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Abstract

An ion trap with integrated photonics enables to generate phase-stable laser
fields that can reliably adress one or many ions. It also gives the possibility to
engineer specific light-fields that have rich interactions with the ions. In this
thesis, I study the interaction of a Calcium ion in a surface-electrode Paul trap
with a standing wave created by two counterpropagating laser beams at 729nm.
This scheme provides position-dependent features in the Rabi frequencies of the
4S1/2 −→ 3D5/2 electronic transitions and in the AC Stark shifts. The values of the
Rabi frequencies oscillate with the standing-wave pattern and are show a spatial
dephasing depending on the transition considered. Furthermore, the carrier and
sideband Rabi frequencies for a given transition are spatially out-of-phase which
allows to excite a sideband transition without off-resonantly driving the carrier
one, while minimizing the AC Stark shift, which paves the way towards the im-
plementation of high-fidelity two-ions Mølmer-Sørensen (MS) gates. Secondary
goal of this thesis is to estimate how the temperature of the ion affects the values
of Rabi frequencies we measure.
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Chapter 1

Introduction

The evolution of computing performance predicted by Moore’s law will come to a
slowdown due to the extreme miniaturisation of electronic devices that would make
them reach the quantum limit. In order to keep gaining computing power, research is
performed towards building a quantum computer [1]. The latter uses qubits instead
of bits as computing unit. A qubit being a superposition of two states, computing
with them would allow to get important speed-up - as compared to their classical
counterparts - on many computationnal taks, such as unstructured search in a list
[2] or integer factorisation [3]. Quantum computing is fundamentally a different
paradigm for computation. It takes advantage of the different ability of quantum
systems to store and manipulate information and has thus intrinsic arguments to
make regarding computing performance.

In the pursuit of building a quantum computer, several technologies to implement
qubits are explored, from superconducting circuits [4] to Nitrogen vacancy centers
in diamond [5] to name just a few. In this thesis, I will deal with one of the primary
candidates, trapped ions [6, 7]. By engineering DC and RF electric fields, it is indeed
possible to confine an ion spatially [8]. Encoding a qubit can then be done by using
internal metastable or hyperfine energy levels of the valence electron or the ion’s
motional states [9]. In the first case, control of the encoded information is performed
through the interaction of the valence electron with oscillating electric or magnetic
fields. Choosing Calcium ions 40Ca+ to work with seems a promising idea. Its
electronic structure is diverse with dipole and quadrupole transitions between levels,
the latter being long-lived, thus a good choice to define the qubit as they have long
coherence time, whereas the first are short-lived, thus particularly adapted for state
preparation, cooling and readout [7]. Possible coherence time is then greater than
any gate time and primarily limited by classical control of the ion, with noisy lasers
for instance.

The choice of the trap used to trap the ion is crucial. One could for instance use
a Penning trap, which relies on static electric and magnetic fields, or a linear Paul
trap, as it is the case in this thesis. This one relies only on static and oscillating
electric fields to trap the ion. In such a trap, tens of ions can be trapped at the
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same time along the trap axis while still allowing single-ion adressing [10]. That is
why this choice is a step towards scalability of trapped ion qubits. The choice of
a surface Paul trap, where all the electrodes lie in the same plane, as opposed to
a 3D trap, can be easily microfabricated and gives the possibility of photonics and
control components integration below the surface [6]. Even if for the same applied
voltages trapping potentials are less deep and trapping frequencies lower, which is
often found to be detrimental to trapping, surface traps are nevertheless a promising
technology for better integration and scaling. They are an important part of the
technology explored for building quantum charge-coupled device in which ions are
coupled or transported in different zones of the trap [11, 12] in order to build a
universal quantum computer.

However, having a well-characterised and well-defined qubit also requires that
it be isolated from the environment. For that, the trap is placed inside a vacuum
chamber inside a cryostat, respectively for better trapping and minimisation of the
electrical noise on the electrodes. In order to achieve even more stability, some of
the light needed for the ion adressing is integrated into the trap, enhancing phase-
stability and optical power efficiency while limiting cross-talk, paving the way for
more simple and reliable mutli-ions adressing [13, 14, 15]. Furthermore, the inte-
grated photonics can be used to create non-trivial light fields so as to give it inter-
esting physical properties. In this thesis, two counterpropagating laser beams are
emitted from the trap to the Calcium ion and forming a standing-wave along the
trap axis. Importantly, the photonics and the trap are part of the same structure. It
was hoped that this would provide good phase stability. This thesis provides work
towards investigating whether this can be taken advantage of.

Working with ions in an optical lattice is not new, it has already been explored
in the context of studying friction for instance [16, 17]. In our case, I will show
that it can help reducing unavoidable computing errors when performing a two-
qubits operation with a Mølmer-Sørensen gate [18], thus increasing the fidelity of the
gate [19]. Following this idea, I study in this thesis the carrier and sideband Rabi
frequencies and Stark shifts of three optical quadrupole transitions of a Calcium ion
adressed by the standing-wave provided by the integrated photonics of a surface Paul
trap.

This thesis is organised as follows. First, I will present the general interaction of
a light field with an ion trapped in a surface Paul trap. Then, after describing the
set-up, I will address the already-mentioned originality of the experiment, that is the
standing wave laser-field and how it gives interesting properties to the ion. Lastly,
I take a deeper look into the influence of temperature on the measurements of Rabi
frequencies.
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Chapter 2

Laser-ion interaction with trapped ions

In this Chapter, I present the general theory about ion trapping in a surface Paul trap
and laser-ion interactions following [20, 21, 22].

2.1 What is an ion trap?

The trap used in the set-up is a surface-electrode Paul trap, composed of twenty
electrodes that produce the electric fields which confines the ion.

2.1.1 Surface Paul trap

Let us first start with a description of a Paul trap, as a surface Paul trap is a planar
version of it. One of the main challenges of trapping an ion in three dimensions is
that Laplace’s equation constraints a static potential to have a metastable saddle point.
To overcome this issue, both static (DC) and time-varying (RF) electric potentials are
used. A linear Paul trap [8] is thus constituted of four parallel rods to which DC and
RF voltages are applied, thus creating a confining potential. The RF electrodes ensure
radial (id est (i.e.) along the y and z axis) confinement, whereas the DC electrodes are
responsible for the axial (i.e. along the x axis) confinement. The ion is then trapped in
between those four electrodes, along their axis (see Figure 2.1, left panel). In a surface
Paul trap, the 3D-geometry of the Paul trap is translated into a planar geometry: all
electrodes are placed on the same plane, and the RF null, which defines the trapping
axis, is located above the trap (see Figure 2.1, right panel). In our setup, ions are
trapped at a distance z = 50µm above the surface of the trap. By applying different
voltages on the DC electrodes, different potentials with different axial equilibrium
positions are generated, thus allowing to control and vary the axial position of the
ion.

Micromotion

More formally, with

ΦRF(
#‰r , t) = 1/2(vxx2 + vyy2 + vzz2) cos(ΩRFt + φ)

3



2.1. What is an ion trap?

Figure 2.1: Linear Paul trap (a) and surface Paul trap (b), constituted of RF and DC
electrodes[23]; ions are plotted along the RF null.

and
ΦDC(

#‰r , t) = 1/2(uxx2 + uyy2 + uzz2),

respectively the RF and DC potentials, and two normalised variables ai =
4eui

mΩ2
RF

and

qi =
2evi

mΩ2
RF

with m the mass of the ion, e the elementary charge, ui and vi constants
that obey the Laplace equation and ΩRF the RF modulation, the equations of motion
are given by the Mathieu equation for i = x, y, z

d2ri

dτ2 + (ai − 2qi cos(2τ)) ri = 0 (2.1)

with τ = ΩRFt
2 . In the limit |ai|, q2

i << 1, for a confining linear Paul trap in the y− z
plane the motion follows

ri ∝ cos
(

βi

2
ΩRFt

)
(1 +

qi

2
cos(ΩRFt)) for i = y, z (2.2)

rx ∝ cos
(

βi

2
ΩRFt

)
with βi =

√
ai + q2

i /2.

Treating the ion as a three-dimensional harmonic oscillator, each of the modes
of motion i oscillates with secular frequency βi

2 ΩRF . The second factor in radial
Equation (2.2) denotes a modulation of the motion at the RF frequency, also known as
micromotion. It can be neglected, unless the DC minimum is not in the RF null. This
can happen for intrinsic factors, i.e. related to the trap configuration as for instance
slight misalignement of the rods, or for extrinsic factors, that are usually stray fields.
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2.2. Calcium ion

2.2 Calcium ion

We trap Calcium ions 40Ca+ as a means to store quantum information. By using lasers
with precise control of their frequency, it is possible to control the single valence
electron that evolves in the rich energy level structure of the ion showed in Figure
2.2, namely in the first energy levels available 4S1/2 , 3D3/2 , 3D5/2 , 3P1/2 and 3P3/2 .
Here the levels are named following the standart atomic notation: nLJ with the total
angular momentum

#‰

J =
#‰

L +
#‰

S . As in classical mechanics, any electron possesses
an Orbital Angular Momentum (OAM) defined analogously as L̂ = x̂ × p̂. It also
possesses a Spin Angular Momentum (SAM)

#‰

S . This quantity is conserved for a
closed system. The total angular momentum quantum number j is defined such that
h̄2 j(j + 1) is an eigenvalue of Ĵ2; mj is the eigenvalue of Ĵz, the projection of the total
angular momentum Ĵ on the quantization axis. Those values are quantified. For an
electron, the SAM is typically 1/2, such that its projection on the quantisation axis
can only be ±1/2 [24].

Internal state transitions are driven by applying an electric field at the transition’s
wavelength. We then encode an optical qubit in the Zeman sublevels 4S1/2 as |0〉
and 3D5/2 as |1〉. The degeneracy of those levels is lifted by the Zeeman effect when
applying a magnetic field, creating fine-structure manifolds with equal spacing of
∆ω = gJµBB/h̄ where gJ is the Landé g-factor, µB the Bohr magneton and B the
magnetic field magnitude.

