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Abstract

Although much of the theory of quantum error correction is now well-established,
it remains a challenge to experimentally achieve error rates below the thresholds
set by quantum error correction theorems. Maintaining low coherent errors for
experiments of increasing complexity is an important part of this challenge, where
accurate knowledge about the physical system is key. As a preliminary effort to
reduce coherent errors, this thesis investigates the use of phase estimation for single-
qubit gate calibration.

In chapter 3 an algorithm used to stabilise the frequency of a 40Ca+ ion qubit
in the presence of harmonic noise is described.

In chapter 4, a non-adaptive phase estimation technique is implemented to
calibrate laser pulses used to perform single-qubit gates on a 40Ca+ ion qubit.
Results show estimation of desired pulse frequencies and pulse times roughly 7
times faster than with standard calibration techniques. Estimates with sample
standard deviations of 240 Hz are obtained for the desired pulse frequency, and
estimates obtained for the π/2-time and π-time show sample standard deviations
of 1.56 % and 1.45 %, respectively.

The obtained accuracies are found to be limited by qubit coherence, and pos-
sibly also intensity fluctuations of 729 nm laser light used to perform qubit gates.
Techniques to further improve accuracies in the presence of such forms of decoher-
ence are investigated and preliminary results are presented.

In chapter 5 a novel adaptive phase estimation protocol is described, and re-
sults from simulation and experiment show improved performance compared to the
techniques of chapter 4. Results from simulation suggest that improvement in the
accuracy of frequency estimation by a factor of 1.69 should be possible, and im-
provements by a factor of 1.85 are found for the π-time. Experimental results show
sample standard deviations of 101 Hz, 0.59 %, and 0.49 % for frequency, π/2-time,
and π-time, respectively.
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Chapter 1

Introduction

In 1982, Richard P. Feynman gave an insightful and entertaining speech about
quantum simulation in which he raised some fundamental questions and described
some key features on the ability to simulate physical systems [1]. The ideas Feyn-
man presented made an important contribution to the beginnings of research on
quantum computing, and since then, the development of both the theoretical under-
pinnings of quantum computation, as well as the progress in experimental control
of quantum systems has been significant. In the beginning, the challenge of achiev-
ing the necessary coherent control over quantum systems seemed to be an almost
impossible task, and this initially cast doubts as to whether quantum computation
was even possible [2]. A key problem was thought to be that errors in a quantum
computation, even if rare, would accumulate and overwhelm the computation as
its complexity grew. Yet it wasn’t long before methods for correcting errors in
quantum systems were developed [3–7], and the field of quantum error correction
rapidly grew.

New techniques for correcting both coherent and incoherent errors were found,
and developments eventually led to error threshold theorems stating targets for
the control of individual quantum systems necessary in order to correct errors in a
scalable way [8,9]. So it is that, using spin-1/2 systems as qubits to form the basic
building blocks for a quantum computer, an idea already present in Feynman’s
speech 35 years ago, we now know it is possible to perform arbitrary quantum
operations with only a small set of single and multi-qubit gates [10–14].

At the same time, there has been tremendous progress in experimental control
of individual quantum systems with the coming of age of quantum thought experi-
ments as Haroche and Raimond put it in their book [15]. Specific criteria necessary
for physical implementation of quantum computation have now been identified [16],
and several physical systems meeting these criteria are presently under study.

In ion-trap quantum computing experiments, single-qubit operations can be
performed with high accuracy using controlled coherent light interactions, while the
work of Mølmer and Sørensen has provided techniques for robustly and accurately
coupling multiple ions to achieve high-fidelity multi-qubit gates [17–19].

Although the methods for applying the basic building blocks of quantum com-
putation have been established, it remains an experimental challenge to achieve
errors below the bounds set by quantum error correction theorems. One of the key
features of these challenges is minimising coherent control errors – errors which can
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be seen as the result of mis-calibration of control parameters; they are ultimately
due to our lack of knowledge about the system we are trying to control.

Fortunately, the task of learning the parameters of a quantum system is not
entirely new; the area of quantum parameter estimation is relevant to many other
areas of physics, and has been an active field of research in recent decades [20–23].
Meanwhile, the field of classical control has also seen significant development in
recent years with, for example, a revival of the use of neural networks in machine
learning to achieve better performance [24].

Successfully realising a universal quantum computer is likely to bring together
many of these exciting ideas, and exploring them is the subject of this thesis. In
particular, I explore the use of phase estimation techniques, and Bayesian adaptive
methods for single-qubit gate calibration, and I present some preliminary experi-
mental results for an ion-trap system using 40Ca+ and 9Be+ ion qubits.

Chapter 2 briefly reviews the physics of the 40Ca+ and 9Be+ ions used for
the experiments discussed in this thesis, and summarises some relevant details of
the experimental system. Then a quantum mechanical description of single-qubit
gate operations for a trapped-ion qubit are presented, and finally, a brief review
of quantum parameter estimation is also included and relevant bounds on the
estimation accuracy are discussed.

Chapter 3 describes a complex linear regression algorithm used to improve the
coherence of a 40Ca+ ion qubit in the presence of harmonic noise.

Chapter 4 describes a technique developed by Kimmel et al. based on the
earlier work of Higgins et al. [25, 26] which uses non-adaptive phase estimation
for robust calibration of single-qubit gate operations. Experimental results are
presented for the calibration of frequency and time of laser pulses used to achieve
these gates. Then techniques to improve the accuracy of calibration in the presence
of decoherence are also discussed, and some preliminary experimental results are
presented.

Chapter 5 describes a novel calibration method combining techniques de-
scribed in chapter 4, with an adaptive Bayesian Ramsey procedure developed by
Andrey Lebedev. The new protocol extends the use of the adaptive procedure for
calibration of pulse times as well as frequency, while combining it with methods
described by Kimmel et al. Results from simulation and experiment demonstrate
improved accuracy of estimation for both pulse frequency and pulse time calibra-
tion.

Chapter 6 summarises the report and the main results, and discusses possible
improvements and generalisations that could be made in the future.
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Chapter 2

Controlling Ion States

2.1 The Calcium Ion

Most of the experiments presented in this thesis were performed using a 40Ca+ ion
qubit. The ions are trapped using a linear Paul trap with an axial trap frequency
of 2π × 2 MHz 1. Relevant internal states and transitions of the 40Ca+ ion are
shown in figure 2.1. The levels used for the optical qubit are the |S1/2,m = +1/2〉
ground state and |D5/2,m = +3/2〉 metastable excited state, where the particular
Zeeman sub-levels were chosen to minimise magnetic field sensitivity under some
geometric constraints of the system [28].

The qubit levels are coupled by a quadrupole transition at 729 nm with a life-
time on the order of one second [30]. We use a magnetic field of ' 119 G for which
the D5/2 levels exhibit Zeeman splittings of 201 MHz. The laser used for coherent
manipulation of the qubit is stabilised to a linewidth less than 600 Hz which is well
below the axial trap frequency, as required to properly resolve sideband transitions
(see section 2.4 below) [28].

Qubit state preparation in the |S1/2,m = +1/2〉 ground state is achieved by
applying a σ-polarised 397 nm laser to couple the |S1/2,m = −1/2〉 state through a
dipole-allowed transition to the P1/2 states while simultaneously applying 866 nm
and 854 nm lasers to couple the D3/2 to the P1/2 levels and the D5/2 to the P3/2

levels, respectively. Since the P levels decay rapidly, this combination of couplings
leads to populations of 0.999 in the |S1/2,m = +1/2〉 ground state after 20 µs [28].

Qubit readout is performed by applying π-polarised 397 nm light while simul-
taneously applying the 866 nm laser to prevent populating the D3/2 levels. For
detection times of 300 µs, collection efficiencies in our system lead to average pho-
ton counts of ∼ 25 when the qubit is in the ground state, and typically fewer than
∼ 7 when it is measured in the excited state. This way a measurement outcome in
the ground or excited state can be discriminated to better than 1 : 105 [28].

We can also prepare the motional state of the ion by applying Doppler cooling
using the 397 nm transition. Following this initial cooling stage by a second one
using electromagnetically induced transparency cooling, and finally by applying
sideband cooling, the ion can be prepared in the motional ground state [31–33].

1For a theoretical description of ion trapping see [15] pg. 446, or [27] for a more detailed
description; for a description of the trap used in this setup, see [28,29].

5



P3/2

D5/2

∆ = 201 MHz
P1/2

D3/2

S1/2

∆ = 335 MHz

mj
+5/2
+3/2
+1/2
−1/2
−3/2
−5/2

mj
+1/2

−1/2

397 nm

729 nm

866 nm

854 nm

Figure 2.1: 40Ca+ energy levels and transitions. The Zeeman splittings shown are
for a magnetic field of ' 119 G.
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2.2 The Beryllium Ion

Our ion trap has been designed to trap both 40Ca+ and 9Be+ ions, and some of
the experiments in this thesis were also performed using a 9Be+ ion. The lower
mass of 9Be+ leads to a higher motional frequency which makes it easier to resolve
sideband transitions (see section 2.4.1). 9Be+ has hyperfine structure due to its
nuclear spin angular momentum of I = 3/2. The most relevant energy levels are
shown in figure 2.2. The hyperfine splittings of the S1/2 state are labelled with
the total angular momentum quantum number F = I + L + S and its projection
mF along the z-axis, where L and S are the total orbital and total spin angular
momentum quantum numbers, respectively. The excited P states are coupled to
the ground states by a dipole transition leading to a lifetime of 8.2 ns, and the
P1/2 and P3/2 states are split by 197.2 GHz due to fine structure. All transitions
used for state preparation, qubit manipulation, and readout have wavelengths of
∼ 313 nm.

To perform qubit operations we choose a pair of levels between the S1/2, F = 2
and F = 1 levels. We prepare the ion state by applying σ+ polarised light
at ∼ 313 nm near-resonant with transitions from S1/2 |F = 2, mF = 1〉 and
|F = 1, mF = 1〉 to an excited P1/2 state. Since the excited state decays rapidly,
the ion is optically pumped into the |S1/2, F = 2, mF = 2〉 state 2.

Once the ion state is prepared, we coherently couple a given pair of S1/2 states
via the P1/2 states using a stimulated Raman transition. We manipulate the S1/2,
|F = 2,mF = 2〉 ↔ |F = 1,mF = 1〉 states, which we refer to as the frequency-
dependent qubit (FDQ), and the S1/2, |F = 2,mF = 0〉 ↔ |F = 1,mF = 1〉 states,
which we refer to as the frequency-independent qubit (FIQ). We apply a magnetic
field of ∼ 119.45 G for which the FIQ transition frequency becomes independent of
magnetic field to first order. Under this field, the FDQ and FIQ transitions have
frequencies of 1018 MHz and 1207 MHz, respectively.

Qubit state readout is performed using a closed cycling transition between the
S1/2 |F = 2, mF = 2〉 and a P3/2 state 3. In typical experiments we prepare the
S1/2 |F = 2, mF = 2〉 state, and then coherently transfer the population to the
|F = 1, mF = 1〉 state to perform operations on the FIQ. Since the |F = 2, mF = 2〉
and |F = 2, mF = 0〉 states are close in frequency, population in the latter state
can sometimes scatter light during readout. For this reason we typically use a
third transition to shelve the population from the |F = 2, mF = 0〉 state to the
|F = 1, mF = −1〉 state before readout. This transition occurs at 1370 MHz under
the magnetic field mentioned above, and we refer to it as the FIQ shelving transition
or FIS for short. Thus, after performing qubit manipulation on the FIQ, we coher-
ently transfer the population from the |F = 2, mF = 0〉 state to |F = 1, mF = −1〉,
and transfer the population from |F = 1, mF = 1〉 to |F = 2, mF = 2〉, before fi-
nally performing readout using the closed cycling transition mentioned above.

To prepare the motional state of the ion we apply doppler cooling using light

2The P1/2 states decay to all the S1/2 states, but transitions with larger changes in mF are
much less likely. Since the laser light is σ+ polarised, the two ground states are coupled to the
P1/2 state with mF = 2.

