 W. This
calibration is shown in Figure 4.5.

7A Glan-Taylor polarizer suitable for high-power applications.
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(a) (b) (c)

Figure 4.4: Beam profile of the fundamental harmonic at various pump currents corre-
sponding to 11, 30 and 56 W. The beam profile is Gaussian and as specified in the data
sheet only at the maximum pump current of Imax = 49.50 A (corresponding to 56 W
output power).
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Figure 4.5: Amount of power transmitted by the Glan-Laser polarizer as a function of
rotation angle θ of the half-wave plate. The measured data corresponds well with the
calculated formula I(θ) ∝ 4 sin2 θ cos2 θ (fitted curve, see A.2 for derivation).

The beam was then focused into a 20 mm long PPLT crystal (HC Photonics PP-
MgO:SLT8 [40]) which allowed for quasi-phasematched second harmonic generation. The
focusing parameter ξ = l/b was fine-tuned by changing the distance between the lenses
of telescope T1. Here l denotes the length of the crystal and b = 2z0 is the confocal
parameter of the focused Gaussian beam. For temperature control and stabilization,
the crystal was mounted in an oven and connected to a closed-loop PID temperature
controller.

Figure 4.6 summarizes the SHG efficiencies for various focusing parameters ξ at low
powers. The best efficiency was achieved with a focusing of ξ = 1.3. This result diverges
from the optimal focusing of ξopt = 1.84 derived for phase-matched SHG [41]. However,
the spot size of w0 = 35.0± 2µm inside the crystal is very close to what the data sheet
suggests and what was also reported for a 30 mm crystal in [11].

8The abbreviation stands for periodically poled magnesium oxide doped stoichiometric lithium tanta-
late.
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The discrepancy can be explained by the complex structure of the crystal and similar
discrepancies were found elsewhere (see e.g. for PPLN [42]).
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Figure 4.6: SHG efficiency for different focusing parameters ξ = l/b. The high efficiencies
at low power are explained by the experimental setup. At low pump power the intensity
is not high enough for SHG and therefore more light of the fundamental harmonic is
transmitted. By using two dichroic mirrors in series (for the measurement of the ξ = 1.3
curve) this effect was suppressed. The transmittance of the second beam splitter was
95% and for comparison the result was scaled accordingly.

Figure 4.7 shows a measurement of the SH efficiency for high pump powers. The
maximum efficiency achieved was 25.5 ± 0.5% at a pump power of P1064 = 34.6 ±
0.2 W (ηnorm = 0.45± 0.05% W−1 cm−1). The normalized efficiency at a pump power of
P1064 = 29.3± 0.1 W was ηnorm = 0.41± 0.05 % W−1 cm−1 which is slightly larger than
η = 0.37 % W−1 cm−1, reported in [11].

For high pump powers the efficiency is below the theoretically expected value which
was fitted to the data. This indicates that higher-order nonlinear effects such as non-
uniform heating and thus local deformation of the crystal become noticeable.

From the least-squares fit the nonlinear second order coefficient was extracted. Its
value of d = 3.10 ± 0.04 pm V−1 is much smaller than the value of d33 = 13.8 pm V−1

at λ = 1064 nm for bulk LiTaO3 found in literature [37]. The discrepancy can most
likely be explained by the periodical polling of the crystal. Perfect phase matching is
only obtained when the domains have all exactly the same length. Small changes due to
for example imperfect crystal growth or temperature gradients therefore prevent perfect
phase matching from occurring, limiting the conversion efficiency.
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Figure 4.7: Measurement of SH efficiency for high pump power with a focusing of ξ = 1.3.
Beyond Pp > 35 W the second harmonic did not stabilize and it was not possible to take
data. The theoretical curve for the efficiency is fitted to the values (the two last data
points were discharged for the fit), indicating a drop-off for powers beyond ∼ 30 W.

It was not possible to increase the pump power beyond ∼ 35 W because it was not
possible to control the temperature of the PPLT crystal well enough to stabilize the
SH power. Equation 4.10 implies that the change of power with respect to temperature
fluctuations increases as dPs

dT ∝ P
2
s . Since the oven controller was stabilizing the temper-

ature to Tset ± 0.1◦C, for high enough pump powers the oscillation of the temperature
about the set-point led to a notable change in SH power.

