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Abstract

Over the last few decades trapped ions have proven to be one of the most
promising implementations of quantum information processing (QIP), as all
necessary fundamental operations have been demonstrated with sufficient
fidelity. Nevertheless, the scalability of the apparatus to a many-qubit device
still represents a major challenge, since at the moment several square metres
of optics and electronics are needed for the control of a few ions.

This thesis stands exactly in this perspective, in that it aims to the pro-
duction of high-fidelity entangling gates according to a more scalable working
principle. Indeed, in this text are presented the theoretical and experimental
efforts towards the production of transport Mølmer Sørensen gates.

On the theoretical side, the major error sources were studied both math-
ematically and computationally. This allowed the inspection of the experi-
mental requirements of such gates, thus directing the practical work.

The experimental part consisted mainly in applying a few modifications
to the existing apparatus in order to match the needs made clear by the the-
oretical one. One of them turned out to be more challenging than expected,
and is therefore described in a dedicated chapter.
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Chapter 1

Introduction

As the coherent control of very small systems was made possible by the tech-
nological improvements made over the second half of last century (among
which was the invention of lasers), the idea of exploiting the laws of quan-
tum mechanics in order to build computers with some fundamental advan-
tages over classical machines gained the interest of the scientific community.
In particular, intensive research has been motivated by the development of
algorithms that drastically reduce the scaling of the runtime on the prob-
lem size w.r.t. their classical counterparts, such as the factorisation of large
numbers [1], and by the possibility of simulating quantum systems in a more
analogous manner, which could for example result into a huge enhancement
in the optimisation of chemical processes.

Since the requirements set by the theoretical model of a quantum com-
puter [2] can in principle be fulfilled by various physical systems (among
which are superconducting qubits, quantum dots, defects in crystals, and
NMR systems), the last decades have seen a technological competition be-
tween several candidates aiming to implement such a device. Trapped ions
have proven to be one of the most promising among them, as they constitute
naturally identical and well characterised quantum bits (qubits) with partic-
ularly favourable properties: long coherence times, the possibility to reliably
address them by means of lasers for initialisation, manipulation and readout,
weak interactions with the environment, controllable qubit-qubit coupling,
and the ability to spatially locate them and move them over short distances
[3, 4].

In order for a quantum computer to be practically useful, it must be able
to work on a large number of qubits, corresponding to the regime where the
better scaling of runtime on problem size of quantum algorithms for certain
tasks would allow it to outperform a classical machine [5]. This point is
normally referred to as scalability, and represents one of the main challenges
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CHAPTER 1. INTRODUCTION 2

on the path to realising a working QIP system. Indeed, not only is the
apparatus required to control several ions currently cumbersome and hard
to scale up logistically (as it requires packing more and more optics and
electronics around a single device), but also the difficulties in maintaining
the coherent control of an ensemble of qubits increase strongly with the
size of the system due to technical reasons, such as the increased precision
requirements.

This thesis is centred on one of the proposals for improving the logistic
scalability of the trapped-ion devices: transport gates. As I will explain in
Chap. 5, these reduce the required complexity of both the optical apparatus
and the control system. One-qubit transport operations have been demon-
strated over the last decade [6, 7], thus it would now be interesting to produce
entangling gates working according to this principle, which is exactly what
is discussed in this text.

Our aim was to perform the experiment in an existing apparatus based
on a linear segmented Paul trap (that will be discussed in Chap. 2). In order
to make this possible, a few technical adaptations were needed; in particular,
we had to install a new beam path and stabilise a the amplitude of a radio-
frequency signal used to trap the ions. The latter modification turned out
to be more challenging than expected, thus I will discuss it in a dedicated
chapter (Chap. 6).



Chapter 2

The Paul Trap

In principle, atoms in general are very interesting from a QIP perspective,
since they are naturally identical and in many of them it is possible to select
a set of electronic levels which can be used to define well-behaved qubits: one
can find states with long enough decay time to perform quantum computa-
tion, and transitions which can be reliably manipulated by means of laser
or microwave pulses. Although this is true for both charged and neutral
atoms, the disadvantage of the latter comes from the difficulties in providing
them with a solid spatial confinement, and from the fact that in most cases
their electronic states only show short-range interactions. Ions, on the other
hand, can be manipulated by means of electric and magnetic fields, and the
Coulomb interaction provides a way of coupling them also when they are
several micrometers apart.