3We say “closed” here because we excite the |F = 3,mF = 3〉 P3/2 state which decays back to
the |F = 2, mF = 2〉 S1/2 state with high probability.
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S1/2

|2, −2〉
|2, −1〉
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|1, −1〉
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Figure 2.2: 9Be+ energy levels and transitions. All S1/2 to P transitions have a
wavelength of ∼ 313 nm. Fine structure leads to a splitting of 197.2 GHz between
the P1/2 and P3/2 levels. The leftmost two beams in the figure illustrate the coherent
qubit control on the FIQ qubit levels using a stimulated Raman transition, where
the two beams are red-detuned from the P1/2 levels. The next two beams to
the right illustrate σ+ polarised light near-resonant with transitions from the S1/2

|F = 2, mF = 1〉 and |F = 1, mF = 1〉 levels to the P1/2 levels, which decay
rapidly to prepare the ion in the S1/2 |F = 2, mF = 2〉 state. The rightmost beam
illustrates the closed cycling transition between S1/2 |F = 2, mF = 2〉 and P3/2

used for qubit state readout; the same beam is also used for doppler cooling in
which case it is red-detuned from the transition.
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red-detuned from the closed cycling transition mentioned above. Further cooling
can also be applied using sideband cooling. Now you might be wondering how we
perform state preparation if there is population in any of the S1/2 states with mF

less than one. The answer is that we always perform doppler cooling before state
preparation. In an initial stage of doppler cooling, the laser power is high enough
to broaden the transition such that it becomes resonant with all the S1/2 states.
Since the doppler beam is σ+ polarised, the combined processes of excitation and
stimulated emission tend to increase mF . Thus, after doppler cooling the proba-
bility of having population in any of the states with mF < 1 becomes negligible.
A detailed description regarding the 9Be+ ion in our experiments can be found in
Hsiang-Yu Lo’s PhD thesis [34].

2.3 Coherent Control

2.3.1 Calcium

Accurate control of the laser pulses applied with the 729 nm laser is a necessity for
achieving high-fidelity operations on the qubit. Two key devices used to achieve
accurate control in our experiments are the acousto-optic modulators (AOMs) used
to pulse the 729 nm laser and to control the frequency, phase, and amplitude of the
light seen by the ion, and the direct-digital synthesizers (DDSs) used to generate
the RF signals that are input to the AOMs.

An AOM is a device that uses the effect of an acoustic wave propagating in
a transparent medium to modulate its refractive index. In this way an effective
diffraction grating can be generated with parameters that can be tuned by the
frequency Ω, phase Φ, and intensity I of the acoustic wave 4. The key feature of
the AOM is that it leads to Bragg diffraction of the incident beam into different
orders of diffracted beams of different frequency and intensity. In the experiments
discussed here the positive or negative 1st-order diffracted beam is always used, for
which the frequency of the ±1st-order diffraction is given by ωr = ω±Ω. Similarly,
the phase of the diffracted beam is given by φr = φ±Φ. The ratio R of the output
power of the diffracted beam to the total power of the input laser beam has a
dependence on the intensity of the acoustic wave that goes as

R ∝
(

sin
√
I
)2

. (2.1)

Thus, by controlling the frequency, phase, and intensity (proportional to amplitude
squared) of the acoustic wave we can tune the corresponding parameters of the light
used to manipulate the qubit.

After several stages of amplification and noise cancellation 729 nm light passes
through three AOMs on the final stages of its journey to the ion trap as shown
in figure 2.3. The first of these, labelled AOM1 in figure 2.3, is double passed 5,

4For a short summary of the working principles of an AOM I recommend David Nadlinger’s
semester thesis report, section 2.2 [35].

5Double passing is a common technique in which the diffracted beam is reflected by a mirror
back into the AOM where it gets diffracted a second time. After the second pass, the beam of
the same order as the first pass will be aligned with the input beam.

9



and the negative first-order reflected beam is selected. Thus, for incident light of
frequency ω and phase φ the doubly-diffracted light on its way to the second AOM
has frequency and phase

ω1 = ω − 2Ω1 , (2.2)

φ1 = φ− 2Φ1 , (2.3)

where Ω1 and Φ1 are, respectively, the frequency and phase of the acoustic wave in
AOM1. AOM2 in figure 2.3 is not used in the experiments discussed here. AOM3

in figure 2.3 is single-passed and the positive first-order diffraction is coupled to
an optical fibre and sent to a final focusing stage before making its way to the ion.
Therefore, the light that reaches the ion has frequency and phase

ω3 = ω1 + Ω3 , (2.4)

φ3 = φ1 + Φ3 , (2.5)

where Ω3 and Φ3 are, respectively, the frequency and phase of the acoustic wave in
AOM3. Both AOM1 and AOM3 have a centre acoustic frequency of 200 MHz, and
are typically operated within a range of ±10 MHz around the centre value 6.

To set the inputs to the first AOM, we define a DDS pulse instance, 729 master,
in our control system, which has a frequency, phase, amplitude, and time, and we
set these parameters in our control computer and send them via an FPGA (Field
Programmable Gate Array) to the DDSs. The DDSs then synthesise the radio
frequency (RF) pulses used to generate acoustic waves in the AOM. Similarly, we
define DDS pulses 729 a and 729 b to control AOM3; in this case we can combine
the 729 a and 729 b signals to generate two superimposed pulses with different
frequencies on the ion 7.

To apply single-tone pulses the 729 b parameters are not needed. Before a
pulse is applied we set the 729 a to a fixed amplitude output at a default frequency
which ensures that we are far detuned from qubit resonance. At the same time the
729 master is set to zero amplitude 8. Now to apply a laser pulse to the qubit, we
first switch the frequency of the 729 a to a non-default value which brings the qubit
close to resonance when the 729 master is calibrated to the correct frequency. We
then switch on the 729 master for the desired duration of the pulse, and finally
switch the 729 a back to an off-resonant default value after the 729 master pulse
is over. To tune the frequency, phase and amplitude of the pulse we only change
the values for the 729 master, and keep the phase and amplitude of the 729 a

constant. The 729 a amplitude is kept at a constant non-zero value in order to
stabilise the temperature of AOM3. This is because the deflection angle of the AOM
has a temperature dependence causing the coupling to the output optical fibre after

6Using wider ranges will lead to notable losses in power of the output beam.
7This is used for example to perform some multi-qubit operations requiring application of two

pulses with slightly different frequencies simultaneously.
8Although the amplitude is zero in principle, RF-noise can cause small fluctuations in the

amplitude which is one reason to keep the 729 a off-resonant when no pulses are being applied.
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Figure 2.3: Schematic of the final stages of the 729 nm light on its journey to the
ion trap. Three AOMs are used to control the frequency, phase, amplitude, and
timing of the pulses applied to the ion. In the experiments discussed in this thesis,
only AOM1 and AOM3 are used.
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frequency 1
232

GHz = 0.2328 Hz

phase 360
216

deg = 0.0055 deg

amplitude 100
214

% = 0.0061 %

time 8 ns

Table 2.1: Resolutions of DDS outputs.

AOM3 to vary (see figure 2.3). For AOM1 changes in beam alignment depend much
more weakly on AOM temperature since, to first order, double-passing the beam
cancels any fluctuations in reflection angle.

The accuracies with which we can set the pulse parameters in our experiments
are ultimately limited by the digital resolution of the DDS outputs listed in table
2.1. Note that the dependence of the laser amplitude at the ion on the amplitude of
the DDS output is not linear, in part due to the nonlinear relation of the reflection
coefficient (2.1), and because we use AOM1 in a double pass configuration 9. Since
AOM1 is in double pass configuration, the frequency and phase relations given
in equations (2.2) and (2.3) effectively halves the resolution for these parameters.
This gives a frequency resolution of 0.4657 Hz, and a phase resolution of 0.011
degrees for the light at the ion. In addition to the time resolution listed in table
2.1, pulses in our experiments are limited to a minimum duration of 1.4 µs due to
the time it takes for communication (via serial peripheral interface) between the
FPGA and the DDSs.

2.3.2 Beryllium

A conceptual schematic of the AOM setup used to tune the parameters of the 313
nm laser light for coherent control of the 9Be+ ion qubit states is shown in figure
2.4. Since coherent control of 9Be+ states is achieved using a stimulated Raman
transition, we need to address the ion with two beams whose frequency difference
is equal to the qubit transition frequency. Let the wave vectors of the two beams
used to address the ion be

~k1 =
2π

λ1

n̂1 ,

~k2 =
2π

λ2

n̂2 ,

where n̂1 and n̂2 are normal vectors pointing in the direction of the phase velocity
for each beam. In order to address sideband transitions (discussed in section 2.4.1)

we require the difference of the wave vectors of the two beams, ~k1 − ~k2, to have a
large component along the direction of ion motion. For this reason we apply the
two beams at 45◦ and 135◦ from the axis of motion of the ion when we want to

9In particular, for low intensities the dependence of output laser power to input power is
roughly quadratic, which leads to a quartic dependence when the AOM is in double pass config-
uration.
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to ion trap
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to ion trap

90 switch

90 a
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co com

Figure 2.4: Schematic of the final stages of the 313 nm Raman beams used to
manipulate 9Be+ qubit states. The first polarising beam splitter (PBS) is used to
split the beam into two parts which will address the ion at 45◦ and 135◦ from the
trap axis. The AOMs are labelled with their respective centre frequencies. The
DDS pulses indicate the AOM input side; the beams are deflected in a direction
dependent on the order of the reflected beam used.

drive sideband transitions 10. Conversely, when we want to become insensitive to
the motion of the ion, we overlap the beams in order to minimise the difference
of the wave vectors. As shown in figure 2.4, a first polarising beam splitter (PBS)
divides the light into to paths. We use the light from each path to address the ion
from the two directions mentioned above.

Lets first consider the trajectory of the transmitted beam; the light passes
through a second PBS and both the transmitted and reflected beams are passed
through two AOMs 11. For our purposes we can consider that only one beam passes
through each of these AOMs. They are both in double-pass configuration, and are
addressed by the DDS pulses co com and co switch, where “co” refers to the fact
that these two beams will be co-propagating when they reach the ion. For one

10In our experiments we use the motion along the trap axis to perform sideband transitions.
11The fact that both beams pass through both AOMs is not relevant here. This configuration

allows phase insensitive transitions for two qubit gates; details regarding this feature can be found
in Hsiang Yu Lo’s PhD thesis [34].
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of the beams we pick the negative first order reflected beam from the first AOM
addressed by the DDS pulse co switch, while the other beam is unaffected. For
the second AOM addressed by the DDS pulse co com, the beam reflected by the
first AOM is transmitted unaffected, while for the beam that was transmitted by
the first AOM we choose the positive first order reflected beam. Both AOMs are
operated in double-pass configuration, and the centre frequencies are also shown
in figure 2.4. Finally, these two beams are recombined using another PBS and
coupled to a fibre leading to the ion trap.

The beam reflected by the first PBS is double-passed through an AOM ad-
dressed by the DDS pulse 90 switch, and then finally is single-passed through an
AOM addressed by the DDS pulse 90 a. Here “90” refers to the fact that these
beams will be propagating perpendicular to the “co” beams when they reach the
ion.

Similarly to the setup for 40Ca+, we keep the 90 a on at constant amplitude
and only switch the frequency when we send pulses. To perform experiments where
we would like to drive sideband transitions, we send pulses to the co com and the
90 switch. When we would like to be insensitive to ion motion we send pulses to
the co com and co switch. To calibrate the frequency and phase of the pulses, we
only tune the parameters of the co com.

2.4 Single-Qubit Manipulation

2.4.1 Quantum Mechanical Description

The bare Hamiltonian describing the internal qubit state of a single ion and its
axial motional state in the trap is given by

H0 =
~ω0

2
σz + ~ωma†a , (2.6)

where ω0 is the frequency of the qubit transition, ωm is the frequency of the axial
motion of the ion in the trap, σz is the Pauli z operator acting on the ion qubit
states, and a and a† are respectively the annihilation and creation operators acting
on the Hilbert space of the ion motion.

The effect of laser light near-resonant with the qubit transition can be described
by the interaction Hamiltonian

Hint =
Ω

2

(
σ+e−iφei(η(a+a†)−ωt) + σ−eiφe−i(η(a+a†)−ωt)

)
, (2.7)

where ω and φ are the frequency and phase of the laser, respectively, and σ+ and
σ− are the raising and lowering operators, respectively, acting on the qubit Hilbert
space of the qubit. η is the Lamb-Dicke parameter given by

η =

√
~k2

l

2mωm
cos θ ,
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where kl is the wavevector of the laser, m is the mass of the ion, and θ is the angle
formed between the wavevector of the laser and the axis of motion of the ion for
the motional mode we are considering. For most of the experiments of interest
for ion trap quantum computation η is small enough that we can approximate the
exponential terms in the interaction Hamiltonian (2.7) by their first-order Taylor
expansion

e±iη(a+a†) ≈ 1± iηa± iηa† .
With this we can rewrite the interaction Hamiltonian as

Hint =
Ω

2

(
σ+e−iφe−iωt + σ−eiφeiωt

)
+

iηΩ

2

(
σ+ae−iφe−iωt + σ−a

†eiφeiωt
)

+

iηΩ

2

(
σ+a

†e−iφe−iωt + σ−aeiφeiωt
)
.

