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Abstract

This theoretical work stems from a collaboration with Tilman Esslinger’s experi-
mental quantum optics group at ETH. Two main research directions are explored,
both strongly linked and motivated by recent experimental achievements.

The former focuses on the cavity experiment, in which a 87Rb BEC is confined
in an optical lattice and embedded in an ultrahigh finesse cavity orthogonal to the
pump laser. The interaction between the pump laser, the cavity mode and the BEC
atoms gives birth to a plethora of fascinating phenomena and dynamics [1]. The
novelty of this setup is the presence of the ultrahigh finesse cavity, which, via off
resonant scattering, mediates long range interactions. The Hamiltonian describ-
ing the system is not any longer the usual Bose-Hubbard Hamiltonian but it also
includes an additional long range interaction term. We are interested in studying
the impact of this long range term on the dynamics of the condensate. Motivated
by the results for a case without long range interactions [2], we aim at extending
this model. We construct a simulation for a system of four sites and two atoms
per site and evolve the matter wave function in the Heisenberg picture. We show
that the dynamics persists for commensurate values of the interactions strengths
and characterise the revival time for experimental values of these quantities. We
propose this measurement of the dynamics as a pump-probe method to quantify
with precision the long range interactions present in the system.

The second half of this work focuses on the IMPACT experiment r3s, where a
BEC is now positioned within two cavities at 60˝ angle to the pump. Here, we
are interested in calculating the band structure for the resulting optical potential.
We adapt former Python scripts in order to compute the lower energy bands of the
system. We analyse all the possible scattering events and the Hamiltonian for the
system, towards the implementation of the calculation of the bands.

Keywords BEC, Cavity QED, Collapse and Revivals, Extended Bose Hubbard
model, Heisenberg picture, Coherent states, Band structure, Hamiltonian, Optical
potential, Scattering
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SETTING THE SCENE CHAPTER 1

Chapter 1

Setting the scene

Nature isn’t classical ... and if you
want to make a simulation of
Nature, you’d better make it
quantum mechanical, and by golly
it’s a wonderful problem, because it
doesn’t look so easy.

R. P. Feynman, 1981

1.1 Quantum simulation

The proposal of the first Quantum Computer was put forward by Richard Feynman
in 1982 [4]. Back then, Feynman had the brilliant idea of focusing the attention
on simulating physical systems. However, he was well aware of the inherent quan-
tum nature of reality, therefore he proposed an entirely new machine, a quantum
computer, capable of imitating in all ways a quantum system and therefore able to
simulate it accurately.

A decade later, in 1996, Seth Lloyd published a paper entitled “Universal Quan-
tum Simulators”. Its abstract reads: “Feynman’s 1982 conjecture, that quantum
computers can be programmed to simulate any local quantum system, is shown
to be correct.” [5] . These two papers marked the birth of the field of Quantum
Simulation. Quantum simulators have since been under the spotlight due to their
computational capabilities [6]. Quantum simulators are systems whose properties
are very well known and kept under control, for this reason they can be used to sim-
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CHAPTER 1 SETTING THE SCENE

ulate with incredible precision real quantum systems [7]. This of course represents
a remarkable potential for deeper understanding, particularly in a time when more
and more quantum phenomena are exploited in our technology and when there are
several problems which we cannot address completely with our current classical
computational architectures.

A wide collection of physical systems was proposed as quantum simulators such
as: ultracold quantum gases, trapped ions, quantum dots, photonic systems and
superconducting qubits [8]. These systems had two main objectives: being able to
reproduce with high precision a specific Hamiltonian in order to address problems
which are not tractable in the laboratory, and being able to solve problems which
are not accessible via classical computations. Complex quantum ground states and
dynamics of solid state systems fall in the latter category. Indeed solid state physics
is incredibly rich in problems which are currently not solvable using classical com-
putation due to the high number of particles involved in the problem. To mention a
few examples of challenges which are posed by solid state physics and which are
being investigated by quantum simulators: spin-boson models, 1D [9] and 2D sys-
tems [10], Kondo physics [11], Hubbard and spin models [12], disordered systems
[13], high Tc superconductivity, topological order [14], fractional quantum Hall
states, and many more [15].

Thanks to the technical advances in the field in the last decades, the level of quan-
tum engineering involved has reached unprecedented peaks, allowing for precision
control and measurement of quantum systems [16]. Seminal discoveries in this
direction have been the cooling and trapping of atoms, ions and molecules [17],
where physics phenomena were until then unaccessible; laser cooling and evapora-
tive cooling, which allowed the first experimental observations of a BEC [18], [19];
a better understanding of quantum correlations and entanglement; optical lattices
and Feshback resonances, which increased the control capability and the ability to
create lattices resembling those in solid state physics. Almost twenty years after
the first experimental discoveries, the field of quantum simulation is rich in results
and yet still rich in questions to be answered [20].

In the following work we will restrict our interest to a specific type of quantum
simulations: namely quantum simulation with Bose Einstein condensation (BEC)
confined in an optical cavity. We will express the reason for using an optical res-
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1.1 Quantum simulation CHAPTER 1

onator and the advantages which derive from it, hence we will conclude this intro-
duction by describing the two experiments on which this work is based.

1.1.1 Quantum simulation with BEC in optical cavities

Light matter interactions are one of the most fundamental and fascinating phe-
nomena in nature. If we consider a single two level atom irradiated by a light
field with the frequency of the light far detuned from the resonant frequency of
the atomic transition between the ground and excited level, spontaneous emission
is suppressed and coherent scattering of photons is predominant, resulting in the
optical dipole force. In a free space situation, the back action of the particle on the
light is negligible, i.e. the particle does not detect a modification of the light field
and the light field can be considered a conservative optical potential [21].

However, when the system is embedded in a high finesse cavity, the photons circle
inside the resonator resulting in an enhancement of the dipole force and producing
remarkable back action on the light field. In this scenario the atomic motion and
the cavity field dynamics continuously influence one another. From this new dy-
namics regime interference effect and self organising phases arise. Moreover, the
cavity represents an open system, photons leak out of the cavity and allow for a
real time monitoring tool.

Self organisation effects in the cavity lead to the formation of dynamical super-
lattices and as a result long range interactions among the atoms are mediated by
the cavity field. This gives the possibility of engineering tailored long range inter-
actions between atoms, which is not possible in free space cold atoms experiments
[22].

The following paragraph will present the theory of the Jaynes-Cummings model
and the Tavis-Cummings model, which are at the backbone of this work.

1.1.2 Cavity QED and the Cummings models

In the attempt of understanding the interaction between light and matter in this
scenario, and how the presence of the cavity affects the resulting dynamics, we
consider a two level system in a cavity and an electromagnetic field impinging on
it [23], [24]. Light matter interaction can manifest itself in three ways: absorption,
spontaneous emission and stimulated emission.
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In some cases, the absorption can be virtual, resulting in the re-emission of a pho-
ton of the same colour as the incoming photon but in a random direction. This is
the case of a radiation field which is far detuned with respect to the atomic reso-
nance transition. The interaction is coherent and it results in the scattering of the
photons off the atoms. Due to conservation of momentum, the atoms receive a re-
coil kick and move away from their original position. This change in the position
of the atom has an effect on the perceived electric dipole force from the radiation
field. However, when in free space, this perceived shift is negligible.

The effect becomes substantial when the atom and the field are enclosed in an
optical cavity. Optical cavities have the aim of enhancing the interaction between
light and matter. They are closed systems in which light bounces off mirrors and
travels several time along the same path. In a simple Fabry-Perot cavity, two curved
mirrors with reflectivity R, face each other. The light bounces back and forth, with
power enhancement factor of F {π, where F is the finesse of the cavity and it is
given by F “ π

?
R

1´R . The probability to scatter a photon on a single atom is give by
a quantity called the cooperativityC “ σ{A in free space, where σ is the scattering
cross section and A the area of the laser beam. In a resonator, the cooperativity is
enhanced to C “ Fσ

πA , for more than one atom this becomes C “ N Fσ
πA .

When the cooperativity is greater than 1, there will be a substantial backaction
of the atoms on the light field. As the photons scatter off the atoms, the atoms
experience a recoil and move, this motion influences the light field in return and
therefore modifies the light potential dynamically. The optical potential is not static
anymore, and even a single photon can create a potential strong enough to influ-
ence the atoms.

The picture of a single atom interacting with a single mode of an electromag-
netic field is described by the Jaynes-Cummings Hamiltonian. According to the
Jaynes-Cummings model, the system is described by the Hamiltonian given be-
low, made up of three components. The three components refer respectively to
the atomic Hamiltonian, the electromagnetic field Hamiltonian and the interaction
Hamiltonian between atom and field. The Jaynes Cummings model is a quantum
model of the interaction of light and matter, this implies that not only the atom is
a quantum mechanical object, but also the electromagnetic field is quantised. It is
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1.1 Quantum simulation CHAPTER 1

slightly modified when considering the interaction between a single atom and a sin-
gle mode of the field of a cavity by adding a term describing the field pumping the
cavity. In the following, we will consider a pump parallel to the cavity direction.
The Jaynes Cummings Hamitonian is given by:

Figure 1.1: Illustration of the Jaynes Cummings model. A two level atom in a
cavity interacts with a light field. ωa and ωc represent the resonance frequencies of
the light and the atomic transition.

HJC “ Hatom `Hfield `Hinteraction. (1.1)

Let us study in detail each one of these terms. The first term of the equation refers
to the atomic Hamiltonian, and, considering both internal and external degrees of
freedom, is given by:

Hatom “
p2

2m
` Vextpxq ` ~ωaσ̂z, (1.2)

here, the first two terms describe the kinetic energy of the atom and an external
potential, the third term describes the excitation energy of the two level system,
modelled as a spin-1/2 particle with ground state |gy and excited state |ey. In
this picture, the two level atom lives in a Hilbert space spanned by two energy
eigenstates, i.e. the 2D Hilbert space is equivalent to that of a spin-1/2 particle and
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can be thought of as a 2-vector: α |ey ` β |gy =

˜

α

β

¸

. Transitions between the

two levels are given by the Pauli matrices σ̂x, σ̂y and σ̂z, and their superpositions
σ̂` = 1/2(σ̂x ` iσ̂y) and σ̂´ “ 1{2pσ̂x ´ iσ̂y), with σ̂z, σ̂x and σ̂y given by:

σ̂z “

«

1 0

0 ´1

ff

σ̂` “

«

0 1

0 0

ff

σ̂´ “

«

0 0

1 0

ff

The Pauli matrices exert the following operations: σ̂` |gy “ |ey, σ̂´ |ey “ |gy and
are therefore called the raising and lowering operators, moreover σ̂z |ey “ |ey and
σ̂z |gy “ ´ |gy.

The second term of equation (1.1) refers to the Hamiltonian of the electromagnetic
field, given by:

Hfield “ ~ωcâ
:â` ~ηpâeiωpt ` â:e´iωptq, (1.3)

where here we consider ωc as the cavity resonance frequency and ωp as the pump
frequency driving the cavity at a rate η. The first term on equation (1.3) counts the
number of photons in the cavity, the second one represents a classical pump field.

The interaction is given by

Hinteraction “ ´µ̂ ¨ Ê. (1.4)

where µ̂ describes the dipole matrix operator and Ê the electromagnetic field. Both
of these quantities are quantised and this term can be rewritten as:

Hinteraction “ ~gpxqpâ´ â:´qpσ̂´ ` σ̂`q. (1.5)

Upon expanding this expression we obtain four terms, two of which can be elimi-
nated using the Rotating Wave Approximation (RWA), which discards terms oscil-
lating at slower rate, to give:

Hinteraction “ ~gpxqpσ̂`â` σ̂´â:q. (1.6)
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Here the interaction strength is given by the coupling rate gpxq “ g0 cospkxq,
which is position dependent. This rate can also be used to re-express the coop-
erativity as C “

g2
0

2γκ , with κ and γ the atomic field and cavity field decay rates
respectively. The strong-coupling regime in cavity QED corresponds to the condi-
tion g0 ą κ, γ.

At this point we would like to “ignore” the evolution of the free Hamiltonian,
i.e. Hatom ` Hfield and to only consider the evolution of the interaction Hamil-
tonian. To this aim we apply a unitary transformation which has the effect of
putting us in a frame rotating with the free evolution of the oscillator, relative to
this frame, we only see changes due to the interaction, and we eliminate the time
dependence of the problem. After applying the unitary transformation given by
U “ eiωptpσ̂zq`â:â, such that â “ U :ptqâUptq and σ̂´ “ U :ptqσ̂´Uptq and defin-
ing the detuning of pump, cavity field and atomic frequency as: ∆c “ ωp´ωc and
∆a “ ωp ´ ωa we obtain the following Hamiltonian:

H “
p2

2m
`Vextpxq´~∆aσ̂z´~∆câ

:â`~ηpâ` â:q`~gpxqpσ̂`â` σ̂´â:q (1.7)

This model can be generalised to an ensemble of atoms by summing over the con-
tribution of each atom to the atomic Hamiltonian and the interaction Hamiltonian,
in which case the model is known as the Tavis-Cummings model.

Now, when considering a Bose-Einstein condensate, we are interested in the cou-
pling between the external degree of freedom and the cavity light field. We consider
the BEC to be in its ground state, and the detuning ∆a between the light resonance
and the atomic resonance is large, i.e. we are in the “dispersive” regime. In this
situation, the probability to excite an atom to the higher state is very small, there-
fore we can perform an adiabatic elimination of the excited state. This results in an
effective Hamiltonian of the form:

Heff “
p2

2m
` Vextpxq ´ ~∆câ

:â` ~ηpâ` â:q ` ~
g2pxq

∆a
â:â (1.8)

where the last term now can be interpreted as a shift of the cavity resonance due to
the interaction between the atoms and the light.

In a many body formalism [25], the atomic field operators Ψpxq and Ψpxq: are
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introduced, leading to:

H “

ż

dxΨpxq:
ˆ

´
~2

2m
∇2 ` Vextpxq ` ~

g2pxq

∆a
â:â

˙

Ψpxq´

´ ~∆câ
:â` ~ηpâ` â:q

(1.9)

the last term within the integral can be interpreted both as a dispersive shift of the
cavity resonance due to the presence of the atoms, or a potential which shifts the
position of the atoms. It expresses the backaction between light and atoms.

The description developed up to now is for a pump laser parallel to the cavity direc-
tion. For a standing wave pump which is transverse to the cavity instead of parallel,
the situation varies and self organisation phenomena are observed, due to the in-
terference effects between the pump light field and the cavity light field. In this
scenario the pump photons impinge on the atoms which are excited and are able
to radiate back into the cavity mode. The cavity mode hence becomes populated.
In the dispersive limit (or large detuning limit), the single particle Hamiltonian in
(1.6) can be recasted as:

H “
p2

2m
`Vextpxq´~∆câ

:â`~ηpâ` â:q`
~

∆a
pgpxqâ:`Ωpzqqpgpxqâ`Ωpzqq

(1.10)
with Ωpzq being the coupling laser Rabi frequency which is space dependent:
Ωpzq “ Ω cospkzq and transverse to the cavity coupling rate gpxq defined as before
as gpxq “ g0 cospkxq. This corresponds to:

H “
p2

2m
` Vextpxq ´ ~∆câ

:â` ~ηpâ` â:q`

` ~
g0

∆a
cos2pkxqâ:â` ~

Ω2

∆a
cos2pkzq ` ~

g0Ω

∆a
cospkxq cospkzqpâ` â:q

(1.11)

where the last three terms describe respectively the atom-cavity coupling, the static
potential from the pump standing wave and a checkerboard lattice potential which
depends on the atom position. Due to the interference of the two sinusoidals, pho-
tons from the pump can be scattered into the cavity only if the atoms are occu-
pying a lattice with a λ periodicity, otherwise they experience destructive interfer-
ence. Depending on the position of the scattering atoms, the phase of the scattered
photons varies. Once photons are present in the cavity, they also strengthen the
checkerboard potential. This marks the onset of a self-organised checkerboard lat-
tice potential. However, if on one hand the scattering is only maintained for a
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specific spatial organisation of the atoms, on the other hand the kinetic energy term
is minimised for a homogeneous density distribution. The checkerboard potential
and the kinetic energy terms battle in order to reach a stable situation. Therefore
a threshold arises for the onset of the self organised phase. This has been shown
to be a second order phase transition, with the relative phase between pump and
cavity field and the number of atoms on either odd or even checkerboard sites as
the parameters which display a broken symmetry [1].