There are several schemes for trapping charged particles, the two most
commonly used being the Penning and the Paul trap. The first one is based
on a strong magnetic field in which the particles orbit – thus being effectively
trapped in two directions – while being confined by a static electric field along
the direction perpendicular to the orbit plane. The Paul trap is requires only
electric fields and allows to keep the particles in a quasi-harmonic potential
at a well-defined point in space, making it an ideal choice for laser addressing.

The aim of this chapter is to give a mathematical introduction to the
Paul trap, namely to show its equations of motion, their solution, and the
approximation we work in. This is of particular interest for this thesis, as
much of what was performed in the laboratory was directly connected to the
motion of the ions.

3



CHAPTER 2. THE PAUL TRAP 4

2.1 Trapping Potentials

The first temptation when trying to trap a charged particle in vacuum with
electric fields is to look for a static-potential configuration with a minimum
at the desired point. Unfortunately, Laplace’s equation states that it is im-
possible to create a three-dimensional minimum of the electrostatic potential
φ at a point with vanishing charge density ρ:∑

i=x,y,z

∂2
i φ(~r) =

ρ(~r)

ε0

= 0. (2.1)

Indeed, to guarantee the validity of this equation at every instant in time,
the best one can do is to create an extremum of φ (∂iφ(~r0) = 0,∀i) confining
in two directions (say, ∂2

xφ(~r0), ∂2
yφ(~r0) > 0) at the cost of getting anti-

confinement in the third dimension (∂2
zφ(~r0) < 0), which corresponds to a

so-called saddle potential.
Intuitively, it is clear that in such a configuration the particle would

“escape” along the anti-confining direction. To prevent this from happening,
one might wonder whether it is possible to periodically switch the confining
and the anti-confining directions at such a rate that the particle “does not
have time to escape” in either of them, while continuously respecting Eq. (2.1)
at every point in time. It turns out that this situation (for the case of
sinusoidal “switches”) can be formally described in terms of the Mathieu
equation [8, 9]

d2u

dτ 2
+ (a− 2q cos(2τ))u = 0 (2.2)

along each direction involved in the switch, and that there are indeed stable
solutions to this problem. In general, Eq. (2.2) is solved by functions of the
form

u(τ) = Aeiµτ
∑
r∈Z

C2re
i2rτ +Be−iµτ

∑
r∈Z

C2re
−i2rτ , (2.3)

where A and B are constants determined by the initial conditions, and C2r

and µ are functions of a and q. The stable solutions we are interested in can
be interpreted as a slow (compared to the switch rate) harmonic oscillator
with some small additional oscillations at the frequency of the switch on top
(which are called micromotion).

It is possible to choose several different configurations for the electric
potentials; the one discussed here (which is also the one employed in our
laboratory) consists of a static confinement in one direction together with
transverse counter-oscillating potential components (choosing ~r0 = ~0)

φ(~r, t) = φzdc z
2 + (−φxdc + φrf cos(ωrft))x

2 + (−φydc − φrf cos(ωrft)) y
2, (2.4)
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where φxdc, φ
y
dc, φ

z
dc > 0, and φzdc − φxdc − φydc = 0, such that Eq. (2.1) is

explicitly fulfilled at any time.
In this section the problem has been presented classically to give the

reader an intuitive picture of it. However, the quantum version of the math-
ematical treatment is conceptually more accurate and not especially more
complicated than the classical one, therefore it will be the focus of the next
sections.

2.2 Quantum Equations of Motion

The approach presented here was first proposed by Glauber [10] and follows
the explanation given in [11]. Since the potential described in Eq. (2.4) does
not contain any terms mixing x, y and z, the equations of motion for different
spatial directions can be separated. We thus focus on the solution along one
of the directions in which the oscillating potential is applied (in the direction
with static confinement we obviously have a standard quantum harmonic
oscillator). For instance, the Hamiltonian for the motion of the ion in the x
direction can be written as