Going into an interaction picture with respect to the bare Hamiltonian H0, we
obtain [36]

HI =
Ω

2

(
σ+e−iφe−i(ω−ω0)t + σ−eiφei(ω−ω0)t

)
+

iηΩ

2

(
σ+ae−iφe−i(ω−ω0+ωm)t + σ−a

†eiφei(ω−ω0+ωm)t
)

+

iηΩ

2

(
σ+a

†e−iφe−i(ω−ω0−ωm)t + σ−aeiφei(ω−ω0−ωm)t
)
. (2.8)

When the linewidth of the laser is much narrower than the motional frequency
ωm, a single mode of laser light will couple only one of the three terms in the
interaction Hamiltonian (2.8), as long as Ω � ωm. The first term will lead to
evolution only of the ion’s internal qubit state, while the second and third terms
will lead to evolution of both the qubit state as well as the motional state of the
ion. These three resulting evolutions are referred to as carrier transitions, and red
and blue sideband transitions, respectively.

We define the detuning to the qubit transition δ = ω − ω0. Now assuming
Ω � ωm and choosing ω such that δ � ωm, we neglect the sideband terms in the
Hamiltonian (2.8) and consider only the carrier transition. We can take a similar
approach as described above, except that we go into an interaction picture w.r.t.
the Hamiltonian

H0,c =
~ω
2
σz + ~ωma†a =

~(ω0 + δ)

2
σz + ~ωma†a (2.9)

to obtain a time-independent Hamiltonian for the carrier transition

Hc =
~δ
2
σz +

Ω

2

(
σ+e−iφ + σ−eiφ

)
.
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This leads to a time evolution of the qubit’s internal state described by the unitary
operator

Uc(t) = cos

(
Ωeff t

2

)
1− i

Ωeff

sin

(
Ωeff t

2

)
[δσz + Ω(cosφσx + sinφσy)] , (2.10)

where Ωeff =
√

Ω2 + δ2, 1 is the identity operator, and σx, σy, and σz are the Pauli
operators acting on the Hilbert space of the qubit.

2.4.2 Arbitrary Single-Qubit Gates

To apply single-qubit gates, we tune the frequency of the laser so that δ ≈ 0, in
which case the evolution (2.10) simplifies to

Upulse(Ωt, φ) = cos

(
Ω t

2

)
1− i sin

(
Ω t

2

)
(cosφσx + sinφσy) . (2.11)

Considering the qubit as a spin-1/2, this evolution describes rotation of the spin
around an axis cosφ x̂+sinφ ŷ that lies in the x-y-plane, with frequency Ω, referred
to as the Rabi frequency. Since two rotations with arbitrary phase along two
different axes form a basis for any mapping between single-qubit pure states, we
can perform arbitrary unitary operations by applying laser pulses with different
phases and times.

2.4.3 Calibrating Single-Qubit Gates

To achieve high-fidelity single-qubit operations experimentally, we need to estimate
the ideal parameters to apply to the AOMs in our setup, which determine the
detuning δ, and the phase of the qubit rotation Ω t. Unlike the detuning and Rabi
frequency, the laser pulse phase φ is only a property of the laser, so we can choose
the phase of the first pulse in a sequence to correspond to φ = 0, and all later pulse
phases are referenced to the first pulse. Therefore the accuracy in controlling the
laser phase is only limited by the resolution of the DDS output discussed in section
2.3 12. In contrast, the Rabi frequency Ω depends on the power of the laser at the
ion which can drift continuously. Similarly, the detuning will change both due to
the Zeeman effect coupling the qubit transition frequency to magnetic field drifts
at the ion, and due to drifts in laser frequency.

To calibrate the detuning and qubit rotation phase accurately we can perform
operations and measurements on the qubit to estimate the values of the parameters
δ and Ω t directly. Then we can adjust the DDS output parameters appropriately to
minimise the error between the operation performed on the qubit and the desired
operation.

To calibrate the frequency of the laser pulse, a standard method is to scan
the frequency of the pulse, and collect measurement results for different input

12Although the control of the phase is limited by the resolution of the DDS output, since we
know the resolution, the error in the applied pulse could in principle be reduced to the inherent
DDS error which is much lower.
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Figure 2.5: Example data obtained by scanning the frequency of a laser pulse over
60 equally-spaced values applied close to resonance with the qubit transition of an
ion. This data was obtained from simulation using the evolution operator (2.10)
with 50 shots for each data point.

frequencies. We select an input frequency range to scan, and divide the range into
N equally-spaced values. For each value of the input frequency we then prepare the
qubit in the ground state, and apply the pulse described by the evolution (2.10).
Then we measure as described in section 2.1 which collapses the state into the
{|0〉, |1〉} basis, where |0〉 denotes the qubit ground state, and |1〉 the excited state.
We refer to a single realisation of the experiment (preparation, pulse, measurement)
as a single shot of the experiment. By repeating many shots for each of the N
frequency values and plotting the average number of shots per value for which we
measure the state |1〉, we will get something that looks like the data plotted in figure
2.5. It’s easy to show from the evolution (2.10) that we expect the probability to
measure |1〉 to take a functional form similar to a Sinc function, which we can use
to fit the data as in figure 2.5. This gives us an estimate of the detuning as a
function of AOM input frequency. To better approximate the evolution (2.11) we
would then set the AOM input frequency to the value given by the peak of the fit.

To calibrate the phase of qubit rotation induced by a laser pulse we take a
similar approach as for the frequency calibration only now we scan the time of the
pulse instead. In this case we observe Rabi oscillations as plotted in figure 2.6.
From the data we can directly estimate the Rabi frequency or the time required to
apply a pulse with a given phase. For example, the π-time 13 can be estimated as
one half the period of oscillation of the fit.

13i.e. the time tπ such that Ωtπ = π.
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Figure 2.6: Example data obtained by scanning the time of a laser pulse with 100
equally-spaced input pulse time values. This data was obtained from simulation
using the evolution operator (2.10) (with a small non-zero detuning) with 50 shots
for each data point.
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Another standard technique to calibrate the frequency, which can in many cases
be more accurate than the method of scanning the frequency described above, is to
apply a Ramsey experiment. In this case we first prepare the qubit in the ground
state and then apply a pulse with Ωt = π/2, and which is ideally on resonance
with the qubit. We refer to this as a π/2-pulse, and it ideally puts the qubit in an
initial state

|ψi〉 =
1√
2

(|0〉+ |1〉) , (2.12)

which evolves under the bare Hamiltonian (2.6) 14. In an interaction picture w.r.t.
(2.9) the free evolution is described by the unitary

Uwait(δ, t) = cos

(
δt

2

)
1+ i sin

(
δt

2

)
σz . (2.13)

Applied to the state (2.12), this leads to the time dependent state

|ψ(t)〉 =
1√
2

(
|0〉+ e−iδt|1〉

)
.

By applying another π/2 -pulse with the same phase as the first pulse, we obtain
the final state

|ψf〉 = i sin

(
δt

2

)
|0〉+ cos

(
δt

2

)
|1〉 .

That is, we have converted the phase into a population and observe oscillations in
the probability of measuring the state |0〉 or |1〉 . We can then get an estimate for
the frequency in an analogous way as for the time calibration method described
above. In practice this technique gives a more accurate estimate of the qubit
frequency since a laser pulse leads to AC Stark shifts of the ionic energy levels. This
makes the frequency estimation method by scanning pulse frequency dependent on
laser power, and generally more sensitive to any errors in laser parameters 15.

2.5 Quantum Parameter Estimation

In section 2.4.3 we saw that calibrating quantum gates in our experiments involves
estimating parameters in the expected quantum evolution so that we can tune the
system to perform a desired operation. This raises the questions of how well we can
estimate parameters for a physical system, and what differences there may be in
estimating parameters for a quantum system versus a classical system. Estimating
physical parameters is one of the main problems in physics, and these questions

14The motional part of the Hamiltonian (2.6) is irrelevant here.
15However, sometimes we would like to calibrate the frequency in the presence of the Stark

shifts caused by the laser, or we do not know the π/2-time accurately enough to do a Ramsey
experiment. In such cases, scanning the pulse frequency is preferred to the Ramsey technique.
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have already been considered by numerous physicists in many areas. I will mention
here a few of the main findings stemming from the general body of work related to
this topic.

The estimation of all parameters associated with Hamiltonian dynamics can
be cast into a phase estimation [37]. For example, for single-qubit calibrations we
estimate the frequency and time by estimating the phases ω0 t and Ω t, respectively.

If we describe both the physical system we are measuring, and the measurement
process, classically, then there is no fundamental limit in the precision of phase
estimation since in such a description parameters can be measured in principle with
arbitrary precision. In contrast, if we describe the measurement process in terms
of quantum theory, then the detection process becomes stochastic. In particular, if
we still describe the physical system classically, and only the measurement process
in terms of quantum mechanics, then we will be limited by Poissonian statistics
of the measured variable. For example, if our measurement involves counting N
photons then the relative uncertainty of our phase estimate will be limited by

∆N

〈N〉 =
1√
〈N〉

.

This 1/N1/2 type scaling is known as the standard quantum limit (SQL) or shot
noise limit.

On the other hand, if we also describe the physical system quantum mechan-
ically it is possible to beat the SQL, and this was initially shown by proposals
using squeezed states of light [20, 21]. Scaling as good as 1/N was eventually
shown [22,23], and has come to be known as Heisenberg scaling. Although Heisen-
berg scaling was thought to perhaps be a fundamental quantum limit, work in
nonlinear quantum metrology has shown that scaling better than 1/N is possible
in some cases [37].

Chapter 4 describes an estimation procedure used to calibrate single-qubit gates
that exhibits Heisenberg scaling. But first, chapter 3 describes a method for re-
moving harmonic noise from the transition frequency of a 40Ca+ qubit. This prob-
lem could be considered as a classical parameter estimation problem, however, in
this case we also perform quantum parameter estimation as part of the procedure
(mainly for experimental reasons rather than any fundamental physical reason).
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Chapter 3

Magnetic Fields and Complex
Regression

3.1 The Coherence Problem

As described in section 2.1, the 40Ca+ ion qubit transition frequency is dependent
on the magnetic field at the position of the ion through the Zeeman splittings of
the |S1/2,m = +1/2〉 ground state and the |D5/2,m = +3/2〉 excited state. Thus,
magnetic field fluctuations lead to reduced coherence times when performing qubit
gates. Fluctuations in qubit transition frequency can also be seen as a limitation
to the accuracy with which we can calibrate the laser pulse frequency to perform
qubit gates. A significant source of fluctuations in our experiments is due to mains
AC at 50 Hz, and this leads to magnetic field noise at the ion with frequencies of
50 Hz and higher harmonics (i.e. 100 Hz, 150 Hz, . . . ).

In order to reduce the effects of mains noise on qubit frequency we adjust the
current of the coils used to generate the magnetic field at the ion by shifting the
set-point of the current controller. Additional magnetic field coils were placed close
to the ion to measure the magnetic field [38]; however, for periodic noise oscillating
slower than the time resolution with which we can perform experiments on the
40Ca+ qubit, it is possible to get more accurate information about the magnetic
field at the ion by measuring fluctuations in the transition frequency directly, at
various phases of the noise oscillation. This can be done by repeatedly calibrating
the frequency of the 729 nm laser to be resonant with the qubit transition. An
example of the qubit frequencies measured over time using Ramsey experiments is
shown in figure 3.1 1.

3.2 Feed-forward Algorithm

In order to best eliminate the effects of mains noise at the ion, we use the measured
oscillations of the qubit resonance frequency to determine the amplitudes of the
currents to apply to the coils used to stabilise the field. Since we expect these

1The detuning estimates for these experiments are determined with an optimised Ramsey
procedure using the method described in section 5.1.1, though they could be similarly determined
by repeating a standard Ramsey measurement.
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Figure 3.1: Estimated detuning of the 729 nm laser at resonance with the 40Ca+ ion
qubit transition. To obtain the x-axis of the plot the experiments are line-triggered
according to direct measurement of the mains phase, so the equivalent time for a
1-degree phase shift is 1 degree = 20 ms/360. Each point is estimated from 100
shots of a Ramsey experiment with a wait-time of 80µs.
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oscillations to have frequencies of 50 Hz and higher harmonics, we will need to
apply currents with the same frequencies to the coils in order to eliminate the
noise, and we fit the measured oscillations using a sum of sinusoidal functions at
these frequencies,

N∑
n=1

Yc,n cos(ωnt) + Ys,n sin(ωnt) , (3.1)

where ωn = 2π× 50nHz, the time t is in seconds, and the amplitudes Yc,n and Ys,n
are in units of frequency (i.e. since we’re fitting the estimated qubit frequencies).

