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Introduction

Quantum simulation is one of the most promising fields in quantum information science.
The goal is to investigate the properties of an other quantum system in a controllable
way [22]. This field of study covers a great variety of topics: from dissipation processes
in a controlled environment to condensed matter physics and statistical physics. In the
case of trapped ions, several methods have been proposed in the last years like long
ion chains [20, 19, 22|, arrays of linear Paul traps [21, 1, 3] or micro-fabricated surface
electrode traps[5, 2, 4]. Another method that could be used consists of optical trapping,
which uses optical confinement instead of the combination of static and radio-frequency
electric fields. This method makes use of the trapping potential generated by the ion-
light interaction.

The idea investigated throughout this thesis is to optically trap an ion with a far de-
tuned laser field. In this case the optical excitation is very low and the recoil force, due
to photon scattering, is negligible compared to the dipole forces. The drawback of this
method is that it requires more power to get a stable optical confinement. To overcome
this issue we decided to design a high finesse cavity for power build-up.

In the first chapter I will introduce the main concepts of optical dipole traps and compare
the behavior of three different ion species (**Ca’t, YBet and ?*Mg™"). In particular it
will be demonstrated that 2?Mg™ is the best candidate for optical confinement due to
its level structure.

In the second chapter it will be shown the experimental realization of the high finesse
cavity. For this purpose, several possible configurations will be presented and compared.
Experimentally we decide to built a near concentric cavity whose finesse is F' = 10000
which allow a power enhancement of S =~ 1600. In addition I will show the obtained
experimental results.

In the third chapter I will illustrate a side project of this thesis concerning the suppression
of phase noise induced by a long fiber.



1 Optical dipole trap

To better understand this method, which is widely used in the neutral atoms community
[11], I will first provide a basic understanding of the trapping phenomena by exploring
the mechanisms of atom-light interaction. Therefore, I will derive the equation for
the trapping potential in the case of a simple two level atom and subsequently the
more difficult case of a multilevel atom with fine and hyperfine structure. Once I have
introduced the mathematical background I will analyze and compare three different ion
species which could be used for optical trapping.

1.1 Semi-classical description

I will provide here the physics background to optical dipole traps. In particular I will
analyze the interaction of the ion with a light that is far-detuned from its internal
transition. As we will see, for such a case the optical excitation is very low and the recoil
effect coming from photon scattering is negligible compared to the dipole force.

As a first approach let us consider the effect of a classical field onto an atom. In this
frame, the field is described by an electric field E which oscillates at a frequency w:
E = eE(r) exp(iwt) + c.c. where e corresponds to the polarization of the field. Such a
field will induce an atomic dipole moment p which will also oscillate with frequency w
along e. The amplitude of the dipole momentum is given by

p=akF, (1.1)

where F is the electric field amplitude and « is the complex atomic polarizability [10]
. In a semiclassical approach, it is possible to calculate the complex polarizability a by
considering the atom as a two level system with a transition frequency wg and with a
spontaneous decay rate I' for the excited state. By solving the equations for the coupled
system [10], one can derive that
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In this final expression the dipole matrix element between the excited state |e) and the
ground state |g) plays an important role. It is important to say that the result given for
« is only valid in the case of low saturation. Nevertheless, in the case we are interested
in (namely the far-detuned limit), even the high intensities of the driving field will lead
to very low saturation.



From these last results it is possible to define the interaction potential U as [11]

7TC2
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where we consider the time average over the oscillation period and I o< E? is the intensity
of the field. Defining the absorbed power P as

Pabs = <pE> s (15)

one can retrieve the expression for the scattering rate I'g. as
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The equations for U and I's. hold in general for every w. Despite working in a far detuned
regime, usual experiments of quantum information processing with trapped particles use
frequencies w for which the detuning, A = w — wy, is small compared to the resonant
frequency (A/wp < 1). Therefore we can neglect all the terms which rotate with a
frequency w+wqg. This assumption is known as the rotating-wave approximation. In this
picture, the above equations can be rewritten as [11]
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where we made the assumeption of w/wp ~ 1. These two last expressions contain all the
physics of the phenomena of interest.

The first thing to notice is that the scattering rate scales with a factor I/A? whereas
the dipole potential scales with I/A. This shows that working in a far detuned limit
strongly suppresses the scattering rate and thus the recoil of the atom (which is a source
of heating that works against trapping). On the other side, working in this limit requires
the usage of high field intensities in order to have large dipole potentials. A second thing
to note is that, depending on the sign of A, the potential is negative either in the points
with maximum intensity (red detuning, A < 0) or in the point of minimum intensity
(blue detuning, A > 0).

1.2 Quantum description

The same result can be derived in a quantum mechanical way using the AC Stark shift
[11]. This is a fundamental tool which will be used throughout the full chapter to
understand which transition maintains the ion in a trapped state. The idea behind this



approach is that the effect of a far detuned light can be described as a second order
perturbation in the electric field acting on the atom’s levels.

Let us consider the interaction between a quantized light field and a two-level atom.
The unperturbed state, where the atom is in the ground state and the field contains n
photons, has an unperturbed energy of e; = nhw. Turning on the interaction means that
after sufficiently long time there will be an absorption of a photon from the atom. In
such a case the energy of the system will be €2 = hwy + (n — 1)hw = —hA + nhw.

Applying second order perturbation theory and using the interaction Hamiltonian H; =
—pE (@ is the dipole matrix), the energy shift AE of the two levels reads

3nc? T
2w A
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where we used Eq. (1.3) and the plus sign is for the ground state while the minus for
the excited one. The effect of the light on the atomic levels in a gaussian laser beam is
shown in Fig. 1. Note that for A < 0 (red detuning) the ground state is pulled down
and therefore, for very low saturation (atom mostly in ground state), we can create a
trapping potential for the ion.

|e> A¢ AE

l9> v {-aE

Figure 1: Left side: ground and excited state without coupling with the optical field.
Right side: AC Stark shift induced by a gaussian distribution on the light field. The red
detuning pushes the ground state down and the excited state up.

This approach is valid only for non degenerate levels. Usually this is not the case for
atoms in zero magnetic field. Nevertheless, it can be shown that the result is still
correct if there is no coupling between degenerate ground states. Thus for pure 7 or o*
transitions this method is still applicable.

Eq. (1.9) can be generalized to a multi-level atom with transition substructure. In prac-
tice one can calculate the light shift of a particular level ¢ just by summing all the



contributions of all the possible transitions from that level, weighted onto the transi-
tion coefficient. In a mathematical description it is possible to write the dipole matrix
elements between the ground state |g;) and the excited state |e;) as

pi; = (ejlplgi) = cijllpll (1.10)

where ¢;; is the transition coefficient which contains the strength of the coupling between
the two levels and ||¢|| is the reduced matrix element. With this definition in mind, one
can write the energy shift of the ground state |g;) as [11]

2
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(1.11)

where the sum runs over all the states j and the contribution of each level is given by

the ratio of the line strength, c”, and the detuning of the transition.

1.2.1 Hyperfine structure contribution
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Figure 2: Example of hyperfine structure given by the coupling with a nuclear spin
I=111].
2

Eq. (1.11) can be generally applied for all kinds of atoms. For quantum information
processing with trapped ions we are mainly interested in those of the second group like
Ca™, Bet or Mg™, even if other elements like BT or Yb™ could also be used. These
elements don’t have the same structure; some of them like Be™ or Mg™, show also
hyperfine splitting of the levels due to the coupling with the nuclear spin. Therefore,
for further steps, it is worth generalizing the equations for the trapping potential taking
into account this substructure [11].



A possible example is shown in Fig. 2, where one can notice the splitting of the ground
state and of the two P states due to the coupling with the nuclear spin (I = 1/2). The
full derivation I will briefly show relies on the assumption of resolved fine structure and
unresolved hyperfine structure. In other words, it apply in the case of far detuned atom
light interaction. This means that the fine structure splitting of the P state, Apg, is
larger than the laser detuning A which in turn is larger than the hyperfine splitting of
the ground state Agprg. In other words, we can restrict our description of the atom only
to the fine structure levels, and thus on the transitions from the ground state J = % to
the excited state J' = %, % In this frame, to calculate the AC Stark shift of the Zeeman
sub-levels of the ground state, mj = j:%, polarization has to be taken into account [11].
In case of circular polarization the relevant line strength factors are dependent on the
particular magnetic level we start from. It is possible to show that their value is %(1im J)
and %(1 Fmy) for the J = % — J = % and J = % — J = % transitions, respectively.
This result was calculated by Cohen-Tannoudji et al [12] by showing that the effect of the
light beam is entirely described by a fictitious magnetic field with amplitude proportional
to the intensity of the light. As a consequence, this will lift the degeneracies on the
magnetic sub-levels. On the contrary, in the case of linear polarization both levels get
shifted by the same amount because of symmetry reasons. In fact using the fictitious
field picture, it is like having a superposition of ¢ and ¢~ polarization with the same
intensities and thus the fictitious field would have zero amplitude. In such a case one
can show that the line strength of the transitions is equal to % for the J = % —J =1

-2
transition and % for the J = % — J = % one.

Until now we have just considered the effect on the fine structure. A question that may
arise is what happens to the hyperfine states F,mp if we turn on again the coupling
with the nuclear spin. From atomic physics [13] we know that the effects of the Zeeman
splitting, in low magnetic field, onto hyperfine sub-levels can be calculated by replacing
gymy with gpmp, where the Landé g factor is equal to 2. This means that in the case of
circularly polarized light the line strength factors become %(Qigpm r) and %(1 Fgrmr),
while for linear polarization there is still degeneracy of mp states.