The transition involved in the optical qubit is an electric quadrupole transition ex-
cited by a 729nm laser: it is actually driven by the gradients of the electric field and
shows small decay rates [21], which makes it well suited for a qubit. Another present
electric quadrupole transition is 4S1/2 to 3D3/2 , driven by a 732nm laser. Those
transitions are denoted as quadrupole, since they are not dipole allowed, i.e. do not
follow the dipole selection rules. They come from higher terms in the expansion of
the Hamiltonian, use the spatial structure of the light to drive the transition and can
exchange more than one quanta of angular momentum. On the contrary, all the other
principal involved transitions at 393nm, 397nm, 854nm and 866nm are dipole transi-
tions. These electric dipole transitions can be driven strongly even with low power,
but have very short decay rates, they are for that reason not suited to store quantum
information, but rather to perform state-preparation, cooling and readout via state-
dependent fluorescence detection. During the latter process, the state is designated
as bright if it is in the |0〉 state. The 397nm transition is driven, exciting the electron
into the 3P1/2 level. From there, it decays back into |0〉, emitting a photon which can
be subsequently captured by a photomultiplier tube. The detection of fluorescence
photons indicates the |0〉 state. On the other hand, if the electron is in |1〉, it is not
excited and the state remains dark: no photons are detected. However, during this
process, a bright electron may as well decay into the 3D3/2 state. In order to detect
it as bright, we need to drive the 3D3/2 −→ 3P1/2 transition using light at 866nm so
as to repump the electron .
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2.3. Laser-ion interaction

Figure 2.2: Calcium ion energy levels diagram with detailed Zeeman manifold on the
4S1/2 and 3D5/2 levels. Wavelengths of the transitions are indicated. Quadrupole
transitions have thick lines, dipole transition thin lines.

2.3 Laser-ion interaction

We can derive a Hamiltonian that describes the interaction of a trapped ion qubit
with a laser light [22]. For simplicity and as it captures most of the relevant phyiscs
involved, let us study a two-level system with |g〉 and |e〉 the ground and excited
state respectively. Let us start with its free Hamiltonian H0 that describes the internal
state level structure and the harmonic oscillator motional mode with

Ha = E0 |g〉〈g|+ E1 |e〉〈e| =:
h̄ωo

2
σz,

Hm = h̄ωm â† â

and
H0 = Ha + Hm

where σz = |g〉〈g| − |e〉〈e|, ωo is the qubit transition frequency, ωm is the frequency of
the motional mode and â† (resp. â) creation (resp. annilhilation) operators for this
mode. I here consider only the axial mode of motion as the two radial ones will not
be involved in this thesis.
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2.3. Laser-ion interaction

The total Hamiltonian H also includes the interaction Hamiltonian HI and reads

H = H0 + HI .

2.3.1 Rabi frequency

The interaction of the ion with the laser light can be treated using time-dependent per-
turbation theory. The formalism I use describes both electric dipole and quadrupole
interactions to which a Rabi frequency Ω, a laser light frequency ω and a wavevector
#‰

k can be associated. We can write the interaction Hamiltonian as [22]

HI =
h̄
2

Ω (|e〉〈g|+ |g〉〈e|)
(

ei(
#‰

k .
#‰
R−ωt+φ) + e−i(

#‰

k .
#‰
R−ωt+φ)

)
(2.3)

where Ω = 1
h̄ 〈e|HI |g〉 is called Rabi frequency of the interaction type involved and

#‰

R
is the position of the ion in the trap.

In the interaction picture with respect to H0 and after applying the Rotating Wave
Approximation (i.e. neglecting high frequency rotating terms), we obtain the Hamil-
tonian

HI =
h̄
2

Ω
(
|e〉〈g| ei(

#‰

k .
#‰
R−δt+φ) + |g〉〈e| e−i(

#‰

k .
#‰
R−δt+φ)+

)
(2.4)

where δ = ω−ωo.

For simplicity, let us first consider in the following paragraph that δ = 0 and
assume the position dependency as a constant phase such that φ = 0. The time
evolution is given by the unitary

U(t) = exp(−iHIt/h̄) =
(

cos(Ωt/2) −i sin(Ωt/2)
i sin(Ωt/2) cos(Ωt/2)

)
which describes coherent oscilations between the |g〉 and |e〉 states at a frequency
given by Ω. The probability to find the qubit in state |e〉 when it started in state |g〉
is given by P|g〉(|e〉 , t) = sin(Ωt/2)2 = 1

2 (1 + cos(Ωt)).

2.3.2 Sideband transitions

Let us now take a closer look into the motional part of the Hamiltonian (2.4). For
simplicity, let us only consider only the axial motional mode ωm. As the motion can

modeled by an oscillator x̂ = xo(âu∗(t) + â†u(t)) with xo =
√

h̄
2mωm

the zero-point
motion wavepacket and u(t) solution to the Matthieu equation (2.1), the Hamiltonian
must take into account the interaction of the light with this oscillator, which has both
an amplitude and a direction.

We define the Lamb-Dicke parameter η = kxxo = 2π
λ

√
h̄

2mωm
cos(θ), θ being the

angle between the wavevector
#‰

k and the x axis and λ the wavelength of the laser.
In the Lamb Dicke regime, η << 1 and η2(n + 1) << 1 for n ∈ N the motional

7



2.3. Laser-ion interaction

occupation number, this means that the light does not couple too strongly with the
motion. This allows us to expand the exponential terms ei

#‰

k R̂ ≈ 1 + iη(âu∗(t) +
â†u(t)). Writing u(t) as a series in exponential and performing the RWA a second
time yields

HI =
h̄
2
[∑

n
Ω |e, n〉〈g, n| ei(δt+φ)

+ ∑
n

i
√

n + 1ηΩ |e, n + 1〉〈g, n| ei((δ−ωm)t+φ)

+ ∑
n

i
√

nηΩ |e, n〉〈g, n + 1| ei((δ+ωm)t+φ)]. (2.5)

The first sum is the analogous to the one in Equation (4.2) and describes the carrier
Rabi frequency, obtained when resonantly driving the transition at δ = 0. The second
and third sums are the first sideband couplings obtained when driving the transition
at δ = ±ωm.

Considering a single transition of the type |g, n〉 ↔ |e, n〉,|g, n〉 ↔ |e, n + 1〉 and
|g, n + 1〉 ↔ |e, n〉 respectively, we have for

• δ = 0: HI =
h̄Ω
2 (σ+eiφ + σ−e−iφ) is the carrier Hamiltonian and Ω is the carrier

Rabi frequency;

• δ = ωm: HI = h̄η
√

n+1Ω
2 (σ+ â†eiφ + σ− âe−iφ) is the blue sideband Hamiltonian

and η
√

n + 1Ω is the blue sideband Rabi frequency Ωbsb;

• δ = −ωm: HI =
h̄η
√

nΩ
2 (σ− â†e−iφ + σ+ âeiφ) is the red sideband Hamiltonian and

η
√

nΩ is the red sideband Rabi frequency Ωrsb.

Here σ− = |g〉〈e| and σ+ = |e〉〈g| are the lowering and raising operators. The
red (resp. blue) sideband interaction removes (resp. adds) a quanta of motion while
exciting the ion. Since the coupling is reduced by the Lamb-Dicke parameter, one
needs more power when driving a sideband transition as when driving a carrier
transition to obtain the same coupling strength.

2.3.3 Stark shift

In the case of a detuned laser δ = ωL −ω0, the total Hamiltonian in the RWA reads

H =
h̄δ

2
σz +

h̄
2

Ω |e〉〈g| e−i(δt+φ) +
h̄
2

Ω |g〉〈e| ei(δt+φ). (2.6)

When there is no detuning δ = 0, the energy levels are exactly separated by
h̄ωo as expected. However, supposing the detuning is larged compared to the Rabi
frequency δ >> Ω, the eigenvalues of H are

E± ≈ ±(
h̄δ

2
+

h̄Ω2

4δ
).
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2.3. Laser-ion interaction

Figure 2.3: Driving a two level transition and AC Stark shift on the energy levels
when δ >> Ω: resonantly (left), δ > 0 (center) and δ < 0 (right). A blue detuning
(center) decreases the energy difference whereas a red detuning (right) increases it.

In this approximation, the first term reflects an energy shift between the qubit
and drive frames and has thus no physical relevance. Whereas the second term has
a physical interpretation and is known as the AC Stark Shift: when a transition is
driven far from resonance, the energy levels are pushed apart or towards each other
depending on the sign of the detuning, see Figure 2.3. This energy shift is of crucial
importance for energy calibration and its applications in atomic clocks for instance.

For exhaustivity, if the laser is far detuned from the transition frequency, the
counter rotating term known as the Bloch-Siegert shift must also be accounted for and
contributes as 1/(ωL + ω0) in the total Stark shift calculation

∆EStarkshi f t = −
h̄Ω2

4
(

1
ωL −ω0

+
1

ωL + ω0
).

However, this contribution is still neglible in our case because ω0, ωL >> |ωL −ω0|.

Considering a more general case than the two-level system with a third level in-
volved, this latter is also off-resonantly driven when we drive the qubit transition.
For instance, in the case of the Calcium ion, driving the transition at 729nm actually
off-resonantly drives all the other transitions, thus Stark shifting all the energy lev-
els involved in those off-resonant transitions. This can be detrimental to the qubit
frequency calibration as both initial and final states of the transition might be non
negligeably shifted. This motivates the simulation and measurement of AC Stark
shifts in Chapter 4.
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Chapter 3

Experimental set-up

I now describe the experimental apparatus and techniques used to control and adress
the qubit.