1.1.3 The Cavity experiment

The cavity experiment in Tilman Esslinger’s group at ETH is an experiment which
involves a BEC loaded on a 3D optical lattice embedded in a high finesse optical
cavity [23], [26], [1]. There are several similar experiments around the world with
BEC in optical cavities, such as: [27], [28]. A schematic of the experiment is
shown in Figure 1.2. In the experiment, a BEC of » 4 ˆ 104 87Rb atoms trapped
via an optical dipole trap in the center of a TEM00 mode of the cavity, is loaded
onto a 2D lattice in the xz plane and split into a stack of 60 weakly coupled layers
in the y direction. The lattices are respectively at a wavelength of λy = 670 nm and
λx = λz = 785.3 nm. The lattice beams create a lattice potential V2D measured in

Figure 1.2: A BEC is loaded onto an optical lattice within an ultrahigh finesse
cavity. Figure taken from [1].

units of the recoil energy Erec. Moreover an overall harmonic potential results in a
maximum density at the centre of the trap of 2.8 atoms per lattice site.

The beam along the z direction, as shown in Fig.1.2, pumps photons into the lattice.
These photons scatter off the atoms into the cavity mode and mediate long range
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CHAPTER 1 SETTING THE SCENE

interactions. There are two main scattering processes that occur in this system:
a photon from the pump laser may be virtually absorbed by the condensate and
scattered into the cavity mode, or a photon from the cavity mode may be scattered
by the atoms into the pump standing wave field. This model, as discussed ear-
lier, comprising a single atom (Jaynes-Cumming) or an ensemble of atoms (Tavis-
Cumming) in a high finesse cavity, presents a quantum phase transition when the
coupling term between the light and the atoms reaches a threshold value and self
organisation takes over. The system of a trapped BEC in a cavity offers the possi-
bility to realise the Dicke quantum phase transition where the self organisation in
a checkerboard lattice corresponds to the Dicke transition [29].

When considering a single atom coupled to a single mode cavity in presence of a
standing wave field, the Hamiltonian in the Rotating Wave Approximation (RWA)
corresponds with equation 1.9 [29]. When moving to a description of the entire
system instead of a single atom, a mean field approach is taken in which all atoms
are occupying a single quantum state described by a wave function ψ normalized
to the number of atoms [30]. A checkerboard lattice arises with geometry given by
cospkxq cospkzq “ ˘1. The corresponding dynamic lattice potential is given by:

V px, zq “ V0 cos2pkzq`~U0|α|
2 cos2pkxq`~ηpα`α˚q cospkxq cospkzq, (1.12)

where the pump and atom resonance frequency detuning is more than five orders
of magnitude and therefore only coherent scattering between pump and a single
cavity mode is considered. Intracavity photons are created by Rayleigh scattering
of laser photons into the cavity mode.

Light interference results in a strong depedence of the scattered intracavity field
on the interatomic distance. For two atoms separated by odd integer multiples of
the half-wavelength, the corresponding scattering amplitudes into the mode have
the same magnitude but opposite sign, resulting in destructive interference and a
vanishing cavity field amplitude. Atoms separated by even integer multiples of the
half-wavelength, in contrast, have the field components scattered off the two atoms
interfering constructively. The net result is the creation of a square-lattice potential
that dynamically depends on the atomic position with periodicity λ?

2
in the diag-

onal direction of the x ´ z plane, as shown in Figure 1.3. This is a a superlattice
which distinguishes even from odd sites. The system is described by the usual

10
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Figure 1.3: A checkerboard lattice arising from the scattering of pump photons into
the cavity mode and viceversa. Figure taken from [29].

Bose-Hubbard Hamiltonian with the addition of a long range interaction term:

Ĥ “ ´t
ÿ

xe,oy

pb̂e
:
b̂o`h.c.q`

ÿ

i

1

2
Usn̂ipn̂i´1q´

Ul

K
p
ÿ

e

n̂e´
ÿ

o

n̂oq
2´

ÿ

iPe,o

µin̂i,

(1.13)
where the first term is the hopping term between nearest neighbours, e and o de-
note even and odd sites, with b̂i the bosonic annihilation operator, b̂i

:
the bosonic

creation operator; the second term is the short range interaction term, with n̂i the
number operator; the third term describes the long range cavity mediated inter-
actions and the last term the effective chemical potential in the Grand Canonical
ensemble, h.c. denotes the hermitian conjugate.

This Hamiltonian is obtained by considering first a single particle Hamiltonian,
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then moving to a many-body formalism with the introduction of the bosonic field
operators Ψ and Ψ: in second quantization and expanding the field operators in the
basis of Wannier functions localised on different lattice sites [1].

The tuning parameters are the two interaction strengths: Us and Ul. Both terms
depends on the lattice potential V2D, the long interaction strength is proportional
to the lattice potential and inversely proportional to the detuning ∆c = ωz´ωc with
ωc the cavity resonance frequency. Fine tuning the two parameters V2D and ∆c al-
lows to enter a wide range of interaction strengths. The following section will
explore in more detail the long range interaction term in the Hamiltonian. Later
sections will also add details on each of the terms governing the behaviour of the
system. Due to the interplay between the interactions which arise in this scenario,

Figure 1.4: Quantum phase transitions which become accessible when cavity me-
diated long range interactions are active. Figure taken from [1].

three energy scales become accessible. The battle between competing energies re-
sults in an incredibly rich phase diagram as a function of the tuning parameters
which displays four distinct phases: a superfluid (SF), a supersolid (SS), a Mott
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insulator (MI) and a charge density wave (CDW). The phase diagram is shown in
Figure 1.4 and shows the accessible experimental values for V2D and ∆c [31].

To summarise, a BEC cloud is trapped via an optical dipole trap in the center
of the fundamental gaussian mode of the cavity. Then, it is split in 60 layers in
the y direction by a standing wave, this forms layers in the x ´ z plane which are
then loaded onto 2D optical lattices formed by standing waves in the x and z direc-
tions. One of these two standing wave constitutes the free space lattice, the other
is an intracavity lattice which is responsible for the scattering and delocalisation of
photons in the cavity mode. The intracavity field mediates long range interactions,
a type of interaction which had been seeked in the field of ultracold gases for a
long time, but which seemed more challenging to achieve. The result of long range
interactions in the Hamiltonian description of the system results in an additional
term which turns out to be dependent on the density of atoms on the lattice sites.
In particular the long range term depends on the difference on number of atoms on
even and odd sites. The second chapter of this thesis will be particularly focused
on studying the effect of this term on the dynamics of the BEC.

1.1.4 The IMPACT experiment

An additional level of complexity is achieved in the IMPACT experiment r3s. Here,
two cavities are crossed at an angle of 60˝ with respect to a retro-reflected pump
laser, as illustrated in the picture below. The BEC is located in the centre of the two
cavities. The pump is retro-reflected by a mirror and thus forms a standing wave.
The pump laser frequency is the same as the standing wave created within the two
cavities, this frequency is far detuned from the atomic resonance frequency, stimu-
lating coherent processes and scattering between photons and atoms and avoiding
spontaneous emission to happen.

We can follow a photon from the pump to understand an example of a scatter-
ing process. The pump photon is scattered by an atom in the BEC into the mode of
one of the two cavity fields. The atom experiences a recoil kick from the scattering
in the opposite direction. Other processes include the scattering pump-atom-pump,
cavity1-atom-cavity2 and viceversa, pump-atom-cavity and cavity1-cavity2. In re-
ciprocal space, this produces a rich landscape of scattering events and wave vectors.
We aim at understanding such scattering events and to be able to calculate the band
structure for this rather complex system.

13



CHAPTER 1 SETTING THE SCENE

Figure 1.5: IMPACT experiment: a pump laser is retroreflected by a mirror and
two crossed cavities are located at 60˝ angle to the pump. Figure taken from [1].

1.2 Objectives of the thesis

The following work is divided into two parts. The first chapter is focused on the
study of collapse and revival dynamics of a BEC in presence of long range interac-
tions. This work is based on the Cavity Experiment, it aims at understanding fun-
damental properties of Bose Einstein condensates when coupled to cavity fields.
Based on our study, we propose a method to quantify the long range interaction
strength in experiments involving this type of interactions. The work takes inspi-
ration from Greiner’s results from 2002 [2] on a very similar setup without the
cavity and elaborates on it in order to understand the extended Hubbard Hamilto-
nian which results from the presence of the cavity. A toy model is developed and
simulations are run on different types of situations mimicking the Cavity experi-
ment.

The second part of the thesis tries to shed light on the theory behind the IMPACT
experiment. Here the complex setup is studied in detail in order to identify all
the possible scattering events and in order to determine the lattice structure in the
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reciprocal space. A code is developed based on existing scripts for the Lattice ex-
periment in Tilman Esslinger’s group, in order to solve the Schroedinger’s equation
and compute the band structure for the system.

The simulations are written in Matlab for the first project and Python for the second
project (due to adaptation of existing scripts). The main codes are included in the
appendix. The appendix also contains a short account of an experimental project
conducted in ICFO in the Quantum Photonics with Solids and Atoms group as a
voluntary work, which was focused on the design, assembly and alignment of a
high finesse cavity. We include this work in the appendix as the theoretical work
performed over the master thesis revolves heavily around optical cavities.
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Chapter 2

Collapse and revival dynamics in
a BEC in presence of long range
interactions

After your death, you will be what
you were before your birth.

Arthur Schopenhauer

2.1 Collapse and revival dynamics

Collapses and revivals are fascinating and widespread wave phenomena. A col-
lapse implies that an expectation value that initially has a high amplitude com-
pletely vanishes after a certain time, a revival that this pattern reaches again the
original value.

In 1836, Henry Fox Talbot, one of the fathers of photography, discovered the fas-
cinating phenomenon that was later named the Talbot effect [32]. What Talbot no-
ticed was that holding a grating behind a lens illuminated by a light source would
reproduce the grating pattern even when the grating was not at the focus of the
lens. The puzzling effect did not raise much interest until Lord Rayleigh in 1881
formalised the effect and showed it could be a useful way of reproducing grating
patterns. Later on the effect was again forgotten. In more recent years, parallel to
the development of the quantum theory of light, it has become clear that the Talbot
effect is a much richer and deeper phenomenon than Talbot himself expected. The
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Talbot effect has roots in the extreme coherent interference of waves and in the
fascinating limit between the quantum and the classical world.

Similarly to the Talbot effect, the Quantum carpet effect [33] shows the same ”re-
vival” of a quantum wavepacket representing an electron in an atom which propa-
gates along the orbit of the electron. The wavepacket, described by a superposition
of highly excited states, is originally localised on the electron’s position. It is then
left free to propagate and spreads along the orbit. However, after a specific time,
the revival time, the wavepacket contracts again and recollects itself in its very
same original form, producing a quantum revival. The origin of the Quantum car-
pet effect is, as for the Talbot effect, a result of coherent interference of waves. An
other example of a quantum revival lies at the heart of the description of the inter-
action of light and matter: the Jaynes-Cummings (JC) model [34], which predicts
oscillations of the atomic population of a two level system when irradiated by a
single mode of the electromagnetic field.

In 2002, Markus Greiner and his collaborators asked themselves the following
question: whether such collapse and revival dynamics could be observed in a BEC
confined in an optical lattice. The question had been raised already by several the-
orists [35], [36], however no experimental realisation had been made. Greiner and
his colleagues answered the question [2] by showing the presence of such dynam-
ics in a BEC with short range interactions only.

Having at hand an experimental system as described in Chapter I, which allows
us to add one ingredient: the cavity mediated long interactions, motivated us to
ask once more the same question in this new scenario. The following chapter is
organised as follows: first an overview of the work in search for collapse and re-
vival dynamics is given, hence Greiner’s findings are presented and our theoretical
model proposed. Finally, we discuss the results obtained with our numerical simu-
lations.

2.1.1 Collapse and revival in BEC

The phenomenon of collapse and revival dynamics in BEC has been gathering
increasing interest over the years. The first authors to focus on the theoretical de-
scription of the BEC wave function were E. M. Wright and D. F. Walls [37] who,
short after the BEC realisation by Ketterle [38], investigated the macroscopic wave
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function for BEC in small atomic samples and its role as an order parameter. They
found that the condensate wave function in small atomic samples exhibits collapse
and revivals in time. At the same time, more efforts were put into understand-
ing the fundamental features of the dynamics of the BEC by Lewenstein [35] and
Imamoglu [36]. Collapse and revivals were studied in several different situations:
for BEC in a double well potential, for untrapped BEC and for BEC confined in
homogeneous potentials [39], [40], [41]; however, to our knowledge, there is no
study of the phenomenon of collapse and revival of a BEC in a high finesse cavity.

2.2 Collapse and revival dynamics with short interactions
only

One of the most fascinating aspects of a BEC is its similarity to a laser field. What
makes the output light of a laser special is its coherence. Coherence is a property
which quantifies the degree to which a wave in a specific point in space or time is
related to the wave at the same location at a later time or at a different location at the
same time. The coherent aspect of the light is mathematically expressed by hav-
ing a fixed phase relationship between the waves considered. When waves interact
with each other or with themselves, they interfere. Two waves with a constant
phase difference between them are said to be perfectly coherent. It is precisely in
this phase relationship that the similarity between a BEC and a coherent light field
arises. Furthermore, the atoms in a BEC are all described by a unique macroscopic
quantum wave function. In analogy with the photons in a laser, the atoms in a BEC
all belong to the same spatial mode and have the same energy.

Despite the laser being the most ’classical’ form of light and the BEC being the
most ’classical’ form of a matter wave, the BEC is composed by individual atoms
which make its macroscopic matter field quantised. This granular property of the
macroscopic wave function manifests itself when the dynamics of the system are
considered. In the following, these dynamics will be discussed. The aim of this
work is to understand fundamental aspects and behaviour of a BEC confined in a
potential where long range interactions compete with short range interactions.
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2.2.1 On site cold collisions

We begin by considering a BEC confined in a 3D optical lattice. The BEC is in all
aspects a superfluid. In the superfluid regime where the lattice sites are fully sepa-
rated, i.e. in the limit for which the tunnelling is suppressed (J=0), the macroscopic
wavefunction occupies homogeneously the lattice sites. As the BEC is a collection
of identical atoms, the most natural description of the system is to accomodate in
each lattice site a superposition of Fock states (or number states). Moreover, since
the lattice sites are all independent from one an other, the evolution of the system
is simply determined by the short range interactions among atoms within the same
potential well.

In analogy to the case discussed by Greiner [42], ultracold bosonic atoms inter-
act via s-wave scattering, whereas inelastic three body collisions and higher partial
wave scattering processes can be neglected for the parameters of the system. From
scattering theory, we treat the problem of interactions between two ultracold bod-
ies by using an ansatz which is made of an incoming plane wave and an outgoing
spherical wave modulated by a scattering amplitude f :

ψkprq “ eik¨r ` fpk,
r

r
q ¨
eikr

r
. (2.1)

At low energies, the scattering amplitude can be approximated to a single number,
the scattering length a, due to the fact that the angular properties of the scattering
potential V cannot be resolved. The scattering length a is negative for effective
attractive interactions and positive for effective repulsive interactions. In the case
of Rb87, a is positive.

The interaction potential between two neutral atoms is approximated by the Lennard-
Jones potential:

V “
A

r12
´
B

r6
, (2.2)

with r the interparticle distance, the first term describing the hard cores of the
atoms and the second term the Van der Waals attraction.

However, in a many body system and additionally for a metastable BEC this scat-
tering potential would lead to wrong thermodynamic results due to the presence of
bound states, i.e. it would lead to a crystal rather than a dilute gas. For this reason
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it is usual to substitute the full scattering potential with a pseudopotential which is
able to reproduce the correct scattering length. The pseudopotential takes the form:

V prq “
4πa~2

m
δprq, (2.3)

where m is the mass of the particles. When two particles are placed in the ground
state of a confining potential they collide. These collisions lead to an increase of
the total energy by the interaction energy given by:

Uprq “
4πa~2

m

ż

d3pxq|wpxq|4, (2.4)

with wpxq the ground state wavefunction. This description is valid for a level spac-
ing ω much larger than the total interaction energy. The cold collisions cause no
dissipation but an increase in the total energy, as illustrated in the figure below.

When the situation is generalised to many atoms, each one of them interacts with
the remaining n´ 1 and therefore the interaction Hamiltonian, after subraction of
the ground state energy, is given by:

Ĥ “
1

2
Un̂pn̂´ 1q, (2.5)

with n̂ being the particle number operator given by n̂ “ â:â which counts the
number of particles on the site .

This simple Hamiltonian provides the full description of the dynamics of the sys-
tem for a single site. The collisions are coherent as the initial and final state are
well defined. No energy is lost and the total energy increases by the interaction
energy which depends non linearly on n̂. This non linearity has an important effect
on the dynamics of many body systems, as we will discuss shortly.

2.2.2 Ground state wavefunction

The interaction Hamiltonian described in the previous section has well known
eigenmodes: Fock states. The corresponding eigenenergy is given byE “ U

2 npn´

1q since n̂ |ny “ n |ny. We also know that a superposition of Fock states is nothing
but a Glauber or coherent state and that these states can be prepared in the labora-
tory.

Coherent states are indeed the quantum states of light which most closely resemble
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Figure 2.1: Collisions between atoms on the same lattice site, the total energy is
increased by U . Figure taken from [2].

their classical limit, while preserving their quantum nature. “A Bose-Einstein con-
densate represents the most classical form of a matter wave, just as an optical laser
emits the most classical form of an electromagnetic wave” [2]. Clearly our system
belongs to the set of systems which present a strong classical limit, therefore it is
reasonable to use a coherent state description for its ground state wavefunction.
For a full derivation of Glauber states we refer to [43].