Now that we have the coefficients for the line strengths, we can substitute them into
Eq. (1.11) to get the ground state energy shift [11]:

Ur) =

2P /24P 1-P
e ( trgrme gFmF) I(r), (1.12)
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where P takes care of the polarization (P = 0, %1 for linear and circular o*polarization,
respectively) and A; p and Ay p are the detunings of the laser light from the transi-
tions which go from the ground state Si/p, F to the center of the P/ and P3/, levels
respectively.

For our purpose it is interesting to see the far detuned limit. In this case not even the
fine structure is resolved; thus we can assume that A =~ (|A; p|, |A2 r|) < Apg, where
we have introduced the detuning A from the center of the P/, and Py/y state. We can



now expand the the Eq. (1.12) for the parameter Apg/A, obtaining
3mc3 T 1 A
Ur) = 2 — (1 + PgFmFFS) I(r) . (1.13)

Note that the first term in this expansion is the one we calculated in Eq. (1.7) where
no atom structure was considered. This can be understood by thinking that the large
detuning dominates and it is like considering only the s — p transition. In such a case
polarization and of course hyperfine levels do not play any role.

1.2.2 Optical trapping in a standing wave

Depending on the kind of method used to confine the particles, we can identify different
types of optical traps: focused beam, crossed beam and standing wave traps. A first
demonstration of ion trapping with optical confinement was made using a focused beam
from a fiber, see [14]. Such traps are the simplest possible and consist of focusing a
gaussian beam in the trapping point. Drawbacks of this method are the sensitivity to
laser frequency noise and shallow potential wells.

Our aim is to work in a far detuned limit, where we can neglect the scattering rate of the
atom with the trapping field. In such a limit, the trapping potential gets shallower and
thus more power is required to trap ions. Therefore our approach is to use a high finesse
cavity in which it is possible to build up more power to compensate the detuning. The
cavity will also reduce the linewidth of the laser and create a standing wave between the
mirrors, allowing us to create 1D lattices (see next chapter).

In such a system the intensity I(r,z) to be used in Eq. (1.12) is given by [6]

77'(,082}()2) exp <_2%> ) (1.14)

where P is the power of the gaussian beam which propagates along the z direction and
r is the radial coordinate. The quantity w(z) is called gaussian beam radius and it is
defined as

I(r,z) =

2
w(z) =woy/1+ (z> , (1.15)
2R
in which wy is called beam waist and zr = mw3 /A is the Rayleigh length (see next chapter
for details). One thing to notice is that, due to the cavity, there is more power available
and, because of constructive interference, the value for U is 4 times larger than in the
case of focused beam.

Around the potential minimum, where the ion is when cold, we can assume that the
radial extension is small compared to the beam waist and axially small compared to the

10



Rayleigh length. In this region we can approximate the potential well as [11]

Ulr,2) ~ —U cos®(kz) [1 ) <;0>2 - (éf] . (1.16)

In this harmonic approximation, we can identify two different trapping axes: one axial
and the other radial. The curvatures of the potential well in these directions leads to
two different trapping frequencies:

wz:k(—ﬂf)” 117)

m

wy = <_4U>1/2 : (1.18)

2
wom

where m is the mass of the ion.

1.3 Different ion species

Until now we have just talked about the general trapping method without applying it to
any practical case. In this section I would like to bring some specific examples applying
the theory that we just derived in order to compare the behavior of different ion species.
In particular I will focus the attention on “°Ca*t and ?Be*, which are the species that
we currently trap in the TIQI group at ETH, and *Mg*, which is the best candidate
for this task, as it will be shown.

1.3.1 %OCat

4D5/2 4D
/2
5S - 3
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—| o0
~ |
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4P,
/2
4Py, TR 866 n
‘T‘m m r:10.6 1065
E|S g 3Ds),
~| (V) 3D3/2
|3 4
‘1
45, —

Figure 3: Level scheme of ¥°Ca™ in case zero external magnetic field.
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Level Transition energy (em™!) | I'(10%s71)
45, 5 — 4P, 1 2510152 140
45, )y — 4Py, 25414.41 147
4P, 5 — 3Dy 11541.32 10.6
4Py 5 — 551/ 26075.42 88
4Py 5 — 4Ds) 31666.93 310

Table 1: Energy and line strength for the main transitions in 4°Ca*. The other tran-
sitions are not reported because they are negligible for the calculation of the trapping
potential. [7]

As a first example I would like to present the case of °Ca™, which is currently used in
our lab. Independently of the results for the trapping potential, this is the ion species we
are going to use for the first tests with the optical trap. For this purpose we intend to use
a Verdi laser [8] which is a solid state, diode pumped, frequency doubled, Nd:Vanadate
(Nd:YVO4) laser that provides single frequency 532 nm output light. The reason is
that we would like to work in a far detuned limit where the the scattering rate, and
thus the recoil, is negligible. Level scheme and energies are given in Fig.3 and Table 1
respectively.

Ground state: To calculate the ground state trapping depth, the main transitions
to be considered are 45/, — 4P /5 and 45/ — 4P3/5. In both cases the laser is red
detuned and thus has the effect of confining the 45 state and anti confining the two P
levels. One thing to notice is that the S — D coupling is blue detuned but since it is a
quadrupole transition the line strength is so small that it does not make any difference
to the ground state level shift. For a quantitative analysis one can apply Eq. (1.11) and
Eq. (1.14), where we suppose to have a 532 nm light with total optical power P ~ 1kW
and a beam waist of wy = 30 um. Thus, it is possible to verify that AE ~ —2.58 x 10724 J
~ 187 mK, where the minus sign shows that it is a confining potential. This corresponds
to trapping frequencies equal to w, ~ 27 x 16.7 MHz and w, = 27 x 66 kHz.

3D,y state: For Doppler cooling purposes the 455 — 4P /5 transition is used. When
exciting the electron to this level the atom decays most of the time in the ground state,
but with a rate of % the electron falls in the 3D3/, level. Therefore to have a stable
system we would like to have all these three states confined under the effect of the optical
trap. Consider now the case of 3D3 /9 state: the transition which contributes most is the
3D32 — 4P;2. In this case, the laser light is blue detuned and thus it one can show that
this leads to anti confinement for the D level and confinement for the P state. The total
shift is AE = 6.15x 10725 J. As a result, whenever the ion fall in this state it will be lost.

12



Py, state: The same approach can be applied for the 4Py s, state. In this case the laser
has an anti confining effect for the 45,5 — 4P/ transition and a confining one for the
3D3/5 — 4P, /5 coupling. Moreover this level can couple to the 55,5 and 4D3/5 which
have a confining effect due to red detuning. Summing all these contributions together we
can calculate the total shift to be AE = —5.76 10~2° J= 42 mK and trapping frequencies
equal to w, &~ 27 x 9.5 MHz and w, =~ 27 x 37.8 kHz. Differently from the D states this
level is stably trapped by the optical field.

From all this considerations we can conclude that Ca™ is not the best choice for optical
trapping. In fact it would be desirable to continuously cool the ion, but because of
scattering processes when the electron jumps in the Dj/, state the ion will be lost.
Furthermore it is possible to show that also the state D5/, is anti confined and thus no
qubit operations are possible.

1.3.2 ‘Be"
3D;,
3Ds,,
2P1/2 A
A
5 | |E
o El |
— | [0
[ ]
- m
251/2

Figure 4: Level scheme of Be™ in case of unresolved hyperfine splitting and zero external
magnetic field.

The second candidate for optical trapping is Bet which is the other ion species we
already use in the lab. Differently from Ca™, Be™ shows a coupling with the nuclear
spin I = % which gives rise to the hyperfine splitting of the levels. For the ground state,
the splitting between the the F' = 1 and F' = 2 is AE ~ 1.29 GHz in small magnetic
field.

As can be seen from the level structure in Fig. 4 and Table 2, Be™ has of a UV transition

13



Level Transition energy (em™!) | I'(10%s71)
251 73 — 2P, /5 31028.74 113
25, /5 — 2Py, 31935.32 172
2P, /5 — 3D 66125.82 1106

Table 2: Energy and line strength for the main transitions in “Be™. The other transitions
are not given because negligible for the calculation of the trapping potential. [7]

from the Sy — Pj/o states and a more energetic one between the P and D states.
Therefore we can expect qualitatively the ground state to be confined and the first
excited state to be anti-confined.

This last statement can be verified by using Eq. (1.13) and Eq. (1.14), where we suppose
to have a total optical power P ~ 1kW and a beam waist of wg = 30 pum. In order to
neglect the hyperfine structure we can consider the case of linear polarization. For such
case the trapping depth of the ground state is AE = —3.82 x 1072%J= 27 mK which
corresponds to a trapping frequency of w, ~ 27 x 13.7 MHz and w, ~ 27 x 54 kHz.

Problems arise when dealing with the excited state. In fact, the AC Stark shift for the
2513 — 2Py /5 transition has the effect of pushing down the ground state and pushing up
the P states. To have a nicely confined P level we require the total AC shift for this state
to be negative. Unfortunately this is not the case because the 2P 5 — 3D3/ transition
has a very large detuning. Indeed, the total energy shift is AE = 2.47 x 1072° J. This
means that using Be™ could be difficult for qubit operations like state initialization and
cooling mechanisms.