For 20 W of pump power, the change of SH power was calculated to be dPs
dT ×∆T ≈

0.06 W for a temperature drift of ∆T = 0.1◦C using equation 4.10. The order of magni-
tude of this estimate is in good agreement with what was observed experimentally.

These calculations did not include the change in crystal heating due to changing
second harmonic power, leading to complex nonlinear dynamics at higher powers. The
measurement of SH power was stopped when the fluctuations were as large as ∼ 0.5 W,
thus limiting the maximum SH power to 8.4± 0.3 W.
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Figure 4.8: The SH power increased quadratically up to a fundamental power of ∼ 20 W
in good agreement with the results reported in [11].
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After splitting the fundamental from the second harmonic using a dichroic beam
splitter, the frequency-doubled light was coupled into a photonic crystal fibre (PCF).
The PCF was used for cleaning the beam profile, i.e. removing the ellipticity and making
sure that only a TEM0,0 spatial mode was present. Furthermore, any residual light of
the fundamental beam was rejected by the fibre. The ellipticity of the fibre mode was
measured to be 1.00 and is shown in the inset of Figure 4.9.

Due to the high power of the laser, a polarization maintaining large core PCF (NKT
Photonics LMA-PM-15) was used which was able to handle the power and suffered much
less from Brillouin scattering than standard single-mode fibres do [43].

It is important to note, that the polarization of the incoming beam must match the
polarization mode of the fibre. When the polarization is not well aligned or the fibre
is not even polarization maintaining, the two (linear) polarization modes of the fibre
can randomly interfere due to impurities or strain in the glass [34] which then lead to
unwanted (random) fluctuations of the output power.
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Figure 4.9: Fluctuation of the SH power at ∼ 500 mW over 2.7 h normalized to the mean
value. Due to a change in temperature in the lab, the power drifted slowly, but stabilized
again after ∼ 1.5 h. The power fluctuated by ∼ 1.2% when neglecting the overall drift.
The inset shows the beam profile cleaned by the PCF. The ellipticity of the beam was
measured to be 0.88 before and 1.00 after the fibre. The SH beam is elliptical because
the output beam of the Nd:YAG has also an ellipticity of 0.89.
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4.2 High Finesse Cavity

As shown in Section 3.1 the Gaussian mode of a cavity can be used for creating a fully
confining dipole potential in three dimensions. In order to test whether the frequency
doubled laser presented above can be used for trapping, a high finesse (hf) cavity, de-
signed by M. Marinelli in his master thesis [10], was characterized.

For stabilizing the laser frequency to the resonance of the cavity a Pound-Drever-
Hall (PDH) locking scheme [44] was implemented, briefly discussed in the following.
Afterwards, the experimental results are presented.

4.2.1 Cavity Frequency Stabilization (Pound-Drever-Hall Locking)

The frequency stability of lasers is a major concern in various fields. In the case of
optical trapping for example, a drifting laser frequency changes the wavevector k as well
as the detuning ∆ij , leading to a fluctuation of the potential minima and trap depth.
Even more important, the linewidth of the cavity is only ∆ν = 308 kHz [10] and for
larger fluctuations no light will be coupled in.

One commonly used technique is the PDH scheme which allows for very precise
measurement of the frequency of a cavity using heterodyne detection [44]. Here only the
main ideas of PDH locking are discussed; a rigorous treatment can be found for example
in [45].

The reflection from a cavity is the coherent sum of the light directly reflected and
the leakage beam [45]. The resonance condition implies that the light inside the cavity
must accumulate a phase shift of φ = 2πn over each round-trip where n is an integer
number [34]. On the other hand, the light directly reflected from the cavity mirror only
accumulated a phase shift of π. Therefore, on resonance, the reflected beam and the
light leaking out of the cavity destructively interfere. By modulating the phase of the
incoming light with an electro-optic modulator (EOM), the interference signal can be
detected in a lock-in type measurement.

When the laser frequency is detuned from the resonance of the cavity, the intensity
of the interference pattern changes as depicted in Figure 4.10. This signal can be used
to discriminate by how much cavity and laser are detuned and a proportional-integral
(PI) control-loop can be used to correct the detuning.
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Figure 4.10: PDH signal for a modulation frequency Ω = 125 MHz and a finesse of
F = 104.
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For locking the laser to the cavity two possibilities exist. Either the frequency of the
laser is changed to match the cavity mode or alternatively the length of the cavity is
locked to the laser. However, both methods have their disadvantages.