Coherent states have a series of interesting properties which make them useful.
They are defined as the eigenstates of the annihilation operator:

â |αy “ α |αy . (2.6)

They can be written as a superposition of Fock states:

|αy “ e´
1
2
|α|2

8
ÿ

n“o

αn
?
n!
|ny , (2.7)

where the Fock states are defined as:

|ny “
pa:qn
?
n!
|0y . (2.8)

It follows by inserting the expression for the Fock states into the summation that
the coherent states can be written also as a displaced vacuum state:

|αy “ e´
1
2
|α|2`αa: |0y “ eαa

:´α˚a |0y . (2.9)
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Coherent states are not orthogonal, the overlap between two coherent states is given
by:

xα| |βy “ e
1
2
|α|2´ 1

2
|β|2`α˚β; (2.10)

the eigenvalue α is a complex number with argument and amplitude specified by:

α “
?
n̄eiφ, (2.11)

where n̄ is the average number of atoms and φ is the macroscopic field phase. The
atom number distribution follows a Poissonian distribution for which the variance
is equal to the mean, xn̄y “ Varpnq.

The ground state wavefunction for a single site system of BEC atoms in a con-
fining potential can be prepared to be a coherent state. Such a state has a well
defined phase and its eigenvalue α is a complex vector which describes a classical
field Ψ. It is to note that one could also consider a different trial ground state wave-
function, which would not for example have problems with the truncation of the
coherent state infinite sum. A trial wavefunction was considered and compared to
the coherent state wavefunction, leading to very similar results. Next, we are inter-
ested in studying the time evolution of this ground state in presence of collisional
interactions.

2.2.3 Time evolution with short range interactions

As the only interactions present in this model are the on site collisional interactions
described earlier which occur between atoms on a specific site, we call this colli-
sional interactions “short range” interactions. Later on we will expand our system
to include the presence of “long range” interactions.

In order to understand how the system behaves, it is interesting to study its time
evolution. The time evolution of a state is described by the time evolution operator
Uptq such that:

|αptqy “ Upt, 0q |αp0qy (2.12)

where Uptq “ e
´iHt

~ determines the evolution. For the Hamiltonian given before,
it holds that Ĥ |ny “ En |ny, which means that the eigenstates of the Hamiltonian
are number states with eingenenergy given by En “ 1

2Unpn´ 1q.

If we begin by considering a number state, than its time evolution is simply:

|nptqy “ Upt, 0q |np0qy “ e
´iHt

~ |np0qy “ e
´iUnpn´1qt

2~ |np0qy . (2.13)
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The number states acquire each a collisional phase which depends on the atom
number. Each Fock state evolves differently depending on this phase. Moreover,
the interaction energy is quadratic in the atom number. This nonlinearity is funda-
mental when one expands this treatment to coherent states. A coherent state is not
an eigenstate of the Hamiltonian any longer. However, if one considers a coherent
state with eigenenergies linear in n (for which En9 nq, for instance in the case of
the harmonic oscillator, it is easy to see that a coherent state evolving in time will
remain a coherent state up to a macroscopic phase factor:

|αptqy “ Upt, 0q |αp0qy “ (2.14)

“ e´
1
2
|αp0q|2

8
ÿ

n“0

pαp0qqn
?
n!

e
´iω~pn`1{2qt

~
pa:qn
?
n!
|0y . (2.15)

Upon rearrangement this expression becomes:

|αptqy “ e´
1
2
|αp0q|2e´

iωt
2

8
ÿ

n“0

ppαp0qqe´iωta:qn

n!
|0y , (2.16)

which is equivalent to:

|αptqy “ expp´
1

2
|αp0q|2 ´

iωt

2
` αp0qe´iωta:q |0y , (2.17)

this is nothing but a coherent state with a time dependent eigenvalue αp0qe´iωt and
a phase factor given by e

´iωt
2 . For a Hamiltonian with linear eigenenergies, the co-

herent state remains a coherent state over time despite it not being an eigenstate of
the Hamiltonian.

The situation is different when the Hamiltonian is non linear in the number state.
In this case the coherent state evolves according to:

|αptqy “ e´
1
2
|αp0q|2

8
ÿ

n“0

pαp0qqn
?
n!

e
´iUnpn´1qt

2~ |ny , (2.18)

which upon a similar rearrangement leads to:

|αptqy “ e´
1
2
|αp0q|2

8
ÿ

n“0

pαp0qeiUt{2~a:qn

n!
e
´iUn2t

2~ , |0y (2.19)

the dependence on n2 leaves an extra term which does not allow us to rewrite the
expression as in (2.17).
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Each number state acquires a different nonlinear collisional phase shift depend-
ing on its energy, which gives rise to an overall dephasing of the number states
with respect to each other. This implies that the coherence, or the property to have
a well defined phase, gets lost over time. However, due to the phase dependence,
the coherence not only collapses but it also comes back after a defined time, as it
will be discussed in the following section.

2.2.4 Collapse and revival

A BEC at T “ 0 fully condensed is a collection of N atoms described all by the
same single particle wave function. This is a many body system, and the many
body wave function is given by a product over the single particle wave functions.

The BEC can be described also by an order parameter or macroscopic wave func-
tion. In an inhomogeneous system and for a non interacting BEC, this state corre-
sponds to the ground state of the confining potential, for a periodic potential this
state is a Bloch wave function with quasi momentum q “ 0. When considering a
many body state as a superposition of states with different atom numbers and a well
defined macroscopic phase, the order parameter can be defined as the expectation
value of the single particle destruction operator:

ψ “ xây . (2.20)

This quantity shows whether the many particle state can be described by a classical
field ψ and it also is linked to the property of possessing a macroscopic phase. This
field is given by:

ψ “ xαptq| â |αptqy . (2.21)

This quantity can be evaluated by inserting the expression for the time evolved
coherent states and knowing that the Hamiltonian acts on the Fock state as:

Ĥ |ny “ En |ny “
1

2
Unpn´ 1q |ny , (2.22)

and the action of the annihilation operator on a number state:

â |ny “
?
n |n´ 1y , (2.23)

the resulting expression after algebraic manipulation reads:

ψptq “
?
n̄
ÿ

n

e´n̄n̄n

n!
eipEn´En´1qt{~ “

?
n̄ exppn̄pe

´iUt
~ ´ 1qq, (2.24)
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which on a short timescale is approximated to:

ψptq »
?
n̄e

´in̄Ut
~ e

´n̄U2t2

2~2 . (2.25)

The field is characterised by a revival and collapse dynamics with a characteris-
tic collapse time tc “ ~?

n̄U
and revival time trev “

h
U , which are evident when

recasting the above expression using the Euler’s formula:

ψptq »
?
n̄e

´n̄U2t2

2~2 pcospn̄pUt{~qq ´ i sinpn̄pUt{~qqq; (2.26)

at the revival times, each number state acquires a phase which is given by n ¨ 2π:
the state with n “ 1 does not evolve, the state with n “ 2 has accumulated a 2π

shift, the one with n “ 3 will have a phase of 3 ¨ 2π, so all of the states have the
same initial phase, modulo 2π. At trev, the many body macroscopic wavefunction
is equivalent to the wavefunction at the initial time t “ 0. The matter wave field
entirely revives to its initial value. The revival and collapse dynamics is indeed a
periodic oscillation with a period of trev. Below, the result obtained by Greiner for
this model is shown for two revivals. [42]

Figure 2.2: Periodic collapse and revival dynamics for n̄ “ 1 and n̄ “ 2. The
matter wave field is plotted as | xây |2 vs time, periodic revivals are observed for
trev “ h{U . Note that the field revives completely to a value of 1. Figure taken
from [42].
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2.2.5 Experimental verification

A BEC of 2ˆ 105 87Rb atoms is loaded on a three dimensional optical lattice at a
wavelength of λ “ 838 nm [2]. At the centre of the lattice around 150000 sites are
occupied with an average atom number per site up to 2.8. The atoms are trapped at
the intensity maxima of the standing wave light field due to the dipolar force.

The main two results which confirm the presence of collapse and revival dynamics
are shown below. In the former, the overlap between a stationary coherent state
and a time evolving coherent state are shown. The phase is scrambled up to a time
trev

2 (d), when despite ψ “ 0 the system has evolved into an exact Schoedinger’s
cat state of two coherent state with a 180˝ phase difference. At the revival time (g),
the initial coherent state is fully revived [2]. After preparing the BEC in a super-

Figure 2.3: The overlap between an arbitrary coherent state and a dynamically
evolved coherent state for an average number of atoms n̄ “ 3 for different times.
Figure taken from [2].

position of states, the experiment is performed by ramping up the lattice potential
so that all the sites are independent and the tunnelling between sites is suppressed.
The timescale for the jump in lattice potential is chosen carefully to be able to win
any tunnelling effect while maintaining the state of the BEC in the ground state of
the potential. Hence all the confining potentials are switched off at different hold
times and the interference patter is observed, as shown in Figure 2.3.

The previous paragraphs have presented the system of a BEC in an optical lat-
tice where the lattice potential was ramped up such that the sites became indepen-
dent and the tunnelling was suppressed. The dynamics of this system were studied
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Figure 2.4: Absorption images after a time of flight period of 16 ms for different
hold times t. The lattice potential is ramped from VA “ 8Er to Vb “ 22Er. The
collapse is clearly visible at t “ 250 µs and the revival for t “ 550 µs. The collapse
is due to a collapse of the matter wave field in each well. Figure taken from [2].

by modelling the ground state wave function as a superposition of number states
evolving according to the interaction Hamiltonian alone. The theoretical analysis
was carried out considering the evolution of the coherent state on a single lattice
site. The dynamics of the system showed a collapse and revival behaviour. The
theoretical predictions were then confirmed through experiments which showed
the presence of a revival of the matter wave field of the whole system, owing to the
phase relationships of the individual number states in each potential well.

In the following section we present an extension of this scenario, in which the
same system is embedded in a ultra high finesse optical cavity. As shown in Chap-
ter 1, the interaction between the cavity mode and the optical pump field leads the
system to a Dicke regime whose net effect is to create a superlattice where even and
odd sites become distinguishable. Due to the presence of the cavity, the Hamilto-
nian is extended to include an extra term which describes long range interactions.
The next sections will present this new system in detail.

2.3 Collapse and revivals with long range interactions

The Cavity experiment in Tilman Esslinger’s group motivates us to pose the ques-
tion that Markus Greiner asked, for this new system. The main novel feature is
the addition of a long range interaction term. This term, which has a quadratic
dependence on the imbalance of atoms on even and odd sites, affects the dynamics
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of the system. We are interested in understanding whether the collapse and revival
dynamics persists in the presence of this long range interactions term and under
which conditions. The following sections are organised as follows: first, the the-
oretical model is revisited to include the new term, hence our numerical model is
described, followed by a discussion of the numerical results obtained.

2.3.1 Theoretical model

As discussed in the first chapter, the Hamiltonian for the cavity experiment is the
Bose-Hubbard Hamiltonian with an additional term accounting for the effect of the
cavity field. As this term depends on the global imbalance between even and odd
sites, a description including a single site is not accurate anymore, and the model
must take into consideration all the sites in the system. For our numerical simu-
lation, we restrict to four lattice sites in order to capture the main features of the
dynamics.

Expression (2.5) is expanded to:

Ĥ “
ÿ

i

1

2
Usn̂ipn̂i ´ 1q ´

Ul

K
p
ÿ

e

n̂e ´
ÿ

o

n̂oq
2, (2.27)

where n̂i counts the number of atoms on site i, Us is the short range interaction
potential, Ul is the long range interaction potential, K is the total number of sites
and e and o denote the even and odd sites.

Again, we are interested in the dynamics of the system, in particular we are in-
terested in the coherent properties of the system. In other words, we are asking
whether a macroscopic phase is maintained during the time evolution and how it
behaves. We expect the system to follow a similar evolution to the case presented
in the previous chapter, where only the short interactions are present and the co-
herence gets lost after a characteristic time to then be revived again in a periodic
fashion. The quantity of interest is again the order parameter, or matter wave field
ψ given by:

ψptq “ xαptq| â |αptqy , (2.28)

where we now shift to the Heinsenberg picture, in which the time evolution is
incorporated in the operators instead of in the states such that:
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ψptq “ xα| âptq |αy . (2.29)

This in turn is expanded to:

ψptq “ xα| e
iHt
~ âe

´iHt
~ |αy , (2.30)

with H given by equation (2.25) and the coherent states α defined as in (2.7). Due
to the presence of the long range term, which includes double terms which connect
different lattice sites, it is not possible to reduce this expression for H in order to
obtain ψ such as in (2.23).

Note that the Hamiltonian contains only the number operators n̂i, n̂e, n̂o and that
the corresponding eigenstates are the Fock states. Here, we are evolving coher-
ent states, a superposition of Fock states, which are all good eingenstates of the
Hamiltonian, with the number of atoms in the sites as their eingenvalues. When
considering more than one lattice site, the total ground state wavefunction is given
by the tensorial product of the coherent states of each lattice site.

Both of the terms in the Hamiltonian are non-linear in the number operator, again
this non linearity is at the core of the collapse and revival dynamics of the system.
In the hope for the possibility of a mean field approach, we attempt to rewrite the
long range interaction term of the Hamiltonian as a function of a single site num-
ber operator and an overall imbalance, however due to the quadratic form of the
expression, it is not possible to rewrite the number states operators for the different
sites. The interconnection between all sites, which produces a global interaction,
remains present in the expression. As an example, consider a two sites system, this
implies that the total coherent state is given by the tensorial product of the coherent
state for each one of the sites:

|αy “ |α1y b |α2y , (2.31)

where 1 and 2 denote the two sites. The time evolution will be given then by:

ψptq “ xα| e
iHt
~ âe

´iHt
~ |αy “ xα1| b xα2| e

iHt
~ âe

´iHt
~ |α1y b |α2y , (2.32)

with the Hamiltonian given by:

Ĥ “
1

2
Usn̂1pn̂1 ´ 1q `

1

2
Usn̂2pn̂2 ´ 1q ´

Ul

K
pn̂2 ´ n̂1q

2. (2.33)
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When acting with the annihilation operator, one obtains a total of three terms in ni
which multiply three terms in ni´ 1, with Us and Ul prefactors. This expression is
much more complex than the simple, one factor expression in equation (2.24) due
to the interconnectedness of different sites. As the number of sites increases, also
the number of double terms increases.

In order to study the dynamics, we produce a Toy model for the system with which
we run numerical simulations. The following section will describe the architecture
of the model.

2.3.2 Numerical implementation

In order to produce numerical results, we implement a toy model for the system.
We restrict to a number of four lattice sites, in order to capture the long range in-
teractions effect.

Figure 2.5: Toy model for a BEC in a high finesse optical cavity with even and odd
sites, only four sites are considered.

We define the number operator on site i as:

n̂i “

»

—

–

0 0 0

0 1 0

0 0 2

fi

ffi

fl
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and the annihilation operator given by:

â “

»

—

–

0
?

1 0

0 0
?

2

0 0 0

fi

ffi

fl

The Hamiltonian acts on all the sites, therefore it has dimensions given by
p#atomsq#sites: it is a matrix of dimensions 81 ˆ 81. The sites can accommo-
date either none, one or two atoms, consistently with the quoted average number
of atoms per site in the experiment given at the center of the lattice potential as
up to 2.8. The coherent state α is then given by the first three terms in the Fock
states sum, i.e. the infinite coherent state sum is truncated at the nmax chosen. This
truncation has some consequences on the values up to which | xay |2 revives as it
will be discussed in the following section.

The full Hamiltonian for this toy model is given by:

Ĥ “ Ĥshort ` Ĥlong, (2.34)

with, for the four sites:

Ĥshort “
1

2
Usn̂1pn̂1 ´ 1q `

1

2
Usn̂2pn̂2 ´ 1q `

1

2
Usn̂3pn̂3 ´ 1q `

1

2
Usn̂4pn̂4 ´ 1q;

(2.35)
and denoting n̂e “ n̂2, n̂4 and n̂o “ n̂1, n̂3 the long range term is given by:

Ĥlong “ ´
Ul

K
ppn̂2 ` n̂4q ´ pn̂1 ` n̂3qq

2, (2.36)

which is expanded to:

Ĥlong “ ´
Ul

K
ppn̂1q

2 ` pn̂2q
2 ` pn̂3q

2 ` pn̂4q
2`

` 2n̂1n̂3 ` 2n̂2n̂4 ´ n̂2n̂1 ´ n̂2n̂3 ´ n̂4n̂1 ´ n̂4n̂3q.

(2.37)

From this expression it is not immediately clear whether such a term could be re-
casted in a form which only has an overall imbalance term and the number operator
for a single site.