1.3.3 »Mg*

As a third example I would like to present the case of 2°Mg™. Unlike the other two ion
species, Mg™ is not yet available in our laboratory. Nevertheless for optical trapping
purposes it is one of the best choices.

Before analyzing this final statement it is important to say that magnesium has a hy-
perfine structure due to the coupling with the nuclear spin I = % Therefore the ground
state is composed of a set of hyperfine levels with F' = 3 and F' = 2, see Fig. (5). Sim-
ilarly to Be™, for quantum information applications the qubit is defined between two
different hyperfine levels [9] which are chosen depending on the magnetic field amplitude.

To better understand why Mg™ is the best choice for optical trapping it is worth con-
sidering its level structure, shown in Fig. (6) and Table 3.

The first important thing to note is that the 3.5, — 3P3/5 and 35, 5 — 3P transitions
are red detuned using a 532 nm laser light and thus the ground state is pushed downwards
while the two excited states are pushed upwards due to the AC Stark shift. Therefore

14
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Figure 5: Hyperfine structure of the 2?Mg* ground state. The splitting is given by the
coupling with the nuclear spin [ = %

4P,

451/2 _—

A

15 10°s™

290 nm T

3P3/2

1
-
>

3Py,

260 10° s
257 10°%s

279 nm T
280 nm I
532 nm

3S,),

Figure 6: Energy levels in Mg™ in the case of zero magnetic field. In this case only the
fine structure is shown.

there is an anti-confining effect for the P states.

It is possible to apply Eq.(1.13) and Eq. (1.14) to calculate the trapping potential for
the ground state. Note that Eq. (1.13) is dependent on the particular hyperfine level and
thus will lead to different trapping potential for different magnetic levels. If the trapping
frequency differences are large enough (on the order of hundreds of kHz) one can also

15



Level Transition energy (cm~!) | T'(10%~1)
35172 = 3P )9 35669.31 257
35,5 — 3Ps 5 35760.88 260
3P, 5 — 45, 1 34135.63 15
3P1/2 — 3D3/2 35821.75 401

Table 3: Energy and line strength for the main transitions in 2>Mg™. The other tran-
sitions are not given because negligible for the calculation of the trapping potential.
[7]

think of new cooling methods or new gates schemes.

To give an idea of the confining potentials, suppose to use a total optical power of 1 kW
with a waist of 30um. The trap depth for the ground state in case of linear polarization
is AE = —3.33615 x 1072 J = 0.024 K, which corresponds to a total trapping frequency
of w, =~ 2w x 7.69 MHz and w, =~ 27 x 30.7 kHz.

As already mentioned above, something interesting could happen when considering the
effect of polarization on different hyperfine states. The Landé g factor for the state
F=3isgr = %, while for the states F' =2 is gp = —%. Therefore we expect the largest
frequency difference between the states F' = 3,mp = 3 and F' = 2, mr = 2. The axial
frequency difference is Aw, ~ 27 x 11.5 kHz. In order to use this feature it is necessary
to be able to resolve this frequency difference using a Raman beam. Nevertheless, this
value could be enhanced by increasing the power or by reducing the laser detuning.

The same calculation can be performed also for the P/, state. For this purpose we
do have to consider the effect of transitions from this level to the higher excited states.
Indeed it is possible to see that the laser is red detuned with respect to the 3P ;5 — 3D3/9
transition. Moreover, the coupling strength is double the 35}/ — 3P /5 transition and
thus results in a confining effect also for this level. Applying the same equations used
for the ground state, it turns out that the trapping potential is AE = —2.02 x 10725 J
= 0.014 K which is very similar to the ground state potential depth. The corresponding
trapping frequencies are w, ~ 27 X 6 MHz and w, = 27w x 24 kHz. At this point there
are two important considerations that have to be done: the first one is that unlike the
case of Ca™ and Be™, the relevant states are confined and thus qubit operations can
be implemented. The second point is that the trapping frequencies of the ground and
excited states are similar. This is of crucial importance because this fact will increase
the cooling efficiency.

To conclude, we can finally state that the properties of 2? Mgt make this ion the best
candidate for optical trapping. The main disadvantage is that to perform qubit operation
it is necessary to use lasers at 280 nm which require a custom laser setup [29].
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2 High Finesse Cavity

As shown in the previous chapter the trapping potential is directly proportional to the
optical power and inversely proportional to the detuning. Since that we would like
to work in the far detuned limit, a very large amount of power is required to have a
sufficiently deep potential well. Therefore the easiest way to increase laser power is to
build a high finesse cavity.

To better understand the experimental techniques, in this chapter, I will first introduce
the some concepts on gaussian beams and optical resonators. Later I will describe the
experimental setup and characterized in the rest of this thesis.

2.1 Theoretical description

A more accurate treatment of optical beams and resonators must take into account the
wave nature of light. In this section I will highlight the main properties of gaussian
beams. Later I will use this notions to compare the different properties of an optical
resonator.

2.1.1 Gaussian beams

A detailed derivation of gaussian beam can be found in Appendix A and in lasers text-
books [6]. For the purposes of this thesis it is worth considering the final results. In
particular, the gaussian beam propagation is driven by the following equation:
( ) 1 ,km2+y2 z? + y?
u(z,y,z) = ——exp |—1 —
& P 2R(z)  2(2) |’

q(2)

where R(z) is the radius of curvature of the beam, w(z) is the beam radius and ¢(z) is
the complex radius defined as

(2.1)

1 A
= —1 .
R(z) mw?(2)
Note that Eq. 2.1 shows two components: the first represents a spherical wave propagat-

ing along z with real radius of curvature R(z), while the represent the finite transverse
amplitude variation which has a gaussian form.

(2.2)

An important feature of gaussian beams is that it is possible to predict the entire propa-
gation only knowing the beam waist wy (smallest transverse radius) and the wavelength
of the light in the medium A. In particular

w(z) = woy 1+ (Z)Q (2.3)

ZR

R(z) =2+ & (2.4)



where zp is called Rayleigh length and is defined by

2
TTW,
2R = TO : (2.5)

2.1.2 Cavities: configurations and stability condition

~~ -
e —————————

Figure 7: Picture of a simple two mirror resonator. The beam radii at the mirror surfaces
w1, ws are in general not the same.

In general, an optical cavity (in the following referred as cavity) is an apparatus which
can confine a gaussian beam as a standing wave. There exist several types, but the
simplest is the one created using two mirrors facing each other. A possible configuration
for a gaussian resonator is shown in Fig. 7. In this example we are considering a gaussian
beam with a waist wg at position zy which is expanding in free space. For every position
z the beam has a particular radius of curvature. If the radii of curvature of the two
mirrors match exactly the ones of the wavefronts, each mirror will perfectly reflect the
gaussian beam on itself. In this case, the system is a stable optical resonator.

There can be several configurations that one can choose to build a cavity, each of which
offers different properties, see Fig. 8. Generally, the features of every configuration can
be described in terms of beam waist position, length of the cavity and beam dimension.
A common way of introducing those quantities is using the g factor defined as|[6]

g=1-L/R. (2.6)

As a result one can write that [6]

L) | g192(1 = g192)
2
wj = — 2.7
O \/(gl + 92 — 29192)* 27)
LA 92
2
wy = —,/———— 2.8
Yo V(- gig0) (2:8)
LA
wi="2 9L (2.9)

T\ g2(1 = g192)
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Figure 8: Stability diagram: the blue region is the stable region. Typical cavity config-
uration and position on the diagram are also highlighted. [15]

From these equation it is possible to see that there is a stable solution only in the case
where
0<gig2<1. (2.10)

Fig. 8 shows the stability diagram. Every point in this figure represents a particular
configuration of the cavity.

The three different types of resonator examined during this project were the near con-
centric cavity, the near confocal and half symmetric resonator. In the following I will
highlight their main properties.

Half symmetric resonator: This is one of the simplest and most used type of cavities.
It consists of a planar mirror (R; = oo) which is facing a curved mirror with radius of
curvature Ry = R. The g-factors are gy =1 and go =g =1— L/R.

]

Figure 9: Half symmetric resonator. In this case the waist is on the planar mirror.

From Fig. 9 on can infer that the beam waist will be located on the surface of the planar
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mirror and its dimension is given by (Eq. (2.7), Eq. (2.8) )

L) g
2 2
_2_ LA 2.11
Wo = Wi T \V1—g ( )
while the spot size on the curved mirror is given by (Eq. (2.9)):

LA 1

wi =" . (2.12)
T\ g1 —9)

The reason why such configuration is so often used is that it is easy to build and it is
highly insensitive to alignment mismatches. Indeed, from Fig.9, it is possible to note
that mismatches in the vertical direction do not count at all as long as the beam waist
is nicely positioned on the reflecting surface. Moreover, if the injection of the light is
done normally to the flat mirror, there is no lensing effects due to curvature of surfaces
or high reflective coatings.

Near concentric resonators: They are composed of two curved mirrors in which the
position of the centers are close to each other, see Fig. 10.

R, R,
<>
AL

Figure 10: Near concentric resonator. The waist is located between the two centers.