Given the measured amplitudes our goal is to determine the amplitudes of the
current that must be applied to the feed-forward coils. One way to think of this
problem is to break it into three parts: 1. to quantify the effects of the noise on
the qubit transition frequency, 2. to quantify the effect of the feed-forward field
on the qubit transition frequency, and 3. to use the information from 1 and 2 to
calculate the current to apply to the feed-forward in order to cancel the noise.

To first determine the effects of the noise on the qubit, we can calibrate the laser
frequency with the current for the feed-forward coils set to zero. This will yield
data like that shown in figure 3.1. Then we can apply current inputs of different
amplitudes to the feed-forward coils and repeat the same experiments to measure
the qubit frequency, only now we are measuring the effects of both the noise and
the feed-forward. In particular, we can apply currents at the same harmonics of 50
Hz as we use to fit the measured data, as mentioned above:

N∑
n=1

Xc,n cos(ωnt) +Xs,n sin(ωnt) , (3.2)

where in this case the amplitudes Xc,n and Xs,n are those of the currents applied to
the feed-forward coils. If we repeat this several times indexed by m = 0, 1, 2, . . . ,M ,
where I will index the case when no currents are applied to the feed-forward with
m = 0, then we can estimate the effects of the feed-forward on the qubit transition
frequency by the measured amplitudes with the noise subtracted, that is Ŷ m

c,n =

Y m
c,n − Y 0

c,n and Ŷ m
s,n = Y m

s,n − Y 0
s,n. Because there is generally a phase shift between

an input current oscillation and the measured output, an input amplitude Xc,n is

coupled to both output amplitudes Ŷ m
c,n and Ŷ m

s,n (likewise for Xs,n). We would now
like to apply linear fits to the input-output data, however this coupling complicates
the dependence.

Fortunately, we can make two simplifications to better solve the problem. Dur-
ing the development of our algorithm, we originally tried to isolate the effect of
the feed-forward by subtracting the noise we measured when the current was set
to zero, as described above. We simplified our task by only considering the in-
put to the feed-forward and the resulting output. Our goal is simply to obtain
an estimate for the input amplitudes that minimise the output amplitudes. This
simplification also reduced errors in the final current estimates since subtracting
the zero feed-forward output from our other outputs was also adding the errors of
the two data-sets. The second simplification is that we can describe the problem
more conveniently in terms of complex numbers. In our control system we input
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the values of the currents for the feed-forward as an amplitude and a phase instead
of two amplitudes as described here, but we can determine the amplitudes for the
cos and sin terms in equation 3.2 from the trigonometry:

Xn cos(ωnt− φn) = Xn cos(φn) cos(ωnt) +Xn sin(φn) sin(ωnt) .

This relation also makes it more apparent that we can represent the amplitudes of
the inputs by the complex numbers

xn = Xc,n + iXs,n = Xneiφn .

Similarly we can write the amplitudes of the outputs as

yn = Yc,n + iYs,n .

Our goal is then to find the complex linear relations between the inputs and the
outputs

ŷn = ânxn + b̂n ,

where ân and b̂n are complex numbers. Writing ân = Aneαn we have ânxn =
AnXnei(φn+αn). So we see that ân has the effect of scaling the magnitude of the
input and changing the phase. This is precisely the effect we expect the input to
the feed-forward to have on the ion frequency. b̂n represents a constant offset in
the complex plane; in our case this corresponds to the noise we want to cancel.
Our original description to the problem, namely 1. to determine the noise, 2. to
determine the effect of the feed-forward, and 3. to cancel the noise, can now be
stated simply as 1. determine the values of b̂n, 2. determine the values of ân, and
3. solve the equations ânx̂

opt
n + b̂n = 0 for the optimal input estimates. We can

determine ân and b̂n by solving a complex least-squares regression in a similar way
to a real least-squares regression. We seek the coefficients

γ̂n =

(
b̂n
ân

)
= arg min

γn

M∑
m=1

|ymn − ŷmn |2 ,

which we can obtain by setting the gradient of this objective function to zero
since it is convex. This gives the well known normal equations, which we solve by
constructing matrices with the inputs and outputs of each experiment as

Un =


1 x1

n

1 x2
n

...
...

1 xMn

 , Vn =


y1
n

y2
n
...
yMn

 ,

and calculating the desired coefficients as

γ̂n = (U∗nUn)−1U∗nVn ,
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where a ∗ denotes the conjugate transpose. This is the essentially the same as a
real least-squares regression with the transpose replaced by the conjugate transpose.
Finally, we set the optimal inputs to the feed-forward as

x̂opt
n =

−b̂n
ân

.

3.3 Results

To implement this method experimentally, we use Ramsey experiments to estimate
the frequency as mentioned above. In a Ramsey experiment, using a longer wait-
time leads to a larger phase shift and hence to a more accurate estimate of the
frequency. However, we typically apply the complex regression above in several
iterations to prevent a Ramsey phase of magnitude greater than π; if δt in equa-
tion (2.13) is outside the range (−π, π], then we can obtain the wrong frequency
estimate corresponding to δ′t = δt± 2πl, l ∈ {1, 2, . . . }. This correction could be
accounted for, but having much larger ranges in the frequency is also undesirable
since the π/2-pulses applied in the Ramsey sequence will become inaccurate as
they will be further off-resonant.

For this reason it is best to apply the complex regression in several iterations.
First we can apply a shorter wait-time to prevent large phase shifts, and apply the
regression to the data to obtain estimates for the optimal feed-forward parameters.
Then we can apply the regression again using input values in a restricted range
around the optimal values found in the previous iteration. Since we stay close
to the optimal feed-forward inputs, the detunings oscillate over a much smaller
range and we can use much longer wait-times to increase the accuracy of our qubit
frequency estimates.

Data obtained for estimated qubit frequency after performing two iterations
of complex regression is plotted in figure 3.2. We first performed a quick (∼ 1 :
20 mins) and rough correction to cancel the majority of the noise. For this rough
correction we estimated the qubit frequency by performing Ramsey experiments
with a wait-time of 80µs, using 20 points (different values of the mains phase),
and 50 shots per point. For the regression we used n ∈ {50 Hz, 100 Hz, 150 Hz}
and M = 4. For a second iteration we used a much longer wait-time of 400µs. We
also increased the number of points to 60, and the number of shots per point to

Frequency Amplitude Phase (deg)
50 Hz 581.8 222.8
100 Hz 31.5 237.5
150 Hz 333.7 298.7
200 Hz 31.4 201.3
250 Hz 17.5 330.9

Table 3.1: Optimal values obtained for the feed-forward current inputs using com-
plex regression on February 15th, 2017.
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Figure 3.2: Plotted detuning estimates as a function of mains phase after the com-
plex regression method has been applied to estimate the optimal input amplitudes
and phases for the feed-forward (red). In the bottom subplot the same data (red) is
plotted with the uncorrected frequency estimates (also shown in figure 3.1) (black).
The remaining fluctuations are at much higher frequency and most of the fluctua-
tions due to mains noise have been eliminated. The data (red) was obtained using
a Ramsey wait-time of 600µs with 50 shots per point.

26



100 2. For the second iteration we also increased the number of frequencies to use
for the regression, by taking n ∈ {50 Hz, 100 Hz, 150 Hz, 200 Hz, 250 Hz} 3, and
we again used M = 4. For the different values of m ∈ {1, 2, . . . , M}, we applied
random values for the input amplitudes and phases to the feed-forward. For the
first iteration, the amplitudes were chosen uniformly between 0 and 800 4, and the
phases were chosen uniformly between 0 and 360 degrees. For the second iteration,
lower ranges were used to prevent large amplitude fluctuations; the centre values
for the ranges were taken as the optimal values obtained from the first iteration,
or zero (for 200 and 250 Hz). The second iteration lasted ∼ 10 : 20 mins for a
total of ∼ 11 : 40 mins. The optimal values for the feed-forward obtained from the
regression are listed in table 3.1. We see in figure 3.2 that the harmonic oscillations
at 50 Hz harmonics have mostly been eliminated (compare the amplitudes with
those in figure 3.1).

2For those who run experiments: this was actually 2 scans with 50 shots.
3Special thanks to Vlad for adding in the 200 Hz and 250 Hz components to our control

system.
4The units for the current are arbitrary.
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Chapter 4

Robust Phase Estimation

As a starting point for investigating single-qubit gate calibrations, I experimented
with a phase estimation protocol described by Kimmel et al. [25] which I will refer
to as robust phase estimation (RPE). The protocol describes a general method for
estimating single-qubit gate parameters and provides an attractive combination
of computational simplicity, robustness to errors, and Heisenberg scaling without
requiring resources such as entanglement 1.

4.1 The Protocol

The RPE protocol applies a subroutine to estimate the phase by applying a fixed
number of the rotations every shot of the experiment; this subroutine is explained
in section 4.1.1. To improve the accuracy of estimation achievable in a given time,
which we refer to as the scaling, RPE uses this subroutine at each step of the
procedure to estimate higher and higher multiples of the phase; i.e. the phase is
applied more and more times per shot at later and later steps of the procedure.
This is described in detail in section 4.1.2. Section 4.1.3 explains how the protocol
can be applied to calibrate the frequency and time of a laser pulse to perform
single-qubit gates.

4.1.1 Fixed Rotation Procedure

First I describe the method used in the RPE protocol to estimate the phase of a
qubit rotation after a given number of shots 2S, where each shot involves applying
the rotation a fixed number of times. Given a single-qubit rotation of phase θ0

around an arbitrary axis, applied to a pure state whose Bloch vector lies in the
plane normal to the axis of rotation, we define two families of measurements. A
|0〉 measurement is defined as one along the axis of the initial qubit state vector; a
|+〉 measurement is defined as one along the axis perpendicular both to the initial
state vector of the qubit, and to the axis of rotation. This is illustrated on the
Bloch sphere in figure 4.1 2.

1Many phase estimation protocols use entanglement as a resource in order to achieve Heisen-
berg scaling [37].

2Kimmel et al. instead define two families of experiments: |0〉 experiments and
|+〉 experiments which are specified only by the probabilities of successful outcomes. But we

28



0

+

θ0

R

Figure 4.1: The phase θ0 of an arbitrary qubit rotation, about an axis R, is rep-
resented on the Bloch sphere. The measurement axis for the |0〉 measurements is
defined along the initial pure state used by the procedure, and the axis for the
|+〉 measurements lies in the plane of rotation at an angle of π/2 from the initial
state vector.

Now if we prepare the qubit in the initial state, and apply the rotation whose
phase we wish to estimate, then the probabilities of the successful outcomes for the
|0〉 and |+〉 measurements will be

p0(θ0) =
1 + cos θ0

2

p+(θ0) =
1 + sin θ0

2

Repeating S shots for each family of measurements, we can get an estimate for the
phase

θ̂0 = atan2 (n+ − S/2, n0 − S/2) ∈ (−π, π ]

where n0 and n+ are the total number of measured successes for each of the mea-
surement families.

4.1.2 General Procedure

The following theorem is due to Higgins et al. [25, 26].

Theorem 1. Say that we can perform two families of experiments, |0〉 experiments
and |+〉 experiments, indexed by k ∈ Z, whose probabilities of success are, respec-

will see that applying the measurements as I define them here will result in precisely two such
families of experiments.
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tively,

p0(A, k) =
1 + cos(kA)

2
,

p+(A, k) =
1 + sin(kA)

2
.

Also assume that performing either of the kth experiments takes time proportional
to k. Then, an estimate Â of A with standard deviation σ(Â) can be obtained in
time T = O(1/σ(Â)) using non-adaptive measurements.

Now I will describe a protocol from Kimmel et al. 3 which achieves the claim
of the theorem 4. In general, the procedure is performed in K steps. At each step
j ∈ 1, 2, 3, . . . , K, a single shot of the experiment consists of preparing the qubit
in the initial state, applying the rotation a number of times kj, and performing a
measurement. And at every step j, we perform Sj shots of the experiment for each
family of measurements (|0〉 and |+〉). Using the fixed rotation procedure described

in section 4.1.1 we can get an estimate for the phase k̂jA modulo 2π. To determine
an estimate for A with Heisenberg scaling, we choose kj = 2j−1, and at each step

j of the procedure we calculate an estimate Âj = k̂jA/kj restricted to the range

(Âj−1 − π/2j−1, Âj−1 + π/2j−1]. This restricts the possible values of Âj based on
the estimate from the previous step j− 1 in order to determine the principal range
of k̂jA.