3.1 The set-up

The chip on which the trap is designed is located inside of a cryogenic chamber,
which is itself inside a vacuum chamber. Temperature inside the cryogenic chamber is
at 6K. Calcium neutral atoms come from the oven located on the side of the chamber.
They are ionised in two steps [26]: first a 423nm laser drives the 4s2 1So −→ 4s4p 1P1
atomic transition and we experimentally see neutral fluorescence. Then a 389nm laser
removes the excited electron, the Doppler cooling and readout 397nm and 866nm
lasers, that are always running, enable to cool and trap the ion and detect it once the

Figure 3.1: Scheme of the experimental set-up [25]. Left: vacuum chamber (grey),
cryogenic chamber (yellow), Calcium oven in front of the top viewport, free-space
laser lights (blue) through the three other viewports and integrated lights (red). The
trap is in the center of the cryogenic chamber. Center: zoom on the surface electrode
trap chip. Right: foccuss on the electrodes.
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3.1. The set-up

Figure 3.2: Geometric conventions. Left: view from above the trap (yellow rectangle)
and orientation of the magnetic field in the trap frame. Right: lateral view, light
emitted (green) by both couplers to the ion (red) beneath the trap chip (yellow).

atom is photoionized. In Figure 3.1, the left panel shows the vacuum chamber and
cryostat disposition and how the light is delivered to the trap through the viewports.
The right panel shows a zoomed-in picture of the trap. There are three zones of
interest along the trap axis, each of them defined by the axial zone between two
couplers. Out of the latter shine optical laser fields that allow to address ions reliably.
The main interest of this set-up is the standing wave that is created by the 729nm
counter-propagating laser beams coming out of these couplers.

During an experiment, the following lasers are used:

• a 389nm to photoionize the neutral Calcium ions;

• a 423nm laser also used to photoionize;

• a 397nm laser with σ polarisation to prepare the ion in the
∣∣4S1/2, mj = −1/2

〉
state; one with π polarisation; those lasers are also used for EIT cooling and
state-detection;

• a 729nm laser to adress the 4S1/2 to 3D5/2 transition, ie to address the qubit
transition;

• a 854nm laser to repump the 3D5/2 state;

• a 866nm laser to repump the 3D3/2 state.

Out of those six different wavelength lasers, 389nm, 423nm and both 397nm polar-
isation ones are free-space whereas 729nm, 854nm and 866nm are integrated on the
chip. This allows phase stability and ease of use, as they are less prone to fluctuations
with time and in space [13].

The geometry of the set-up and conventions used are shown in 3.1. The trap lies
in the x − y plane, its axis being along x. The magnetic field lies in the same plane,
it defines the quantisation axis and lifts the Zeeman sublevels. It makes a θ = 45°
angle with the x axis (see Figure 3.2,left) and has a magnitude of approximatively
5.9G. Coming from the trap couplers, the 729nm laser light propagates along the z
and x axis with an angle of φ = 36° with the trap normal (see Figure 3.2,right). In all
experiments described in this thesis, a single ion is trapped 50µm away from the trap
surface.
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3.2. State preparation

3.2 State preparation

At the beginning of each experiment, the electronic state is prepared in the
∣∣4S1/2, mj = −1/2

〉
state. To do so, optical pumping on the dipole transition 4S1/2 to 3P1/2 is performed.
It uses the fact that dipole transition selection rules depend on the polarisation of the
laser light. For instance, adressing this transition with a 397nm σ polarised laser only
allows to drive the

∣∣4S1/2, mj = 1/2
〉

to
∣∣3P1/2, mj = −1/2

〉
transition. From there,

the electron can decay into
∣∣4S1/2, mj = −1/2

〉
. Thus, if we run this transition long

enough, the electron get exponentially close to the
∣∣4S1/2, mj = −1/2

〉
state, the main

limitation being the polarization of the beam.

3.3 Measurement of the AC Stark shift

To measure the AC Stark shift on a transition, first a calibration of the qubit bare
frequency is realised at low power. Then a pulse is applied at this frequency but high
power, which results in shifting the energy levels due to the AC Stark shift caused
by the off-resonant driving of the other transitions. This pulse is enclosed within two
Ramsey π/2 pulse at the 4S1/2 to 3D5/2 transition frequency, such that the phase
accumulated during this pulse is proportional to the energy shift. The Ramsey pulses
allow to map this phase information into the population measurement at the end of
the sequence. A series of pi-pulses with different lengths is then applied and yields a
modulation of the measured population as a function of the length of the pulse with
frequency equals to the differential Stark shift[27].

3.4 EIT Cooling

Electromagnetically-Induced Transparency (EIT) cooling allows to cool an ion below
the Doppler limit by using a σ-polarised 397nm beam and a π-polarised one. Based
on the three-level Λ system formed by the Zeeman sublevels of the 4S1/2 to 3P1/2
transition, the σ beam couples

∣∣4S1/2, mj = −1/2
〉

to
∣∣3P1/2, mj = 1/2

〉
and the π

beam
∣∣4S1/2, mj = 1/2

〉
to
∣∣3P1/2, mj = 1/2

〉
. The cooling rate R is then proportionnal

to the projection of the difference of the 397nm wavevectors on the motional mode to
cool with [28]

R ∝
∣∣∣( #‰

k π −
#‰

k σ). #‰e m

∣∣∣2 h̄
2mωm

where #‰e m gives the direction of the oscillation.

During the process of my thesis, experiments were first done in the central zone
of the trap, labelled zone 2. Then we moved to the zone on the right, zone 3. To
be able to perform experiments in this second zone, most of the laser beams had to
be moved towards it. If it is rather straightforward for the integrated lights, the non-
integrated blue light had to be realigned in the new zone. When this was done, we
realised that EIT cooling in that zone could not work as expected, as the difference of
the σ-polarised and π-polarised laser wavevectors was aligned with the y axis rather
than the x axis. It is then imposssible to cool the axial mode as it has no projection on
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3.5. Protocol for running an experiment

Figure 3.3: EIT cooling beams, 397nm σ- and π-polarised beams. The difference of
their wavevectors in Zone 2 (left) and Zone 3 (right) is respectively along the x axis
and y axis, allowing to cool the axial, resp. radial along y, mode only.

the wavevector difference. This discrepancy between the two zones is due to the fact
that the σ beam was moved from one side of the trap to the other side when shifting
from zone 2 to zone 3, thus modifying the difference of the wavevectors

#‰

k σ −
#‰

k π

(see Figure 3.3).

3.5 Protocol for running an experiment

When running an experiment, one has to make sure that the lasers cavities are
optimally-detuned, that the polarisation of the 397nm σ- and π-laser beams is cor-
rect and that micromotion is well compensated. If we want to perform a Rabi flop
measurement, the following steps are observed:

• initial state preparation;

• cooling;

• applying the 729nm pulse resonnant with one of the transitions during a given
duration τ;

• reading out the state.

This procedure is repeated N times - usually N = 100 - to get statistics for this data
point (see Figure 3.4). Before repeating it all over again to obtain the next data point
of the plot.

Error on a data point

On each data point of an experiment, there is an error, a statistical uncertainty that
can be quantified. The error ∆Y on each data point is given by the quantum projection
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3.5. Protocol for running an experiment

Figure 3.4: Scheme of an experimental protocol when running a Rabi flop. First the
ion is loaded, while Doppler coolingand detecting it with 397nm laser. Then the state
is prepared, a 729nm laser pulse of length τ is applied, before reading out the state.
And these three last steps are repeated N times for statistics.

noise [29], defined as

∆Y =

√
max(

Y(1−Y)
N

,
1

N + 2
)

where N is the number of measurements done to get one data point. The first term
in this expression refers to a binomial distribution whereas the second term accounts
for Y with values of 0 or 1 and comes from the Laplace rule (probability that the
(N + 1)th trial yields a different value when all the first N ones were equal).
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Chapter 4

Study of Rabi oscillations in a standing
wave

In this chapter, I study more precisely the ion interaction with the standing wave:
firstly I derive the formula for the quadrupole, dipole and sideband Rabi frequencies,
then for the AC Stark shift. Both Rabi frequencies and AC Stark shifts have noteworthy
properties. In a second step, I study how variation in the magnetic field, polarisation
or positioning of the couplers affect the Rabi frequencies. Finally, I consider the
standing wave from the perspective of light with orbital angular momentum.

All the experiments were conducted between the
∣∣4S1/2, mj = −1/2

〉
and the first

sublevels of |3D5/2〉 with mj = −5/2,−3/2 or − 1/2. Those three transitions capture
distinct ∆mj that enable to cover all the behaviors provided by the standing wave.
Then, considering the last two quadrupole allowed transitions to the 3D5/2 level
with

∣∣∆mj
∣∣ = 1 and 2 is already redundancy, which allows us to confirm the other

measurements of desired.

4.1 Working with a standing wave

The particularity of the set-up lies in the fact that the 729nm laser adressing the ion
defines a phase-stable standing wave. From the two couplers, we have a standing
wave along the trap axis x and a running wave along z

#‰

E( #‰r , t) = E0
#‰ε
(

ei(kzz−kxx−ωt) + ei(kzz+kxx−ωt)
)

,

#‰

E( #‰r , t) = 2E0eikzz cos(kxx−ωt) #‰ε .

The polarisation vector is #‰ε = #‰ey and the wave vector propagates with an angle
α = 36° to the vertical such that: kx = 2π/λ sin(α) and kz = 2π/λ cos(α).

In figure 4.1 is a finite-difference time-domain simulation of the actual electric
field, provided by K. Mehta1. The beam is foccused at the trap center (x, y) = (0, 0)

1Former post-doctoral research assistant in the TIQI group.
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4.1. Working with a standing wave
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Figure 4.1: The standing wave (top) and a zoom in the center of the trap (bottom left).
Purity of the y-polarization (bottom right). The intensity has here arbitrary values.

and the standing wave has a period of 729nm/ sin(36°) = 1.24µm. If the ion remains
on the trap axis, it experiences mainly a perfect y-polarisation of the field, whereas
the farther away from the y = 0 axis, the more impure the polarisation is. The beam
has the width at mid-height of 4.5µm along y and 11.7µm along x.

Conventions and basis

I will be using the following geometry (Figure 3.2): the trap axis defines the x-axis
and its plane the x− y plane; z is thus perpendicular to the trap plane. The magnetic
fields, that lies in the x− y plane, defines the quantisation axis. I will hence use the
following matrix to rotate any vector that requires the quantisation axis to be parallel
to z:

R =

− sin(θ) − sin(φ) cos(θ) cos(φ) cos(θ)
cos(θ) sin(φ) sin(θ) cos(φ) sin(θ)

0 cos(φ) sin(φ)

 (4.1)

where θ is the angle between
#‰

B and #‰ex, φ between
#‰

B and the x− y plane.