For such configuration, the cavity length L is almost as large as the sum of the radii,
L = R; + Ry — AL, where AL is small compared to Ry and Rs. In real experiments,
mirrors with the same radius of curvature are typically used. In this case, R = L/2+ AL
and g1 = g2 = —1+ AL/R. Thanks to these definitions, in the limit of AL < L, we can
approximate Eq. (2.7), Eq. (2.8) and Eq. (2.9) as [6]

L)\ |AL
2
~ 2.13
Wo - 4L ( )
LA /4L
2 2
= N —— . 2.14
Wy = Wy . AL ( )

The beam waist is located in the middle of the centers and its dimension is purely
determined by the distance AL: the shorter AL, the smaller the spot size at the center.
Note that reducing the beam waist has the effect of increasing the beam divergence
which would lead to larger spot sizes on the mirrors.
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As a final remark, it is worth pointing out that this configuration is much more sensitive
to misalignment. Indeed just a small tilt of one of the two mirrors would make a big
change on the optical axis.

Near confocal resonators: Similarly to the case of near concentric resonators, near
confocal ones are composed of two curved mirrors facing each other. The difference with
the previous case is that the two focal points (located at a distance R/2 from the curved
surface) are very close to each other and sit in the center of the system. This means that
each center of curvature is placed near the the surface of the other, see Fig.11. This
leads to a cavity length L ~ R.

Figure 11: Symmetrical near confocal resonator. Note that the two focal point are close
to each other and lies in the center of the cavity.The waist is located in the middle of
the cavity.

In this limit it, is possible to rewrite Eq. (2.7), Eq. (2.8) and Eq. (2.9) as [6]

L\

2

~ 22 2.15

W o ( )
L\

wi=wire = (2.16)

The beam waist is never as small as in the near concentric situation and thus the beam
does not diverge much. Indeed, the spot size at the center is smaller only by a factor of
1/4/2 compared to the beam size on the mirror surface.

The other difference with the previous case concerns stability. This kind of configuration
is highly insensitive to misalignment of either mirror; a tilt in one of the two mirrors still
leaves the center of curvature very close to the other mirror surface and merely displaces
the optical axis by a tiny amount.

2.1.3 Cavities: transmission and reflection

Until now we have considered cavity configurations and their properties assuming a
gaussian beam already present between the mirrors. In the following I assume that light
is injected into the cavity from the backside of the first mirror, taking advantage of
the finite transmission. Every mirror, in fact, can be characterized by two real values,

21



E [ tE —

rE
< rotE
tiratiE rirtE

tiorntE | | rorirotE

Figure 12: Cavity reflection and transmission of light.

r and t, which are the reflection and transmission coefficients. In the case of no light
absorption the following relation holds:

rPyt?=1. (2.17)

To better understand what happens to the light in the cavity consider Fig.12. The
incoming electric field is £ = Fpe™!. The mirrors have reflective and transmitted
coefficients 71,1 and ro, o respectively. In order to calculate the total reflected field F,,
it is important to bear in mind the 7 phase shift of the reflection at the first mirror. The
phase acquired for every round trip is

2L
=2 (2.18)

where L is the total length of the cavity. Therefore, the total of reflected field is
E, = E(—?‘l + tﬂ’gtlei@ + t17“27“17'2t162iq> + ) . (2.19)
This is sum is just a geometrical series which gives as a result [6, 16]

t%rgeicb

" (=ri+ 1 —ryreet®

(2.20)

The real part of this last equation drops to zero for ® = n2w, where n is an integer
number.

This last equation can be further manipulated by introducing some quantities that are
commonly used when dealing with cavities. The first one is called free spectral range
(FSR) and is defined as the frequency distance between two equal modes (see next
paragraph for more details on cavity modes). Mathematically we can write it as

C
FSR=— 2.21
<, (221)

which is also the inverse of the round trip time.
A second parameter to be introduced is the finesse F', which is a measure for the average
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storage time in the cavity. The higher the finesse, the larger the power circulating into the
cavity. It can be measured via the cavity ring down conversion (time needed to to observe
an intensity drop of 1/e after suddenly switching off the injection light). Therefore, the
finesse depends only on the reflecting parameter r and is defined as follows:

p o TVt (2.22)
1-— 7“1’/“2[

where we have introduced the loss coefficient [ (equal to 1 for perfect cavities). Losses
in a resonator can be induced for example by scattering of light in the propagation in
the medium or on the mirrors’ surface.

Because of the continuos reflection of light between the mirrors, there is a power build-up
in the resonator; the enhancing factor S of the cavity is defined as

7
S=—""7"-=. 2.23
(1 — 7"17‘2l)2 ( )
The linewidth of the cavity Av is instead defined as:
FSR
Ay =", 2.24
y="2 (224

Thanks to these definitions it is possible to re-arrange Eq. (2.20). In particular it can be
shown that in the case of a symmetric cavity [6, 17]

oW
e'FSrR — 1

E.=—Er (2.25)

1 — r2eiFsr
A possible representation of this last result is given in Fig.13. As one can see, when
the frequency of the injected light is on resonance with the cavity the real part of the
reflected signal goes to zero.

Cavity modes: The transverse profile of light circulating into a cavity must be an
eigenfunction of the propagation equation of the light in the resonator. In a mathematical
way, we can describe one round trip in a cavity using a propagation operator K. In this
picture, the transverse field amplitude ET(L}% after one round trip is [6]

E)(x,y) = //K(%Z/,xo,yo)Er(L%(ﬂfovyo)dﬂcodyo = Yum ESh, (%0, Y0) (2.26)
where we have imposed E,,,, to be an eigenmode with eigenvalue ~,,,, of the round trip
propagation expression.

For our experiments we only need to be able to select and lock the laser to a particular
mode, typically the TEMgg. Thus, we only require that all the modes are non degenerate.
In other words we would like the various modes to have a particular frequency which
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Figure 13: Real and imaginary parts of F(w) = E,./E where r = 0.96, 'SR = 1500MHz.
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is separated from the others at least by a cavity linewidth. For a two mirror optical
resonator, the frequency separation wgn., between two different modes is [6]

cos H+/q192)] 2mc

where ¢ is an integer number defining the axial mode, L is the cavity length and n,m
define the transverse mode.

From this equation it is possible to predict the behavior of every cavity configuration.
As an example we can compare the near concentric configuration and the confocal one.

In particular, the term %ﬂg‘/@ goes to 1/2 for the confocal case while it goes to
1 for the near concentric cavity. As a result the near concentric resonator shows a
frequency spectrum in which all the components are well separated from each other,
while the confocal one shows strong degeneracies. In this case all the even transverse
modes (n + m =even number) are degenerate at the axial frequencies of the cavity wy,
while the odd terms are degenerate at frequency which is exactly in the middle of the

g-th and (g + 1)-th axial mode.
In the end it is possible to select and maximize a particular mode by changing the angle,

position and shape of the incoupled beam. The better the light is incoupled, the fewer
modes that fit the cavity.
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2.2 Optimal parameters

Figure 14: Image of the fiber trap used in the lab.

The aim of this project is to trap ions using the optical field generated by a high finesse
cavity. °Cat and ?Be™ are the two species currently used in our experiments. Therefore,
as a first demonstration, we would like to use one of these two ions for optical trapping.
Doppler cooling and state detection of the ion is not possible in either the cases (see
Chapter 1). This means that, in order to optically trapped them it is necessary to precool
them. For this purpose, we intend to use an ion trap fabricated with photonics crystal
fibre technology, in the following called fiber trap, which operates with 4°Ca™.

This trap is composed of 19 gold wires of 127 um of diameter distributed in a honeycomb
structure and held together using a glass structure (see Fig.14). The RF and ground
electrodes create a potential well 90 ym above the central electrode. Doppler cooling is
done using a red detuned 397 nm laser, coupling 45,/ — 4P 5 levels, and an 866 nm
laser to re-pump from the state 3D3 5.

The final idea would be to load and Doppler cool Ca™ with the fiber trap, switch on the
optical trap and switch off for some time the fiber trap to finally detect and re-cool the
ion again with the fiber trap.

2.2.1 Beam waist

The fiber trap should be placed between the cavity mirrors and 90 pm below the beam
waist position. As a consequence, for an optimal loading of the optical trap, we would
like to be able to move either the cavity or the fiber trap. For this application it is
preferable to move the fiber trap to maintain the coupling into the cavity.

The second requirement is that the cavity field does not clip strongly on the fiber trap
structure. As already mentioned above, the trap consists of gold electrodes pushed into
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a glass cane: the diameter of the electrode surface is 750 pm, whereas the glass cane has
a diameter of 1400 pym. Outside this structure, up to a distance of 2500 pum, there is a
copper shield that protects the electrodes from calcium deposition.

The optimal beam waist calculation is strongly dependent on the cavity configuration
that we choose. Indeed, if we opt for the symmetric case, the beam waist is located
exactly on the central electrode, while for a non symmetric case it will be located on
one of the two cavity mirrors. Nevertheless, in both the cases, we can model the fiber
trap as two knife edges placed 90um below the beam waist position and separated by
750 pm,1400 pm or 2500 pum depending on what we would like to consider.

\/
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Figure 15: Fiber trap boundaries at position z = =4I, where 2l = (700, 1400, 2500)m
depending if one want to use only the electrode tip, electrodes in the glass cane or the
full system with the copper shield.

Symmetric case: For this system the optimal trapping position is the beam waist
position which is located in the middle of the resonator. As already mentioned in the
Chapter 1, the intensity profile of a gaussian beam resonating inside a cavity is[6]

8P —o(22402) /w2 (2
I(z,y,2) = ) At +y)/w2(2) (2.28)

where we assume that z = 0 is the position of the beam waist. As a consequence the
trap boundaries are two sharp knife edges located at z = +[ from the center and at a
distance x = —90 pum from the optical axis, see Fig. 15.