Ĥx =
1

2m
p̂2
x +

m

2
Wx(t)x̂

2, (2.5)

where

Wx(t) =
ω2

rf

4
[ax + 2qx cos(ωrft)], (2.6)

ax = −4eφxdc

mω2
rf

, qx =
2eφxrf
mω2

rf

,

where e is the elementary charge, m is the mass of the ion, ωrf is the frequency
of the oscillating potential, and φxdc, φ

x
rf have been introduced in Eq. (2.4). If

we insert Eq. (2.5) into the Heisenberg equations for the operators x̂ and p̂x

dÔ

dt
=

1

i~
[Ô, Ĥ] (2.7)

and combine them, we obtain

d2x̂

dt2
+Wx(t)x̂ = 0, (2.8)

which is Eq. (2.2) with 2τ = ωrft. It is simple to verify that for two solutions
u and v of Eq. (2.8) the expression u v̇ − u̇ v is time independent

d

dt
(u v̇ − u̇ v) = 0. (2.9)
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We can now define a special solution u to Eq. (2.8) by the initial conditions

u(t = 0) = 1, u̇(t = 0) = iωx, (2.10)

where ωx = µxωrf/. This corresponds to imposing A = 1, B = 0, C2r = C−2r,
and

∑
r∈ZC2r = 1 in Eq. (2.3), i.e.

u(t) = eiµxωrf t/2
∑
s∈N

2C2s cos(sωrft) = eiµxωrf t/2Φ(t), (2.11)

where Φ(t) =
∑

s∈N 2C2s cos(sωrft) is by definition periodic with periodicity
Trf = 2π/ωrf . Given that the operator x̂(t) must be a solution of Eq. (2.8),
u(t) can be used to define the time-independent operator (where the time
independence follows from Eq. (2.9))

Ĉ(t) = i

√
m

2~ωx
[u(t) ˙̂x(t)− u̇(t)x̂(t)] (2.12)

= Ĉ(0) (2.13)

=
1√

2m~ωx
[mωxx̂(0) + ip̂(0)], (2.14)

which is equal to the annihilation operator â of a standard harmonic oscillator
with mass m and frequency ωx

Ĉ(t) = Ĉ(0) = â, (2.15)

implying the commutation relation

[Ĉ, Ĉ†] = [â, â†] = 1. (2.16)

The harmonic oscillator associated with â is usually called the reference os-
cillator and defines what is classically referred to as secular motion. The
operators x̂ and p̂x can be re-written in terms of the reference oscillator
ladder operators â, â† and of u(t)

x̂(t) =

√
~

2mωx
[u∗(t) â+ u(t) â†], (2.17)

p̂x(t) =

√
~m
2ωx

[u̇∗(t) â+ u̇(t) â†], (2.18)

where we used Eq. (2.9) together with the fact that u∗(t) is also a solution
of Eq. (2.8). This form allows us to to draw a useful analogy between our
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problem and the standard harmonic oscillator, since they share the same
algebraic properties. Indeed, we can define a basis of quasi-Fock states

Ĉ(t) |0〉 = â |0〉 = 0, (2.19)

|n〉 =
(Ĉ†(t))n√

n!
|0〉 =

(â†)n√
n!
|0〉 , (2.20)

Ĉ(t) |n〉 = â |n〉 =
√
n |n− 1〉 , (2.21)

Ĉ†(t) |n〉 = â† |n〉 =
√
n+ 1 |n+ 1〉 . (2.22)

These are eigenstates of the number operator

N̂ = Ĉ†(t)Ĉ(t) = â†â, (2.23)

but they are not eigenstates of the Hamiltonian, i.e. they cannot be inter-
preted as energy eigenstates. The intuitive explanation for this is that the
time-dependent potential periodically exchanges energy with the motion of
the ion, giving rise to the micromotion. Nevertheless, since the micromotion
is periodic, fast, and small compared to the reference oscillator, the aver-
ages of the energies over one period of modulation Trf are normally used as
approximated values for the energy levels of the quasi-Fock states.