To determine the number of shots Sj at each step j, Kimmel et al. show that

for an estimate with standard deviation σ(Â), and assuming a total time required
to obtain the estimate

T = 2
K∑
j=1

2j−1Sj , (4.1)

then we can attain the bound

σ(Â)T < 10.7π (4.2)

by choosing

Sj = dα(K − j) + βe , (4.3)

with α = 5/2 and β = 1/2. The general procedure described in terms of |0〉 and
|+〉 measurements, as I have done here, is summarised below.

3This is a slightly modified version of the original protocol by Higgins et al..
4I will however not prove the theorem; a full proof can be found in [25].
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Procedure Robust Phase Estimation
Input : Unitary evolution Ur(A) which rotates a single-qubit state by an

angle A about an axis r.
Pure state |ψ0〉 which lies in the plane perpendicular to r.
Total number of steps K.

Output: Estimate Â of the angle A.

for j ← 1 to K do
kj ← 2j−1;
Sj ← dα(K − j) + βe;
n0 ← 0;
n+ ← 0;
for m← 1 to Sj do

for e ∈ {0,+} do
prepare the state |ψ0〉;
apply Ur(A) kj times;
perform an |e〉 measurement;
if |e〉 measurement is successful then

ne ← ne + 1;
end

end

end
if j == 1 then

Âj ← atan2 (n+ − Sj/2, n0 − Sj/2);
else

/* determine the principal range of Âj using Âj−1 */

Â′j ← atan2 (n+ − Sj/2, n0 − Sj/2) /kj;

q1 ← quotient(
Âj−1

2π/kj
);

q2 ← q1 + 1;

if q12π/kj + Â′j ∈
(
Âj−1 − π/kj, Âj−1 + π/kj

]
then

Âj ← q12π/kj + Â′j;

else if q22π/kj + Â′j ∈
(
Âj−1 − π/kj, Âj−1 + π/kj

]
then

Âj ← q22π/kj + Â′j;

else

Âj ← Âj−1 + π/kj;
end

end

end

return ÂK

Although the RPE protocol provides good scaling in the standard deviation of
the estimate as ensured by the bound (4.2), there nevertheless exist more accurate
phase estimation techniques [25]. The strength of the RPE protocol is that it is
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also robust to errors as quantified by the following theorem due to Kimmel et al..

Theorem 2. Suppose that we can perform two families of experiments,
|0〉 experiments and |+〉 experiments, indexed by k ∈ Z+ , whose probabilities of
success are, respectively,

p0(A, k) =
1 + cos(kA)

2
+ δ0(k),

p+(A, k) =
1 + sin(kA)

2
+ δ+(k). (4.4)

Also assume that performing either of the kth experiments takes time proportional
to k and that

sup
k
{|δ0(k)|, |δ+(k)|} < 1/

√
8 . (4.5)

Then an estimate Â of A ∈ (−π, π] with standard deviation σ(Â) can be obtained
in time T = O(1/σ(Â)) using non-adaptive experiments. On the other hand, if
|δ0(k)| and |δ+(k)| are less than 1/

√
8 for all k < k∗, then it is possible to obtain

an estimate Â of A with σ(Â) = O(1/k∗) (with no promise on the scaling of the
procedure).

It is possible to show that many of the errors that can occur in typical experi-
ments can be written in the form of additive errors as in (4.4). This includes, for
example, errors in preparing the initial state |ψ0〉, measurement errors (e.g. if the
measurement projectors do not project exactly to the desired states, but to some
pure states in the vicinity of the desired ones), and depolarising errors of the form
(for a qubit state ρ)

Λγ(ρ) = γρ+ (1− γ)1/2 .

In particular if we have an experiment with a sequence of k gates, and we write
the probability of an outcome without errors as 1/2 + r, r ≤ 1/2, then the proba-
bility of obtaining the same outcome in the presence of depolarising errors will be
1/2 + rγk. This leads to an additive gate error of

|r|(1− γk) ≤ (1− γk)/2 . (4.6)

An analysis quantifying state-preparation and measurement errors as additive er-
rors can be found in Kimmel et al. [25]. It is also noted in the same work that,
for the case of depolarising errors, a more precise bound than that in (4.6) can be
obtained, but they relegate the analysis to a later work (not yet published at the
time of writing this report).

4.1.3 Calibrating Laser Pulses

Now I will explain how the RPE protocol can be used to calibrate laser pulses to
perform single-qubit gates. I will use some common notation to denote relevant
qubit states:
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|+〉 =
1√
2

(|0〉+ |1〉) ,

|−〉 =
1√
2

(|0〉 − |1〉) ,

| →〉 =
1√
2

(|0〉+ i|1〉) ,

| ←〉 =
1√
2

(|0〉 − i|1〉) .

By choosing the initial state

|ψ0〉 = |+〉 ,
and letting the qubit evolve freely under the Hamiltonian (2.6) as for the Ramsey
experiment described in section 2.4.3, then we can choose the |0〉 measurements
described by the projectors {|+〉〈+|, |−〉〈−|}, where we take a measurement in
the |+〉 state as a successful outcome. Similarly, we can choose |+〉 measurements
described by the projectors {| →〉〈→ |, | ←〉〈← |} and take the successful outcome
to be a measurement in the state | →〉. Now applying the robust phase estimation

procedure, we can get an estimate δ̂twait for δtwait
5. To bring the laser pulse closer

to resonance with the qubit, we can then update the AOM frequency by assigning
a new estimate for the desired input frequency given by

f̂desired = finput −
δ̂twait

2πtwait

.

To calibrate the phase of rotation induced by a laser pulse, we can take the
initial state

|ψ0〉 = |0〉 ,
and choose the |0〉 measurements {|0〉〈0|, |1〉〈1|}, and |+〉 measurements
{|+〉〈+|, |−〉〈−|}. In this case applying a laser pulse described by the evolution
(2.10) with the phase of the laser set to φ = π/2 6, we can use RPE to get an
estimate for Ωt.

To update the control parameters for the DDS using an estimate for Ωt, we
must consider that there is an unknown time offset in the pulses due to delays
caused by AOM rise and fall time, such that

tpulse = tinput − toffset . (4.7)

In this case we can compute an estimate for the Rabi frequency given an estimate
t̂offset for the time offset

5Strictly speaking the protocol will return an estimate for −δtwait in this case.
6The phase of the laser is set so that the evolution performs a rotation around the y-axis, at

least when the detuning is zero. This is to be consistent with the measurements I’ve chosen to
use for the RPE protocol.
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Ω̂ =
Ω̂tpulse

tinput − t̂offset

,

and estimate the desired input time to the DDS as

t̂desired = tinput +
(Ωtpulse)desired − Ω̂tpulse

Ω̂
.

It is of course also possible to adjust the phase of qubit rotation by changing
the Rabi frequency Ω which we can control accurately by changing the amplitude
of the pulse as described in section 2.3. In the experiments I will be discussing in
later sections, the time was always used to control the phase of the gate.

In the context of calibrating the laser pulses we use to perform single-qubit gates
I have described how we can calibrate the time and frequency of the pulse using
the RPE protocol. It is also possible to use RPE to estimate the angle between the
axes of two rotations; however, since we have very accurate control of the phase of
laser pulses in our experiments, we do not expect the error to be detectable with
the qubit.

4.2 Preliminary Results

The calibration of single-qubit gates by robust phase estimation was implemented
with both a 40Ca+ and a 9Be+ qubit. Most of the results shown here are for 40Ca+,
but some preliminary results for 9Be+ are also mentioned. Results from experi-
ments to collect statistics on the precision of the estimators f̂desired and t̂desired are
presented, where the time calibrations were performed for the times tπ/2 and tπ
required to apply qubit rotations of phase π/2 and π. First, standard methods
were used to obtain initial estimates for the pulse parameters, and then the RPE
calibration protocol was applied on initial values for finput and tinput uniformly dis-
tributed over ranges centred on the initial estimates. For the frequency calibration,
a somewhat conservative range of 10 kHz was used, while for the time calibrations
the ranges were set to 30% of the centre value. For the frequency calibrations a
base wait-time for the free evolution of the qubit of 3.0µs was used.

Results for 50 trials of frequency calibration with K from 6 to 12 are plotted in
figure 4.2 7. Histograms of the estimates are plotted as well as the resulting sample
standard deviations which are compared in the figure to the predicted values from
the theoretical upper bound (4.2). The upper bounds expected for the frequency
estimates were calculated as

σf =
10.7π

T 2πtwait

, (4.8)

where T depends on K and is calculated from (4.1).
For frequency calibration we approximately obtain the scaling theoretically pre-

dicted when K < 10; at K = 10 the theoretical bound is reached, and little or no

7The mean value of the frequency estimates f̂desired is not particularly relevant to the current
discussion, but for the sake of completeness the input frequency is defined in our control system
such that the input to AOM1 in figure 2.3 is set as fAOM = 203.8315− finput/2 MHz.
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Figure 4.2: RPE frequency estimates obtained for 50 calibration trials with 40Ca+ .
In the upper plot, histograms of the estimates are shown for different values of the
input K to the RPE protocol. In the lower plot, the sample standard deviations
(computed from the uniformly minimum variance unbiased (UMVU) estimate for
the variance) are plotted (black points) with error bars showing twice the approxi-
mate standard error for 50 trials [39]. The red dashed line in the lower plot shows
the theoretical upper bound on the standard deviation computed from equation
(4.8).
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improvement is obtained by increasing K further. This is an expected result for
our system due to the finite coherence time of the qubit. As described in section
4.1.2 the RPE protocol progressively applies higher and higher multiples of the
phase we wish to estimate. In particular, the largest multiple of the phase applied
will be 2K−1. With a wait-time of 3µs, this leads to a total wait-time for the final
steps of the protocol of 768µs when K = 9, and 1536µs when K = 10. We expect
our coherence to be roughly on the order of 1 ms for the 40Ca+ qubit so that for
wait-times above this value, little or no information is obtained since the proba-
bilities in (4.4) will converge to 1/2. Possible ways of improving the scaling in the
presence of decoherence are discussed in appendix A.

The estimates at K = 9 have a sample standard deviation of 318 Hz. Using
an estimated π-time of 3.9µs this corresponds to a sample standard deviation of
the normalised detuning, δ/Ω, of 0.04 %. If an estimate which is more accurate
than ∼ 300 Hz is desirable then without changing any parameters in the RPE
protocol, we can already get further improvements in accuracy with a scaling of
roughly σ ∝ 1/

√
T by averaging over the results of several estimates obtained using

K = 9 8. The lowest sample standard deviation obtained for the data in figure 4.2
was 240 Hz (0.03 % normalised) for K = 10.

Results for 250 trials of π/2-time calibration for K from 3 to 9 are plotted in
figure 4.3. The theoretical upper bound for the standard deviation of the time
estimate is approximated from

σt =
10.7π

T Ω̂
=

10.7π t̂π
T π

=
10.7t̂π
T

. (4.9)

The π-time for this calculation was estimated to be roughly 3.5µs by taking the
average value of the estimates for K = 9 and compensating for a time offset of
approximately 80 ns (see equation (4.7)).

For the calibration of the π/2-time the theoretical bound is reached at about
K = 7, and little or no improvement is obtained by increasing the value of K
further. This is a similar result to that obtained for the frequency calibration, only
in this case the absence of improvement above K = 7 may also be due to intensity
fluctuations of the 729 nm laser. The π/2-time results indicate that we do not get
additional information when applying pulse sequences with total times greater that
∼ 100µs. We obtain estimates for the π/2-time with a sample standard deviation
as low as 28 ns for K = 8 from the data plotted in figure 4.3. Previous data taken
by David Nadlinger when performing randomised benchmarking experiments on
calcium show that longer pulse sequences were performed in the past with lower
errors [41]. This suggests that it should be possible increase the effectiveness of
RPE at higher K values. It’s also worth noting that David found it likely that the
main source of errors in his experiments were due to fast fluctuations of the qubit
frequency rather than intensity fluctuations of the laser light. Therefore it’s likely
that improved performance of RPE for pulse-time calibrations could be achieved
by carefully tracking down the sources of error in these experiments.