For this system, the percentage of losses as a function of the beam waist can be evaluated
using the power blocked by the two sharp edges:

L(w l) = 41\/5 /d dx#(a*sz/WQ(*l:wO) + /d dx 1 672x2/w2(l,w0)
OV \ U w(=wo) oo w(lwo) ’
(2.29)
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where w(=%l,wp) is calculated using Eq. (4.13), d = 90um and the factor of 4 is due to
the constructive interference inside the cavity.
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Figure 16: Plot of L(wo,!) as a function of the beam waist and for three different value
of [. Yellow line: [ = 750 um, Red line: | = 1400 pum,Blue line: = 2500 pm.

Fig. 16 shows the behavior of L(wp,!) as a function of the beam waist wy and for the
different value of 2. The percentage loss is maximal for very small value of beam waist, it
reaches a minimum and it increases again reaching 1 for large value of wg. This behavior
can be understood by remembering that the smaller the beam waist the stronger the
divergence of the gaussian beam. As a consequence both large and very small values
of waist will clip the boundaries edges. The second thing that we can note is that the
configuration that minimizes the losses is the one where we consider only the electrodes’
tip. Nevertheless for all the three cases, the losses around the optimal beam waist are
very small and negligible compared to other source of losses (imperfection of the mirror
surfaces, absorption and scattering with air or dust particles, etc). Thus, we can conclude
that if we decide to work with a symmetric cavity configuration we should use a beam
waist which lies roughly in the range wp€(10,40) pm.

For this kind of symmetry a possible implementation could be a cavity composed of two
curved mirrors with a reflectivity R = 0.9998 (value given for 532nm) with a beam waist
wo = 30um. We can also assume a total amount of losses due to external sources(dust
particles scattering, imperfections, etc) of L = 1x 10~ [18] which has to be multiplied by
the losses due to the clipping with the fiber trap. Moreover we assume to inject 600 mW
into the cavity in order to get a circulating power of 1 kW. Form all these parameters we
can calculate all the relevant quantities of the cavity (finesse, enhancing factor, potential
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0.9998
30 um
10199
1581
Pcavity 950 W
Uprap(457 5 | 178 mK
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Table 4: List of the important parameters once given the value of R and w. Note that
w is the spot size at the ion position. P.quity is the power inside the cavity calculated by
multiplying the injected power with the enhancing factor.

depth) applying Eq. (2.22),Eq. (2.23)and Eq. (1.11). In Table 4 it is possible to see the
value of all these parameters using the initial conditions given before.
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Figure 17: Fiber trap boundaries at position z = z1 and z = 21 + 1. 2] =
(375,700, 1250)um depending if one want to use only the electrode tip, electrodes in
the glass cane or the full system with the copper shield.

Half symmetric case: As a second case let us analyze the half symmetric configura-
tion for the cavity. Unlike the previous case, the beam waist is positioned on the surface
of the flat mirror. This means that the spot size at the ion position will be larger than
wo and thus the power will be spread onto a larger surface reducing the optical intensity,
see Fig. 17.

Following the same procedure introduced in the previous paragraph we can calculate the
losses due to the clipping with the trap boundaries. The equation we have to integrate
is exactly the same as before where the first edge is at a position z1 from the waist. A
possible result is given in Fig. 18 where a distance of 21 = 1 cm has been chosen.

It is possible to see that there are two main difference from the symmetric case. First
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Figure 18: Plot of L(wo,!) as a function of the beam waist and for three different value
of I. The distance z1 is 1 cm. Yellow line: [ = 750pm, Red line: | = 1400um,Blue line:
[ =2500pum.

of all, the losses and the optimal beam waist are larger in this configuration than in the
symmetric one. The reason is visible in Fig. 17: the ion position is in the diverging part
of the beam and thus there will be more clipping. Moreover, for geometrical reasons,
we expect the optimal beam waist to increase when increasing z1. This means that if
we want to maximize the optical trapping depth, we would like to have the flat mirror
closer to the fiber trap. Unfortunately this is potentially dangerous for the system
because there is the risk of creating charges on the dielectric surface of the mirror which
will lead to undesired stray fields acting on the ion.

If this configuration is chosen, a possible implementation could be to use the same
parameter as before where we consider a beam waist wy = 45 pm (value that minimize
the losses). The result is shown in Table 5.

As one can see in this configuration the trap depth is much smaller than the symmetric
configuration although the value for the finesse and the enhancing parameter are similar.
What makes a big difference is the spot size on the ion which is almost doubled.

2.2.2 Cavity configuration and design
Although the half symmetric configuration is more stable than the symmetric one, the

fact that the flat mirror has to be very close to the ion could lead to undesirable charging
effects of the dielectric surfaces of the mirrors which will create stray fields on the
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R 0.9998

w 63 um

F 10159

S 1568
Pccwity 926 W
Uprap(4571 5 | 39 mK

Table 5: List of the important parameters once given the value of R and w. Note that
w is the spot size at the ion position. To calculate this we considered z1 = lcm.

R=38cm | R=3cm | R=2.5cm
Cavity length L 7.45 cm 5.8 cm 4.76 cm
Al distance between centers | 1.5 mm 1.9 mm 2.3mm
g° factor (stabilty) 0.92 0.86 0.81
w1 spot size on mirrors 212 pm 166 pm 137 pm
FSR 2.01 GHz | 2.58 GHz | 3.1 GHz
linewidth Av 197 kHz 253 kHz 308 kHz

Table 6: Comparison of cavity parameters for different radius of curvature. In all the
three cases a beam waist of 30um is considered.

ion. Furthermore, the trapping depth for this configuration is much smaller than the
symmetric case. For these reasons we have chosen to build a symmetric resonator.

To allow a large distance from the ion and a beam waist of the order of 30um, we
are left only with the near concentric configuration. The near confocal case cannot be
applied because the beam waist is small only when the cavity is short, as can be seen
in Eq.(2.15). This will lead to the same problems of the half symmetric resonator.
The only thing that still needs to be chosen is the cavity length and thus the radius of
curvature of the mirrors. In this choice we only have one constraint: the cavity should
fit in the vacuum can which have an inner diameter of 10 cm. Looking at commercially
available substrates, i.e. Laseroptik [23], we can choose between three possible solutions:
R=38cm, R=3cm or R = 2.5cm.

In Table 6 we can see the cavity parameters for these three cases. Experimentally we
decide to realize the configuration with R = 2.5 cm because it is the most stable of the
three. In fact, such configuration has the smallest g? and the largest distance between
two centers. As a result a small tilt in one of the mirrors will produce a smaller effect
on the optical axes.

Design: In Fig. 19 the full inventor assembly is shown. Since that it would be
desirable to mechanically position the ion in the correct spot, it is important to leave
enough space for moving the fiber trap and for all the cable connections. For this purpose
I have designed a ring structure that can be fixed with two ends to the vacuum can. This
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R 0.9998

w 30 um

F 10199

S 1581
Pcam'ty 950W
Utrap(4S1/2) 178 mK
Length L 4.76 cm
Al distance of two centers | 2.3 mm

g° 0.81

FSR 3.1GHz
Av 308 kHz

Table 7: Summary of the experimental parameters. Pequity is calculated assuming 600
mW of injection.

Figure 19: System assembly: in the middle it is placed the fiber trap, while the cavity
mirrors are connected using a ring structure.

ring structure allows to rigidly connect the mirrors together fixing the cavity length with
machine precision. In the final setup, the atom oven all not be mounted directly onto
the ring structure as shown in Fig. 19 because we would like to prevent any instabilities
due to heating.

One of the two mirrors is mounted on a stainless steel mount which is glued onto a shear
piezo [27]. The piezo allows a fine tuning of the cavity length and can also be used
to compensate slow noise, i.e vibrations or thermal fluctuations. For a fluent and fast
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movement of the piezo it is important that the load is light enough and well distributed
onto the surface. Fig.20 shows the design of the mirror mount with the piezo system.
The design of the fixing mechanism of the mirror was copied from the polaris mount [25]

Figure 20: Mirror holder and connection with the piezo shear. In yellow is shown the
piezo shear while in white the macro piece.

and it is as light as possible.

Since that the piezo works with high voltages, to avoid any charging of the holder, an
insulating layer of macor is placed between the piezo and the holder. This macor piece
has been machined with grooves which place the mirror holder in the exact orientation
to allow movements only along the axial direction. This system is than connected to the
ring holder using a second piece of macor.

On the other side, the second mirror is mounted on a Polaris mount [25] which is bakeable
up to 200°C and is UHV compatible. This mount allows an accurate titling of the mirror
to tune the orientation and compensate for small misalignments with the other mirror.
Moreover it can also be used to adjust the cavity length and thus to compensate for
small machine errors.

2.3 Optical Setup

Beside the high finesse cavity described above, during this master thesis, I also built
an half symmetric resonator with low finesse. This cavity was built to test the locking
electronics and to try to measure the linewidth and the fluctuations of the laser. The
mirrors that we used were bought from Thorlabs [24] and their reflectivity for 532nm
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Figure 21: Optical setup.

light is R ~ 0.996 which corresponds to a finesse equal to F' = 783. The total length of
this cavity is 15 cm. Using Eq. (2.21) and Eq. (2.24) one can calculate a value for the
free spectral range of 'SR =1 GHz and a linewidth of Av = 1.23 MHz.