As presented in [21], the interaction Hamiltonian given by the multipole expan-
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4.1. Working with a standing wave

sion is
HI =

e
2

#‰

E . #‰r +
e
2
( #‰r . #‰ε )(

#‰∇Ey. #‰r ),

HI =
eEo

2
#‰r . #‰ε eikzz cos(kxx−ωt) +

eEo

2
( #‰r . #‰ε )(

#‰∇(eikzz cos(kxx−ωt)). #‰r ). (4.2)

Here #‰r is the internal position of the electron and has to be distinguished from
#‰

R the
position of the ion in the trap. The first term of the sum in Equation (4.2) gives the
dipole allowed interaction and the second term the quadrupole allowed interaction.
I will first present the quadrupole Rabi frequency, as it is the one involved in the
transition at 729nm.

From Equation (4.2), we can derive the quadrupole Rabi frequencies between a
ground and excited states |g〉 and |e〉 respectively for the standing wave polarised
along y starting from

Ωqd =
e

2h̄

∣∣∣∣∣∑i
〈e| riy |g〉

∂Ey

∂xi

∣∣∣∣∣. (4.3)

And the dipole Rabi frequency is analoguously given by

Ωdp =
e

2h̄
∣∣〈e| y |g〉 Ey

∣∣. (4.4)

I here use xi = x, y, z and Ej the projection of
#‰

E on the xj axis.

In the following, I note j, mj the total angular momentum quantum numbers for
the initial state

∣∣4S1/2, mj = −1/2
〉

and j′, m′j for
∣∣3D5/2, mj = −5/2,−3/2or− 1/2

〉
the final state .

4.1.1 Derivation of the quadrupole Rabi frequency

First, I expres the position operators ri as a sum over regular spherical harmonics Rm
1

ri = ∑m c(m)
i Rm

1 (for details see Appendix A.1) with (c(m))m the spherical unit vectors.

Then rirj = 1
3 r2δi,j + ∑m c(m)

ij Rm
2 , which is expressed with second rank spherical

harmonics and

c(q)ij =

√
10
3
(−1)q

1

∑
m1,m2=−1

(
j0 2 j1

m0 m1 −q

)
c(m1)

i .c(m2)
j

where
(

j0 2 j1
m0 m1 −q

)
is the Wigner-3j symbol. With this expression, we get

〈e| rirj |g〉 =
2

∑
m=−2

〈e| Rm
2 |g〉 c(2)ij .

Since our magnetic field is not along the direction of progation of the light, we
need to rotate the c(q)ij so as to match our quantisation axis. From now on, c(q)ij is
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4.1. Working with a standing wave

defined as (Rc(q)R−1)ij with R from (4.1). Appling the Wigner-Eckart theorem (see
Appendix A.1.1), we get

〈e| rirj |g〉 = 〈e| |R2| |g〉
2

∑
q=−2

(
j 2 j′

−mj q m′j

)
c(q)ij .

We can relate 〈e| |R(2)| |g〉 to the Einstein coefficent (Appendix A.3) of the transition
involved with

A(E2)
12 =

cαk5
12

15(2j′ + 1)
| 〈e| |R(2)| |g〉 |2.

Finally

Ωqd =
1

2h̄

√
15(2j′ + 1)

cα

√√√√A(E2)
12

k5
12

∣∣∣∣∣ 2

∑
q=−2

(
j 2 j′

−mj q m′j

)
∑
ij

c(q)ij
∂Ei

∂xj

∣∣∣∣∣. (4.5)

In particular, for the
∣∣4S1/2, mj = −1/2

〉
−→
∣∣∣3D5/2, m′j

〉
transition, with our standing

wave and writing C2
j=5/2,k =

1
2h̄

√
15(2 5

2+1)
cα

√
A(E2)

12
k5

12

Ωqd = C2
j=5/2,k

∣∣∣∣∣ 2

∑
q=−2

(
1/2 2 5/2
1/2 q m′j

)
(−c(q)yx E0eikzzkx sin kxx + c(q)yz ikzE0eikzz cos kxx)

∣∣∣∣∣.
(4.6)

We clearly see in Equation (4.5) why quadrupole transitions only allows
∣∣∆mj

∣∣ =
2, 1 or 0 and |∆j| = 2, 1 or 0: the Wigner-3j symbol is zero if one of these conditions
is not satisfied. For example, the

∣∣4S1/2, mj = −1/2
〉

state can never couple to the∣∣3D5/2, mj = 5/2
〉

state.

Equation (4.6) already tells us a lot about the influence of the standing wave pat-
tern on the quadrupole Rabi frequencies for this transition. Let us first factor out eikzz

as a global phase since the position along z is fixed at 50µm and rewrite it in a more
compact and insightful way

Ωqd =
∣∣E0(〈e| ryrx |g〉 , 0, 〈e| ryrz |g〉).(−kx sin kxx, 0, ikz cos kxx)

∣∣.
If the ion sits at a node of the standing wave where cos kxx = 0, then the only
remaining term in this expression is due to the gradient along x of the electric field.
In particular, if 〈e| ryrx |g〉 is non zero, then the transition is driven where there is
actually no field intensity ! This might be a bit puzzling at first sight, but what
drives a quadrupole transition is the gradient of the electric field, which allows this
particularity. On the contrary, if the ion sits at an anti-node of the standing wave
where cos kxx = 1, then the transition is driven by the gradients along z of the electric
field, i.e. by the running wave along z.
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Figure 4.2: Coupling as a function of the magnetic field angles θ and φ for
∣∣∆mj

∣∣ = 2
(left),

∣∣∆mj
∣∣ = 1 (center) and ∆ mj= 0 (right)

Couplings

The geometry has also an influence on how strongly a transition can be driven. Let
us consider the coupling strength, defined as

g(∆m, θ, φ) = | − c(∆m)
yx sin θ + c(∆m)

yz i cos θ|

where ci,j depends on φ as it is rotated to match the quantisation axis defined by
#‰

B .
As presented in 4.2, there are couples of angles (θ, φ) that are particurly favorable to
drive a given transition or more interestingly not to drive a transition: for instance
setting the magnetic field parallel to the y axis, i.e. θ = 90°, prevents driving any
transition with

∣∣∆mj
∣∣ = 2 or 0, and so for any orientation of the wavevector. We

however choose the magnetic field so as to be able to drive all three transitions, hence
the choice of θ = 45° and φ = 0.

4.1.2 Derivation of the dipole Rabi frequency

I here derive the dipole Rabi frequency because it is relevant to evaluate the Stark
shift. The derivation follows the same pattern as for the quadrupole Rabi frequency,
the main difference being the presence of first rank tensors instead of second rank
tensors

Ωdp =
e

2h̄

∣∣∣∣∣∑i
〈e| |R1| |g〉

1

∑
q=−1

(
j 1 j′

−mj q m′j

)
c(q)i Ei

∣∣∣∣∣.
Using the expression for the Einstein A cefficients (Appendix A.3), we finally get

Ωdp =
1

2h̄

√
3(2j′ + 1)

cα

√√√√A(E1)
12

k3
12

∣∣∣∣∣ 1

∑
q=−1

(
j 1 j′

−mj q m′j

)
∑

i
c(q)i Ei

∣∣∣∣∣.
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4.1. Working with a standing wave

With our standing wave, writing C1
j′,k =

1
2h̄

√
3(2j′+1)

cα

√
A(E1)

12
k3

12
, the dipole Rabi frequency

is

Ωdp = C1
5/2,k

∣∣∣∣∣ 1

∑
q=−1

(
j 1 j′

−mj q m′j

)
∑

i
c(q)y E0eikzz cos(kxx)

∣∣∣∣∣.
Here again, the Wigner-3j symbol only allows transitions between states with∣∣∆mj
∣∣ = 1 or 0 and |∆j| = 1 or 0. The dipole Rabi frequency is driven by the electric

field and directly proportionnal to its amplitude. Thus if the ion sits at a node, no
transition can be driven.

4.1.3 Derivation of the sideband Rabi frequency

We assume we are in the Lamb-Dicke regime and hence can Taylor expand terms
with kx x̂ = kx x̂o + η(â + â†) where xo is the position of the ion, η the Lamb-Dicke
parameter, and get

sin kxx ≈ sin(kxxo) + η(â + â†) cos(kxxo)

and
cos kxx ≈ cos(kxxo)− η(â + â†) sin(kxxo).

Performing the RWA, we finally obtain

Ωqd
sb = CJ=5/2,kE0η

∣∣∣∣∣ 2

∑
q=−2

(
1/2 2 5/2
1/2 q m′j

)
(−c(q)yx kx cos kxxo − c(q)yz ikz sin kxxo)

∣∣∣∣∣.
Here we are actually applying Equation(4.6) to ∂E

∂x . Rewriting it more compactfully

Ωqd
sb = ηE0

∣∣(〈e| ryrx |g〉 , 0, 〈e| ryrz |g〉).(−kx cos kxx, 0,−ikz sin kxx))
∣∣.

4.1.4 Results

In figure 4.3 I present the Rabi frequencies of the transitions
∣∣4S1/2, mj = −1/2

〉
to∣∣∣3D5/2, m′j = −5/2;−3/2 and − 1/2

〉
as a function of position along the trap axis.