We plot the result of the exact time evolution of the system as |ψ|2 against time.
The corresponding code is enclosed in the appendix. We expect to maintain the
collapse and revival dynamics depending on the relative values of the interaction
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strengths Us and Ul. In the next section the main numerical results will be pre-
sented.

2.3.3 Numerical results

Throughout all the simulations the values for Ul and Us need to be fixed. The
experimental values are given in the plots and table below. Initially, three values
for V2D were selected in order to span the whole range: V2D “ 5, 10 and 15 ERec.
These values corresponded with the values for Us and Ul shown in Figure 2.8. Note
that in order to estimate the long range interaction strength the number of sites K
needs to be specified. In this case the experimental values are given for a system
size of 10000 sites. This value is taken into account in the simulation, despite it
being limited to 4 sites, the atoms on each site feel an interaction ’as if’ the system
size is effectively constituted by 10000 sites.

Figure 2.6: Short range interaction strength for V670 = 25Erec. Data acquired from
Tobias Donner.

The given values represent rough estimates for the interaction strengths. Ul and Us

display a dependence on the detuning ∆c and the lattice potential V2D given by
[1]:
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Figure 2.7: Long range interaction strength for V670 = 25 ERec, system size K “

10000 and detuning ∆c “ ´30 MHz. Data acquired from Tobias Donner.

Ul9
V2D

∆c
. (2.38)

These two quantities are the experimental parameters which are tuned in the labora-
tory, from them the interactions strengths are extracted. However in the laboratory
sources of inhomogeneities are present, therefore these values serve as a guideline
for realistic experimental values, but they need not to be considered with precision.
Particularly, the value for Ul is to be regarded with care as it is just a rough estimate
and it could be correct up to a factor of two.

This fact raises an interesting point: it is very difficult to precisely quantify the
long range interaction strength of the system. Indeed, experiments on this system
are rather focused on exploring different phases of matter in the presence of ’some’
long range interactions. However, as it will be discussed shortly, the collapse and
revival dynamics are very sensitive to the exact ratio of Us and Ul, therefore the
collapse and revival dynamics could be exploited as a method for providing a pre-
cise measurement of Ul in any similar setup. This proposal will be discussed in
more detail in later sections.
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Figure 2.8: Experimental values for Us and Ul as read from the provided plots at
specific values of V2D (in units of ERec).

To begin with, the collapse and revival dynamics as depicted in figure 2.2 are re-
produced. The simulation is performed on a single site and with a ni “ 0, 1 or 2,
for a V2D “ 10ERec and Us “ 2150 Hz. The time is given in units of ~

U , where we
set ~ = 1.

One feature of the result, which shows one of the limitations of the toy model, is
the fact that the oscillations don’t reach unity. We attribute this limitation to the
truncation of the coherent state to a low number of Fock states. We check this
hypothesis by simulating the dynamics for two, three, four and five atoms. The
simulations show that the maximum value of |a|2 increases when the number of
particles in the system, and therefore the number of Fock states in the superposi-
tion, increases. However a higher number of particles significantly increases the
computation time, while the collapse and revival dynamics remains unaltered. For
this reason the simulations are performed for a maximum of two atoms per site.

The revival time trev “
h
U is fully consistent with the numerical simulation. For

h “ 1, U “ 2150 Hz and trev “
h
U “ 1

U » 0.00046s “ 460µs. The revival
occurs in the simulation at tp ~U q “ 0.00293. Taking into account that ~ “ h

2π , we
obtain trev “ 0.00293{2π » 0.00046 s. Moreover this value is also similar to the
experimental value quoted by Greiner r2s of 550 µs.

The system is then expanded to include the long range interactions. To being with,
the coherent state is truncated to n “ 2 and a V2D “ 5ERec is chosen, correspond-
ing to Ul “ 1550 Hz. By inspecting Fig 1.4 in Chapter 1, one can locate these
values in the phase diagram. Several experimental values for the long interaction
strength are chosen, however these values are a rough estimate as mentioned be-
fore.
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The results show an interesting feature: collapses and revivals are clearly observed
when the values of Us and Ul are commensurate and their ratio is an integer. In
the Hamiltonian, these two terms are in a linear superposition and the periodicity
of the evolution is maintained when there is such a ratio between the two interac-
tion strengths. The two interaction terms have opposite signs and are in competi-
tion. When the long interaction strength is much smaller then the short interaction
strength, the dynamics is mainly determined by Hshort and Hlong acts as a pertur-
bation. For the chosen value of Us, plots for Ul “ 90 Hz and Ul “ 155 Hz are
shown. The first one is in a non integer ratio with Us, the second one is in an integer
ratio.

As shown by figure 2.10 and 2.11, the commensurability of Us and Ul is the factor
which determines the presence or absence of periodic revivals. In particular in 2.11
well defined revivals are observed. The revival time trev is not anymore a trivial
function of Us only but it is determined by the dynamics of Ul. When trying to un-
derstand the revival time of the system, we first compute individually the dynamics
in presence of either short or long range interaction for the same strength of Ul and
Us.

The result shows revival times at the same position, confirming that both inter-
action terms have the same h

U dependence. However the shape of the curve is
different, displaying a pure sinusoidal in the case of short range interactions and
a more peaked oscillation in the case of long range interactions. We attribute this
difference to the truncation of the coherent state wave function to two atoms. This
truncation implies that, with short range interactions, only the term with n “ 2 con-
tributes in the superposition of Fock states and hence a pure sinusoidal is observed.
With long range interactions, all of the Fock states contribute to the Hamiltonian,
therefore higher frequencies are added which sharpen the sinusoidal into narrower
peaks. The two curves are shown below. As expected, truncating the coherent state
to n=3 makes the peaks narrower and increases their amplitudes.

35



CHAPTER 2 COLLAPSE AND REVIVAL DYNAMICS IN A BEC

Figure 2.9: Collapse and revival dynamics for a single site with on site interactions
only for Us=2150 Hz for 2 and 3 atoms respectively. The effect of the truncation is
evident.
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Figure 2.10: Collapse and revival dynamics with short and long interactions for
V2D “ 5ERec and Ul “ 90Hz, Us and Ul are not commensurate.

Figure 2.11: Collapse and revival dynamics with short and long interactions for
V2D “ 5ERec and Ul “ 155 Hz..
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Figure 2.12: Collapse and revival with short interactions only for Ul=155 Hz.

Figure 2.13: Collapse and revival with long interactions only for Ul=77.5 Hz.
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In order to illustrate how the revival time changes when we have both a short and
long term contribution we compute independently the dynamics in presence of ei-
ther short or long range interactions alone, and overlay them. Figure 2.14 shows in
blue the short range interactions acting alone and in red the long range interactions.
It can be seen that the revivals happen at t » 0.008 for the short range contribution
and t » 0.04 for the long range contribution.

Figure 2.14: Short and long range contribution superimposed.

It does not come as a surprise to then have the dynamics shown in Fig 2.15 when
both short and long interactions are active.

To study more in detail the dependence of revivals on the commensurability of the
interaction strengths a commensurate ratio for Us and Ul is chosen, specifically
Ul “ 77.5 Hz and Us “ 1550 Hz such that Us

Ul
“ 20 and the value for Ul is swept

around 77.5 Hz. Figure 2.16 nicely shows how a small 5 Hz variation is sufficient
to loose the commensurability and therefore to loose the revivals. Among these
peaks, it is easy to differenciate the value of 77.5 Hz (green curve) as it is the
only one which fully revives at regular intervals. For this reason we propose to
exploit the detection of the revivals in order to precisely determine the value for Ul.
However it is to note that this method would be greatly dependent on the detection
efficiency. Previous experiments with short range interactions showed that only
up to a few revivals could be detected before the signal decayed due to noise and
losses. It is an experimental challenge to be able to clearly identify a full revival
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Figure 2.15: Short and long range contribution.

and to distinguish it from a simple ’peak’, as it could be the case for the red and
blue peaks close to t = 0.04 in Figure 2.16.

Finally, we include a plot of the full revivals occurring at specific commensurate
ratios of Ul and Us. Here the ratio between | xây |2ptrevq and | xây |2pt0q, i.e. for the
matter wave field at the revival time and at the initial time, is plotted as a function
of the ratio between Us and Ul. As Figure 2.13 shows, at integer values for the ratio
of interaction strengths, the matter wave field is exactly the same at the revival time
as at the initial time. This result reinforces the hypothesis that a full revival of the
matter wave field occurs at the revival times for commensurate ratios of interac-
tion strengths. Eventually this would be the result of a hypothetical experiment, in
which one would observe full revivals only for exactly the commensurate values of
the interaction strengths.
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Figure 2.16: Sweeping Up around the value 77.5 Hz.

Figure 2.17: The full revival of the matter wave field at the revival times for specific
commensurate values of the interaction strengths.
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To summarise our story, motivated by the Cavity experiment in Tilman Esslinger’s
group at ETH, we have been interested in studying the collapse and revival dy-
namics of a BEC in an optical lattice within a high finesse cavity. We have begun
our investigation by researching the phenomenon of collapse and revival and en-
countered it in the dynamics of BEC in optical lattices in presence of short range
interactions. We have extended the study to include cavity-mediated long range in-
teractions. Our simulations have shown that for commensurate values of the short
and long interaction strengths collapse and revivals are preserved, but fragile. Mov-
ing away from a commensurate ratio of the two quantities produces an aperiodic
decay of the matter wave field. Therefore the dynamics of the matter wave field
could be used as a tool to precisely quantify the strength of the long range inter-
actions present in the system. Our simulation correctly reproduces the dynamics
for the system, however it is limited to 4 sites. An interesting development of the
research would be to try to expand this system to one with a larger number of sites
and particles, in order to assess the influence of the system size on the dynamics.
An experimental verification would allow the study of fascinating collapse and re-
vival phenomena.

During the master thesis months, several research outputs investigating the phe-
nomenon of collapse and revival appeared in the field, see for instance: [44], [45]
and [46], demonstrating the richness and fascination of the topic, and confirming
that such a collapse and revival dynamics offers interesting and novel research av-
enues.
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Chapter 3

Band structure calculations for
the IMPACT experiment

We come spinning out of nothing,
scattering stars like dust!

Jalal ad-Din Muhammad Rumi

As described in the first chapter, the IMPACT experiment r3s is an evolution of the
cavity experiment. Here the BEC is confined within two cavities at an angle with
respect to the pump laser, as shown in Figure 3.1. The pump laser is also retrore-
flected via a mirror. Again, the pump laser frequency is far detuned with respect
to the atomic frequency, therefore the photons from the pump are coherently scat-
tered off the atoms into the two cavity or back into the pump field. As a result of the
scattering process, the BEC Rubidium atoms receive a recoil kick which displaces
them from their original position. By studying the allowed scattering processes we
are interested in determining the distribution of atoms in the reciprocal space and
then calculating the energy band structure of this system. Energy bands arise when
considering a system which displays a periodicity in the potential. The Hamilto-
nian is exactly diagonalised to obtain the eigenenergies which correspond with the
allowed energy values.

In the following sections, the theory of band structure is briefly presented, the
cavity system is described and the optical potential is studied. Then the Hamilto-
nian term is implemented in order to calculate the band structure and the results
obtained shown.
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Figure 3.1: IMPACT experiment schematic diagram of the beams through the BEC.

3.1 Band Theory

Before presenting band theory, since we are interested in simulating a real con-
densed matter system by using a BEC in an optical potential, let us remind our-
selves of some useful terminology of condensed matter physics [47], [48].

Condensed matter physics studies crystalline materials. A crystal is a repeating
pattern of objects. A crystal is usually described by a lattice in combination with
a basis. The lattice is an abstract infinite array of points in space which can be
generated by a translation vector. A basis, on the other hand, is a collection of
physical objects, for instance atoms or molecules. Convolving the lattice with the
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basis results in the crystal. The arrangement of atoms looks the same at two points
separated by a translation vector, and any property of the system, for instance a
potential, will also exhibit the same periodicity. A unit cell is a region of space
that, when repeated, fills all space. There is an infinite set of possible unit cell
choices, the ones that have minimal volume are defined as primitive unit cells. A
unit cell which is centred about a lattice point and hence reflects directly the sym-
metry of the lattice is called a Wigner-Seitz cell. This type of cell is obtained by
starting from a lattice point and drawing vectors to any of the neighboring lattice
points. Taking the perpendicular to the midpoint of these vectors gives planes, and
the cell with the smallest volume about the origin bounded by these planes is the
Wigner-Seitz cell. When including all types or translational invariance and invari-
ance under other symmetry operations such as rotation, inversion and reflection,
there are only 14 distinct types of lattices in 3 dimensions: they are the 14 Bravais
lattices.

There are two main concepts in band theory. First, direct (or real) space and re-
ciprocal space are related by a Fourier Transform. Secondly, the existence of band
structure is a general consequence of the spatial periodicity of a lattice. Both of
these concepts will be relevant in the next paragraph.

The concept of energy bands arises when considering the solutions of the
Schroedinger’s equation for a particle in a periodic potential. This is the case in
any crystalline environment. The Schroedinger’s equation with a potential takes
the form:

Hψ “

ˆ

´~2∇2

2m
` V prq

˙

ψ “ Eψ, (3.1)

where the potential V prq is periodic, i.e. V pr ` Tq “ V prq and T is a lattice
translational vector. Due to its periodic nature, the potential can be expressed as a
Fourier series:

V prq “
ÿ

G

VGe
iG.r, (3.2)

where G represents a vector in k-space (or reciprocal space). It can be shown from
equation (3.2) that the existence of a lattice in real space implies the existence of a
lattice in k-space. The vectors G define the reciprocal lattice. Due to the periodic-
ity in the reciprocal space, the dispersion relation is not unique for each k but there
is an infinite number of equivalent dispersion relations such thatEpkq “ Epk`Gq.
However, the periodicity results in having all the information enclosed in the prim-
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itive unit cell of the reciprocal lattice, which is named the first Brillouin Zone (BZ).

In order to solve the Schroedinger’s equation, we use an ansatz wavefunction as
a sum of plane waves of the form:

ψprq “
ÿ

k

Cke
ik.r. (3.3)

Substituting the expressions for the wavefunction and the potential as a Fourier
series in equation (3.2) leads to:

ÿ

k

´~2k2

2m
Cke

ik.r ` p
ÿ

G

VGe
iG.rqp

ÿ

k

Cke
ik.rq “ E

ÿ

k

Cke
ik.r, (3.4)

which after rearrangements becomes:

ÿ

k

eik.rp
´~2k2

2m
´ EqCk `

ÿ

G

VGCk´G “ 0. (3.5)

Due to Born-von Karman boundary conditions [47], the coefficients of each term
in the sum must vanish. Moreover one can consider solutions belonging only to
the first BZ, rewriting k “ q´G1 (where q is a vector lying in the first BZ). One
can also apply the change of variables GÑ G2 ´G1 and obtain:

p
´~2pq´G1q2

2m
´ EqCq´G1 `

ÿ

G2

VG2´G1Cq´G2 “ 0, (3.6)

where the coefficients Ck specify the form that the wavefunction ψ takes. For each
vector q within the first BZ, there is a wavefunction ψqprq “

ř

GCq´Ge
ipq´Gq.r,

which can be rewritten as:

ψqprq “ eiq.r
ÿ

G

Cq´Ge
´iG.r “ eiq.ruj,q. (3.7)

This means that the wavefunction is given by a plane wave with a wave vector
within the first BZ and a function which has the same periodicity of the lattice.
In other words, the eigenstates are made up by a sum of plane wave states which
differ by a reciprocal lattice vector.

This demonstrates the Bloch’s theorem, which states that the eingenstates ψ of
a one-electron Hamiltonian can be chosen to be a plane wave times a function
which has the same periodicity of the Bravais lattice. Each set of functions uj,q
results in a set of states with specific dispersion relations. The number of possible
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wavefunctions in each band will be given by the number of distinct qs in the first
BZ.

Bloch’s theorem presents two limiting cases: a very weak potential (Nearly Free
Electron model) and a very strong potential (Tight Binding model) [49]. Both mod-
els give rise to band structures and band gaps. In particular, within the Nearly Free
Electron model, the potential is treated as a weak perturbation. A plane wave state
characterised by a crystal momentum k can only scatter into a different state k1 if
the two are separated by a reciprocal lattice vector. Perturbation theory is then ap-
plied in order to calculate the dispersion relation Epkq. The presence of the weak
potential results in a gap separating different bands at the position of the BZ bound-
ary. Moreover, at the BZ boundary, the bands have a quadratic dispersion which
can also be described by an effective mass. The following section will present the
main ingredients for the calculation of the bands: the Hamiltonian and the optical
potential for the system.