The laser that we used is a Verdi V10 [8] which is a solid state, diode pumped, frequency
doubled, Nd:Vanadate (Nd:YVO4) laser that provides single frequency 532 nm output
light. The output power can be set to values between 10 mW and 10 W. Experimentally
it is important to note that changing the output power will also change the diameter
of the output beam. In particular, in the region in which most of the work has been
performed (namely from 0 to 3W), the diameter reduces while increasing the power
(from 2.8 mm to 2.5 mm). In the current setup I'm using an output power of 2W which
corresponds to 2.585 mm in diameter.

A second thing to state is that the laser cannot be used for any locking schemes because
it does not have any component which allows active frequency tuning. Therefore, in
order to control the frequency of the light going to the cavity, an acousto-optic modu-
lator (AOM) is used (AAOpto-Electronics, model MT110-A1.5-VIS [26]). The maximal
active aperture of this AOM is 1.5 mm and it has a damage threshold of 3.5W/mm?
at 532 nm. As visible in the data sheet the smaller the beam diameter the better the
diffraction efficiency [26]. Moreover, in order to avoid a change in the beam path when
modifying the driving frequency, we chooses to use the double pass configuration. In
such a configuration there will always be two beams inside the AOM and thus one has to
take care of the damage threshold. Using the parameters specified above the maximum
power we can send through the AOM is approximately 2.3 W.

Experimentally a compromise between maximal power to send into the AOM and the
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diffraction efficiency was done, so we used a telescope before the AOM to reduce the
optical beam diameter to 1.3 mm. With such a value the measured diffraction efficiency
in the single pass is 89% and 83% in the second pass leading to a total diffraction
efficiency of 74%.

After the AOM the light is sent through an electro-optic modulator (EOM) [30] which is
used to create frequency sidebands on the laser that will be used for the Pound, Drever
and Hall locking scheme (see next sections). To distribute light to both the cavities a
polarizing beam splitter (PBS) was used and, to increase the incoupling efficiency in the

high finesse cavity, we made use of an optical fiber to clean the beam profile that was
distorted by the AOM.

2.4 Cavity stabilization: PDH lock

The PDH locking scheme [31] is one method of realizing a feedback loop which locks
the laser frequency to the resonance frequency of a cavity. If done it properly it has the
effect of reducing the laser linewidth and in the mean while stabilizing the frequency
drifts to a particular cavity mode.

In principle it would be possible to measure any shift from resonance just by looking di-
rectly at the transmission or the reflection of the cavity. Nevertheless these two methods
present problems which are difficult to overcome. For example when looking at cavity
transmission it is impossible to distinguish between a frequency shift or just an inten-
sity fluctuation of the light because in both the cases a reduced transmitted intensity is
observed. Moreover, both in the cavity transmission and reflection, it is impossible to
understand the direction of the frequency shift due to the symmetry of the peaks.

To avoid these problems Pound, Drever and Hall (PDH) proposed a scheme which makes
use of the beat note between two frequency sidebands and the carrier frequency. In our
setup, the sidebands are generated at the passage of a light beam through an electro-
optic modulator (EOM) [17, 30]. To have an idea of the full scheme see Fig. 22. The
beat note signal is read using a fast photodiode which collects the reflected light from
the cavity. This RF signal is then mixed with a local oscillator also used to generate the
sidebands. The output is an error signal which is sent to a PID loop that controls the
AOM frequency.

A full mathematical derivation of the beat note frequency and the shape of the expected
error signal can be found elsewhere [17, 32, 31]; in here I would like to jump directly to
the description of the expected shape of the error signal, which is shown in Fig. 23.

A first remark is that the error signal is symmetric with respect to the central frequency
and it change sign when this value is crossed. This feature allows to discriminate positive
or negative frequency shifts. A second thing to note is that it is linear for frequency that
are close to the carrier and the two side wings are shifted from the carrier frequency by
exactly the driving frequency of the EOM.
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Figure 22: Schematic of setup for PDH-locking of laser to a cavity.
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Figure 23: Example of a possible PDH signal.
frequency of the EOM Q /27 = 280 MHz and a reflectivity of the two mirrors of » = 0.96
[17]. 0f =
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In this case it was evaluated for a

As a final remark we can state that, although not so often used, measuring this signal
allow to retrieve some information about the cavity; indeed the width of the small
peaks/dips are exactly as large as the cavity linewidth and the well connecting the
peaks become deeper by increasing the reflectivity of the mirrors.



2.5 Effective refractive index for the mirrors

To maximize the incoupling one need to match the cavity mode with the injected beam.
In other words it is necessary to setup a lens configuration which focus the injected
beam to have the expected beam waist position and dimension. This configuration
can be predicted using ABCD matrices [6]. The matrix that describes a curved mirror

1S
1 0 1 d 1 0
M‘(%—n? )(o 1)'(0 ) (2.30)

where the last term represent the flat interface between air (index of refraction n;) and
mirror(index of refraction ng); the second matrix instead represent the free space in
a medium of length d while the first term is the curved interface between air and the
substrate. In this, R is the radius of curvature of the surface, n; and ns are the refractive
indexes of the air and the substrate respectively.

A curved mirror acts as a thick lens and thus to predict its effects one has to know its
the radius of curvature and its effective refractive index of the cavity mirrors. In our
case the effective refractive index of the mirror was not known; therefore, to exactly
measure it, we sent a known beam through the mirror and measured the properties of
the outcoming gaussian beam (beam waist dimension and position). From this fit we
tuned ny to match the measured values.

Fig. 24 shows the measured transmitted gaussian beam and its fit for a known incoming
beam. Knowing the properties of the incoming beam, it has been possible to calculate
that the effective refractive index is n = 1.27. This value is different from the one of
the fused silica substrate (n = 1.46071 for 532 nm light [23]). The reason is that the
mirrors are coated with an AR (anti-reflection) coating on the backside and with an
HR (high reflection) coating on the curved surface. For standard fused silica substrates
AR coatings have a refraction index around 1.2, while HR coatings are composed of
alternating layers of high refractive index (around 2.3/2.4) and low refractive index
(1.2/1.3). As a result the effective refractive index of the mirror can be different from
the one of the substrate.

To calculate the values shown in Fig. 24 a chopper wheel was used. The basic idea
behind this method is that when the wheel cuts the beam it will be observed a drop
in power. The derivative of this signal with respect to space gives the intensity profile.
Since that we are dealing with gaussian beams, the beam radius can be evaluated using
a gaussian fit. To have an example see Fig. 25.

Thanks to this method we were able to model our mirror and to predict the lens position
that maximize the incoupling.
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Figure 24: In red are given the measured value while in blue the fitted ones. The measure
of the waist dimension was done using a chopper wheel.
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Figure 25: Gaussian fit of the measured intensity profile.
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2.6 Experimental results

In this section I will present the results obtained from the test cavity concerning the lock-
ing electronics. After that I will focus on the methods used to maximize the incoupling
efficiency on the high finesse cavity. Surprisingly, despite these efforts, the incoupling
efficiency couldn’t be increased over 3%. Therefore I will also present the analysis done
to understand this behavior.

2.6.1 Test cavity

For this test cavity no particular structure was designed. In fact, the flat mirror was
glued on a piezo stack [28] (to allow scanning of the cavity length), which in turn is glued
on an aluminum plate and attached to a post. On the other side, the curved mirror is
placed in a Polaris mirror mount and positioned on a three axis translation stage which
allows to tune the position to match the resonant condition.

To test the electronics we just require to have a single mode to lock to. Fig.26 it is
shown the cavity transmission while scanning the cavity length by a full free spectral
range using the piezo stack.
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Figure 26: Transmission of the test cavity. In blue is shown the transmitted peaks while
in red the voltage ramp on the piezo. As it can be seen a full free spectral range is
displayed and the excited modes have a reduced amplitude.
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Figure 27: Blue: PDH signal. Red:voltage ramp applyied to the cavity piezo. This
image was taken using a large modulation power for the sidebands.

Looking at the IF port of the mixer the PDH signal is obtained, see Fig. 27. Such profile
was observed while scanning the piezo but,the PDH scheme presented before requires
scanning the AOM. The bandwidth of the AOM that we used [26] is limited to 50 MHz
and thus doesn’t allow to measure the full PDH signal since that EOM frequency of
126 MHz. Therefore it is possible to select the main peak of the signal by changing the
voltage applied to the piezo.

The error signal of the main peak is then sent to the E.V.I.L box (Electronically Variable
Interactive Lockbox), a digital P.I. controller designed and built by Ludwig de Clercq and
Vlad Negnevitsky in our group which controls the frequency of the AOM by changing
the voltage of the VCO. With this technique it is possible to lock the laser frequency to
the cavity resonance.

Locking has been achieved but only for short periods of time (less than a minute). We
think that the reason are mechanical instabilities and vibrations. In particular we think
that the flat mirror is more sensitive to vibrations because it is a 1 inch mirror that is
mount on a small piezo stack. As a consequence there could be some mechanical stress.
Moreover the system is not protected by a box and thus air flow can induce undesired
vibrations.
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As a side remark, I would like to present a particular behavior of the EVIL output
signal that has been obtained while locking the laser, see Fig. (28). As it can be seen
there is a periodical repetition of a jump followed by an oscillation. The frequency of
this repetition is approximately 300 kHz. We think that this unexpected signal is only
dependent on the EVIL; indeed, its shape and frequency can be modified by changing
the PI parameters. The jumps can be explained by overflows in the integrator while the
oscillations as the EVIL catching up after the jump.