Results for 50 trials of π-time calibration for K from 3 to 9 are plotted in
figure 4.4. For the prediction of the theoretical upper bound, the π-time was

8For a sequence of random variables Xi with variance σ2
i , the distribution of the sum

∑
iXi

will have variance
∑
i σ

2
i [40].
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Figure 4.3: RPE π/2-time estimates obtained for 250 calibration trials with 40Ca+ .
In the upper plot, histograms of the estimates are shown for different values of the
input K to the RPE protocol. In the lower plot, the sample standard deviations
are plotted with error bars showing twice the approximate standard error for 250
trials. The red dashed line in the lower plot shows the theoretical upper bound on
the standard deviation computed from equation (4.9) with t̂π = 3.5µs.
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Figure 4.4: RPE π-time estimates obtained for 50 calibration trials with 40Ca+ .
In the upper plot histograms of the estimates are shown for different values of the
input K to the RPE protocol. In the lower plot, the sample standard deviations
are plotted with error bars showing twice the approximate standard error for 50
trials. The red dashed line in the lower plot shows the theoretical upper bound on
the standard deviation computed from equation (4.9) with t̂π = 3.9µs.

estimated at about 3.9µs. In this case the theoretical bound is reached for a
slightly lower K value than for the π/2-time calibration, although not quite as low
as we might expect; since the π-time is roughly double the π/2-time (in theory it
is exactly double of course) and if we expect the incoherent errors to have roughly
the same effect for the same total pulse times, then we also expect to stop seeing
improvements in scaling at a K value lower by one for the π-time compared to
the π/2-time (since the pulse is applied 2K−1 times at the end of the protocol).
However the fact that the bound is apparently reached for a slightly higher K
value than expected may only be due to other sources of fluctuation in the data.
Indeed, for the π-time, a sample standard deviation as low as 57 ns was obtained
for K = 7, which agrees surprisingly well with the minimum value obtained from
the π/2-time data.

To compare with standard calibration methods, we can take the π-time esti-
mates at K = 5 which have a sample standard deviation of roughly 1.9% of the
centre value for t̂π, and T = 182 from (4.1). I find similar accuracies by simulating
a time scan with a time from 0 to 15.5µs using 25 points with 25 shots per point.
This leads to
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Figure 4.5: RPE π/2-time estimates obtained for 20 calibration trials with the
9Be+ FDQ transition. In the upper plot histograms of the estimates are shown for
different values of the input K to the RPE protocol. In the lower plot, the sample
standard deviations are plotted with error bars showing twice the approximate
standard error for 20 trials. The red dashed line in the lower plot shows the
theoretical upper bound on the standard deviation computed from equation (4.9)
with t̂π = 5.28µs.

T =
∑

t∈{2.5, 5, ..., 15.5}

25 t

3.91µs
≈ 1300 ,

which shows that the RPE estimate is obtained roughly 7 times faster in this case.
Also note that here we are comparing experimental data for RPE with an ideal
simulation where the detuning is set to zero.

Finally, some preliminary results for π/2-time calibration with the 9Be+ FDQ
transition are shown in figure 4.5. The data shows similar behaviour to the
π/2-time calibration for 40Ca+. Here the theoretical bound is reached at K = 6,
and a minimum sample standard deviation of 45 ns is reached at K = 9. This
indicates slightly larger errors than for 40Ca+ . It would be interesting to investi-
gate the performance further with 9Be+, and in particular to see how the frequency
calibration performs for the FIQ transition where we expect coherence to be orders
of magnitude better than with 40Ca+.

In these experiments the number of shots used throughout the protocol were
calculated from equation (4.3) with the optimal values for α and β mentioned in
section 4.1.2. This optimisation was performed by calculating the “time” of the pro-
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tocol according to equation (4.1). However, this approximation for the experiment
time may not be optimal for many of our experiments where there are additional
delays due to FPGA performance, communication between hardware, additional
cooling stages performed in experimental sequences and so on. Therefore, it may be
possible to improve the scaling for specific experiments by re-optimising the number
of shots of the protocol based on the exact run times for those experiments.
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Chapter 5

Adaptive Robust Phase
Estimation

In this chapter I present an adaptive protocol based on the RPE protocol described
in chapter 4 and using work by Andrey Lebedev [42] on phase estimation. I will also
present some results from simulation that show improved accuracy compared with
the non-adaptive RPE protocol. Finally, I will present some preliminary results
from implementing the protocol with a 40Ca+ qubit.

5.1 The Protocol

5.1.1 Fixed Rotation Procedure

The adaptive RPE (ARPE) protocol I describe here is similar to the RPE protocol
described in chapter 4 only the fixed rotation procedure described in section 4.1.1
is replaced with an adaptive procedure based on the work of Andrey Lebedev.

In the fixed rotation procedure for ARPE we assume that if we wish to measure
a phase θ0, then we can prepare the qubit in a state for which the probabilities of
the outcomes are equal to

pξ(α, θ0) =
1 + ξ cos(α− θ0)

2
, (5.1)

where ξ is the spin of the measured outcome (take ξ = +1 for |0〉 , ξ = −1 for |1〉 ),
and α is a phase which we can choose freely. We represent our knowledge of the
phase θ0 at a step s = 1, 2, . . . of the procedure by a Fourier series

Ps(θ) =
∞∑

n=−∞

c(s)
n einθ , (5.2)

where cn = c∗−n, and by normalisation c0 = 1. We define the phase estimator

θ̂0 = arg

∫ 2π

0

dθ

2π
P (θ)eiθ = arg(c−1) , (5.3)

which gives an estimate for the phase θ0, and is justified by the fact that θ̂0 is the
position of the maximum of P (θ) when P (θ) is a Gaussian distribution.
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At step s − 1 of the procedure we update our knowledge of θ0 using Bayes
theorem, which tells us

Ps(θ) = Ps(θ|ξs, α) ∝ p(ξs|θ, α)Ps−1(θ|α) = pξs(α, θ)Ps−1(θ) ,

where in the last step we use the fact that the distribution at the previous step is
independent of α. Rewriting this in terms of the Fourier representation of P (θ),
we have

∞∑
n=−∞

c(s)
n einθ ∝ (1 + ξs cos(α− θ))

∞∑
n=−∞

c(s−1)
n einθ

=
∞∑

n=−∞

[
c(s−1)
n +

ξs
2

(
eiαc

(s−1)
n+1 + e−iαc

(s−1)
n−1

)]
einθ .

Therefore we can update the distribution P (θ) conditioned on the measurement
result ξs according to the rule

c̃sn ← c(s−1)
n +

ξs
2

(
eiαc

(s−1)
n+1 + e−iαc

(s−1)
n−1

)
,

csn ←
c̃sn
c̃s0
, (5.4)

where the second step is to ensure normalisation holds.
Now we define our goal as choosing the value of α which maximises the expected

entropy gain

∆sH(α) =
∑
ξs

π(ξs|α) (H[Ps−1(θ)]−H[Ps(θ|α, ξs)])

at step s of the procedure, where H is the Shannon entropy

H[P (θ)] = −
∫ 2π

0

dθ

2π
P (θ) ln[P (θ)/2π] ,

and

π(ξs|α) =

∫ 2π

0

dθ

2π
pξs(α, θ)Ps−1(θ)

is the expected probability of measuring outcome ξs given a phase α. In other
words we wish to set the value αs at the step s of the procedure as

αs = α : max
α

∆sH(α) .

It can be shown that

∆sH(α) =
∞∑
m=1

Re{c(s−1)
2m e2imα}

m(4m2 − 1)
−
∑
ξ

pξ(α) ln pξ(α) , (5.5)
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Procedure Adaptive Fixed Rotation Phase Estimation

Input : Experiment with probabilities of measured outcomes given by
equation (5.1), where we can freely choose the value of α.
Prior distribution P0(θ).
Total number of shots S.

Output: Estimate θ̂0 of the angle θ0.

for s← 1 to S do
if s == 1 and prior distribution is uniform then

αs ← 0;
else

compute the optimal angle αs by maximising the entropy gain (5.5);
end
perform the measurement described by (5.1) and update the
distribution according to (5.4);

end

return θ̂0 given by (5.3)

up to an additive constant. In the implementation of the procedure described here
we maximise this function numerically at each step of the procedure to obtain the
optimal value of α. The adaptive fixed rotation procedure is summarised below.
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5.1.2 General Procedure

The general procedure of the ARPE protocol is similar to the RPE protocol, only
with the fixed rotation procedure described in section 4.1.1 replaced by the one
described in section 5.1.1. In addition, the description of our current knowledge of
the phase in terms of a probability distribution has the added advantage of allowing
us to define prior distributions which reflect our current knowledge, and to directly
use information from previous steps of the protocol to initialise the distribution for
later steps.

For the protocol described here, I will sometimes set the initial distribution to
a Gaussian which is thought to reflect our current knowledge of the phase. We
can initialise the distribution (5.2) as a Gaussian with mean µ and variance σ2 by
setting the coefficients to

cn = e−2n2σ2−inµ . (5.6)

I will also sometimes want to shift the centre of the distribution; in general we can
shift the distribution by an angle β by updating the coefficients in (5.2) according
to

cn ← cne−inβ .

Finally, we can increase the standard deviation of the distribution (5.2) by a factor
a by setting the values of the coefficients according to

cn ← |cn|a
2−1cn , (5.7)

which will be used to modify the distribution between steps of the protocol.
With this I can describe the ARPE protocol. First, we set the initial distribution

(5.2) to a uniform distribution P0(θ) = 1, if we have no prior knowledge of the
phase. Otherwise, we set P0 to a Gaussian distribution according to (5.6) with
appropriate values for µ and σ. As for RPE, the procedure is then performed in
K steps. At each step j ∈ 1, 2, 3, . . . , K, a single shot of the experiment consists
of preparing the qubit in the initial state, applying the rotation a number of times
kj, and performing a measurement such that the probability of outcomes is given
by

pjξ(α, kjA) =
1 + ξ cos(α− kjA)

2
. (5.8)

We perform Sj shots of the experiment at every step j, and we get an estimate

k̂jA of the phase kjA modulo 2π using the adaptive fixed rotation procedure of
section 5.1.1 and applying equation (5.3). Now we use the same procedure as
for RPE to determine an estimate for A by choosing kj = 2j−1 at each step j of

the procedure, and computing an estimate Âj = k̂jA/kj restricted to the range

(Âj−1 − π/2j−1, Âj−1 + π/2j−1]. In addition, after every step j, we estimate the

phase for the next step j+ 1 as kj+1Âj, and shift the distribution by the difference
between the current estimate of the distribution and the estimate for the next step:
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δθ ← kj+1Âj − arg(c−1) ,

cn ← cne−inδθ .

Finally, we spread out the distribution by a factor a according to equation (5.7)
after every step j. The general procedure for ARPE is summarised below.

Procedure Adaptive Robust Phase Estimation

Input : Experiment with probabilities of measured outcomes given by
equation (5.8).
Prior distribution P0(θ).
Factor a by which to spread the distribution after every step j,
according to equation (5.7).
Total number of steps K.

Output: Estimate Â of the angle A.

for j ← 1 to K do
kj ← 2j−1;
assign number of shots Sj;
for s← 1 to Sj do

apply adaptive fixed rotation procedure;
end
if j == 1 then

Âj ← arg(c−1);
else

/* determine the principal range of Âj using Âj−1 */

Â′j ← arg(c−1)/kj;

q1 ← quotient(
Âj−1

2π/kj
);

q2 ← q1 + 1;

if q12π/kj + Â′j ∈
(
Âj−1 − π/kj, Âj−1 + π/kj

]
then

Âj ← q12π/kj + Â′j;

else if q22π/kj + Â′j ∈
(
Âj−1 − π/kj, Âj−1 + π/kj

]
then

Âj ← q22π/kj + Â′j;

else

Âj ← Âj−1 + π/kj;
end

end

δθ ← kj+1Âj − arg(c−1);
cn ← cne−inδθ;

cn ← |cn|a2−1cn;

end

return ÂK
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5.1.3 Calibrating Laser Pulses

In order to use the ARPE protocol described in section 5.1.2 to calibrate single-
qubit operations, we need to apply the phase we wish to estimate in such a way as
to obtain the outcome probabilities given by equation (5.8). In addition, we need
to be able to accurately control the parameter α in (5.8); in all the calibration
methods described here this is done by changing the phase of the laser, since we
have good control over this parameter in our experiments (see sections 2.3 and
2.4.3). In the following, I will use the notation for a laser pulse as in equation
(2.11), and for the evolution during a Ramsey wait as in equation (2.13).

For the frequency calibration, we start with a qubit prepared in the ground
state |0〉, and apply a Ramsey sequence as 1

Upulse(π/2, π/2)Uwait(δ, kjtwait)Upulse(π/2, −π/2− α)|0〉

= Upulse(π/2, π/2)Uwait(δ, kjtwait)
1√
2

(
|0〉 − e−iα|1〉

)
= Upulse(π/2, π/2)

1√
2

(
|0〉 − e−i(α+kjδtwait)|1〉

)
= cos

(
α + kjδtwait

2

)
|0〉+ i sin

(
α + kjδtwait

2

)
|1〉 ,

for which the outcome probabilities for the resulting state are

pξ =
1 + ξ cos(α + kjδtwait)

2
.