3.2 Hamiltonian and optical potential

In order to calculate the band structure, we first need to define a basis and a Hamil-
tonian for our system. For our geometry, where the two cavities are at a 60 ˝ angle
to the pump laser, we choose as our reciprocal lattice vectors:

kp “ kêy;

k1 “ ´k sin θêx ` k cos θêy;

k2 “ k sin θêx ` k cos θêy,

(3.8)

which for θ “ π{3 become:

kp “ kêy;

k1 “ ´k

?
3

2
êx ` k

1

2
êy;

k2 “ k

?
3

2
êx ` k

1

2
êx,

(3.9)

where kp is the wavevector for the pump laser, k1 for the first cavity and k2 for the
second cavity. We notice that these three wavevectors are linked by the relation:

kp ´ k1 “ k2. (3.10)
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Figure 3.2: Reciprocal lattice vectors for the double cavity and pump setup.

This will be useful later as it will allow us to rewrite the reciprocal lattice vec-
tors in terms of a new basis formed by kp and k1.

The full Hamiltonian for the system r3s is given by:

Ĥ “´ ~∆1pâ
:
1â1q ´ ~∆2pâ

:
2â2q `

ĳ

A

Ψ:px, yqr
p2
x ` p

2
y ` 2px.py

2m

~η1pâ
:
1 ` â1q cospkp ¨ r` φq cospk1 ¨ rq

` ~η2pâ
:
2 ` â2q cospkp ¨ r` φq cospk2 ¨ rq

` ~η3pâ
:
1â2 ` â

:
2â1q cospk1 ¨ rq cospk2 ¨ rq

` ~Up cos2pkp ¨ r` φq ` ~U1 cos2pk1 ¨ r` φqâ
:
1â1

` ~U2 cos2pk2 ¨ r` φqâ
:
2â2sΨpx, yqdxdy.

(3.11)

Here, ∆ represents the detuning of the pump with respect to the resonance fre-
quency: ∆i “ ωp ´ ωi, ηi “

Ωpgi

∆A
, with i “ 1, 2 for cavity 1 and cavity 2 respec-

tively, η3 “
g1g2

∆A
, Up “

Ω2
p

∆A
and Ui “

g2
i

∆A
, for i “ 1, 2. The values for the tunable

parameters gi, ∆A and Ωp will be discussed shortly.

The first two terms represent the energy of the photons in the cavity fields, with
the annihilation and creation operators for photons represented as usual by â and
â:, the terms within the integral represent the interaction terms between the light
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and the BEC atoms, with Ψ and Ψ: being the atomic field operators which create
and annihilate particles. The integration is carried over the Wigner-Seitz cell A.
The transverse pump at λp is far detuned from the atomic transition but closely
detuned from the cavity resonances, thus suppressing absorption but allowing off-
resonant Raman processes.

Within the integral we identify the kinetic term, given by p2{2m, and the optical
potential term, given by:

V̂ prq “~η1pâ
:
1 ` â1q cospkp ¨ r` φq cospk1 ¨ rq

` ~η2pâ
:
2 ` â2q cospkp ¨ r` φq cospk2 ¨ rq

` ~η3pâ
:
1â2 ` â

:
2â1q cospk1 ¨ rq cospk2 ¨ rq

` ~Up cos2pkp ¨ r` φq ` ~U1 cos2pk1 ¨ r` φqâ
:
1â1

` ~U2 cos2pk2 ¨ r` φqâ
:
2â2.

(3.12)

This potential term contains all the possible interactions between the light and the
atoms. The photons are scattered by the BEC atoms into the different light fields.
The pump light is described by a standing wave.

If we focus on this potential, we can identify the first term as the interaction term
between the pump and the first cavity, the second as the interaction between the
pump and the second cavity, the third term as the cavity 1 to cavity 2 interaction,
the fourth term arising from photons which come from the pump and are scattered
off by the atoms back into the pump, the fifth as photons from the first cavity being
scattered back into the same cavity and the last one photons from the second cavity
being scattered back into the same cavity. The last three terms represent lattice
potentials for the transverse pump and the two cavities respectively.

In order to visualise more clearly the scattering events, it is helpful to rewrite the
sinusoids as exponentials. We consider the first term in the potential as an example:

V̂ prq “~η1pâ
:
1 ` â1q cospkp ¨ r` φq cospk1 ¨ rq “

~η1pâ
:
1 ` â1qre

iφpeipkp¨r`k1¨rq ` eipkp¨r´k1¨rqq

` e´iφpeip´kp¨r`k1¨rq ` eip´kp¨r´k1¨rqqs,

(3.13)

which corresponds with the scattering events illustrated in Figure 3.3. Note that
φ represents the pump laser phase (varying from 0 to π{2), which is implemented
by displacing the retroreflectingretroreflecting mirror, and is crucial in defining the
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Figure 3.3: Scattering events from the pump into cavity 1.

geometry of the optical lattice.

It is possible to decompose each term in the potential in the same way to iden-
tify all of the possible scattering events which are depicted in Figure 3.4, yellow
represents the pump-cavity scatterings, green the cavityi-cavityj scattering, red the
pump to pump scattering and blue the cavityi to cavityi scatterings. It is important
to know all the allowed scattering events as these terms are present in the Hamilto-
nian which will be diagonalised to calculate the band structure.

The tunable quantities in the lab are the cavity couplings, the pump frequency
and the pump-cavity detuning. These values correspond to: g1 = g2 = 2 πˆ1.8
MHz for the cavity coupling rates, ∆A = 2πˆ 2 THz for the pump-atom detuning
and Ωp=2πˆ100 MHz for the pump Rabi frequency. We treat the creation and
annihilation operators for the light fields as their coherent state amplitudes, where
a coherent state is defined as α “ |α|eiθ. These have a value of |α1|=|α2|=10. In
the following, we always consider only the real amplitudes for the coherent states.
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Figure 3.4: All the scattering processes between pump, atoms and cavities. Yellow
lines represent the cavity-pump scatterings, orange the pump-pump scatterings,
blue the cavity-other cavity scatterings and green the cavity-same cavity scatter-
ings.

In the Hamiltonian, the coefficients for the terms correspond to:

η1 “
Ωpg1

∆A
;

η2 “
Ωpg2

∆A
;

η3 “
g1g2

∆A
;

Up “
Ω2

p

∆A
;

U1 “
g2

1

∆A
;

U2 “
g2

2

∆A
.

(3.14)

Moreover we define the coefficientsA1 “ ~η1p|α1|`|α1|q,A2 “ ~η2p|α2|`|α2|q,
A3 “ ~η3p|α1||α

˚
2 | ` |α

˚
2 ||α1|q, A4 “ ~Up, A5 “ ~U1|α1|

2 and A6 “ ~U2|α2|
2.

It is usual to express the potential amplitude in units of the recoil energy, defined
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as Er “ ~2k2
r {2m. The recoil energy is usually in the kHz range. The transverse

pump lattice, at a wavelength of λ=785.3nm, has a depth of several recoils and we
can notice that the strongest terms are the transverse pump and the pump-cavity
terms. The recoil energy for this wavelength Er “ 2.3 ˚ 10´30 J, which gives a
recoil frequency of 2 πˆ 3.7 kHz. Using this value we obtain the coefficients in
terms of recoils: A1 “ A2 “ 0.48Er, A3 “ 0.087Er, A4 “ 1.34Er, A5 “ A6 “

0.043Er. A1, A2 and A4 are the dominant terms, indeed when imaging the system
the most visible points correspond to those scattered via these interactions, as will
be shown later. The other terms contribute much less due to the fact that the cavity
couplings are very weak.

The potential can be simulated with Mathematica or Python in real space to give
the Figure 3.5, where the spatial coordinates have been rescaled by the wavelength
λ. The pump phase φ determines the lattice geometry, when set to zero, the po-
tential reveals a triangular geometry as shown in Figure 3.5. If the pump phase is

Figure 3.5: Triangular optical potential felt by the BEC atoms in the system with
pump phase set to zero.

set to a value of π{2, the lattice geometry varies from triangular to hexagonal as
shown in Figure 3.6.
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Figure 3.6: Hexagonal optical potential felt by the BEC atoms in the system with
pump phase set to π{2.

The next step is to define a new basis, made of the wave vectors kp and k1 in
order to implement the Hamiltonian.

3.2.1 Hamiltonian implementation

In order to calculate the band structure, an existing Python code is adapted for the
new lattice geometry. Calculating the band structure boils down to diagonalising
the Hamiltonian for the system. Once we have the expression for the Hamiltonian,
we need to come up with the corresponding matrix. To this aim we create a matrix
whose diagonal elements correspond with the kinetic energy terms and whose off-
diagonal elements correspond with the potential energy terms. In order to obtain
the matrix elements we need to perform a Fourier Transform of the Hamiltonian
terms from direct to reciprocal space. This means for example that we need to
solve integrals of the form:
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V1px, yq “

ĳ

Ψ:px, yq~η1pâ
:
1 ` â2q cospkp ¨ r` φq cospk1 ¨ rqΨpx, yqdxdy,

(3.15)

The Hamiltonian matrix is a N ˆ N ˆ N ˆ N tensor (where N “ 2n ` 1, n
being the number of bands considered) whose indices correspond to the allowed
scattering events, and to which we associate their weights. We refer to the code in
the Appendix for more details. In the indices we encode the coordinates of origin
and of end of each scattering event. Here we shift our basis coordinates from x

and y to kp and k1, therefore each scattering event is rewritten in terms of these
reciprocal lattice vectors only. Each term in the Hamiltonian identifies a specific
allowed scattering event. While it is possible to choose a different basis for the
scattering, we chose the basis formed by kp and k1 in order to capture both the
transverse pump and cavity directions. Later sections will present an alternative
basis.

The Hamiltonian, unlike the optical potential, is coded in reciprocal space. The
Hamiltonian is then diagonalised and the eigenvalues are plotted to give the band
structure. We first look at the lowest energy band for the kinetic energy alone in
order to check our results.

3.2.2 Experimental verification

As discussed in previous sections, among all the scattering events, some have a
larger amplitude and therefore are dominant. In particular, the cavity to pump
and the pump standing wave terms are significantly larger than the others. This is
demonstrated in the laboratory r3s by taking absorption images perpendicular to
the cavity plane. First, the BEC is confined in a dipole trap, hence the attractive
lattice from the transverse pump is created. Each cavity couples to the transverse
pump proportionally to its coupling coefficients. By increasing these coefficients, a
self-organised phase is reached beyond which the cavity modes are occupied homo-
geneously. By monitoring the photons leaking from the cavities, in situ monitoring
of the system can be performed, and information about the ordering of the atoms
deduced. Absorption images reveal the position of the atoms after the scattering
events described in Figure 3.4. In particular the orange and yellow lines scattering
are visible in Figure 3.7.
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Figure 3.7: Absorption images showing the scattering events, from pump to pump
and from cavities to pump. Figure taken from r3s.

3.3 Band structure calculation

Calculating the band structure for the kinetic term only for the lowest four bands
yields the result shown in Figure 3.8. Including also the potential term yields to
Figure 3.9. This figure clearly shows an opening of the bands at the BZ boundary,
as we would expect in the presence of a potential. Increasing the number of bands
reveals the possible presence of Dirac points in the higher bands, in particular be-
tween the 4th and the 5th band.

55



CHAPTER 3 BAND STRUCTURE FOR IMPACT

Figure 3.8: Band structure for kinetic term only.

Figure 3.9: Lowest four bands structure for a Hamiltonian which includes the ki-
netic and the potential terms.
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Figure 3.10: Lowest six bands structure for a Hamiltonian which includes the ki-
netic and the potential terms.
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Note that the band structure calculation is carried out on a region of space spanned
by the reciprocal lattice vectors kp and k1. This space corresponds to a partial
section of the first BZ and a section of the second BZ, as shown in Figure 3.11.
This can be verified by noting that the plotted space has the shape shown in Figure
3.11, rather than that of a unit cell, by calculating the lowest band kinetic term
Hamiltonian and visualising it from above in a 2D plot.

Figure 3.11: Space spanned by reciprocal vectors chosen as our basis for the cal-
culation.

Figure 3.12: Space spanned by reciprocal vectors chosen as our basis for the cal-
culation, top view of the band structure in reciprocal space.

In order to gain more intuition about the band structure and its significance, we
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perform several studies based on the variation of the tunable parameters of the
experiment. The system parameters, mentioned in previous sections, are the cavity
coupling strengths g1 and g2, which are fixed by the cavity geometry, the coherent
state amplitudes which quantify the light field in the cavities |α1| and |α2|, the
pump frequency Ωp and the detuning ∆a. As the cavity couplings are set by the
cavity mode volumes, the main tunable parameters are the pump frequency and the
light fields. Therefore we explore the band structure variation as these quantities
are varied.

3.4 Exploring the band structure

The following section will present results relative to the exploration of the band
structure when the experimental parameters are varied.

We are interested in exploring the variation of the band structure when the co-
herent state amplitudes |α1| and |α2| are varied form a balanced case (|α1| “ |α2|)
to an unbalanced case, while maintaining the sum of their squares constant, i.e.
maintaining the total light field constant. The meaning of α is indeed a quantifi-
cation of the light field present in each cavity, therefore an unbalanced case would
correspond to a case with more light in one of the two cavities. This scenario can
also be checked by studying the optical potential for the different values of the
field. We begin with the current experimental situation with |α1| “ |α2| “ 10 and
|α1|

2`|α2|
2 “ 200. Varying the values of α up to the extremum of the unbalanced

situation with |α1| “ 2 and |α2| “ 14 and viceversa. The variation of potential
and bands for the extreme cases is illustrated in Figure 3.13 and 3.14.

Figure 3.13: Variation of the potential for |α1| “ 2, |α1| “ 10, |α1| “ 14.
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Figure 3.14: Variation of the five lowest bands for |α1| “ 2pa.q, |α1| “

10pb.q, |α1| “ 14pc.q. The axis have been omitted for visualisation purposes, but
are the same as in Figure 3.9.

The figure shows that in the extreme unbalanced cases a gap closes on one side
of the calculated area, whereas it is fully open when the light fields are balanced.

Next we are interested in studying how the band structure changes at the varia-
tion of the pump phase φ, which corresponds to the position of the retroreflecting
mirror. Again, we start by analysing the variation of the optical potential and we
then analyse the corresponding band structures. Similarly to the case of the light
field variation, changing the pump phase corresponds to shifting the geometry of
the potential which transforms from a hexagonal lattice to a triangular lattice. Both
of these scenarios involve a modification of the type of optical lattice, resulting
from the interfering standing waves. The potential is therefore strongly modified
and we note that the most noticeable effect is on the gap between the first and sec-
ond band. When varying the pump phase, the effect is a very slight increase of
the band gap between the first and second bands for increasing angle. This means
that the current triangular geometry has a smaller band gap than the hexagonal
geometry.
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Figure 3.15: Variation of the potential for indicated values of the pump phase φ.

Figure 3.16: Variation of the bands for clockwise values of φ “

π{6pa.q, π{4pb.q, π{3pc.q, π{2pd.q.
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Finally we study the variation of the bands as a function of the strength of the
potential terms, expressed by the coefficients A1, A2, A3, A4, A5, A6. Again, the
tunable quantities are the light field α and the pump frequency Ωp. In particular
we study how the bands and the potential vary as the ratio between the coefficients
A1, A2 and A4 is changed. These three terms correspond to the pump-cavity and
pump alone scatterings, as described in earlier sections. These are the dominant
scattering terms due to the magnitude of the pump frequency relative to the cavity
coupling rates g2 and g2. Since all these terms depend on Ωp, we study the be-
haviour of the coefficients as Ωp is varied. Figure 3.16 shows that while A1 and
A2 vary in a linear way with Ωp, A4 varies in a quadratic fashion. Therefore there
is only one point at which the coefficients are in a 1:1 ratio. This corresponds with
A1 “ A2 “ A4 “ 0.17Er for Ωp “ 2π ˆ 36 MHz. The ratio is varied from a

Figure 3.17: Coefficients A1 and A4 as a function of pump frequency Ωp.

value of 1 to a value of 2.8, which corresponds to the current laboratory value of
Ωp “ 2π ˆ 100MHz. The values explored are: A4{A1= 1(a), 1.5(b), 2(c), 2.5(d),
2.8(e) in Figure 3.18. In this case what is varying is the amplitude of the potential,
or in other words, the intensity of the potential, not its structure. We expect that
the potential maintains the same geometry, but gets deeper or shallower. Indeed
Figure 3.18 reveals the expected feature. We also see that, as the ratio increases for
a stronger pump coefficient, the potential gets more squeezed along one direction,
although in the same position.