The plain lines are computed with a full numerical model of the field in the trap
-that I will call real- whereas the dashed ones are computed with an interfering plane
wave model. We can indeed see that away from the trap center (x, y) = (0, 0) the am-
plitude of the real Rabi frequencies is reduced compared to the ideal ones: this due to
the fact that the laser light has a beam shape foccussed at the trap center. We also see
a first interesting feature here: the three transitions do not have the same phase along
the trap axis. In particular, when driving the transition to

∣∣∣3D5/2, m′j = −1/2
〉

at a
position where its Rabi frequency is maximum, the Rabi frequency of the transition
to
∣∣∣3D5/2, m′j = −3/2

〉
is minimum if not zero. That means that we are not driving
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4.1. Working with a standing wave

off-resonantly this transition. The transition to
∣∣∣3D5/2, m′j = −5/2

〉
, even more off-

resonant, is also not fully driven. This standing wave pattern allows to select which
transition is driven while not driving off-resonantly the other ones of the Zeeman
manifold by choice of ion position. This could also be realised by increasing the mag-
netic field value or changing the quantization angle such that some transitions can-
not be driven, it is thus not the preserve of the standing wave pattern. For instance,
let us suppose the ion is exactly in the center of the trap, where the transition to∣∣∣3D5/2, m′j = −1/2

〉
Rabi frequency is maximum and the one to

∣∣∣3D5/2, m′j = −3/2
〉

zero. At this position, the transition to
∣∣∣3D5/2, m′j = −5/2

〉
Rabi frequency is approx-

imately half of the one of the one to
∣∣∣3D5/2, m′j = −1/2

〉
. To get a coupling of the

same magnitude, without even taking the detuning into account, one would need
four times more intensity.

As for the sideband Rabi frequencies, they show the same properties. Neverthe-
less, since they are calculated with the axial gradient of the gradient of the carrier
Rabi frequency, they have exactly a π/2 phase-shift with their carrier counterparts.
That is to say, when the carrier Rabi frequency is maximum for a transition, the
sideband Rabi frequency is minimum, i.e. zero, and vice-versa. This is of crucial im-
portance and benefit for quantum information processing. As derived in [18], one
important error when performing a Mølmer-Sørensen gate scales quadratically with
the carier Rabi frequency when this off-resonant coupling is taken into account. The
fidelity is then given by

F = 1− Ω2
c

δ2 (1− cos(2δτ))

where τ = π
Ωsideband

is the gate time, usually fixed, and δ the detuning used to drive the
gate. Implementing such a gate in the standing wave would not only allow to drive
the gate at maximum power, i.e. maximum sideband Rabi frequency and minimum
gate time, but also to minimize the error by cancelling the carrier Rabi frequency.

4.1.5 AC Stark shift

Stark shift for the carrier transition

When resonantly driving any
∣∣4S1/2, mj = −1/2

〉
to
∣∣∣3D5/2, m′j

〉
transition, any other

atomic transition is de facto off-resonantly driven. All the off-resonantly driven tran-
sitions in which any of those two levels are involved is thus affected by the AC Stark
shift. It is evaluated as the shift in the energy difference of the two levels

∆E = ”shift on the 3D5/2 level” - ”shift on the 4S1/2 level”.

On the 3D5/2 level, there is a contribution from the 3P3/2 to 3D5/2 transition at
866nm and a contribution from 4S1/2 , mj = +1/2. On 4S1/2 level, there are con-
tributions from the off-resonantly driven dipole allowed transitions at 397nm and
393nm to 3P1/2 and 3P3/2 respectively; and finally from the off-resonantly driven
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4.1. Working with a standing wave
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Figure 4.3: Carrier (top) and sideband (bottom) Rabi frequencies for the simulated
field (full) and plane wave model (dashed) of the three transitions considered. Values
are normalized to the value of the ∆mj = 0 (resp. ∆mj = 1) transition at x = 0 for the
carrier (resp. sideband).
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4.1. Working with a standing wave

Figure 4.4: Dipole (left) and quadrupole (right) transitions involved in the calculation
of the total AC Stark shift when driving the transition between

∣∣4S1/2, mj = −1/2
〉

to
∣∣3D5/2, mj = −1/2

〉
.

quadrupole transition at 729nm in the 3D5/2 Zeeman manifold.

∆E =
h̄
4

[
Ω2

854
δ854

+
Ω2

729,+1/2

δ729,+1/2
−
(
−Ω2

393
δ393

− Ω2
397

δ397
−

Ω2
729,−1/2

δ729,−1/2

)]
(4.7)

where δλ is the detuning between the driving laser at 729nm and the off-resonantly
driven transition at λnm, Ωλ the Rabi frequency of the transition at λnm. The sub-
script 729,+1/2 (resp. 729,−1/2) refers to the

∣∣4S1/2, mj = +1/2
〉

(resp.
∣∣4S1/2, mj = 1/2

〉
)

associated detuning and Rabi frequency. In Figure 4.4 I have decomposed the effect
of the off-resonantly driven transitions depending if they are dipole or quadrupole
allowed.

We neglect other transitions that could contribute as well as any contribution from
sideband Rabi frequencies, as they are about 10 to 100 times smaller for a similar
detuning due to lower Rabi frequencies.

In Figure 4.5 the main contribution to the Stark shift comes from the off-resonantly
driven dipole transitions. The contributions from the quadrupole transitions are by
one order of magnitude smaller and depend more strongly on which transition is
driven. They cause the total AC Stark shift to be different depending on which
transition is driven.

Stark shift when driving a sideband transition

Now let us suppose we drive a blue-sideband of the transition
∣∣4S1/2, mj = −1/2

〉
to∣∣3D5/2, mj = −5/2

〉
. The total Stark shift can be derived as previously, updating the

detunings since we are 1.6MHz bluer and also taking into account the contribution
from the closest carrier transition. The latter contributes twice, since both energy
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4.1. Working with a standing wave

Figure 4.5: Dipole and quadrupole transitions contributions to the AC Stark shift
(full: simulated field; dashed: plane wave model).

levels are involved in the measurement of the AC Stark shift. We finally get:

∆E =
h̄
4

[
Ω2

866
δ866

+
Ω2

729
δ729,+1/2

+
Ω2

729,−1/2,c

−wm
−
(
−Ω2

393
δ393

− Ω2
397

δ397
−

Ω2
729,−1/2

δ729,−1/2
−

Ω2
729,−1/2,c

−wm

)]
.

(4.8)

Here the detunings also take into account the fact that the drive is ωm bluer and
Ω729,−1/2,c refers to the carier whose sideband is driven. The main contribution, on
top of the dipole ones, comes precisely from this carrier transition since it driven
close to resonance, such that the main difference with the carier Stark shift comes

from the
Ω2

729,−1/2,c
−wm

− (−Ω2
729,−1/2,c
−wm

) = −2
Ω2

729,−1/2,c
wm

supplementary term.

4.1.6 Results

In Figure 4.6 are regrouped all the results from the calculations. On top of the al-
ready pointed out interesting features such as the π/2 phase shifts between carrier
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4.1. Working with a standing wave
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Figure 4.6: Carrier (first) and sideband second) Rabi frequencies and carrier (third)
and sideband (fourth) AC Stark shifts.

and sideband Rabi frequencies and between the different transitions, the Stark shifts
also provide important insigths. The carrier Stark shift, highly dominated by dipole
contributions, is nearly in phase for all the three transitions and oscillates with the
standing wave. The ∆mj = 0 transition Stark shift has a minimum that is negative,
the other two remain positive. Minimizing the AC Stark shift in a carrier optical tran-
sition might be relevant for high accuracy frequency measurements for optical clocks
for instance and is there provided by the standing wave pattern itself.

If we now consider the sideband Stark shifts for the three transitions, they are not
in phase anymore since the quadrupole contribution from the closest carrier is now
taken into account and thus at the origin of this dephasing. On top of that, they all
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4.2. Variations

reach zero twice per wavelength, which is again an advantage for calibration. We
can for instance drive the blue sideband

∣∣4S1/2, mj = −1/2
〉
−→
∣∣3D5/2, mj = −5/2

〉
transition at positions where there is no AC Stark shift. Regarding calibration, the
sideband Stark shift has the same order of magnitude as the sideband Rabi frequency,
it is therefore important to calibrate it with high accuracy in order to be able to
actually drive the sideband.

4.2 Variations

4.2.1 Influence of the magnetic field
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Figure 4.7: Influence of the in-plane angle θ. Maximum values of the Rabi frequencies
as a function of the angle of the magnetic field in the x− y plane, normalised by the
value of the transition with

∣∣∆mj
∣∣ = 0 at 45° (left). Zoom around the theoritical value

of θ = 45° (right), where all each transition’s values are relative to their value at
θ = 45°.

One degree of freedom of the set-up lies into the orientation of the magnetic
field. It is in the x − y trap plane with a θ = 45° angle to the x axis. However, by
varying this angle, we can engineer the maximum and minimum values of the Rabi
frequencies. For instance, let us study what happens around the center of the trap at
position x = 0, y = 0. For that I consider the fringe of each Rabi frequency transitions∣∣4S1/2, mj = −1/2

〉
to
∣∣3D5/2, mj = −5/2,−3/2 and − 1/2

〉
that is the closest to the

trap center and study how the maximum values of these fringes evolve with the
magnetic field angle θ in the trap plane. As we can see in Figure 4.7 a small difference
in the angle θ can make a great difference in the magnitude of the Rabi frequency.
As expected, transitions with the same

∣∣∆mj
∣∣ behave the same way:

∣∣∆mj
∣∣ = 2 are

decreasing with θ whereas
∣∣∆mj

∣∣ = 1 are increasing with it;
∣∣∆mj

∣∣ = 0 behaves
as a parabola of negative curvature centered at θ = 45°. Around this value, the
maximum of the transition with ∆mj = 0 is maximum with respect to θ and has thus
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4.2. Variations

a small gradient with respect to this variable. Whereas transitions with
∣∣∆mj

∣∣ = 2
and

∣∣∆mj
∣∣ = 1 have a strong gradient with respect to θ and thus can significantly

vary with it. As pictured in Figure 4.7, in between θ = 40° and θ = 50°, they
respectively vary of approximatively of 27% and 35% of their value at θ = 45°. Thus,
any stray magnetic field that would change the angle of the magnetic field would
also significantly change the Rabi frequencies of those two transitions. On top of that,
working at θ = 45° seems to be good tradeoff to have as high Rabi frequencies as
possible. And noticeably, some angle values yield same magnitude of Rabi frequency
maximum for two transitions as for instance at θ = 60° for the transitions with∣∣∆mj

∣∣ = 0 and 1. Nevertheless an error in the orientation of the magnetic field is
only expected to be a few degrees such that this should not actually happen.
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Figure 4.8: Influence of the out of trap plane angle φ. Maximum (left) and minimum
(right) values of the Rabi frequencies as a function of the angle of the magnetic field
out of the x− y plane. The maximum (resp. minimum) values are normalised with
respect to the value at φ = 0 (resp. φ = 55) of the

∣∣∆mj
∣∣ = 0 transition.