It is now interesting to get an expression for the spatial wave functions
of the Fock states

ψn(x, t) = 〈x|n(t)〉S , (2.24)

where the subscript S indicates the expressions given in the Schrödinger
picture. This can be obtained by manipulating Eq. (2.19) and inserting
p̂x ≡ ∂x into it

0 = 〈x|S Û(t)Ĉ(t) |0〉 (2.25)

= 〈x|S Û(t)Ĉ(t)Û †(t)Û(t) |0〉 (2.26)

= 〈x|S ĈS(t) |0〉S (2.27)

=
1√

2m~ωx
〈x|S (mωxu̇(t)x̂S + iu(t)p̂x,S) |0〉S (2.28)

=
1√

2m~ωx
(mωxu̇(t)x+ iu(t)∂x) 〈x|0〉S (2.29)

=
1√

2m~ωx
(mωxu̇(t)x+ iu(t)∂x)ψ0(x, t), (2.30)

where Û(t) is the time-evolution unitary operator. Solving the resulting
differential equation one gets

ψ0(x, t) = e−i
ωx
2
t
(mωx
π~

) 1
4 1√

Φ(t)
e
−mωx

2~

(
1−i Φ̇(t)

ωxΦ(t)

)
x2

, (2.31)
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and by applying Eq. (2.20) one gets in an analogous manner

ψn(x, t) =
e−i(n+ 1

2)ωxt
√

2nn!

(mωx
π~

) 1
4 e−in arg(Φ(t))√

Φ(t)
Hn

(√
mωx

~|Φ(t)|2
x

)
e
−mωx

2~

(
1−i Φ̇(t)

ωxΦ(t)

)
x2

,

(2.32)
where Hn is the n-th Hermite polynomial. This is very similar to the wave
function of the standard harmonic oscillator, with the addition of periodic
modulations due to u(t).

2.3 Lowest-Order Approximation

In order to gain some intuition about the system described in Eq. (2.32) we
need to approximate it to the lowest order in the limit where |ax|, q2

x � 1,
and C2r = 0, ∀r > 1. In this case we can approximate Eq. (2.11) and use
Eq. (2.8) to obtain (see Sec. 2.1.1 from [9] for more mathematical details)

µx ≈
√
ax +

q2
x

2
� 1, (2.33)

ωx =
µxωrf

2
� ωrf , (2.34)

u(t) ≈ eiωxt
1 + qx

2
cos(ωrft)

1 + qx
2

. (2.35)

This leads to a normal harmonic-oscillator wave function with the addition of
small periodic modulations at the rf frequency, namely the micromotion. To
investigate the differences this makes with respect to the reference oscillator,
we can substitute Eq. (2.35) into Eq. (2.31), obtaining

ψ0(x, t) ≈ e−i
ωx
2
t
(mωx
π~

) 1
4
e−

mωx
2~ x2

√
1 + qx

2

1 + qx
2

cos(ωrft)
e
i qx

2

mωrf
2~

sin(ωrf t)
1+

qx
2 cos(ωrf t)

x2

,

(2.36)
which is the standard ground-state wave function of the reference oscillator
with a phase and amplitude modulation at frequency ωrf/(2π). This shows
that the micromotion can be treated as a coherent (quasi-classical) oscillation
on top of the secular motion. It is also worth noting that the micromotive
phase modulation is proportional to x2, consistent with its minimisation at
the node of the potential oscillation.

A tangible example of the coherent behaviour of the micromotion is the
following: in the experiments with beryllium1 ions we need to compensate

1The apparatus this thesis was performed on can carry out experiments on both beryl-
lium and calcium ions [12, 13].
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for the Doppler shift caused by the axial micromotion in order to maximise
the coupling of the laser to the ions. This can be done by modulating the
laser frequency with an EOM (electro-optical modulator) driven by a signal
which is extracted directly from the one that drives the trap electrodes and
is thus in phase with the micromotion itself.

2.4 The Pseudo-Potential Picture

The quantum treatment is the most accurate approach to Paul traps, but also
the least mentioned in the literature due to its less intuitive nature. There
are two main treatments dominating the literature, both working with classi-
cal mechanics: the first one uses the Mathieu equation and is very similar to
what is explained above. The second one – which is less rigorous, but works
fairly well and is much more intuitive – assumes that the micromotion can be
separated from the secular motion and uses the kinetic energy associated to
the micromotion as an effective secular potential. Given the spatial distribu-
tion of the rf potential, this results into a harmonic pseudo-potential which
is consistent to the outcome of the preciser treatment. One can also check
a posteriori that the separation between the micromotion and the secular
motion is justified.

Together with the “switches” picture that I pointed out in Sec. 2.1, the
pseudo-potential provides some intuition about Paul traps, which is going to
be helpful while reading the rest of this thesis.