One of the cavity mirrors was mounted on a piezo shear plate which allowed for
sweeping the cavity length over more than one free spectral range (FSR). The downside
of controlling the length of the cavity was that the inertia of the mirror mount severely
limited the bandwidth of the controller.

On the other hand, it was possible to directly modulate the laser frequency by up to
100 kHz9. However, the tuning range was limited to around ±25 MHz, which is much less
than the designed FSR of 3.1 GHz of the cavity, rendering correction of larger long-time
drifts impossible.

In the setup the digital EVIL10-controller, developed by L.E. De Clercq and V. Neg-
nevitsky in our group, was modified such that the proportional (P) and integrator (I)
values were output on two different channels. Therefore it was possible to exploit the
advantages of both locking methods. Fast drifts were corrected by the P output, di-
rected to the piezo modulator of the laser, while the I value was used to correct for slow
long-term drifts by adjusting the length of the cavity.

4.2.2 Experimental Setup

The hf cavity consisted of two highly reflecting mirrors (R = 0.9998) in a near concentric
configuration with a finesse of F ≈ 10000, a linewidth of ∆ν = 308 kHz and a FSR of
3.1 GHz. The power building up in the cavity was estimated to be Pin = 950 W for an
injection power of 600 mW [10].

The final goal of this project is to perform adiabatic transport of a trapped ion from
a rf to a dipole trap as presented in [6]. Out of the two ion species available to date
in our lab (40Ca and 9Be), calcium is better suited for optical trapping but no Doppler
cooling and qubit operation are possible [10]. Thus, only a proof of principle is possible
in the current system where the ion is first cooled in the rf trap and then adiabatically
transported to the optical lattice.

The best suited trap in our lab for such experiments is the two dimensional surface
trap based on PCF technology [46], in the following called the fibre trap. Figure 4.11
shows a model of how the cavity is integrated into the trap structure. The ring holder on
which the two cavity mirrors are mounted fits exactly into the vacuum chamber around
the tip of the PCF which forms the fibre trap.

The hollow structure of the PCF is filled with gold wires, serving as electrodes to
generate a confining pseudopotential 88µm above the surface [46]. The tip of the fibre
is therefore placed slightly below the centre of the cavity, close to the waist of the mode.
The ion can then be loaded and cooled in the fibre trap with the optical lattice turned
off. In a second step the rf drive field is ramped down while the power of the light
coupled into the cavity is gradually increased, providing an adiabatic transition between
the two trapping potentials. For readout and re-cooling the ion is then transferred back
to the fibre trap.

4.2.3 Results

For testing the cavity outside the vacuum chamber of the fibre trap, first a small box
was used to protect the cavity from dust. In a second step the cavity was then moved

9According to the data sheet.
10Electronically Variable Interactive Lockbox
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Fibre Trap

Ring Holder
Shear Plate

Figure 4.11: CAD model of the hf cavity by M. Marinelli. The cavity is mounted on a
ring holder which fits into the vacuum camber of the fibre trap such that the waist of
the cavity mode coincides with the centre of the rf trapping potential.

into a vacuum chamber, dedicated to testing the cavity.
Figure 4.12 shows the measured PDH signal when scanning the cavity length. When

detuning the cavity more than ±125 MHz, which was the modulation frequency of the
EOM, the characteristic sidebands of the PDH signal are visible (Figure 4.12a) and the
sharpness of the peaks indicates the high finesse of the cavity.

(a) Measured PDH signal when scanning the
cavity mirror.

(b) PDH signal for smaller scanning range
around the resonance peak. Instead of one,
several peaks are visible. The red curve illus-
trates the ramp of the frequency of the laser.

Figure 4.12: PDH signal of the cavity.

When the cavity length or equivalently the laser frequency is detuned by only a small
amount from resonance (Figure 4.12b), several peaks appear in the PDH signal over one
ramp. This indicates fluctuations faster than the scanning frequency. Since it was not
possible to resolve these peaks individually, i.e. scanning the frequency of the laser faster
than the fluctuations, it was also not possible to lock the cavity.
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This is shown in Figure 4.13. When the control-loop was turned on, the transmission
of the cavity was only high for at most ∼ 11 ms before a disturbance occurred which
unlocked the cavity for a short time. By using a cardboard box for acoustic isolation, it
was possible to extend the timespan over which the cavity was locked to ∼ 31 ms, which
indicated that acoustic noise prevented the cavity from being locked.