If we now do the same study but considering that the magnetic field makes an
angle φ with the x − y plane. In that case, not only the maximum values but also
the minimum values of the transitions are affected such that the contrast tends to de-
crease. Here again in Figure 4.8, transitions with same absolute ∆mj show the same
general behavior: maximum values of transitions with

∣∣∆mj
∣∣ = 2 do not vary signif-

icantly with φ - less than 10% -, whereas transitions with
∣∣∆mj

∣∣ = 1 are minimum
at φ = 0 and vary of 40% over the angle span. The transition with

∣∣∆mj
∣∣ =0 varies

also by 30% but is maximum at φ = 0. Thus all transitions have a local extremum
at φ = 0, which makes their maximum values of Rabi frequency little sensitive to an
out-of-plane stray field. Unfortunately,the minimum values of the Rabi frequencies
are dependent on φ (see Figure 4.8), except for the transitions with

∣∣∆mj
∣∣ =1 whose

minimum values remain 0, hence preserving good extinction. On the contrary, all the
other transitions have a minimum value of 0 at φ = 0 that increase symmetrically to
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Figure 4.9: Coupling as a function of the magnetic field angles θ and φ for transitions
with ∆ mj= −2 (left), ∆ mj= −1 (center) and ∆ mj= 0 (right).

φ = 0 with strong gradients that hinder perfect extinction of these Rabi frequencies.
This nice feature provided by the standing wave could then be lost, if there is any
stray field out of the trap plane.

Coupling strenghts as a function of the angles of the magnetic field

In Figure 4.9 I plotted the couplings as a function of the angles θ and φ of the mag-
netic field. Indeed, as we have seen in the previous section, the maximum possible
values of the Rabi frequencies are dependent on both angles. The coupling, defined

as g(∆mj, θ, φ) =
∣∣∣−c

(∆mj)
y,x sin(36°) + ic

(∆mj)
y,z cos(36°)

∣∣∣ where all the dependence on θ

and φ is hidden in c
(∆mj)

i,j which is rotated according to the magnetic field direction.
Here, for the three considered values of ∆mj, the orientation of the magnetic field in
the x − y plane mainly governs the the values of the couplings. Sitting at θ = 45°,
φ = 0° is a trade-off to have good couplings values in the three transitions.

4.2.2 If the laser light were an ideal plane wave

Ideally, the laser light should be the sum of two counter-propagating plane waves
and be only y-polarised. However, the finite-difference time-domain simulation of
the electric field provided by K. Mehta shows that it is not the case when the ion is
away from the trap axis y = 0. As we can see in Figure 4.6, the discrepencies with the
plane wave are particularly important away from the trap center x = 0. The real light
is indeed foccussed there and has a Gaussian shape. Thus, both the Rabi frequencies
and the Stark shift amplitudes are decreasing when the ion moves away from the
trap center. Experimentally, this is something we notice when measuring the Stark
shifts: different amplitudes of Stark shift in two measurements, which was at first a
bit puzzling, before realising that it is indeed to be expected.
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4.3. Light with orbital angular momentum

4.2.3 Defects

The standing wave is constituted by interfering light coming from two couplers. It
might happen that they are misplaced, for instance more spaced than expected. Let
us suppose the right coupler is xo farther away from the left coupler than supposed
to be. The electric field reads

#‰

E =
(

Eoeiφeikzze−ikxx + Eoeiφeikzzeikx(x+xo)
)

#‰ε

#‰

E = 2Eoeiφeikzze−ikxxo/2 cos(kxx + kxxo/2) #‰ε

There is a global phase that depends on the displacement and a dephasing in the
cosine. Other than that, nothing changes.

4.3 Light with orbital angular momentum

This paragraph aims at linking properties of the standing wave to more general prop-
erties of electric fields [30],[31].

4.3.1 Light with OAM

Photons also are particules with spin, they have a spin S = 1, and it is also possible
to associate an OAM. The latter is related to the spatial distribution of the field, not
to its polarisation. Let us consider a decomposition of the light in Laguerre-Gaussian
modes ul,p with p ∈ N the radial index, l ∈ Z the azimuthal, L|l|p generalized La-
guerre polynomial index [24]

up,l(r, φ, z) =

√
2p!

π(p + |l|)
wo

w(z)

(
r
√

2
w(z)

)|l|
exp

(
− r2

w(z)2

)
L|l|p

(
2r2

w(z)2

)
× exp

(
−ik

r2

2R(z)

)
exp(−ilφ) exp(iΨ(z)).

R(z) is the wavefront curvature, Ψ(z) the Gouy phase and w(z) the radius of the
beam. The factor exp(−i|l|φ) advances or retardes the phase by an integer multiple
of 2π for each phase φ: the wavefront has thus a helicoidal shape for l 6= 0 which
conveys a momentum. When the Rabi frequencies are derived, Wigner-3j symbols are
involved. They not only ensure and dictate that the conservation rules are observed,
but also their value gives weight to the momentum transfer.

4.3.2 The importance of strong field gradients

As we have seen, the standing wave pattern allows to drive electronic transitions
where the light intensity is zero due to the strong spatial gradients. A finite-difference
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4.4. Comparison with experimental data

time-domain simulation, done by Gillen Beck 2, of Laguerre mode 1 of a 732nm laser
that drives the 4S1/2 to 3D3/2 transition, is an illustration of it. In Figure 4.10, we
observe that the Rabi frequencies follow the beam shape pattern. Transitions with∣∣∆mj

∣∣ = 1 can hardly never be driven due to small Rabi frequencies, even in the
position of no light intensity at the center of the beam. Indeed, the beam spot is large,
≈ 10µm, thus gradients along the x axis for instance are small and cannot participate
in driving transitions.
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Figure 4.10: Left: intensity of a LG mode 1 at 732nm with waist wo =
2µm. Right: Rabi frequencies for the

∣∣4S1/2, mj = −1/2
〉

to all sublevels∣∣3D3/2, mj = −3/2,−1/2, 1/2, 3/2
〉

when driving the transitions with this electric
field.

4.4 Comparison with experimental data

In Figure 4.11, I show the Rabi frequencies and Stark shift of the carrier and sideband
transitions extracted from data taken on the 13/12/2021 by Alfredo Ricci Vasquez
and Carmelo Mordini (see first and second rows of the figure) and those from sim-
ulation (see third and fourth row of the figure). The theoritical simulation results
match the experimental data quite good.

2Ph.D. student in the TIQI group.
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Figure 4.11: Experimental results from 13.12.2021 : carrier Rabi frequencies (first row
left) and Stark shift (second row left) and sideband Rabi frequencies (first row right) and
Stark shift (second row right). Dots are data points and full line a sinusoidal fit. The
theoritical simulation results (third and fourth rows) follow the same layout.
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Chapter 5

Motional effects on the Rabi frequency

One should consider that the Rabi frequency also depends on the average vibrational
occupancy number n̄m for each motional mode m. We actually only need to take into
account motion along the axis of the trap as it is along the standing wave, which
shows strong dependency on the axial position, reason why the radial modes along
y and z have then little impact.

5.1 Temperature measurements

To deal with that, let us write the state of the ion as

|Ψ(t)〉 =
∞

∑
n=0

pn |φ(t)〉 |n〉

where |φ(t)〉 is the state of the qubit at time t and (pn)n the probability to have n
quanta of motion in the motional state. The probility P to be in the |1〉 state is then
given by

P(t) = Tr(|Ψ(t)〉 〈Ψ(t)|1〉 〈1|)

P(t) =
1
2

(
1 + ∑

n
pn cos(Ωnt)

)
(5.1)

with Ωn = Ω 〈n| cos(kx x̂) |n〉 is the Rabi frequency for each mode occupation number.
Here Ω is the carrier Rabi frequency at the position of the ion This is different from
the probability we get without considering motion

P(t) = 1
2
(1 + cos(Ωt)) . (5.2)

Supposing the distribution of the motional modes is a thermal distribution pn =
1

n̄+1 (
n̄

n̄+1 )
n [22] we can fit the Rabi flop so as to extract n̄ and Ω. What we actually is

to first measure the average occupation motional number n̄, which is proportional to
temperature, by doing sideband flopping before fitting Ω in Equation (5.1).
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5.1. Temperature measurements
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Figure 5.1: Rabi flops as a function of position with waiting time of 0ms (left) and
10ms (right).

To see the influence of the motion and temperature on the Rabi frequencies, we
perform Rabi flopping as a function of position along the x axis1. We repeat these
measurements with different values of waiting time ∆twait = 0; 1; 2; 5; 10ms after
Doppler cooling and state preparation so that the ion can heat up. Each experi-
ment consists in: preparing the qubit in |0〉 through spin-polarisation; waiting dur-
ing ∆twait; driving the transition with 729nm laser; reading out the state; repeating
this procedure 100 times to get statistics. In Figure 5.1 are presented the Rabi flops
performed for 0ms and 10ms of waiting time respectively as a function of position:
the decoherence due to heating caused by the waiting time is clearing to be seen in
the lost of constrast.

To measure the temperature for all the waiting times, we independently do Rabi
flopping on the red and blue sidebands. Knowing the expected value of n̄ for
each waiting time then allows to extract only the carrier Rabi frequencies from
the Rabi flops following Equation (5.1). Sitting at a position where the sideband
Rabi frequency is maximum, i.e. the carrier Rabi frequency is minimum, the rela-
tion Ωc = ηΩs holds. Fitting the blue and red sideband flops respectively is then
straightforward with [22]

Pbsb
n̄ (t) = s + (1− s)∑

n
(

n̄
n̄ + 1

)n cos
(

η
√

n + 1Ωct
)

;

Prsb
n̄ (t) = s + (1− s)∑

n
(

n̄
n̄ + 1

)n cos
(
η
√

nΩct
)

where theoritically s = 1/2. However, due to poor spin-polarisation, the flops tend
to an asymptotic value which is higher than 0.5 (see Figure 5.2), that is why I also let
the spin-polarisation as a free parameter s.