Lz

B e e e
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€

Figure 28: In green the evil output trace. Jumps and oscillations repeats with a frequency
of approximately 300 kHz.

A second test we tried to perform was to measure the laser linewidth. From the Verdi
data sheet [8], we expect the cavity to have a smaller linewidth than the laser. This
means that the width of the transmitted peaks observed while scanning the cavity, will
only be related to the laser fluctuation. The measured value is Av ~ 3.5 MHz which
is larger than the theoretical cavity linewidth (Av=1.2 MHz). Despite this, we are not
confident enough to state that the measured value is only dependent on the laser. Indeed,
as we already mentioned, this cavity isn’t very stable and thus we cannot exclude that
its linewidth is exactly the expected one.

From these measurements it is possible to conclude that there is an upper bound for the
laser linewidth at 3.5 MHz and that the locking electronics works as expected. Relying
on these results we decided to build the high finesse cavity and compare the results.

2.6.2 High finesse cavity

Following the methods and the design described earlier in this chapter we built the
high finesse cavity. As a first step we decided to place it in air in order to be able
to compensate possible misalignments by tilting the mirror on the polaris mount. In
particular we expected to have misalignments on the vertical direction, on the order of
100 pm, due to the glue layers which were not taken into account during the design of
the mirror holder.

Great efforts were paid to realizing a stable setup and to mode matching the cavity in
order to reach the maximum incoupling efficiency. First of all, to get best ellipticity of
the beam profile, we used an optical fiber to clean the beam shape that was distorted

40



by the AOM. Secondly to tune the beam size and curvature we mounted the incoupling
lenses on translation stages to fine tune the distances from the cavity mirrors.
Moreover, for further stabilization, the cavity was placed into a metallic box to protect
it from vibrations, air flow and mechanical stress on the ring holder. This box can be
seen in Fig. 29.

Figure 29: Inventor design of the box used to protect the cavity structure.

To optimize the incoupling, we tried to act on the polaris mount to adjust the orientation
of the mirrors. It has to be mentioned that doing this is not so trivial because the screws
are very sensitive and don’t move fluently. Despite this, we were able to suppress all
the higher excited modes of the cavity maximizing the fundamental one. The optimized
transmission signal is shown In Fig. 30. This signal was obtained also by optimizing the
lens position.

To enhance this result we tried to maximize the incoupling efficiency while locking the
laser to the cavity. Fig.31 shows the PDH signal obtained by scanning the cavity length.
Although it has been possible to observe the PDH signal also while scanning the AOM,
the locking wasn’t stable enough to allow incoupling optimization. We think that the
reasons are both fast and slow drifts. The fast ones, could be referred to the laser
whose frequency fluctuations are so fast that the PID loop or the VCO response cannot
compensate for them. The slow ones, instead, could be given by air flow and vibration
on the optical table due to the presence of a cryostat. One possibility which we plan to
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Figure 30: In red piezo ramp. In blue the transmitted peak. As one can see the excited
modes are highly suppressed with respect to the fundamental one.

realize in future is to compensate the slow fluctuations using a slow output channel of
the EVIL which could act on the cavity piezo. This solution hasn’t been implemented
yet.

Despite all these efforts it hasn’t been possible to go beyond the 3% of incoupling ef-
ficiency. To justify this result we explored several possibilities. The first one could be
an unbalanced reflectivity of the mirrors due to polarization sensitivity of the coatings.
If this is the case, the impedance matching would not be good and the cavity would
show increased losses. To test this, a A\/2 wave plate was placed before the mirrors. We
noticed a birefringent effect due to stress on the mirror substrate that was solved by
loosing the screws that hold the mirrors in place. Nevertheless to justify a 3% of trans-
mission, it is required that the second mirror have a reflectivity of R = 0.975 which is
very low compared to the specified one of R = 0.9998. This estimation can be obtained
by squaring the transmitted electric field amplitude on resonance

t1 ¢
B =t

= = 2.31
1—7“1’/“27 (3)

where r and ¢ are the refraction and transmission coeflicient.

A second possible effect that could induce losses in the cavity is scattering with air
particles. To evaluate the losses one can assume air to be composed only of nitrogen
molecules, which are the main contributors for green light scattering. The scattering
cross-section of this molecule is 5.1 x1073! m? [33]. This means that at room temperature
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Figure 31: In red cavity transmission. The two sidebands are visible near the central
peak. In blue the recorded PDH signal. The blue line was shifted to allow a better view.

and atmospheric pressure (density of air 1.225 kg/m?) the amount of losses in the 5 cm
path of the cavity are of the order of 5 x 10~7. Therefore it is possible to conclude that
scattering cannot influence so much the transmission efficiency.

A third effect that can be considered are diffraction losses due to mirror tiltings [35].
In particular, in case of misalignments, one of the two mirrors has to be titled for
compensation. Therefore, due to the finite aperture of the mirror, diffraction losses can
occur.

In considering this effect, we first note that so long as we consider mirrors of infinite
radius, the resonator will always be aligned and thus no losses occur, see Fig. 32. As one
can see in part b) of Fig. 32 it is possible to recover the fundamental mode around the
optical axis. Therefore, as long as the beam spot fully lies on the mirror surface, the
diffraction losses would be negligible.

Following the derivation of Hauck et al. [35] it is possible to evaluate the loss factor V/
per resonator bounce by applying a first order perturbation theory for the TEMyg mode

as )
A 2
142 <2a) ] exp [2 (3> } : (2.32)
w w
where a is the aperture radius, w is the beam diameter of the TEMyg mode at the mirror
and A is the displacement of the intensity pattern at the mirror.

Assuming the data given in Table 7 (w = 274 pm), the aperture radius of the mirror
a = 6.35 mm and a total vertical misalignment of A = 100 pm, it is possible to check

V=1-
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a) b)

Figure 32: Figure a) shows the initial state where the two mirrors are misaligned in
the vertical direction. In this case the optical axis (the line connecting the two centers)
doesn’t touch the two mirrors. In figure b) the optic axis pass through the center of the
second mirror and near the edge of the tilted one. In this case it is possible to recover
the fundamental mode.

that 1 —V = 3.6 x 107460 which is absolutely negligible for a finesse of ' = 10000.

From this analysis, and relying on the fact that we were able to observe a nice single
mode, we think that the problem isn’t the cavity but the laser linewidth which is too
broad to allow a better incoupling efficiency. To verify this hypothesis we measured
the laser linewidth by measuring the transmitted peak width obtained while scanning
the cavity. From this measurement we confirmed a linewidth of approximately 3.5 MHz
which agrees with previous estimation done with the test cavity. A second limiting factor
is the fact that it not possible to feedback directly to the laser; as a consequence, the
compensation for the frequency shifts of the laser is limited by the bandwidth of the
VCO.

For this reason and for future experiments with optical trapping we decided to get a new
laser which allows better performances. Other goals of this projects are an in vacuum
test, to check the system stability after the bake out, and to implement the slow feedback
loop acting on the piezo, to allow a better compensation of the slow drifts. The final
goal would be to optically trap “°Ca™ using the fiber trap described before.
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3 Fiber noise cancellation

In this chapter I will describe experiments in which I built and analyzed the performance
of a scheme for fibre phase noise reduction based on feedback. This method is commonly
used in apparatus which combine narrow-linewidth lasers with optical communication
via optical fibres.

Optical fibers are a flexible tool that allow to separate the experiment from the laser
setup. Nevertheless it has been observed [34] that, due to temperature and pressure
fluctuation or just mechanical stress on the cable, the laser linewidth can be be changed
up to some kHz. This phase noise is more evident for longer fibers.

For “°Ca™ qubit manipulation, a laser of 729 nm with a linewidth less than 1 kHz is
desirable, thus the fibre phase noise becomes a factor which must be eliminated.

As can be seen from Fig. 33, the full setup is spread in three different zones: on one table
is placed the laser, on a second there is the experiment and, for stability reasons, on a
third table is placed the ultra high finesse cavity used to reduce the laser linewidth [36].
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Figure 33: Optical setup for the fiber noise cancellation setup.[36]

The optical connection between these zones is done using 10 m long optical fibers. As
a result two different FNC setups are required. A detailed description of the method
can be found in K.Fisher master thesis [36] and D.Hume Ph.D thesis [37]. The basic
idea is to use the phase shift induced by an AOM (¢a0ar) to cancel the phase noise
introduced by the fibers (¢f). As an example consider the main beam of the 729 nm
laser shown in Fig. 33: the laser beam is diffracted into the 0-th and +1-th order by an
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AOM which oscillates at a frequency vaoayr =~ 200 MHz. The 0-th order, which is not
affected by any phase or frequency shift on the single pass, is retro-reflected through the
AOM and diffracts into the -1 order and is sent to a photodiode. This beam will acquire
a phase shift p 10 and a frequency shift —A. The first order diffracted beam acquires
a phase shift —¢ 1057 and a frequency shift of +A after the single pass into the AOM.
This beam is sent trough the optical fiber where it gets partially reflected back using a
pickoff. The fiber will imprint a total phase shift of 2¢; to the light. The back reflected
beam pass again through the AOM where the 0-th order is then sent to a photodiode.
The two beam going to the photodiode exit the AOM with the same angle e therefore
are overlapped. As a consequence it is possible to see a beat note at a frequency

Wheat = 20t — 2da0M + 20 . (3.1)
From this, one can see that the fiber noise can be canceled by locking the AOM phase
to the phase shift of the fiber. To apply this method it is required that the phase noise

introduced by the fiber is slowly varying compared to the bandwidth of the cancellation
system.