This causes the richest variation of the band structure. Not only the lowest two
bands, but also the higher bands, are noticeably modified . As the pump coefficient
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Figure 3.18: Optical potential variation for different ratios of pump to cavity coef-
ficients.

increases, the gap between first and second band enlarges, but the one between
bands three and four closes. The higher bands also show remarkable changes. An
interesting development would be to be able to probe the band structure experimen-
tally since being able to study the band structure of a system reveals information
about its symmetries and properties. In particular the interest would be in the pres-
ence of Dirac points in the higher bands. Further studies are required in order to
identify with precision the Dirac points, their location and how they are affected
by changing the tunable parameters. In particular a plot showing a cut through
the band structure along a particular reciprocal lattice vector direction would be
helpful in identifying the Dirac points.
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Figure 3.19: Band structure variation for different ratios of pump to cavity coeffi-
cients.
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3.5 Alternative basis

When carrying out the calculation, different basis can be chosen. The peculiarity of
the setup is that the pump and cavities are not orthogonal to each other. This makes
it harder to calculate and depict the band structures. In order to capture the physics
for the important directions, reciprocal lattice vectors along the cavities and pump
direction are chosen. These directions are specified by equation (3.9). The three
vectors are linked by equation (3.10). It is then possible to choose a cavity-pump
basis, like the one that has been presented so far, made up of the vectors kp and k1

at 60 ˝, or to choose a cavity-cavity basis, with k1 and k2 as the reciprocal lattice
vectors, at 120 ˝. The difference introduced by the choice of basis lies in the space
over which the Hamiltonian diagonalisation is carried out. In the pump-cavity
basis, this space is spanned by k1 and kp and is shown in Figure 3.10, whereas for
the cavity-cavity basis this space corresponds to that shown in Figure 3.20.

Figure 3.20: Space of calculation for the cavity-cavity basis.

Both these spaces include parts of the adjacent Brillouin Zones and parts of the
first BZ are not included. However some high symmetry points are present in both
basis spaces. At the corresponding angles of 150˝ and 270˝, the band structures
can be compared and indeed show the same features, as illustrated by Figure 3.22
and 3.23.
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Figure 3.21: Space of calculation for the cavity-cavity basis.

Figure 3.22: View from an angle of 150˝ of the band structure as calculated in the
cavity-pump basis.

66



3.5 Alternative basis CHAPTER 3

Figure 3.23: View from an angle of 270˝ of the band structure as calculated in the
cavity-pump basis, a 120˝ shift shows the same points in the BZ.
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3.6 Conclusion

This band structure calculation was performed in the attempt of sheding light on
the fundamental structure of the system of a BEC confined in a dipole trap and sit-
ting on a lattice formed by the interference between the transverse pump lattice and
the cavities lattice. We have obtained the band structure by considering the Hamil-
tonian in a specific basis given by the non orthogonal reciprocal lattice vectors.
Diagonalisation of the Hamiltonian was performed in Python in order to obtain the
eigenenergies, corresponding to the allowed energy values for the system. Plotting
the band structure for the kinetic energy alone results in a gapless dispersion rela-
tion while including the potential term opens gaps, as expected. The band structure
is explored by varying the experimentally tunable parameters, namely the coherent
field amplitudes, the transverse pump frequency and the transverse pump phase.
Modifying these parameters results in noticeable changes in the bands, in particu-
lar involving the lower energy bands. Further investigation is required in order to
better identify possible Dirac points in the higher energy bands and to fully char-
acterise the bands.

In this work I have described the results of my master thesis at ETH Zurich per-
formed in the spring and summer 2016. I have focused on the topic of quantum
simulation with BEC. The thesis consisted of two projects, both closely related
and concerned with quantum optics experiments at ETH. I have chosen, despite
my experimental background, to perform a theoretical master thesis in order to ex-
perience a different way of thinking and in order to go beyond my comfort zone.
Indeed, these months have proven to be quite challenging, at the same time I have
learned many precious skills. I enjoyed both topics very much and had the chance
to revisit area of physics which I had not worked on in the past few years. Yet, both
projects were heavily involved with the field of Quantum Optics, in which I wish
to work in the future.
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Appendix
This appendix contains the source codes for both the projects. The first project is writ-
ten in Matlab, the second project in Python. The reason for this is that the second code is
adapted from an existing file (specifically, potential.py and constants are the adapted files).

It also contains a brief account of an experimental work carried out as a voluntary project
at ICFO, Barcelona, in the spring 2016 within the Europhotonics Masters programme. The
experimental work aim was to design and assemble a cavity for PDH stabilisation of an
Infrared laser.
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Appendix A

Cavity design for laser
stabilisation

The previous chapters have focused on the theoretical work pursued at ETH over six
months. Both research lines converged on understading fundamental behaviour of a BEC
when confined in high finesse optical cavities. Right before commencing my theoreti-
cal adventure, I worked on a personal experimental project at ICFO near Barcelona for two
months. My project was coincidentally concerned with designing, assembling and aligning
a high finesse optical cavity. Since optical cavities have been at the backbone of my master
thesis work, I have decided to include this chapter to give an account of my experimental
work at ICFO, which hopefully introduces a nice experimental touch to the thesis.

A.0.1 Motivation

My experimental work at ICFO was performed in the QPSA (Quantum Photonics with
Solids and Atoms) group led by Prof. Hugues de Riedmatten. The group researches differ-
ent implementation of quantum memories for quantum information transport and storage
r50s. In particular, I joined the solid state quantum memory team.

The need for quantum memories stems from quantum information protocols such as en-
tanglement swapping and teleportation. Quantum information is usually transferred using
optical fibres, which have characteristic losses, for this reason it is necessary to establish
links called quantum repeaters along the transfer line. Quantum memories have the ability
to store quantum information and release it on demand. Several types of quantum memo-
ries exist, such as atomic ensembles, nitrogen vacancy centres in diamond, quantum dots:
each of them comes with their relative advantages and disadvantages. One of the most
promising type of quantum memory is indeed a solid state quantum memory.

Solid state quantum memories are rare-earth doped crystals which are cooled to cryogenic
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temperatures (around» 5-10 K). Rare earth ions have a peculiar energy structure which al-
lows a shielding from the surrounding lattice structure, thus allowing long coherence times.
Usually the interactions of the ions with the lattice structure is strong enough that the coher-
ence times are overall very short. Rare earth ions are a fortunate exception. When cooled
to cryogenic temperatures, the main broadening mechanism is inhomogeneous broadening
due to the inhomogeneous distribution of the ions in the crystal. In order to store quantum
information in the memory, the quantum information is encoded as a quantum state on a
single photon. The single photon is then coupled to the memory where the quantum state
is stored and then retrieved. Recently a protocol has been developed which allows storage
and on demand retrieval of the quantum information: the atomic frequency comb (AFC)
protocol r51s. The protocol requires a laser shone to the crystal as a write and a read beam.
In order to increase the storage time and to obtain a memory with higher efficiency and
fidelity, the stability of the write and read laser is crucial.

My work was focused on building an optical high finesse cavity in order to stabilise the
master laser. The stabilisation was done following the Pound-Drever-Hall (PDH) technique
r52s. The following sections will describe the main steps to creating a working cavity for
laser stabilisation. These are: the cavity design, the cavity assembly, the temperature sta-
bilisation, shining light through the cavity, finding the fundamental mode of the cavity and
finally aligning the cavity.

A.0.2 Design and Assembly

The master laser of the solid state memory experiment is an infrared laser at λ=1212 nm.
Currently, this laser is stabilised via PDH technique to a cavity after having been frequency
doubled to a wavelength of 606 nm which is the wavelength used in the experiment. In
order to optimise the stability, it is proposed to create a new cavity at 1212 nm and to
stabilise the laser directly at the source and not after it having been double frequenced.
The new cavity will replace the old cavity in the existent vacuum chamber. The design of
the cavity therefore has the constraint of the dimensions of the vacuum chamber, otherwise
it has no specific constraints. The old cavity is 15 cm long, we decide to gain in length
and make the new cavity 17 cm long. Hence the free spectral range of the cavity will be
modified from 1 GHz to 0.88 GHz according to ∆FSR “

c
nL , where c is the speed of light,

n the refractive index and L the length of the cavity. A finesse of F “» 800 (in vacuum)
is expected. The design of the cavity is carried out using Inventor and assembled on the
optical table. The holding cube is in aluminium, as the cavity tube. The inner spacers are
made of teflon and rubber. At the end of the tube the teflon spacers hold the two mirrors,
one of them is attached to three piezo motors which allow scanning of the cavity in order
to find the fundamental mode. Below the design of the cavity is shown:
The total length of the cavity, considering the cavity tube and the cavity cap, is of 192 mm.
Once the design is created, the cavity is assembled on the optical table. In between the
cavity tube and the holding cube two Peltiers are inserted which are used for the temper-
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Figure A.1: Inventor design for the high finesse cavity, inside view.

ature stabilisation. It is important to have a stable temperature inside the cavity to ensure
the minimisation of mode fluctuation inside the cavity.

A.0.3 Temperature stabilisation

The temperature stabilisation is perfomed using two Peltiers. These are flat semiconductor
structures made of two plates p and n-doped respectively. Upon current transfer through
the Peltier, one of the plates heats up and the other cools down, due to the displacement
of the charge carriers when a temperature gradient is present. This system exploits the
themoelectric effect to convert temperature differences to electric voltage differences and
viceversa. Thermoelectric devices are used as temperature controllers due to the ability to
monitor and change temperature or voltage. We study the temperature fluctuations of the
cavity by inserting the Peltiers and exploring the amplitude of the voltage fluctuations for
different resistors ratios on the Peltiers module. We then fix the temperature at 30 ˝ C, for
values of the resistors of Rp=6 MHz and RI=121kHz. This temperature corresponds to an
electric voltage of V =1.242 V. In general, it is common practice to stabilise a cavity to a
temperature slightly above room temperature.

A.0.4 Alignement

Once the cavity is assembled and temperature stabilised, light is ready to be injected. The
light comes from a secondary port of the master laser at 1212 nm. It has to be fibre coupled
from the master laser to the other side of the optical table where the cavity is placed. With a
powermeter we check the power at the master laser port. The power at the port is of 10mW.
Two mirrors are used to direct the light into the incoupling fibre, as the mirrors are lossy,
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Figure A.2: Inventor design for the high finesse cavity, outside view.

after reflection we have a power of 9mW. We discover that Thorlabs produces mirrors with
high reflective coating up to 1100nm, our wavelength of 1212 nm is outside this range. For
this reason we try to optimise the incidence and reflection angle of the light on the mirrors
(when the angle is closer to the normal, the reflectivity is higher). We then fibre couple
the light, after which at the outcoupler we have a power of 2mW. We aim at injecting a
large portion of this power into the cavity. From the outcoupler, the light goes through a
collimating lens and several optical devices are inserted along its path before reaching the
cavity entrance port. This is because we need to monitor the light going through the cavity
mirrors (transmission) and the light being reflected by the cavity mirrors (reflection) using
Avalanche Photodiodes (APDs), therefore we need to insert a Polarisation Beam Splitter
(PBS) cube which lets through light of a particular polarisation and reflects light of the
orthogonal polarisation. Figure A.3 shows the optics inserted between the fibre outcoupler
and the cavity.

The light from the outcupler goes through a collimating lens, a half-wavelength plate which
allows only linearly polarised light to pass through, a PBS through which all of the light
goes, three mirrors to direct the light towards the cavity, a quarter-wave plate which con-
verts linearly polarised light to circularly polarised light. Light incident on the cavity gets
trasmitted and reflected. The reflected light will go through the optical elements and will
be reflected by the PBS and directed to an APDs which monitors the reflection of the cav-
ity. After the cavity, an APD and an infrared camera are inserted in order to monitor the
trasmission of the cavity and to visualise the cavity modes.

In order to find the fundamental mode and to optimise for it, it is crucial to have a beam
diameter incident upon the cavity which matches the cavity gaussian mode diameter. As-
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Figure A.3: Optical system for laser stabilisation via high finesse cavity.

suming that the cavity sustains a perfect gaussian mode with the wist at the center of the
cavity, it is possible to calculate the theoretical diameter of the beam at the entrance mir-
ror of the cavity. Therefore it is then possible to match the dimension of the collimated
beam produced by the collimating lens after the optical fibre outcoupler to this theoretical
diameter. This can be done by using a collimating lens of different focal length and also
by inserting a telescope along the path.

As we did not have an infrared camera, we decided to try to construct one from a com-
mercial security night camera. We removed the LEDs and left the CCD camera. We then
connected the IR camera to a commercial monitor and aligned it to the cavity trasmission
light in order to visualise the modes. To see the modes, we scan the cavity via the Piezo
drivers attached to one end of the cavity. The piezos are connected to a module via which
we can modify the scanning amplitude and frequency of the cavity. Scanning the cavity
means modifying slightly the length of the cavity in order to find the resonance condition
and the fundamental mode. This was done combining the use of the camera to visualise
the fundamental mode and the APD in order to make sure the visualised mode was effec-
tively the fundamental. A picture of the fundamental mode is shown in Figure A4. Once
the fundamental mode is found, a beam walk technique is used on the coupling mirrors to

74



APPENDIX A

Figure A.4: Fundamental mode of the cavity.

optimise the alignment of the cavity. At the end of the alignment the cavity is not scanned
anymore and it is fixed to position. The aligned cavity is then ready to be moved inside the
vacuum chamber and to substitute the old cavity. This concludes the brief experimental
project carried out in the QPSA group at ICFO.
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Appendix B

Collapse and revival

The results presented for the collapse and revival project are generated using Matlab codes.
There are several source files, which include either only short range interaction, short and
long, tunnelling and which calculate the evolution of the order parameter for a system
of one or four sites for a different number of particles (two, three, four). Most of the
results come from considering 4 sites and up to 2 particles per site. We don’t include all
variations of the code, but only a sample for a code generating the evolution with short
range interactions only, and one for short and long interactions. Extra codes were also
produced to study a pump-probe scenario which is not included in this thesis.

clear all

close all

clc

% evaluating <a> in the Heinseberg picture <phi|a(t)|phi>

with

% a(t)=eˆiHt/h_bar*a*eˆ-iHt/h_bar

% defining the Hamiltonian which contains the on-site

interaction term and

% the long range term depending on the imbalance even/odd

sites

% restrict to a square lattice of 4 total sites (2 x 2)

% Hamiltonian H=sumi U/2 n_i(n_i-1) - Ul/k (sume n_e - sumo

n_o)ˆ2

% define fock basis and number state matrix

I = eye(3);

nsi = [0 0 0; 0 1 0; 0 0 2];

nsi2 = nsi*(nsi-I);
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% short range hamiltonian

% I am breaking the hamiltonian on each site and then

summing them.

% applying the hamiltonian on a site include applying

identity operators on

% all other sites therefore the hamiltonian is a tensorial

product

U = 2150;

H1 = (U/2 .* (kron(nsi2,kron(I,kron(I,I)))));

H2 = (U/2 .* (kron(I,kron(nsi2,kron(I,I)))));

H3 = (U/2 .* (kron(I,kron(I,kron(nsi2,I)))));

H4 = (U/2 .* (kron(I,kron(I,kron(I,nsi2)))));

Hshort = H1+H2+H3+H4;

a1 = [0 sqrt(1) 0; 0 0 sqrt(2); 0 0 0];

a= kron(a1,kron(I,kron(I,I)));

t = 0:0.00001:0.01;

alpha = 1;

l = 2;

hbar=1

ketcs_tot =

kron(ket_coherent(alpha,l),kron(ket_coherent(alpha,l),

kron(ket_coherent(alpha,l),ket_coherent(alpha,l))));

overlap = ket_coherent(alpha,l)’*ket_coherent(alpha,l)

cstot = 1/sqrt(overlap) .* ket_coherent(alpha,l);

normcheck = cstot’*cstot

csnorm = kron(cstot,kron(cstot,kron(cstot,cstot)));

%%

for ti=1:length(t)

at(ti) = csnorm’*(expm(1i*t(ti)*Hshort)*a*
expm(-1i*t(ti)*Hshort))*csnorm;

end
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plot(t,abs(at).ˆ2)

[pks,locs] = findpeaks(abs(at).ˆ2)

title(’Collapse and revivals with on site interactions only

with 2 atoms’)

xlabel(’t [hbar/U]’)

ylabel(’|<a>|ˆ2’)

clear all

close all

clc

% evaluating <a> in the Heinseberg picture <phi|a(t)|phi>

with

% a(t)=eˆiHt/h_bar*a*eˆ-iHt/h_bar

% defining the Hamiltonian which contains the on-site

interaction term and

% the long range term depending on the imbalance even/odd

sites

% restrict to a square lattice of 4 total sites (2 x 2)

% Hamiltonian H=sumi U/2 n_i(n_i-1) - Ul/k (sume n_e - sumo

n_o)ˆ2

% define fock basis and number state matrix

I = eye(3);

nsi = [0 0 0; 0 1 0; 0 0 2];

nsi2 = nsi*(nsi-I);

% short range hamiltonian

% I am breaking the hamiltonian on each site and then

summing them.