Furthermore, 4.13c shows that it is very important to decouple the cavity from the
optical table. When the cavity was directly connected to the table, the transmission
signal clearly showed a repetitive drop with a frequency of 1.4 Hz. This is the charac-
teristic frequency of the pulse tube of the cryorefrigerator used for the surface ion trap
experiment set up on the same optical table [47].

By decoupling the cavity from the table using three damping rubber pads, the signal
vanished and it was possible to lock the cavity for several milliseconds as discussed above.
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(a) Transmission of the cavity when the con-
trol loop was turned on. The maximum lock-
ing time was ∼ 11 ms.
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(b) Transmission of the cavity when the setup
was additionally isolated using a large card-
board box. The maximum locking time in-
creased to ∼ 32 ms.
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(c) Transmission when the cavity was not de-
coupled from the table. The repetition rate
of the dips of ∼ 1.4 Hz corresponds to the fre-
quency of the pump of a cryostat in the same
room.

Figure 4.13: Transmission signal of the hf cavity when the control-loop was turned on.

Since it was not possible to lock the cavity and the test with the cardboard box
indicated that the problem was at least partially caused by acoustic disturbances, the
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cavity was placed in a vacuum chamber. The chamber was also much more rigid and
thus it was expected that problems related to vibrations of the box initially containing
the cavity could be resolved.

Indeed, as shown in Figure 4.14, the time over which it was possible to lock the cav-
ity increased dramatically. Locking times of up to ∼ 4 s where observed. However, the
transmission signal still showed a periodic modulation. By analysing the spectrum com-
ponents at 1.4 Hz and 4.2 Hz, associated to the pump of the cryorefrigerator mentioned
before, were found.

Observing the interference pattern between light reflected from the cavity and light
reflected off several optical components in the beam path led to the conclusion that
the beam pointing varied periodically with a frequency of ∼ 1.4 Hz. This on the other
hand also implies that the incoupling efficiency to the cavity is oscillating at the same
frequency.
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(a) Transmission signal.
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(b) Spectrum of the transmission signal.

Figure 4.14: Transmission of the hf cavity in vacuum.

Before further test of the hf cavity can be performed, the beam pointing must be
stabilized either passively by decoupling the optical tables or by active control of the
beam pointing using piezoelectric adjustable mirrors connected up to a control system.
The apparently simplest approach of separating the table on which the cryostat stands
from the rest of the optical setup is, however, at the moment not possible and hence
further work on the cavity has to be postponed until the problem is solved.
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5 Summary and Outlook

It was shown in this thesis that it is in principle possible to lock a narrow linewidth
frequency-doubled laser to the build up cavity designed for optical dipole trapping of
ions. However, it was not possible to fully investigate the properties of the cavity,
i.e. finesse, photon lifetime, etc. because vibrations caused by the pulse tube used for
cooling of the surface trap experiment on the same optical table prevented stable locking.
Currently, it is not possible to decouple the two experiments and therefore some kind of
active beam stabilization might be required before further experiment can be performed.

It was also shown that the optimal beam focusing for phase-matched SHG [41] can-
not be applied to quasi phase-matched periodically polled crystals as also reported for
example in [42], contradicting the claim in [11].

The benchmark of BEM and FEM suggested that the commercial software can be used
as well and, in some situations, even performs better. This can especially be noticed for
curved surfaces and in close proximity to the electrodes. Since a MATLAB R©-script was
written, that converted the results of the FEM simulation to the same data format as
output by BEM, the analysis tools that were used so far still work, making BEM and
FEM interchangeable.

Finally, a novel type of ion trap was presented, that allows for trapping in an opti-
cal lattice, supported by static electric fields. This trap has the further advantage that
it provides large apertures for controlling and detection of the ions.