3.1 Locking circuit

PD

./

RF IF EVIL VCO
+ @ AOM
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REF V

Figure 34: Locking circuit scheme.

In order to lock the the phase of the AOM to the fiber noise phase shift, the feedback
loop shown in Fig.34 has been implemented. Although the idea is the same for both the
main beam ad the slave one, in the following I will focus on the fiber noise cancellation
of the main 729 nm beam. In this case, the AOM is driven at ~ 200 MHz an thus we
expect a beat note frequency at vpeqr =~ 400 MHz. This optical signal at is read using
a custom made fast photodiode [38] and converted into an RF signal which is sent to a
mini-circuit frequency mixer [39] (model: ZX05-1L+). The RF input is mixed with a
DDS frequency at vpo = 400 MHz sent through the the L.O (local oscillator) port.

In Fig.35 it is plot the measured beatnote signal. As one can see the peak is placed
onto a pedestal wide =~ 17 MHz which shows that there is another source of noise that is
probably due to the laser T.A. To minimize the conversion losses during the frequency
mixing the L.O. signal should be at ~ 7 dB [39]. In our case the output of the DDS is
at 0 dB so, in the future, a stronger L.O signal could improve the full setup.
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Figure 35: Beatnote plot. The pedestal is wide roughly 17 MHz.

The signal coming from the mixer has two frequency components: one fast at the sum of
the two mixed frequency vro + Vpeot and a second DC frequency which is the difference
of the two Vpeqt — ¥1,0. The one containing only the information about the phase shifts
is the second, thus we select it by passing the signal through a low-pass filter. This DC
signal, also called error signal, is than fed into an EVIL box which will output small
voltage correction needed to cancel the frequency shift due to the fiber noise. As visible
from Fig. 34, this signal is summed with a reference voltage source which sets the VCO
[40] (model: Minicircuit jtos-200) frequency at vaonr ~ 200 MHz. If properly locked the
EVIL output should allow noise suppression up to few kHz.

3.1.1 Results

Applying the protocol described above it is possible to lock the system to suppress the
noise induced by the optical fiber. In Fig. 36 it is shown the comparison between a locked
and an unlocked beat note signal. The unlocked trace was measured using a frequency
source and not with the unlocked VCO because the VCO linewidth is on the order of
100 kHz due to electrical and thermal noise. Therefore it is not possible to perform a
sensitive measurement.From Fig. 36 one can note that the noise is suppressed sensibly
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only up to 1 kHz from the peak with an average suppression around 10 — 15 dBm.
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Figure 36: In red the unlocked beatnote, in blue the locked beatnote. The frequency
scale is in 10® Hz

This result shows that the locking scheme works and that it is possible to partially
suppress the fiber noise. Nevertheless its efficiency can be further improved in two way:
the first one is by optimizing the fiber incoupling to have a better beat note signal; the
second one is reducing the electrical noise by building a single PCB in which all the
components are stabilized and isolated from the environment. For example a possible
improvement could be stabilizing the reference voltage source and also isolate the VCO
from any heating source like resistors.

A final test to check wether this method improves the control of the ion is to measure the
effect of FNC on the coherence of the ion. At the moment this is not possible because
our current limitation is noise in the magnetic field.
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4 Summary and Outlook

This thesis illustrates all the work that has been done to realize a high finesse cavity
for optical trapping of ions. I have shown that, compared to °°Ca® and “Be™, >Mg™
is the better candidate for optical trapping. Its level scheme allows optimal trapping
parameters for the states of interest, namely the ground and the P states. Form these
calculation it has been possible to evaluate the amount of power needed to trap those
species using a far detuned laser beam at 532 nm. To get to those values of power
(around the kW), we decide to build a high finesse cavity.

After comparing several possibilities, we opt for a near concentric resonator with finesse
F = 10160,long approximately 5 cm that support a beam waist of 30 pm. The experi-
mental realization of this device shows that it is possible isolate the fundamental mode
from the excited ones. Moreover it has been shown that it is possible to partially lock
the laser to the cavity using the PDH scheme.

Despite these results it hasn’t been possible to obtain an incoupling efficiency beyond
3%. After a detailed analysis we think that this is due to the laser whose linewidth is
too broad to allow a better incoupling efficiency. A second limiting factor is the fact that
it not possible to feedback directly to the laser; as a consequence, the compensation for
the frequency shifts of the laser is limited by the bandwidth of the VCO.

For future experiments we decided to buy a new laser which allows better performances.
Other goals of this projects in the short run are an in vacuum tests and the implemen-
tation of a slow feedback loop acting on the piezo, to compensate the slow drifts on the
piezo. The final goal of this project is to optically trap °Ca* using a ion trap fabricated
with photonics crystal fibre technology.

This project is a first test for the long term goal which is to build a 3D cavity to create
optical lattices for quantum simulation purposes using 2°Mg® ions. The neutral atom
community already uses optical lattices, but in that case the coupling between neigh-
bors is given by collision. The great advantage of working with ions, is that the coupling
among neighbors sites is given just by the Coulomb interaction and thus it does not
require any kind of collisions.
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Appendix A: Gaussian beams

One way to analyze free-space propagation of light is through the paraxial wave equa-
tion [6]. To derive such result we can start by writing the scalar wave equation for
electromagnetic fields

(V2 +k? E(z,y,2) =0, (4.1)

where E(z,y, z) is the phasor amplitude of a field which is sinusoidal in time. Without
loosing in generality, we can consider optical beams which propagate primarily in the z
direction. Therefore it is convenient to rewrite F as

where the u describes the transverse dependence of the beam. Substituting this last

expression in the scalar wave equation one can obtain the description of the transverse
field as 52 52 52 5
U U u U
—+ =+ =5 —2ik—=0. (4.3)
oxr?  0y? 072 0z
Having already factorized the e 7%% term, the remaining z dependence of u is caused only
by diffraction effects; consequently it will always be slow compared to the wavelength,
due to the e 7%% term, and also to the transverse variations due to finite width of the
beam. For this reason it is convenient to work in the paraxial approximation that
consist in neglecting the second derivative of u with respect to z. Therefore we reduce
the previous equation to the paraxial wave equation
u  0%u ou

@‘F@—ij&:(). (4.4)

The next step in this derivation is to find an analytical expression for a gaussian spherical
wave, which is better known as a gaussian beam in free space. To solve this task consider
a spherical wave whose origin is in (zg, yo, 20) and has the following form:
exp(—jk|r —ro
E(r,ro) = (=JH D (4.5)

Ir — ro

Suppose also that there is an observer located at a distance |z — zg| from the source
whose aim is to calculate the transverse amplitude at a point (x,y). Assuming that the
distance |z — zg| is large compared to the coordinates (zg,yo) and (z,y), the Fresnel
approximation to diffraction theory says that Eq.(4.5) can be expanded in |r — rg],
where only the first terms are considered. Consequently we are left with an equation
that satisfys the paraxial approximation and is given by

(z —20)* + (y — yo)*
2R(z) ’

1
u(r,ro) = ——exp |—jk (4.6)

R(z)

where R(z) = z — 2¢ is the radius of curvature of the spherical wave at position z.
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Note that the amplitude of this paraxial spherical wave doesn’t fall off with transverse
distance. So, written in this way, it cannot be the analytical solution we are looking
for. This problem can be overcome in the following way: to start let’s consider for
simplicity zg, yo being zero, than we can replace the coordinate zy with zg — gg, where qq
is an arbitrary complex number. This replacement can be applied to Eq. (4.6) leading

to

1
u(x,y,z) = ——exp |—tk
( ) q(z) [

22 4 yT

, 4.7
2q(=) (1)

where ¢(z) = qo + z — 29 is called complex radius and can be decomposed in the real and

imaginary part as follow:

1 1 1
= —1 . 4.8
9(2)  a(2)  a@i(2) 9
Applying this definition to the above equation leads to
u(x,y,z) = ——exp |—ik — 4.9
( ) q(z) [ 2g,(2) 2gi(2) .

This is exactly the result we wanted to derive. There are two components: the first
represents a spherical wave propagating along z with real radius of curvature ¢,, while
the second takes care of the finite transverse amplitude variation. This last term has the
form of a Gaussian profile whose fall off is determined by ¢;(2).

Using the standard notation we can replace the real and imaginary parts of the complex
radius, ¢,(z) and ¢;(z) with R(z) and mw?(2)/\ respectively. Thus we can finally write
the equation of gaussian beams as

1 22412 g 4y?

u(z,y,z) = @ exp |—ik R(2) ) | (4.10)

As a final remark I would like to emphasize that the propagation for a gaussian beam is
entirely determined by

1 A
— o = — 4.11
Q(Z) qO + z ZO R(Z) j TF(,L)Q(Z) ) ( )
where the initial value, for zg = 0, is
2
Y .
qo = JT\O =JZR , (4.12)

in which we introduced the Rayleigh length zp as well as the initial beam waist wyq.
Moreover we can re-elaborate the expression for the size and radius of curvature, to be
only functions of the beam waist wy and the wavelength of the light in the medium A.
The result is:

2
w(z) =wey/1+ (;) (4.13)
R(z)=z+ Zj% . (4.14)
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