% applying the hamiltonian on a site include applying

identity operators on

% all other sites therefore the hamiltonian is a tensorial

product

U = 775;
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H1 = (U/2 .* (kron(nsi2,kron(I,kron(I,I)))));

H2 = (U/2 .* (kron(I,kron(nsi2,kron(I,I)))));

H3 = (U/2 .* (kron(I,kron(I,kron(nsi2,I)))));

H4 = (U/2 .* (kron(I,kron(I,kron(I,nsi2)))));

Hshort = H1+H2+H3+H4;

% Long range interactions differentiate between even and

odd sites. I

% assign s1, s3 =odd s2,s4=even, however ns1=ns2=ns3 etc =

nsi, but the

% important point is the order of the kronecker product

Ul = 0;

%U_{\rm l}=325;

k=1;

n1 = kron(nsi,kron(I,kron(I,I)));

n2 = kron(I,kron(nsi,kron(I,I)));

n3 = kron(I,kron(I,kron(nsi,I)));

n4 = kron(I,kron(I,kron(I,nsi)));

Hlong = -Ul/k .* mpower(((n2+n4)-(n1+n3)),2);

% total hamiltonian H = Hshort+Hlong

Htot = Hshort + Hlong;

% creation and annihilation operators in fock basis defined

above for the

% space of the hamiltonian (81x81)

a1 = [0 sqrt(1) 0; 0 0 sqrt(2); 0 0 0];

a= kron(a1,kron(I,kron(I,I)));

%wavefunction

alpha = 1;

l = 2;

ketcs_tot =

kron(ket_coherent(alpha,l),kron(ket_coherent(alpha,l),

kron(ket_coherent(alpha,l),ket_coherent(alpha,l))));
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overlap = ket_coherent(alpha,l)’*ket_coherent(alpha,l);

cstot = 1/sqrt(overlap) .* ket_coherent(alpha,l);

normcheck = cstot’*cstot;

csnorm = kron(cstot,kron(cstot,kron(cstot,cstot)));

t = 0:0.0001:0.1;

for ti=1:length(t)

at(ti) = csnorm’*(expm(1i*t(ti)*Htot)*a*
expm(-1i*t(ti)*Htot))*csnorm;

end

plot(t,abs(at).ˆ2)

hold on

U1=0

H11 = (U1/2 .* (kron(nsi2,kron(I,kron(I,I)))));

H21 = (U1/2 .* (kron(I,kron(nsi2,kron(I,I)))));

H31 = (U1/2 .* (kron(I,kron(I,kron(nsi2,I)))));

H41 = (U1/2 .* (kron(I,kron(I,kron(I,nsi2)))));

Hshort1 = H11+H21+H31+H41;

Ul1 = 77.5

Hlong1 = -Ul1/k .* mpower(((n2+n4)-(n1+n3)),2);

Htot1 = Hshort1 + Hlong1;

for ti=1:length(t)

at1(ti) = csnorm’*(expm(1i*t(ti)*Htot1)*a*
expm(-1i*t(ti)*Htot1))*csnorm;

end

plot(t,abs(at1).ˆ2, ’r’)

%finding the peaks of the function and their location

%fitting the oscillating decay trend with an exponential

function

[pks,locs] = findpeaks(abs(at).ˆ2)

%fit = fit(locs’.*0.00001,pks’,’exp1’)

%plot(fit,locs’.*0.00001,pks’)
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title(’Collapse and revivals with interactions

superimposed’)

xlabel(’t [hbar/U]’);

%xlabel(’t $\hbar$,interpreter,latex /U ’)

ylabel(’|<a>|ˆ2’)
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Appendix C

Band structure calculation

The band structure calculation is handled by four main files: constants, where the constants
are defined and the coefficients can be calculated for any configuration, potential, where
the potential is defined as PotentialImpact, bands where the Hamiltonan is defined, diag-
onalized and the eigenenergies are plotted in the cavity-pump basis, and bands2 which is
equivalent to bands but for the cavity-cavity basis. The following includes the first three
files, we omit the last one has it is equivalent to bands.py except for the definition of the
reciprocal lattice vectors.

# -*- coding: utf-8 -*-

#band structure calculation for the impact experiment, plot

of the potential and of the first n bands in space

spanned by the reciprocal lattice vectors

#created by Chiara Decaroli, Sept 2016

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import matplotlib

from numpy.linalg import eigvalsh as solver

from math import pi

import potential

from matplotlib import cm

#POTENTIAL

#plotting the potential, all values can vary, coefficients

in units of recoils, the coefficients Ai are found in

the constants.py file
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#the potential is defined in potential.py

A1,A2,A3,A4,A5,A6, phi = (0.483539994114, 0.483539994114,

0.0870371989405, 1.34316665032, 0.0435185994703,

0.0435185994703, pi/3)

potfig = potential.PotentialImpact(A1,A2,A3,A4,A5,A6,phi)

potfig.draw(show_bonds=False, show_diagonals=False,

show_sections=False, save=True)

plt.title(’Potential Impact in lattice units’)

plt.xlabel(’x/lambda’)

plt.ylabel(’y/lambda’)

plt.plot((-2, 2), (0, 0), ’k-’) #shows a line going through

[0,0]

plt.plot((0, 0), (-2, 2), ’k-’)

plt.show()

#HAMILTONIAN

#hamiltonian definition

def Hamiltonian(p1,p2,n0):

N=2*n0+1

#A1,A2,A3,A4,A5,A6,phi = (0,0,0,0,0,0,0) #for kinetic

term only

A1,A2,A3,A4,A5,A6, phi = (0.483539994114,

0.483539994114, 0.0870371989405, 1.34316665032,

0.0435185994703, 0.0435185994703, 0) #by taking a

recoil of 23kHz with wrec=hbarkˆ2/2m, pot in units

of recoil, can check these values in the file

constants.py

H=np.zeros((N,N,N,N),’complex’)

q1,q2,q3,q4=np.indices(H.shape)

#diagonal elements = kinetic terms

H+=np.where((q1==q3) & (q2==q4), (p1+(q1-n0))**2+

(p2+(q2-n0))**2+2*np.dot(K1,K2)*(p1+(q1-n0))*(p2+(q2-n0)),

0)

#pump-cav1
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H += np.where((q3-q1==1) & (q4-q2==1),

A1*0.25*np.exp(1j*phi),0)

H += np.where((q3-q1==1) & (q4-q2==-1),

A1*0.25*np.exp(1j*phi),0)

H += np.where((q3-q1==-1) & (q4-q2==1) ,

A1*0.25*np.exp(-1j*phi),0)

H += np.where((q3-q1==-1) & (q4-q2==-1) ,

A1*0.25*np.exp(-1j*phi),0)

#pump-cav2

H += np.where((q3==q1) & (q4-q2==1),

A2*0.25*np.exp(1j*phi),0)

H += np.where((q3==q1) & (q4-q2==-1),

A2*0.25*np.exp(-1j*phi),0)

H += np.where((q3-q1==2) & (q4-q2==-1),

A2*0.25*np.exp(1j*phi),0)

H += np.where((q3-q1==-2) & (q4-q2==1),

A2*0.25*np.exp(-1j*phi),0)

#cav1-cav2

H += np.where((q3-q1==1) & (q4==q2), A3*0.25,0)

H += np.where((q3-q1==-1) & (q4==q2), A3*0.25,0)

H += np.where((q3-q1==1) & (q4-q2==-2), A3*0.25,0)

H += np.where((q3-q1==-1) & (q4-q2==2), A3*0.25,0)

#pump

H += np.where((q3-q1==2) & (q4==q2),

A4*0.25*np.exp(2*1j*phi),0)

H += np.where((q3-q1==-2) & (q4==q2),

A4*0.25*np.exp(-2*1j*phi),0)

H += np.where((q3==q1) & (q4==q2), A4*0.25*2,0)

#cav1

H += np.where((q3==q1) & (q4-q2==2), A5*0.25,0)

H += np.where((q3==q1) & (q4-q2==-2), A5*0.25,0)

H += np.where((q3==q1) & (q4==q2), A5*0.25*2,0)

#cav2

H += np.where((q3-q1==2) & (q4-q2==-2), A6*0.25,0)

H += np.where((q3-q1==-2) & (q4-q2==2), A6*0.25,0)
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H += np.where((q3==q1) & (q4==q2), A6*0.25*2,0)

return H.reshape(N**2,N**2)

#calculating bands - diagonalisation of the Hamiltonian

grid=50 #n˝ points in the figure

bands=5 #n˝ bands

K1=np.array([-np.sqrt(3.)/2,1./2]) #reciprocal lattice

vectors kp and k1

K2=np.array([0,1])

k1s=np.linspace(-0.5,0.5,grid)#x and y values

k2s=np.linspace(-0.5,0.5,grid)

bottom=np.zeros((grid,grid,bands)) #z values

kvalues=np.zeros((grid,grid,2))

for i,k1 in enumerate(k1s):

for j,k2 in enumerate(k2s):

kvalues[i,j]=k1*K1+k2*K2

bottom[i,j]=solver(Hamiltonian(k1,k2,5))[:bands]

#diagonalisation of the Hamiltonian

k=kvalues.reshape(grid*grid,2)

bottom=bottom.reshape(grid*grid,bands)

#plotting

#full band structure 3D plot in space of calculation

fig=plt.figure(figsize=(25,25))

ax =fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=150,elev=0) #elev 90:view from top, 0

view from side

ax.set_xlim(-1,1) #sets the x and y limit on the graph

ax.set_ylim(-1,1)

ax.mouse_init() #rotates and zooms the figure with the mouse

ax.can_zoom()
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for b in xrange(bands):

ax.scatter(k[:,0],k[:,1],bottom[:,b],c=bottom[:,b])

ax.set_xlabel(’kx’)

ax.set_ylabel(’ky’)

ax.set_zlabel(’E (Er)’)

plt.title(’Band structure’)

plt.plot((0,0 ), (1, -1), (0,0), ’k-’) #line going through

E=0

plt.show()

#band structure cut

fig2 = plt.figure()

ax2 = fig2.add_subplot(111)

for b in xrange(bands):

ax2.plot(k[2451:2500,1],bottom[2451:2500,b]) #choose the

range of the cut

ti = np.array([0,0.5]) #choose the axis ticks limits

matplotlib.rc(’text’, usetex=True)

my_xticks = ["$\Gamma$", ’M’] #name the high symmetry points

plt.xticks(ti, my_xticks)

ax2.set_ylabel(’E (Er)’)

#ax2.set_xlim(0,0.5) #sets the x and y limit on the graph

plt.show()

plt.title(’Band structure cut’)

#!/usr/bin/python

###

# Class ’Potential’: define some lattice potential,

# measure some relevant quantities and plot the landscape

in 2d

#PotentialImpact class added by Chiara Decaroli, sept 2016

###

import numpy as np

import matplotlib.pyplot as plt

from scipy import optimize

from math import pi
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import sys

import time

def distance(x1,x2):

return np.sqrt((x2[0]-x1[0])**2+(x2[1]-x1[1])**2)

class Potential():

# To be implemented in child classes

def potential(self, x, y):

return 0

# To be implemented in child classes

def save_figure(self, name):

pass

# To be implemented in child classes

def get_symmetry(self):

return 1

# Look for the potential minima, where the atoms should

actually sit;

# called during object initialisation; result is written

in self.atom

def find_minima(self):

f = lambda ndarr: self.potential(ndarr[0],ndarr[1])

x0 = [np.array([-0.5,0]),np.array([0.5,0])]

self.atom = []

for i in range(2):

self.atom.append(optimize.fmin(f,

x0[i],xtol=1e-8,disp=0))

self.atom = self.atom + [self.atom[1]+np.array([-1,1]),

self.atom[0]+np.array([1,1]),

self.atom[0]+np.array([0,2]),

self.atom[1]+np.array([0,2])]

# Measure potential amplitude on paths linking the minima

def barrier(self, x1, x2):
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ppot = lambda x: self.potential(x1[0]+x*(x2[0]-x1[0]),

x1[1]+x*(x2[1]-x1[1]))

npot = lambda x: -ppot(x)

xmin = optimize.fmin(ppot,0,xtol=1e-8,disp=0)[0]

vmin = ppot(xmin)

xmax = optimize.fmin(npot,0.5,xtol=1e-8,disp=0)[0]

vmax = ppot(xmax)

return vmax-vmin

# Estimate the tunnel effect between x1 and x2

# (very crappily, the point being to get an idea of the

relative

# between all tunnel effects)

def tunnel(self, x1, x2):

v = self.barrier(x1,x2)

a = distance(x1,x2)

return (np.exp(-a))/v

# Returns estimations of tunnel effects between sites

def tunnels(self):

return

np.array([self.tunnel(self.atom[0],self.atom[1]),

self.tunnel(self.atom[0],self.atom[2]),

self.tunnel(self.atom[1],self.atom[3]),

self.tunnel(self.atom[2],self.atom[3]),

self.tunnel(self.atom[1],self.atom[2]),

self.tunnel(self.atom[0],self.atom[3]),

self.tunnel(self.atom[0],self.atom[4])])

# Plot potential landscape sections of potential along

some

# relevant segments, if ’show_sections’ is not set to 0

def draw(self, show_bonds=True, show_diagonals=True,

show_sections=True, save=False):

fig = plt.figure(figsize=(6,6))

fig.canvas.set_window_title(’Potential’)

# Contour plot

n_points = 150

x = np.linspace(-2.0, 2.0, n_points)

if (not show_bonds):

dy = 0.
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else:

dy= 1.

y = np.linspace(-2.0+dy, 2.0+dy, n_points)

X, Y = np.meshgrid(x, y)

plt.xlabel(’x’)

plt.ylabel(’y’)

plt.contourf(X, Y, self.potential(X,Y), 20)

if show_diagonals:

link = [(0,1),(0,2),(1,3),(2,3),(1,2),(0,3),(0,4),

(4,5),(3,5),(2,4),(3,4),(2,5),(1,5)]

col = [’b’,’r’,’g’,’m’,’c’,’orange’,’gold’,

’b’,’r’,’g’,’c’,’orange’,’gold’]

else:

link = [(0,1),(1,3),(3,5),(5,4),(4,2),(2,0)]

col = [’b’,’g’,’r’,’b’,’g’,’r’]

# Draw the bonds along which the sections will be

plotted

if show_bonds:

for n in range(len(link)):

x1 = self.atom[link[n][0]][0]

x2 = self.atom[link[n][1]][0]

y1 = self.atom[link[n][0]][1]

y2 = self.atom[link[n][1]][1]

plt.plot([x1,x2], [y1,y2], col[n])

plt.axis(’scaled’)

#˜ plt.xlim([-0.5, 0.5])

#˜ plt.ylim([-0.5, 0.5])

# Save a picture of the potential

if save:

self.save_figure("Potential")

# Plot sections of the potential

if show_sections:

fig = plt.figure()

fig.canvas.set_window_title(’Potential sections’)

plt.xlabel(’Arb. units’)

plt.ylabel(’Potential (Er)’)
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n_points = 100

A = np.linspace(0, 1, n_points)

if show_diagonals:

bonds = range(7)

else:

bonds = range(3)

for n in bonds:

x1 = self.atom[link[n][0]][0]

x2 = self.atom[link[n][1]][0]

y1 = self.atom[link[n][0]][1]

y2 = self.atom[link[n][1]][1]

dx = (x2-x1)/n_points

dy = (y2-y1)/n_points

z = []

for i in range(n_points):

z.append(self.potential(x1+i*dx,y1+i*dy))

plt.plot(A,z,col[n])

if save:

self.save_figure("Sections")

class PotentialImpact(Potential):

def __init__(self, A1, A2, A3, A4, A5, A6, phi):

self.A1 = A1 #using everything in Hz

self.A2 = A2

self.A3 = A3

self.A4 = A4

self.A5 = A5

self.A6 = A6

self.phi = phi

# Potential at point (x,y) (in lattice units)

def potential(self, x, y):

return (self.A1*np.cos(2*pi*y+self.phi)*
np.cos(-np.sqrt(3)*pi*x+pi*y)+ #pumpcav1

self.A2*np.cos(2*pi*y+self.phi)*
np.cos(np.sqrt(3)*pi*x+pi*y)+ #pumpcav2
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self.A3*np.cos(-np.sqrt(3)*pi*x+pi*y)*
np.cos(np.sqrt(3)*pi*x+pi*y)+ #cav1cav2

self.A4*np.cos(2*pi*y+self.phi)**2+ #pump alone

self.A5*np.cos((-np.sqrt(3)*pi*x)

+(pi*y))**2+ #cav1

self.A6*np.cos(np.sqrt(3)*pi*x+pi*y)**2

#cav2

)

# Hamiltonian

def ham(self, n0, p1, p2):

n0 = 5

N = 2*n0+1

#A1,A2,A3,A4,A5,A6,phi = (0,0,0,0,0,0,0)

A1,A2,A3,A4,A5,A6,phi = (11.310, 11.310, 2.040,

31.416, 1.020, 1.020, 0)

K1=np.array([-np.sqrt(3.)/2,1./2])

K2=np.array([0,1])

H=np.zeros((N,N,N,N),’complex’)

q1,q2,q3,q4=np.indices(H.shape)

#kinetic term

H += np.where((q1==q3) & (q2==q4),

(p1+(q1-n0))**2+

(p2+(q2-n0))**2+2*np.dot(K1,K2)*(p1+(q1-n0))*(p2+(q2-n0)),

0)

#pump-cav1

H += np.where((q3-q1==1) & (q4-q2==1),

A1*0.25*np.exp(1j*phi),0)

H += np.where((q3-q1==1) & (q4-q2==-1),

A1*0.25*np.exp(1j*phi),0)

H += np.where((q3-q1==-1) & (q4-q2==1) ,

A1*0.25*np.exp(-1j*phi),0)

H += np.where((q3-q1==-1) & (q4-q2==-1) ,

A1*0.25*np.exp(-1j*phi),0)

#pump-cav2

H += np.where((q3==q1) & (q4-q2==1),
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A2*0.25*np.exp(1j*phi),0)

H += np.where((q3==q1) & (q4-q2==-1),

A2*0.25*np.exp(-1j*phi),0)

H += np.where((q3-q1==2) & (q4-q2==-1),

A2*0.25*np.exp(1j*phi),0)

H += np.where((q3-q1==-2) & (q4-q2==1),

A2*0.25*np.exp(-1j*phi),0)

#cav1-cav2

H += np.where((q3-q1==1) & (q4==q2), A3*0.25,0)

H += np.where((q3-q1==-1) & (q4==q2), A3*0.25,0)

H += np.where((q3-q1==1) & (q4-q2==-2),

A3*0.25,0)

H += np.where((q3-q1==-1) & (q4-q2==2),

A3*0.25,0)

#pump

H += np.where((q3-q1==2) & (q4==q2),

A4*0.25*np.exp(2*1j*phi),0)

H += np.where((q3-q1==-2) & (q4==q2),

A4*0.25*np.exp(-2*1j*phi),0)

H += np.where((q3==q1) & (q4==q2), A4*0.25*2,0)

#cav1

H += np.where((q3==q1) & (q4-q2==2), A5*0.25,0)

H += np.where((q3==q1) & (q4-q2==-2), A5*0.25,0)

H += np.where((q3==q1) & (q4==q2), A5*0.25*2,0)

#cav2

H += np.where((q3-q1==2) & (q4-q2==-2),

A6*0.25,0)

H += np.where((q3-q1==-2) & (q4-q2==2),

A6*0.25,0)

H += np.where((q3==q1) & (q4==q2), A6*0.25*2,0)

return H
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def get_symmetry(self):

return 0

#!/usr/bin/python

# -*- coding: utf8 -*-

# since this is imported everywhere, try to keep away from

single-letter

# variables, especially e, i, j...

from math import pi

import numpy as np

#! Units and constants

#!--------------------

#! in S.I units (kg m s C)

#!