1Due to experimental constraints, no EIT cooling was performed during the whole experiment.
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5.2. Influence of the temperature on the Rabi frequencies

Waiting time (ms) BSB RSB
0 (7.5± 0.3) (5.9± 0.3)
1 (9.0± 0.4) (10.2± 0.5)
2 (12.8± 0.6) (12.1± 0.6)
5 (20.2± 1.1) (19.0± 1.1)
10 (33.8± 2.4) (38.5± 2.8)

Table 5.1: Summary of the extracted values of n̄ for the blue sideband (BSB) and red
sideband (RSB) for each of the waiting times.

We have a reliable estimate of Ω by fitting the Rabi flop with Equation (5.2) at
a position where the carrier Rabi frequency is maximum. We extract Ω = 0.136×
2πMHz from the data presented in Figure 5.2.

Fitting both sidebands gives us two estimates for n̄ at each waiting time, see Figure
5.2) and Table 5.1.

According to former measurements [32] done on the trap by Maciej Malinkowski
during his Ph.D. thesis, with an axial frequency of 1.53MHz, we can expect a heating
rate of roughly 2 quanta/ms. Here it is 2.7q/ms for the RSB and 3.11q/ms for the
BSB. Despite this difference, values for both the blue and red sidebands agree within
error bars. The initial value, without any waiting time, after Doppler cooling but
before EIT cooling, was measured during Maciej’s thesis to be n̄ ≈ 8 quanta (for an
axial frequency of 1.3 MHz), which does not contradict the results here presented.

5.2 Influence of the temperature on the Rabi frequencies

Using the average of these values of n̄ for each of the waiting times, I can now fit
the Rabi frequency Ω of the Rabi flops with Equation (5.1) - I call this Method 1.
Results are presented in Figure 5.3 where I plot the Rabi frequencies as a function
of position for the different waiting times. We can recognize the particular pattern
due to the standing wave. However, we notice that the ion drifts along the x axis as
function of the waiting time, with a saturation value of 0.2”µm”. Since the standing
wave is phase-stable, it is indeed the ion and the pattern that drifts. This could then
be due to the presence of stray fields. This also confirms the fact that what is named
”position (µm)” is actually only an estimate for it. To know the real position, one has
to use the standing wave pattern, since it is stable. Using its periodicity, I plot the
Rabi frequency values in the right panel with a recalibration of the distance.

As a function of the waiting time, we see that the values for the Rabi frequency
decrease. This behavior is particularly marked where the Rabi frequency is maximum
and seems also to saturate with the waiting time.

However, the extracted values obtained by this method - Method 1 - do not fit
the Rabi flops very accurately. For comparison, I extract the value of n̄ using the
already-extracted value of Ω in (5.1) - I name this Method 2 - and in a third way also
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0 5 10 15 20
Time (us)

0.0

0.2

0.5

0.8

1.0

Pr
ob

ab
ilit

y

data
fit

0 15 30 45 60
Time (us)

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

bsb fit

0.0 2.5 5.0 7.5 10.0
Waiting time (ms)

0

10

20

30

40

50

nb
ar

bsb
rsb

Figure 5.2: Results for the estimation of n̄. Top: Rabi flop data (blue dots) and fit
(orange, dashed). Middle: blue sideband flop after 10ms waiting time (blue data points)
and fit (orange). Bottom: values of n̄ given by both sideband fitting leaving spin-
polarisation as a free parameter: blue sideband; orange: red sideband; blue : dashed :
expected [32] evolution.

extract both the values of n̄ and Ω in Equation (5.1) - I name this Method 3. As we
can see in Figure 5.4 (left), the values for n̄ differ by one order of magnitude between
Method 1 and Methods 2 and 3. They nevertheless show a similar heating rate of
approximatively 3 quanta/ms.
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5.2. Influence of the temperature on the Rabi frequencies
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Figure 5.3: Left: extrated Rabi frequencies as a function of position and waiting time.
Right: same values, with a recalibration of the position.

Despite these discrepancies, the optimal parameters given by Method 3 happen
to fit decently the data. The extracted values for the Rabi frequency obtained with
this method are presented in Figure 5.4, right panel. Even if the values reach higher
values by 5− 10% than those of Method 1, they present the same behavior: decrease
of the maximum Rabi frequency with temperature and saturation.

Due to random shot to shot variation in the position, we could have expected that
at position with high Rabi frequency gradients the Rabi frequency would show a dif-
ferent behavior with temperature as compared with positions with no Rabi frequency
gradient. There is no evidence for such an effect in the data I have presented here.
Such that overall, we cannot say that there is a position-dependent temperature effect
on the Rabi frequencies, but rather only a temperature one that is global over all the
positions along the standing-wave pattern and that saturates quickly.
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Figure 5.4: Left: values extracted for n̄ with Methods 1,2 and 3. Right: values extracted
for the Rabi frequencies with Method 1 (full) and Method 3 (dashed).
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Chapter 6

Conclusion

The standing-wave pattern confers some of its properties to the ion, given the fact
that quadrupole transitions are driven by spatial gradients. The tight foccussing of
the beam as well as the phase stability ensured by the integrated photonics play
here an important role in this property transfer. It follows that Rabi frequencies and
consequently the total AC Stark shift values show oscillations in space. The values of
the Rabi frequencies periodically reaches zero along the trap axis, which means that
at those positions no transition can theoretically be driven. The orientation of the
magnetic field and the coupling properties of the light with the transitions between
|4S1/2〉 and |3D5/2〉 with

∣∣∆mj
∣∣ = 0, 1 or 2 governs the dephasing between the Rabi

frequencies of those three transitions and their amplitudes. It is then possible not
only to drive a transition with

∣∣∆mj
∣∣ = 0 at positions where theoretically a transition

with
∣∣∆mj

∣∣ = 1 cannot be driven, such that off-resonnant driving can be avoided,
but more importantly to drive a sideband transition without coupling to the carrier
one, since the carrier and sideband Rabi frequency for the same transition are out-
of-phase. Finally, the study of the influence of temperature on the Rabi frequency
shows an attenuation of their maximum value and a fast saturation of this process.

The goal is now to capitalize on this property to implement a fast two-ion Mølmer-
Sørensen gate with reduced error do to off-resonantly coupling to the carrier. One
could also think of implementing a light-shift gate, due to the fact that the AC Stark
shifts are also calculated and spatially varying. However, the dephasing one would
need to run it are not straightforwardly implementable, and the gate time would
never be as fast as the one a MS gate would give. On top of that, as already pointed
out, the set-up provides natural reduction of some intrinsic source of error of a MS
gate. First step towards the latter is the ability to load two ions in the trap and
transport them in different trapping zones.

Other exploration possibilities can be found in the study of friction generated by
the standing wave pattern, the variation of the magnetic field or the realisation of
precise Laguerre-Gaussian modes of the light.
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Appendix A

Appendix

A.1 Normalized spherical basis vectors

Given by [21], the normalized spherical basis vectors are

c(1) = − 1√
2
(1,−i, 0);

c(0) = (0, 0, 1);

c(−1) = − 1√
2
(1,−i, 0);

c(2)ij =
1√
6

 1 −i 0
−i −1 0
0 0 0

 ;

c(1)ij =
1√
6

 0 0 −1
0 0 i
−1 i 0

 ;

c(0)ij =
1
3

−1 0 0
0 −1 0
0 0 2

 ;

c(−1)
ij =

1√
6

0 0 1
0 0 i
1 i 0

 ;

c(−2)
ij =

1√
6

1 i 0
i −1 0
0 0 0

 ;
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A.2. Wigner-3j symbol and Clebsch-Gordon coefficients

A.1.1 Wigner-Eckart theorem

Let T(k) be a tensor operator of rank k. Then, for all angular momenta j and j′, there
exists a constant 〈j| |T(k)| |j′〉 such that for all m, m′ and q [33]

〈j, m| T(k)
q
∣∣j′, m′

〉
=
〈

j′m′kq
∣∣jm〉 〈j| |T(k)|

∣∣j′〉
where T(k)

q is the qth component of the tensor operator T(k). 〈j| |T(k)| |j′〉 is the reduced
matrix element and is independent of m, m′ and q.

A.2 Wigner-3j symbol and Clebsch-Gordon coefficients

Wigner-3j symbols
(

j1 j2 j3
m1 m2 m3

)
are 0 unless all the following conditions are satis-

fied [33]:

• mi ∈ [| − ji, ji|] for i = 1, 2, 3 (magnetic quantum number condition);

• m1 + m2 + m3 = 0;

• |j1 − j2| < j3 < j1 + j2 (conservation of the total angular momentum);

• j1 + j2 + j3 ∈N.

They relate to the Clebsch-Gordan coefficients with(
j1 j2 j3

m1 m2 m3

)
=

(−1)(j1−j2−m3)√
2j3 + 1

〈j1m1 j2m2|j3 −m3〉 .

And have the following orthogonality relation

∑
m1,m2

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j′3

m1 m2 m′3

)
=

1
2j3 + 1

δj3,j′3
δm3,m′3

{j1 j2 j3}.

A.3 Relations to Einstein coefficients

Einstein A coefficients describe the rate for spontaneous decay from the excited state
|e〉 to all the sublevels of the ground state |g〉 and we have for a dipole transition [21]

A(E1)
eg =

j

∑
m=−j

4cαk3
eg

3

1

∑
q=−1

∣∣∣〈e| R(1)
q |g〉

∣∣∣2.

Applying the Wigner-Eckart theorem to the matrix element,

A(E1)
eg =

j

∑
mj=−j

4cαk3
eg

3

∣∣∣〈e| |R(1)| |g〉
∣∣∣2 1

∑
q=−1

(
j 1 j′

−mj q m′j

)2
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A.4. Laguerre-Gauss decomposition and derivation of the Rabi frequency

and orthogonality relations of Wigner-3j symbol

A(E1)
eg =

4cαk3
eg

3(2j′ + 1)

∣∣∣〈e| |R(1)| |g〉
∣∣∣2.