A simulation algorithm was then outlined which allows for solving the classical many-
body equation of motion of charged particles in such a trap configuration. This algorithm
was then used to simulate the electro-optical hybrid trap. It was shown, that an adiabatic
transfer between a conventional rf ion trap to the optical lattice has to be performed
in order to get stable confinement. Such a simulation is also very close to experimental
realization, for example reported in [6]. The stability of the trap was investigated for
various ramp times ∆τ and dc voltages, which, in the confining cases, always led to a
spherical arrangement of the ions. It was shown that the final separation of the ions
depended on both the applied voltage as well as the number of ions loaded to the trap.
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A Appendix

A.1 List of Lenses

Telescope T1 f1 = −30 mm f2 = 150 mm

Telescope T2 f1 = 150 mm f2 = −75 mm

Telescope T3 f1 = −30 mm f2 = 175 mm

Focusing lens f1 f = 300 mm

Focusing lens f2 f = 250 mm

Collimating lens fc f = 100 mm

Fibre incouping lens fa f = 18.15 mm

Fibre outcoupler fo f = 15 mm

A.2 Transmission of a Polarizing Beamsplitter

The transmission of linearly polarized light through a polarizing beamsplitter can be
controlled by changing the angle of the polarization with respect to the ordinary and
extra-ordinary axes of the birefringent crystal. A relation between angle of the polar-
ization and transmitted power can be easily obtained from the matrix representation of
polarization devices in the Jones formalism (described e.g. in [34]).

Consider a beam polarized along the x̂ axis. Its polarization can be represented by
the unit vector (1, 0)T . The Jones matrix of a half-wave plate rotated by an arbitrary
angle θ with respect the x̂ axis can be found by applying the transformation

JHWP(θ) =

(
cos θ sin θ
− sin θ cos θ

)T (
1 0
0 −1

)(
cos θ sin θ
− sin θ cos θ

)
=

(
cos2 θ − sin2 θ 2 sin θ cos θ

2 sin θ cos θ sin2 θ − cos2 θ

) (A.1)

to the Jones matrix of a half-wave plate with the fast axis along x̂.
For simplicity, it can now be assumed, that only light polarized along x̂ is transmitted,

hence its Jones matrix is simply given by

JPBS =

(
1 0
0 0

)
(A.2)

The intensity of a transverse electromagnetic wave is given by [34]

I =
|E0|2

2η0
(A.3)

where the impedance η0 ≈ 377 Ω in free space. Since the entries of the Jones vector
describe the complex envelope of the electric field, the intensity is proportional to

I(θ) ∝ |Jout(θ)|2 = |JPBSJHWP(θ)Jin|2

=

∣∣∣∣(1 0
0 0

)(
cos2 θ − sin2 θ 2 sin θ cos θ

2 sin θ cos θ sin2 θ − cos2 θ

)(
1
0

)∣∣∣∣2
= 4 sin2 θ cos2 θ.

(A.4)
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A.3 Interlock System

The interlock system that was developed during this thesis is based the initial design
by K. Fisher [48] and utilizes a PCB board developed by Dr. B. Keitch in our group.
The board was designed for general purpose logic operations and provides a complex
programmable logic device (CPLD), several digital in and outputs as well as two relays.
Furthermore, an Arduino Uno11 can be easily connected, providing for example analogue
readout of sensors.

The purpose of the interlock system was to monitor both temperature of a device
and, at the same time, the flow of cooling water for example of a laser. In case of over-
temperature the interlock system was designed to trip the internal interlock circuit of
the monitored device by opening one of the relays. Furthermore, in case of a reduced
water flow, e.g. due to a leakage in the cooling system, the interlock was able to close
the main valve of the cooling circuit as well as shutting down the device.

The schematics of the interlock circuit is depicted in Figure A.1. The Arduino is
used for analogue readout of the temperature and flux sensors and deciding whether the
interlock has to be tripped. If this is the case, the Arduino sends a digital signal to the
CPLD chip which then opens the correct relay.

For maximum reliability, the CPLD and the Arduino monitored each other by con-
stantly sending pulse sequence between each other. If for example the Arduino is not
responding any more, the CPLD immediately trips both interlock circuits to prevent
any possible damage.

When the interlock was tripped, the circuit can only be reset by pressing a reset
button connected to the CPLD chip.

Figure A.1: Schematics of the interlock circuit. The level shifter has to be used to shift
between the different logic levels (5 V for the Arduino, 3.3 V for the CPLD). It is also
possible to set the reference level for the interlock by using a potentiometer (currently
not used).

11http://www.arduino.cc/en/Main/ArduinoBoardUno
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