#! length: Bohr radius (m)

a0=5.291772108e-11

#! electron mass (kg)

me=9.10938188e-31

#! angular momentum: hbar

hbar=1.05457168e-34

h = 2*pi*hbar

hplanck = h

#! charge: e (C)

qe=1.60217653e-19

#! electrostatic force: 1/(4 pi e0)

Fe=8.9875516e9

#! Dielectric constant (F mˆ-1)

eps0=8.854187817e-12

#! Hartree energy: eˆ2/(4 pi e0 a0) = (hbar/a0)**2/me

E0=4.35974417e-18

#! Boltzman constant

kb=1.3806504e-23

#! Atomic mass units (kg)

amu = 1.660538782e-27

#! Proton mass (kg)

mp = 1.67262171e-27

#! Avogadro constant (molˆ-1)

NAvogadro = 6.02214179e23

#! Magnetic constant
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mu0 = 4*pi*1e-7

#! Bohr magneton

muB = 9.27400915e-24

#! Nuclear magnetic moment

muN = 5.05078324e-27

#! Speed of light

c = 2.99792458e8

#! fine structure constant alpha (1)

alpha = 7.2973525376e-3

#! gravity

gravity = 9.81

#

m87Rb = 86.909180520*amu

m40K = 39.963999*amu

m6Li = 6.015*amu # Wiki (Jakob)

m133Cs = 132.905451931*amu

m23Na = 22.9897692807*amu

m ={}

m["K40"] = 39.963999*amu

m["Rb87"] = 86.909180520*amu

m["Cs133"] = 132.905451931*amu

#

lambda_yag = 1064e-9

#

k = 2*pi/lambda_yag

#

ER_40K = h**2/(2*m40K*lambda_yag**2)

####### parameters for IMPACT experiment #######

lambda_impact = 785.3e-9 #wavelength

k_imp = 2*pi/lambda_impact

ER_87Rb = h**2/(2*m87Rb*lambda_impact**2) #recoil energy

omegarec = ER_87Rb/hbar #recoil frequency

#experimental parameters
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g1 = 2*pi*1.8e6 #cavity couplings in Hertz

g2 = 2*pi*1.8e6

alph1 = 10 #coherent state amplitude

alph2 = np.sqrt(200-alph1**2)

Omegap = 2*pi*100e6 #transverse pumo frequency

Deltaa = 2*pi*2e12 #detuning

eta1 = Omegap*g1/Deltaa

eta2 = Omegap*g2/Deltaa

eta3 = g2*g1/Deltaa

Up = Omegap**2/Deltaa

U1 = g1**2/Deltaa

U2 = g2**2/Deltaa

#coefficients

A1 = hbar*eta1*(2*alph1)

A2 = hbar*eta2*(2*alph2)

A3 = (alph1*alph2+alph2*alph1)*hbar*eta3

A4 = hbar*Up

A5 = hbar*U1*(alph1**2)

A6 = hbar*U2*(alph2**2)

#coefficient in units of recoil energy to be used in the

main code

print A1/ER_87Rb

print A2/ER_87Rb

print A3/ER_87Rb

print A4/ER_87Rb

print A5/ER_87Rb

print A6/ER_87Rb

95



APPENDIX LIST OF FIGURES

List of Figures

1.1 Jaynes Cummings model. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Cavity Experiment setup. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Self organised checkerboard lattice. . . . . . . . . . . . . . . . . . . . . 11
1.4 Quantum phase transitions. . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 IMPACT experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 On site collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Collapse and revival on site. . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Collapse and revival in experiment. . . . . . . . . . . . . . . . . . . . . . 26
2.4 Collapse and revival on site in experiment. . . . . . . . . . . . . . . . . . 27
2.5 Toy model representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Interaction strength for Us. . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7 Long range interaction strength. . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Experimental values in the Cavity experiment. . . . . . . . . . . . . . . . 34
2.9 truncation effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.10 Collapse and revival dynamics. . . . . . . . . . . . . . . . . . . . . . . . 37
2.11 Collapse and revival dynamics for specified values. . . . . . . . . . . . . 37
2.12 Collapse and revival with short interactions only for Ul=155 Hz. . . . . . 38
2.13 Collapse and revival with long interactions only for Ul=77.5 Hz. . . . . . 38
2.14 Short and long range contribution superimposed. . . . . . . . . . . . . . 39
2.15 Short and long range contribution. . . . . . . . . . . . . . . . . . . . . . 40
2.16 Sweeping Up around the value 77.5 Hz. . . . . . . . . . . . . . . . . . . 41
2.17 Commensurate revivals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 IMPACT experiment schematic setup. . . . . . . . . . . . . . . . . . . . 44
3.2 Reciprocal lattice vectors for the double cavity and pump setup. . . . . . 48
3.3 Scattering events from the pump into cavity 1. . . . . . . . . . . . . . . . 50
3.4 Scattering processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Triangular potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Hexagonal potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Absorption images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

96



LIST OF FIGURES APPENDIX

3.8 Band structure for kinetic term only. . . . . . . . . . . . . . . . . . . . . 56
3.9 Band structure with kinetic and potential terms. . . . . . . . . . . . . . . 56
3.10 Lowest six bands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.11 Calculation space for cavity-pump basis. . . . . . . . . . . . . . . . . . . 58
3.12 Calculation space for cavity-cavity basis. . . . . . . . . . . . . . . . . . . 58
3.13 Variation of the potential for |α1| “ 2, |α1| “ 10, |α1| “ 14. . . . . . . . 59
3.14 Varying alphas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.15 Variation of the potential for indicated values of the pump phase φ. . . . . 61
3.16 Varying the pump phase. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.17 Varying coefficients strengths. . . . . . . . . . . . . . . . . . . . . . . . 62
3.18 Potential for different ratios. . . . . . . . . . . . . . . . . . . . . . . . . 63
3.19 Different ratios of pump to cavity coefficients. . . . . . . . . . . . . . . . 64
3.20 Space of calculation for the cavity-cavity basis. . . . . . . . . . . . . . . 65
3.21 Space of calculation for the cavity-cavity basis. . . . . . . . . . . . . . . 66
3.22 Bands in the cavity-pump basis. . . . . . . . . . . . . . . . . . . . . . . 66
3.23 Bands in the cavity-cavity basis. . . . . . . . . . . . . . . . . . . . . . . 67

A.1 Inventor design for the high finesse cavity, inside view. . . . . . . . . . . 72
A.2 Inventor design for the high finesse cavity, outside view. . . . . . . . . . . 73
A.3 Optical system for laser stabilisation via high finesse cavity. . . . . . . . . 74
A.4 Fundamental mode of the cavity. . . . . . . . . . . . . . . . . . . . . . . 75

97



APPENDIX BIBLIOGRAPHY

Bibliography

[1] T. Esslinger and T. Donner et al. Quantum phases from competing short- and long-
range interactions in an optical lattice. Nature, 532:476–479, 2016.

[2] M. Greiner et al. Collapse and revival of the matter wave field of a bose-einstein
condensate. Nature, 419, 2002.

[3] J. Leonard, A. Morales, P. Zupancic, T. Esslinger, and T. Donner. Supersolid forma-
tion in a quantum gas breaking continuous translational symmetry. arXiv, 2016.

[4] Richard P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21, 1982.

[5] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996.

[6] G. Brumfiel. Quantum leaps. Nature editorial, 491:322, 2012.

[7] T. Johnson, S. Clark, and D. Jaksch. What is a quantum simulator. EPJ Quantum
Technology, 2014.

[8] T. Schaetz, C. Monroe, and T. Esslinger. Focus on quantum simulation. New J. Phys.,
15:1073–1078, 2013.

[9] H. Moritz et al. Exciting collective oscillations in a trapped 1d gas. PRL, 91(250402),
2013.

[10] Z. Hadzibabic et al. Quantum gases: The cold reality of exclusion. Nature Physics,
6, 2010.

[11] H. Shiba and Y. Kuramoto. Special topics: Kondo effect ? 40 years after the discovery
of kondo effect. J. Phys. Soc. Jpn., 74, 2005.

[12] D. Jaksch and P. Zoller. The cold atom hubbard toolbox. Annals of Physics, 315,
2005.

[13] G. Roati et al. Anderson localization of a non-interacting bose-einstein condensate.
Nature, 2008.

[14] C. Nayak et al. Non-abelian anyons and topological quantum computation. Rev. Mod.
Phys., 80, 2008.

98



BIBLIOGRAPHY APPENDIX

[15] M. Leweinstein, V. Ahufinger, and A. Sampera. Ultracold atoms in optical lattices,
simulating quantum many body systems. Oxford University Press, 2012.

[16] I Bloch, Dalibard J., and Nascimbène S. Quantum simulations with ultracold quan-
tum gases. Nature, 8, 2012.

[17] W. Phillips. Laser cooling and trapping of neutral atoms - nobel lecture. Nobel
lecture, 1997.

[18] W. Ketterle. When atoms behave as waves: Bose-einstein condensation and the atom
laser. Nobel lecture, 2001.

[19] W. Ketterle, D. Durfee, and D-M. Stamper-Kurn. Making, probing and understanding
bose-einstein condensates. ArXiv, 1999.

[20] I. Cirac and P. Zoller. Goals and opportunities in quantum simulation. Nature Physics,
8, 2012.

[21] H. Ritsch, P. Domokos, F. Brenneke, and T. Esslinger. Cold atoms in cavity generated
dynamical optical potentials. Reviews of Modern Physics, 85, 2013.

[22] H. Ritsch, C. Maschler, and I. Mekhov. Ultracold atoms in optical lattices generated
by quantized light fields. Eur. Phys. J., 85, 2008.

[23] F. Brenneke et al. Qed with a bose einstein condensate. Nature, 450, 2007.

[24] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Atom - Photon Interactions:
Basic Process and Appilcations. Wiley, 1998.

[25] S. Huber. Experimental and theoretical aspects of quantum gases, lecture notes. 2015.

[26] F. Brenneke et al. Cavity opto-mechanics with a bose-einstein condensate. Science,
322, 2008.

[27] J. Klinder, H. Keßler, M. Bakhtiari, M. Thorwart, and A. Hemmerich. Observation
of a superradiant mott insulator in the dicke-hubbard model. PRL, 115, 2015.

[28] Y. Colombe et al. Strong atom?field coupling for bose?einstein condensates in an
optical cavity on a chip. Nature, 450, 2007.

[29] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger. Dicke quantum phase tran-
sition with a superfluid gas in an optical cavity. Nature, 464, 2010.

[30] P. Domokos and H. Ritsch. Mechanical effects of light in optical resonators. J. Opt.
Soc., 20(5), 2003.

[31] T. Donner, S. Huber, D. Nishant, and F. Brenneke. Phase transitions in a bose-
hubbard model with cavity-mediated global-range interactions. arXiv, 2016.

[32] J. Wen, Y. Zhang, and M. Xiao. The talbot effect: recent advances in classical optics,
nonlinear optics, and quantum optics. Advances in Optics and Photonics, 5:83–130,
2013.

99



APPENDIX BIBLIOGRAPHY

[33] M. V. Berry et al. Quantum carpets, carpets of light. Physics World, 14(6):39–44,
2001.

[34] J. Eberly et al. Periodic spontaneous collapse and revival in a simple quantum model.
PRL, 44(20), 1980.

[35] M. Lewenstein and L. You. Quantum phase diffusion of a bose-einstein condensate.
PRL, 77, 1996.

[36] A. Imamoglu, M. Lewenstein, and L. You. Inhibition of coherence in trapped bose-
einstein condensates. PRL, 78, 1997.

[37] E.M. Wright et al. Collapses and revivals of bose-einstein condensates formed in
small atomic samples. PRL, 77, 1996.

[38] W. Ketterle et al. Bose-einstein condensation in a gas of sodium atoms. PRL, 75(22),
1995.

[39] M. Nakano et al. Quantum-phase dynamics of two-component bose einstein con-
densates: Collapse revival of macroscopic superposition states. Physica B, 370(1-4),
2005.

[40] J. H. Huckans et al. Quantum and classical dynamics of a bec in a large-period optical
lattice. arXiv, 2009.

[41] H. Veksler and S. Fishman. Collapses and revivals of matter waves. arXiv, 2015.

[42] Markus Greiner. Ultracold quantum gases in three-dimensional optical lattice poten-
tials. PhD thesis, LMU, 2003.

[43] Roy J Glauber. Quantum theory of optical coherence. John Wiley & Sons, 1963.

[44] C. Straatsma and E. Cornell et al. Collapse and revival of the monopole mode of a
degenerate bose gas in an isotropic harmonic trap. ArXiv, 2016.

[45] M. Kaur, B. Arora, and Arvind. Effect of dissipative environment on collapses and
revivals of a nonlinear quantum oscillator. ArXiv, 2016.

[46] Pimenta H. and D. James. A characteristic function approach to the jaynes-cummings
model revivals. ArXiv, 2016.

[47] Singleton J. Band theory and electronic properties of solids. Oxford University Press,
2013.

[48] C. Kittel. Introduction to solid state physics. Oxford University Press, 1966.

[49] S. Simon. The Oxford Solid State Basis. Oxford University Press, 2001.

[50] M. Afzelius, N. Gisin, and H. de Riedmatten. Quantum memories for photons.
Physics Today, 68, 2015.

100



BIBLIOGRAPHY APPENDIX

[51] M. Afzelius et al. Demonstration of atomic frequency comb memory for light with
spin-wave storage. Physical Review Letters, 104, 2010.

[52] Eric D. Black. An introduction to pound?drever?hall laser frequency stabilization.
Am. J. Phys., 69, 2001.

101


	Setting the scene
	Quantum simulation
	Quantum simulation with BEC in optical cavities
	Cavity QED and the Cummings models
	The Cavity experiment
	The IMPACT experiment

	Objectives of the thesis

	Collapse and revival dynamics in a BEC
	Collapse and revival dynamics
	Collapse and revival in BEC

	Collapse and revival dynamics with short interactions only
	On site cold collisions
	Ground state wavefunction
	Time evolution with short range interactions
	Collapse and revival
	Experimental verification

	Collapse and revivals with long range interactions
	Theoretical model
	Numerical implementation
	Numerical results


	Band structure for IMPACT
	Band Theory
	Hamiltonian and optical potential
	Hamiltonian implementation
	Experimental verification

	Band structure calculation
	Exploring the band structure
	Alternative basis
	Conclusion

	Cavity design for laser stabilisation
	Motivation
	Design and Assembly
	Temperature stabilisation
	Alignement


	Collapse and revival
	Band structure calculation
	List of Figures
	Bibliography