Analogously for a quadrupole transition we get

A(E2)
eg =

4cαk5
eg

15(2j′ + 1)

∣∣∣〈e| |R(2)| |g〉
∣∣∣2.

A.4 Laguerre-Gauss decomposition and derivation of the Rabi
frequency

The motivation for this section from discussions with Chi Zhang 1, who studied the
Rabi frequencies with a plane wave decomposed in Laguerre-Gaussian modes, and
from the lecture of [34]. I studied [33] to derive the following calculations.

Let us suppose we are working close to the beam center and decompose the laser
light E over the Laguerre-Gauss modes LGp

l

E = ∑
p,l

αp,l LGp
l

where p ∈ N is the radial index and l ∈ Z the azimuthal index. l can be associated
with the OAM of light in the considered mode p, l. We want to evaluate: 〈 f | −
e #‰r

#‰

E |i〉 where | f 〉, |i〉 are the final and initial states. Let us work in the beam frame
and evaluate the electric field in the direction of propagation zb and in the plane
perdicular to it

#‰

E l,p=0,⊥ = #‰ε
Eo√

π|l|!wo

(√
2r

wo

)|l|
eilφeikz,

El,p=0,z = −i(lσ− |l|)(1− δl,0)
Eo√

π|l|!wo

(√
2

wok

)(√
2r

wo

)|l|−1

ei(l+σ)φeikz

where #‰ε is the polarisation vector, σ the polarisation, wo the beam waist. Precisely,
considering from now on p = 0, we get for the OAM l = 0 and l = 1

l=0:

#‰

E⊥ = #‰ε
Eo√
πwo

eikz ≈ #‰ε
Eo√
πwo

(1 + ikz);

Ez = 0

1Former Ph.D. student in the TIQI group.
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A.4. Laguerre-Gauss decomposition and derivation of the Rabi frequency

and the Hamiltonians
H⊥ = −e #‰r .

#  ‰

E⊥

H⊥ = e
Eo√
πwo

rσT1
σ

(
1 + ikr

√
4π

3
T1

0

)

H⊥ = e
Eo

wo
σ

√
4
3

(
rT1

σ + ik

√
2π

3
r2
(

T2
−σ + σT1

−σ

))
and Hz = 0.

Here Tn
m is the spherical harmonics tensor of order n and component m.

l=1:

#‰

E⊥ = #‰ε
Eo√
πwo

(√
2r

wo

)
eiφeikz ≈ #‰ε

Eo√
πwo

(√
2

wo

)
reiφ(1 + ikz)

Ez = −i(σ− 1)
Eo√
πwo

(√
2

wok

)
ei(1+σ)φeikz ≈ −i(σ− 1)

Eo√
πw2

o

(√
2

k

)
ei(1+σ)φ(1 + ikz)

and the Hamiltonians

if σ = 1: Hz = 0 so

H = H⊥ = −e
8
3

√
2π

Eo

w2
o

(
r2T2

2 +

√
4π

3
ikr3

(
T3

2 +
√

2T2
2

))
.

If σ = −1

H⊥ = e
8
3

√
2π

Eo

w2
o

(
r2
(

1√
3

T0
0 −

1√
2

T1
0 +

1√
6

T2
0

)
+ ik

√
4π

3
r3
(
− 1√

3
T2

0 +
1√
6

T0
0 +

1√
10

T3
0 −

1√
15

T1
0

)
(A.1)

Hz = −i2e

√
8
3

Eo

w2
o

1
k

T1
0 + e

Eo

w2
o

8
3

√
2πr2

(√
2
3

T2
0 −

1√
3

T0
0

)
.

Before adding the field from the second coupler, let us discard the terms that
will be zero when considering the matrix element with |i〉 = |1/2,−1/2〉 and | f 〉 =
|5/2, m′〉. According to the Wigner-Eckart theorem, 〈1/2, 1/2| Tk

q |5/2, m′〉 is propor-
tionnal to the Clebsch-Gordan coefficient 〈5/2, m′, kq|1/2, 1/2〉 which is proportion-

nal to the Wigner-3j symbol
(

5/2 k 1/2
m′ q −1/2

)
. For the latter not to be zero, we first
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A.4. Laguerre-Gauss decomposition and derivation of the Rabi frequency

need to have k = 2 or k = 3. Then q = 1/2−m′ depends on the transition taken into
account. Actually, T3

0 will not contribute for the three transitions considered in this
thesis such that only rank 2 tensors matter. This was expected, as the quadrupole
transition involves up to 2 OAM quanta transfer.

We now add the rotated field from the second coupler and only take into account
spherical harmonic tensors of rank 2 or 3. The rotation is performed with Euler
angles α = 0, β = 112° and γ = π. The rotation is formalized by the Wigner-D
matrix Dj

m′m(α, β, γ) = 〈jm′| R(α, β, γ) |jm〉 and dj
m′m(β) = Dj

m′m(0, β, 0). We get

l=0

H ∝ e
Eo

wo
σ

√
8π

3
ikr2[T2

−σ +
2

∑
q=−2

T2
q d(2)q−σ(β)].

l=1

For σ = 1

H ∝ −e
Eo

w2
o

σ
8
3

√
2πr2[T2

2 +
2

∑
q=−2

T2
q d(2)q2 (β)].

For σ = −1

H ∝ e
Eo

w2
o

σ
8
3

√
2πr2 3√

6
[T2

0 +
2

∑
q=−2

T2
q d(2)02 (β)].

Finally we need to rotate the Hamiltionian to align the magnetic field and the z
axis. To do so, we use the Euler angles α = arctan

(√
2tan(36°)

)
, β = arccos

(√
2

2 cos(36°)
)

and γ = arctan(1/ sin(36°)). This finally yields

l=0

H ∝ e
Eo

wo
σ

√
8π

3
ikr2

2

∑
s′=−2

T2
s′ [D

2
s′,−σ(α, β, γ)(1− d2

−σ,−σ(112))

−
2

∑
q=−2,q 6=−σ

D2
s′,q(α, β, γ)d(2)q,−σ(112)]. (A.2)

l=1

For σ = 1

H ∝ −e
Eo

w2
o

σ
8
3

√
2πr2

2

∑
s′=−2

T2
s′ [D

2
s′,2(α, β, γ)(1− d2

2,2(112))−
1

∑
q=−2

D2
s′,q(α, β, γ)d(2)q,2 (112)].
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A.5. Procedure for fitting the data

For σ = −1

H ∝ e
Eo

w2
o

σ
8
3

√
2πr2

2

∑
s′=−2

T2
s′ [D

2
s′,0(α, β, γ)(1− d2

0,0(112))

−
2

∑
q=−2,q 6=0

D2
s′,q(α, β, γ)d(2)q,0 (112)]. (A.3)

Evaluating those Hamiltonians for the transitions with
∣∣∆mj

∣∣ = 0, 1, 2 yields the
same values as the Rabi frequencies I computed with the field simulation at position
(x,y) = (0, 0) in the trap.

A.5 Procedure for fitting the data

To fit data, I have used the function curve f it from the scipy.optimize package of python
which uses the Trust Region Reflective algorithm to find the optimal parameters. This
function takes the following arguments:

• the model function to use for fitting;

• the data Y to be fitted;

• a starting point for the optimisation;

• the error ∆Y on each data point.

I iterate the optimisation by using the previous optimisation parameters until they
do not vary by more than 1% (if relevant).

The function gives the optimal parameters as well as the covariance matrix on
them.

On top of that, I am sometimes supposed to fit over an infinite sum - blue sideband
fitting for instance. However, to ease the computaional part, fitting over a sum until
n = 250 is enough since it gets all the weight of the thermal probability distribution
up to 0.1% in the worst case scenario of n̄ = 40.

A.6 Derivation of the thermal distribution Rabi flop at the
maximum of light intensity

Before taking the straightforward approach presented in Chapter 5, I had studied the
results from [35] which also studies how the motion affects the Rabi frequency of an
ion. This approach is not the most direct one for the results I have and also makes
strong hypothesis about the position of the ion in the beam. Nevertheless, as I had
struggled to derive their results, I would like to write the derivation here.
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A.6. Derivation of the thermal distribution Rabi flop at the maximum of light
intensity

Let us suppose the ion is in thermal equilibrium with an average axial occupancy
number n̄. The probability distribution of the occupation number n is given by

P(n) =
1

n̄ + 1
(

n̄
n̄ + 1

)n.

The probability Pn̄ to find the qubit in |1〉 is then a thermal average given by

Pn̄ =< sin(Ωt)2 >;

Pn̄ =
∞

∑
n=0

P(n)(
1
2
+

cos
(
Ω0t + Ω′′0 ntx2

0t
)

2
);

Pn̄ =
1
2
+

eiΩ0t

4

∞

∑
n=0

P(n)eiΩ′′0 ntx2
0t +

e−iΩ0t

4

∞

∑
n=0

P(n)e−iΩ′′0 nx2
0t;

Pn̄ =
1
2
+

eiΩ0t

4(n̄ + 1)
1

1− n̄
n̄+1 eiΩ′′0 x2

0t
+

e−iΩ0t

4(n̄ + 1)
1

1− n̄
n̄+1 e−iΩ′′0 x2

0t
;

Pn̄ =
1
2
+

eiΩ0t

4(n̄ + 1)
1

1− n̄
n̄+1 eiΩ′′0 x2

0t
+

e−iΩ0t

4(n̄ + 1)
1

1− n̄
n̄+1 e−iΩ′′0 x2

0t
;

Pn̄ =
1
2
+

eiΩ0t

4
1

1 + n̄(1− eiΩ′′0 x2
0t)

+
e−iΩ0t

4
1

1 + n̄(1− e−iΩ′′0 x2
0t)

;

Pn̄ =
1
2
+

eiΩ0t

4
1

1− in̄Ω′′0 x2
0t

+
e−iΩ0t

4
1

1 + in̄Ω′′0 x2
0t

;

and finally

Pn̄ =
1
2
+

1√
1 + n̄2Ω′′20 x4

0t2

cos(Ω0t + arctan
(
n̄Ω′′0 x2

0t
)
)

2
.
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