This is the same as in equation (5.8) with the replacement A→ −δtwait.
To calibrate the pulse time we apply three pulses to the qubit prepared in the

ground state:

Upulse(π/2, π/2)Upulse(π/2, −π/2− α)Upulse(Ωkjtpulse, −α)|0〉
= Upulse(π/2, π/2)Upulse(π/2, −π/2− α)·

·
(

cos

(
kjΩtpulse

2

)
|0〉 − ie−iα sin

(
kjΩtpulse

2

)
|1〉
)

= Upulse(π/2, π/2)
1√
2

(
|0〉 − e−i(α−kjΩtpulse)|1〉

)
= cos

(
α− kjΩtpulse

2

)
|0〉+ i sin

(
α− kjΩtpulse

2

)
|1〉 .

In this case the outcome probabilities for the resulting state are

pξ =
1 + ξ cos(α− kjΩtpulse)

2
,

which is equivalent to equation (5.8) with the replacement A→ Ωtpulse. Given esti-

mates δ̂twait and Ω̂tpulse, we can compute estimates for the desired pulse frequency,

f̂desired, and time t̂desired, as described in section 4.1.3.

1The resulting states are written up to a global phase.

46



5.2 Simulation

In this section I present results from simulating the ARPE protocol and I compare
with simulation results for the RPE protocol as an initial characterisation of per-
formance. Note that I have not specified the number of shots Sj to be performed at
each step j of the protocol in section 5.1.2; this is because the analysis by Kimmel
et al. to obtain Sj according to equation (4.3) is no longer valid for ARPE. Nev-
ertheless, as an initial test, simulations were performed using Sj given by (4.3) 2.

Results for σ̂ and the ME (as defined in appendix A.1) obtained by simulating
frequency calibration are compared with RPE in figure 5.1 for 1000 calibration trials
with K = 3, . . . , 10. The initial distribution P0(θ) is set to a uniform distribution,
and after each step j the distribution is spread out by a factor of a = 2.3 in (5.7).
The distribution P (θ) was represented using equation 5.2 with 100 coefficients
{cn;n = 0, . . . , 100}. For each trial of the calibration, the input pulse frequency
was chosen from a uniform distribution with a range of 100 kHz, centred on the
true value used for the simulation.

A similar simulation was performed for π-time calibration, and the results are
shown in figure 5.2. In this case, the initial value for the π-time was chosen from a
uniform distribution centred on the true value used by the simulation with a range
of 30 % of the true value. In addition, the initial distribution P0(θ) was set to a
Gaussian according to equation (5.6) with µ = π, and σ = π/8, and a value of
a = 2.0 in (5.7) was used to spread the distribution after each step of the protocol.

For both frequency and time calibrations σ̂ and the ME of the estimates from
ARPE are lower than those for RPE. Fitting a functional form ∝ 1/T to σ̂ and the
ME of the estimates for both protocols, I obtain an approximation for the relative
scaling of the protocols. For the frequency I find

(
σ(Â)T

)
ARPE

≈ 0.53
(
σ(Â)T

)
RPE

,

(ME · T )ARPE ≈ 0.59 (ME · T )RPE , (5.9)

from the data shown in figure 5.1. And for the π-time I find

(
σ(Â)T

)
ARPE

≈ 0.52
(
σ(Â)T

)
RPE

.

(MET )ARPE ≈ 0.54 (MET )RPE . (5.10)

from the data shown in figure 5.2.
However, we have not optimised the number of shots Sj at step j to obtain

optimal scaling with this protocol. Therefore, it may be possible to obtain further
improvements in the scaling.

2In fact, I set Sj to twice the value given by (4.3) to obtain the same number of shots for each
j and the same total “time” as the RPE protocol for a given value of K.
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Figure 5.1: Comparison of the sample standard deviations and the mean errors
from a simulated sample of 1000 frequency calibration trials for the ARPE and
RPE protocols. The distribution for the phase is initially uniform, and a value of
a = 2.3 is used in equation (5.7) to spread the distribution after each step of the
ARPE protocol.
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Figure 5.2: Comparison of the sample standard deviations and the mean errors
from a simulated sample of 1000 π-time calibration trials for the ARPE and RPE
protocols. The distribution for the phase is initially set to a Gaussian as in (5.6)
with µ = π, σ = π/8, and a value of a = 2.0 is used in equation (5.7) to spread the
distribution after each step of the ARPE protocol.
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5.3 Preliminary Results

The ARPE protocol was also tested experimentally for the case that the number
of shots is the same as for the RPE protocol. Figure 5.3 shows the histogramed
estimates from 50 trials of frequency calibration for K values from 3 to 12. Also in-
cluded in the figure is a plot showing the sample standard deviation of the estimates
compared with some data for frequency calibration using RPE. The improvement
seen for the ARPE estimates is probably not as good as it looks in this case since
the data obtained for the RPE protocol used a shorter wait-time of 3.0µs compared
to a wait-time of 7.2µs used for the ARPE data. However the minimum sample
standard deviation attained should be approximately independent of the wait-time
used by the protocol. Therefore, the lower standard deviations seen at high K val-
ues give a less ambiguous indication of improved performance. A sample standard
deviation of 120 Hz (∆δ/Ω = 0.012 %) is observed at K = 10, and a minimum of
102 Hz (∆δ/Ω = 0.010 %) is observed at K = 12.

Figures 5.4, and 5.5 also show histogramed estimates for 50 trials of π/2-time
and π-time calibration, respectively, as well as plotted sample standard deviations.
We see that the ARPE protocol consistently delivers estimates with lower standard
deviation than the RPE protocol. For the π/2-time, a minimum sample standard
deviation of 9 ns is observed at K = 8, compared to 17 ns obtained with RPE at
the same K-value. For the π-time, a minimum sample standard deviation of 16 ns
is observed at K = 8, compared to 25 ns obtained with RPE at the same K-value.

We can also calculate the process fidelity of quantum operations from the values
for the standard deviations of our estimates 3. The process fidelity of an applied
operation G can be expressed as

F (G,U) =
1

n(n+ 1)

(
tr

(∑
k

Mk
†Mk

)
+
∑
k

|tr(Mk)|2
)

where U is the ideal unitary target operation, n is the dimension of the Hilbert
space, and Mk = U †Gk is calculated from the target unitary and the Kraus op-
erators {Gk}k of G. If we assume our applied gate is given by (2.10) with finite
detuning δ and angular rotation error ε due to imperfect pulse-time calibration,
the process fidelity for a π-pulse can be expressed as

F (G, U(π)) =
1

3

(
Ω

Ωeff

)2
(

2 +

(
δ

Ω

)2

− cos

(
Ωeff

Ω
(ε+ π)

))
.

δ = 102Hz corresponds to δ/Ω ≈ 1 × 10−4, and a 16 ns π-time sample standard
deviation to ε/π = 4.9× 10−3. Substituting these values leads to a process fidelity
for a π-pulse of 0.999996 or equivalently an infidelity of 4×10−6. Previous analysis
by David Nadlinger using randomised benchmarking found measured process infi-
delities were larger (1.69 × 10−4) mainly due to fast frequency fluctuations of the
qubit. The above calculation for the process fidelity only includes static calibration

3The process fidelity can be seen as the average over all possible initial pure states of the state
fidelity between a target and applied quantum operation. See for example [41,43].

50



0.535

0.530

0.525

0.520

f d
es

ire
d 

(M
H

z)

Frequency Calibration

3 4 5 6 7 8 9 10 11 12
K

10 4

10 3

10 2

 (M
H

z)

Figure 5.3: Experimental data comparing frequency calibration using ARPE versus
RPE. The ARPE data was taken with an input uniform distribution of frequency
estimates with a range of 100 kHz about a centre value obtained using standard
calibration techniques before the trials were performed. A uniform initial distribu-
tion was used for P (θ), and a factor of a = 2.5 was used in equation (5.7). The
RPE data is not from the same day, and was taken with a smaller range of 10 kHz.
The wait-times used for the protocols were 7.2µs and 3.0µs for ARPE and RPE,
respectively.

errors and not other errors due to qubit frequency fluctuations or laser intensity
noise. Based on the number of pulses performed before overwhelming the error
bounds for RPE, the actual gate infidelities were likely larger here than previously
measured using randomised benchmarking. This suggests better accuracies with
RPE and ARPE may be achievable in our system.
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Figure 5.4: Experimental data comparing π/2-time calibration for ARPE versus
RPE. The data for both ARPE and RPE were taken using a uniform input distri-
bution of estimates for the π/2-time. This distribution was taken over a relative
range of 30% of a centre value for the π/2-time obtained using standard calibration
techniques before the trials were performed. For ARPE, the input distribution P (θ)
was set to a Gaussian according to equation (5.6) with µ = π/2, and σ = π/10.
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Figure 5.5: Experimental data comparing π-time calibration for ARPE versus RPE.
The data for both ARPE and RPE were taken using a uniform input distribution
of estimates for the π-time. This distribution was taken over a relative range of
30% of a centre value for the π-time obtained using standard calibration techniques
before the trials were performed. For ARPE, the input distribution P (θ) was set
to a Gaussian according to equation (5.6) with µ = π, and σ = π/8.
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Chapter 6

Summary and Outlook

In chapter 4 I showed how the robust phase estimation (RPE) technique described
by Kimmel et al. can be used to calibrate laser pulses to perform arbitrary single-
qubit gates with a 40Ca+ ion qubit. From the results of applying this technique to
our experimental system we find that we can achieve calibration of pulse frequency
with sample standard deviations as low as 240 Hz. For π/2-time and π-time cal-
ibrations we find sample standard deviations as low as 28 ns (1.56 % of measured
π/2-time), and 57 ns (1.45 % of measured π-time), respectively. The standard
deviations of the obtained estimates for the frequency are limited by the finite co-
herence time of the qubit. For the time calibrations, we may also be limited by
intensity fluctuations of the 729 nm laser light resonant with the qubit transition.

On the one hand, we can make improvements to our experiments in order to
reduce fluctuations in laser frequency or qubit frequency to improve qubit coher-
ence. In chapter 3, I described a technique using complex linear regression which
we used to remove harmonic noise from our qubit transition frequency without
which the accuracies for both frequency and time calibrations using the techniques
of chapters 4 and 5 would have been much lower.

However, since decoherence is nearly always present in experimental systems,
optimising the calibration protocols in these circumstances is also an important
problem to solve in order to achieve better accuracy calibrations. An analysis
of the effects of increasing the number of shots SK performed at the last step
of the RPE protocol was presented showing that we may improve performance
in the presence of decoherence. In particular, although it is possible to improve
the accuracy of estimation at a rate 1/

√
T by averaging the estimates obtained by

applying RPE with a number of shots specified by equation (4.3), we can get better
scaling by increasing SK . Preliminary results from applying the RPE protocol
experimentally with different numbers of shots SK demonstrates improved accuracy
in the estimation that roughly agrees with results from simulation. We also find
that, in the presence of the sources of decoherence mentioned above, the optimal
values of the parameter K used to apply the protocol are 9, 6, and 5 for the
frequency, π/2-time, and π-time, respectively.

A novel phase estimation protocol which I refer to as adaptive robust phase
estimation (ARPE) was described in chapter 5. This technique combines adaptive
Bayesian phase estimation with the general procedure used in RPE. Results from
simulation show improved accuracy of estimation. An increase in accuracy by a
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factor of 1.69 is found from simulation results for frequency calibration, and im-
provement by a factor of 1.85 is found for π-time calibration compared to RPE.
By performing an optimisation on the number of shots used, as well as the pa-
rameter used to spread the distribution after each step of the procedure, further
improvements in performance may be achievable.

Experimental results from applying ARPE to calibrate pulse frequency and
time show improved accuracies compared to RPE. A minimum sample standard
deviation of 102 Hz is observed for frequency estimation. For π/2-time estimation
a minimum of 9 ns (0.59 % of measured π/2-time) is observed, and for the π-time, a
minimum of 16 ns (0.49 % of measured π-time). From these estimation accuracies
the contribution of static calibration errors to the overall process infidelity of a
π-pulse is estimated to be 4× 10−6.

These results demonstrate accurate calibration of single-qubit gates in much
less time than standard techniques, and ultimately should enable higher accuracy
single-qubit operations to be achieved. As more complex quantum information
processing experiments and algorithms are performed on larger systems, these or
similar techniques will become necessary in order to maintain accurate control. As
such this thesis has investigated methods which will become increasingly important
to minimise coherent control errors and which could eventually allow quantum error
correction thresholds to be achieved in more complex experiments. In particular,
it should also be possible to devise similar procedures for multi-qubit operations
where their benefit may be even greater.
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Appendix A

Improving Accuracy in the
Presence of Decoherence

A.1 Theory

Results presented in section 4.2 for frequency and time calibration using RPE
showed that the accuracy of estimation is either limited by the finite coherence
of the qubit in the case of the frequency, or possibly also by fluctuations in laser
intensity for time calibrations. Although averaging over estimates can improve the
accuracy further at a rate of σ ∝ 1/

√
T , it may be possible to get better scaling

by changing some of the parameters in the RPE protocol. In particular, I will
show results obtained by simulating the RPE protocol that suggest that better
than 1/

√
T scaling can be achieved mainly by increasing the number of shots SK

performed at the last step of the protocol. The number of shots given by (4.3),
with α = 5/2 and β = 1/2, has been optimised assuming no decoherence. Roughly
speaking, the best scaling is achieved by increasing the number of applied qubit
rotations from kj to kj+1 as soon as the current estimate for the phase is accurate

enough that the principal range of the estimate k̂j+1A can be determined correctly
with high enough probability. By applying a number of shots according to equation
(4.3), we have SK = d1/2e = 1. When decoherence is present this is no longer
optimal since increasing the number of applied rotations per shot further gives no
advantage. Therefore, equation (4.3) should only be used to determine the number
of shots when K is low enough that decoherence has little or no effect. When the
maximum K value is reached before decoherence takes effect, then we may continue
to obtain improvements in the accuracy of the estimates by increasing SK .

Simulations of the RPE protocol were performed to obtain quantitative esti-
mates for the effectiveness of this strategy. The maximum likelihood estimate for
the variance was used to estimate the standard deviation:

σ̂ =

√√√√ 1

N

N∑
i

(êi − ē)2

where êi is the estimate for the desired parameter (frequency or time), and ē is the
sample mean. The mean error over N calibration trials was calculated as
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Figure A.1: Sample standard deviations and mean errors obtained by simulating
10000 trials of π-time calibration with RPE as we increase the number of shots
SK . The red points correspond to the scaling (σT or ME× T ) computed from the
simulated samples and normalised by the value obtained for SK = 1; a black line
∝ 1/

√
T passes through each point indicating the scaling that would result from

averaging the estimates for that value of SK .

ME =
1

N

N∑
i

|êi − ei|

where ei is the true value used by the simulation.
Results from simulating the RPE protocol for different numbers of shots SK are

shown in figure A.1 for π-time calibrations. For each value of SK the values of σ̂
and the ME were computed for samples of 10000 calibration trials. To obtain the
values plotted, the total “time” computed from (4.1) was multiplied by σ̂ (ME) for
each point, and then all values were normalised by the value of σT (ME × T ) for
the SK = 1 case which corresponds to the unchanged RPE protocol. Therefore, a
horizontal line y = 1 on the plots corresponds to the scaling of the RPE protocol in
the absence of decoherence. For each of the points on the plots, the 1/

√
T scaling

curve passing through that point is also plotted; this represents the expected scaling
we would obtain if we were to average the estimates obtained at that point 1.

The results for π-time calibration plotted in figure A.1 show that increasing the
value of SK may initially improve the standard deviation of the estimates. But

1Although the x-axes on the plots corresponds to the number of shots SK , I plot the curves
∝ 1/

√
T by calculating the “time” T (SK) as a function of the number of shots.
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Figure A.2: Sample standard deviations and mean errors obtained by simulating
10000 trials of π-time calibration with RPE as we increase the number of shots SK ,
and after removing outlying estimates. The red points correspond to the scaling
(σT or ME×T ) computed from the simulated samples and normalised by the value
obtained for SK = 1; a black line ∝ 1/

√
T passes through each point indicating

the scaling that would result from averaging the estimates for that value of SK .

it’s not clear that this will give much advantage over averaging, and when SK is
increased above ∼ 10 we see that averaging estimates is likely to give better scaling
than increasing SK . These results are consistent with the analysis by Kimmel et
al. since we are unable to obtain better scaling than the RPE procedure when the
number of shots performed are always given by (4.3) (none of the points in the plot
for σ̂ have a y-value less than one).

Upon closer inspection, the results for increased SK were found to have a small
number (less than ∼ 2%) of significant outlying estimates which are often easily
identified in practice. This is no surprise since the number of shots at previous
steps has not been re-optimised with the new values of SK . Removing the outlying
estimates results in the data plotted for the π-time in figure A.2. The underlying
distribution of estimates improves in both σ̂ and the ME. So a simple way to
improve performance would be to remove outlying estimates whenever enough data
is taken in practice to be able to easily detect any outliers. Results for frequency
calibration are analogous.

By following the work by Kimmel et al. to optimise the number of shots Sj,
we can try reduce the number of outliers by performing a more detailed analysis.
They define the probability of obtaining an error
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perror(kjA) ≡ P
[
kj(Âj − A) ≥ π

2

∨
kj(Âj − A) < −π

2

]
,

and derive the upper bound

pmax(Sj) ≡
1√

2πSj2Sj
> perror(kjA) . (A.1)

Conditioned on having no errors up to a step j−1 of the procedure, then the error
at step j is bounded by π/2j−1. Combining this with the upper bound (A.1), we
can write an upper bound for the variance of the phase estimate

σ2(Â) ≤ [1− pmax(SK)]
( π

2K

)2

+
K∑
j=1

( π

2j−1

)2

pmax(Sj) . (A.2)

Combining this with (4.1) and setting δSj
(σ2(Â)T 2) = 0 leads to the form of equa-

tion (4.3). Since we have changed the number of shots SK , we need to re-optimise
the number of shots performed at each step j of the procedure. However equa-
tion (A.2) will not capture the effect of increasing SK since the first term rapidly
converges to a constant value. We would need to generalise the upper bound in
equation (A.1) to arbitrary bounding ranges (above the range is

(
−π

2
, π

2

]
). Here I

make some assumptions to get a rough estimate for such a bound. I compute the
exact expected standard deviations of the estimates for the fixed rotation procedure
with S ∈ {1, 2, . . . , 30} and fit the result to obtain σ(Â) ∝ S−0.48. Assuming a nor-
mal distribution of estimates we can approximate the bound (A.1) by integrating
the distribution outside the range

(
−π

2
, π

2

]
to get

p̂max = 1 + erf

(
−π/2
σ(Â)

√
2

)
.

Using the functional form I found for σ(Â) I determine the proportionality constant
which gives the best agreement between p̂max and pmax to get

p̂max = 1 + erf

(−(π/2)S0.48

1.225
√

2

)
.

Taking a range (−ε, ε], we can get an estimate for the error probabilities of this
range as

p̂max = 1 + erf

( −εS0.48

1.225
√

2

)
. (A.3)

Now I use the estimate for the probability of an error (A.3) to derive a more
appropriate bound for the scaling as we change the number of shots SK . Letting
γ = SK and choosing the error range given by

ε(γ) =
π

2γ0.3
,

leads to
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γ α β σ(Â)T

1 3 1 11.31π

2 3 1 10.42π

3 3 2 10.15π

4 3 2 10.14π

5 3 3 10.25π

Table A.1: Optimal values obtained for α and β by minimising equation (A.4) for
values of γ from 1 to 5. The values for σ(Â)T are the approximate upper bounds
computed from equation (A.4).

p̂max(γ) = 1 + erf

(−πγ0.18

2.45
√

2

)
.

Combining this with equation (A.2) I write a new approximate bound for the
variance

σ2(Â) ∼≤[1− pmax(γ)]
( π

2K

)2 (
p̂max(γ) + [1− p̂max(γ)]γ−0.6

)
+( π

2K−1

)2

pmax(γ) +
K−1∑
j=1

( π

2j−1

)2

pmax(Sj) .

Taking δSj
(σ2(ÂT 2)) = 0 leads to the same functional form (4.3) for Sj when

j < K, only now we are explicitly assuming a discontinuous function. Making use
of equations (4.3) and (4.1) I find the approximate bound for the scaling

σ(Â)T ∼≤π(2α + β + γ)
{

[1− pmax(γ)][γ−0.6 + (1− γ−0.6)p̂max(γ)]+

4pmax(γ) + 16pmax(α + β)

(
2α

2α − 4

)} 1
2
. (A.4)

Now we can try to optimise the scaling as we increase γ by minimising equation
(A.4) over the possible values of α and β. I found this to give rough agreement
with simulation over a range of γ. Optimal values obtained for γ from 1 to 5 and
the corresponding approximate bounds are listed in table A.1.

A notable result is that we find optimal scaling for γ = 4, α = 3, and β = 2
which is in fact better than that found by Kimmel et al.. This result was confirmed
by simulation, and can perhaps be explained by the fact that, since we have assumed
a discontinuous function, we are exploring a solution that could not have been
obtained by setting δSj

(σ2(ÂT 2)) = 0, and assuming a continuous function. It’s
also not so surprising that we can find better solutions than the optimal case found
by Kimmel et al. since they optimised a theoretical upper bound, whereas what we
really care about and what I measured in simulation is the average performance.
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Thus we are able to maintain good scaling for larger values of γ, and the standard
deviation of the estimates can be reduced with better scaling than we would get
by averaging.

To make these results most useful, it may be possible to determine a function
for the optimal values of α and β in terms of γ. This could be done by minimising
equation A.4 or a more rigorous bound on the scaling. But better performance can
probably be found by optimising the values in simulation and fitting the result, or
deriving a theoretical expression for the average scaling since what we really care
about is the best average performance rather than the best scaling in the worst
case (i.e. an upper bound).

A.2 Experiment

To experimentally verify the performance of the RPE protocol with an increased
number of shots SK , estimates for the frequency, π/2-time, and π-time were ob-
tained for 50 calibration trials at several different K values. For each K value,
calibrations were performed with a number of shots SK set to 1, 7, 20, and 45 (i.e.
50 trials for each). These values for the numbers of shots roughly correspond to
repeated doubling of the “time” T in (4.1).

The experimental results in figures A.5, A.6, and A.7 can be compared visually
with expected results from simulating the same SK values for 50000 calibration
trials shown in figures A.3 and A.4. The simulated calibrations are for the case
with no decoherence, so we expect the experimental results to roughly match when
the effects of decoherence are small.

For the frequency, similar results to simulation are obtained for K = 9; increas-
ing K further we see that changing SK does not clearly have any effect. This result
agrees with the results presented in section 4.2; as we apply longer wait-times the
qubit decoheres and we no longer obtain any information from the measurement
results 2.

For the π/2-time and π-time calibrations, similar effects are observed, and the
results again agree roughly with the results in section 4.2. Here, we find that the
best performance is obtained when increasing SK for K = 6 and K = 5 for the
π/2-time and π-time calibrations, respectively.

We can conclude from the analysis and results that the best accuracies are
probably obtained for our system by choosing the K values of 9, 6, and 5 for
frequency, π/2-time , and π-time calibrations, respectively, when using 40Ca+.

2I have not shown the results for K = 10 here; they are somewhat better than for K = 11, but
the decrease in variance with SK is not as significant as for K = 9 indicating that decoherence
probably begins to take effect.

61



0

500
S K

=
1

Frequency Calibration, K = 9

0

500

S K
=

7

0

500

S K
=

20

0.3874 0.3872 0.3870 0.3868 0.3866
fdesired (MHz)

0

500

S K
=

45

Figure A.3: Histogramed estimates from simulating 50000 trials of frequency cali-
bration with RPE as we increase the number of shots SK .
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Figure A.4: Histogramed estimates from simulating 50000 trials of π-time calibra-
tion with RPE as we increase the number of shots SK .
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Figure A.5: Histogramed estimates for 50 experimental trials of frequency calibra-
tion for different values of K and SK with a 40Ca+ qubit. Increasing SK when K is
larger than ∼ 9 no longer improves the accuracy since the wait-time used at step
j = K of the protocol is longer than the coherence time of the qubit.
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Figure A.6: Histogramed estimates for 50 experimental trials of π/2-time calibra-
tion for different values of K and SK with a 40Ca+ qubit. Increasing SK when K
is larger than ∼ 6 no longer improves the accuracy due to incoherent errors.
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Figure A.7: Histogramed estimates for 50 experimental trials of π-time calibration
for different values of K and SK with a 40Ca+ qubit. Increasing SK when K is
large that ∼ 5 no longer improves the accuracy due to incoherent errors.
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