2.5 The Shared Modes of Motion

As mentioned at the beginning of this chapter, the potential configuration
used in our experimental apparatus is given by Eq. (2.4). For experimental
reasons, it is favourable to use the so-called linear Paul trap scheme, where
the strength of the confinement is much weaker along one direction than
along the other two, giving rise to the formation of a linear chain of ions
along that special axis when two or more ions are trapped. In our case this
special direction was chosen to be the one along which we apply the static
potential, which is called by convention trap axis and along which the z axis
of our frame of reference is defined.

For the purpose of this thesis we are interested in the behaviour of two
ions of the same species in the same potential well. Since the micromotion
does not influence the properties of the corresponding reference oscillators,
but only adds a small modulation on top of them, it is sufficient to restrict
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our discussion to the zero-th order approximation of a three-dimensional har-
monic potential. Let us consider the motional Hamiltonian for two identical
ions (indexed 1 and 2) in the same three-dimensional potential well including
the kinetic, harmonic, and Coulomb terms

Ĥ =
~̂p 2

1

2m
+
~̂p 2

2

2m
+ V (~̂r1, ~̂r2), (2.37)

where

V (~̂r1, ~̂r2) = VH(~̂r1) + VH(~̂r2) + VC(~̂x1, ~̂x2) (2.38)

=
m

2

∑
i∈{x,y,z}

kir̂
2
1,i +

m

2

∑
i∈{x,y,z}

kir̂
2
2,i +

e2

4πε0

1

|~̂r1 − ~̂r2|
. (2.39)

The classical equilibrium position of the ions is on the trap axis – due to the
weaker axial confinement – and symmetric around the trap centre

~r equil.1,2 = (0, 0,±z0)T , (2.40)

where z0 is given by the classical balance between the harmonic force ~FH = ~∇VH
and the Coulomb repulsion ~FC = ~∇VC :

z0 =

(
e2

16πε0kz

) 1
3

=

(
e2

16πε0ω2
zm

) 1
3

. (2.41)

Quantitatively, z0 is on the order of a few microns and the typical size of the
trap electrodes is a few hundred microns, whereas the width of the ground-
state wave function 2~/(mωx,y,z) is on the order of nanometres in all spatial
directions. This difference in order of magnitude justifies approximating this
situation as two coupled harmonic oscillators at the classical equilibrium
positions. In this approximation, the potential does not contain any terms
mixing x, y and z anymore, thus the motion in different directions can be
treated separately. In the following we make the distinction between the
axial and the radial directions, and calculate the frequencies of the normal
modes of motion.

2.5.1 The Axial Modes

Since we are treating coupled harmonic oscillators with equal masses, the
total motional Hamiltonian is diagonalised by the usual normal modes of
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motion: the centre-of-mass (com) and the stretch mode (str), which can be
parametrised respectively as

~r (1,2)
z,com(t) = (0, 0,±z0 + z(t))T , (2.42)

~r
(1,2)
z,str (t) = (0, 0,±[z0 + z(t)])T , (2.43)

where the bracketed superscripts indicate index of the involved ion and mul-
tiple superscripts notate a case discrimination. Their frequencies can be
found from their wave numbers kz = ∂2

zV , which we obtain by inserting
Eq. (2.42) and Eq. (2.43), respectively, into the potential given in Eq. (2.39)
and differentiating twice with respect to z

ωz,com =

√
kz,com

m
=

√
1

m
∂2
zV (~r

(1)
z,com(t), ~r

(2)
z,com(t)) = ωz, (2.44)

ωz,str =

√
kz,str
m

=

√
1

m
∂2
zV (~r

(1)
z,str(t), ~r

(2)
z,str(t)) =

√
3ωz. (2.45)

2.5.2 The Radial Modes

As before, the discussion is restricted to the x mode to prevent repetition.
Analogously to the case of the axial mode, the Hamiltonian of the shared
motion is diagonalised by the centre-of-mass and the “stretch”2 mode

~r (1,2)
x,com(t) = (0, x(t),±z0)T , (2.46)

~r
(1,2)
x,str (t) = (0,±x(t),±z0)T . (2.47)

The frequencies of the modes result in

ωx,com =

√
kx,com

m
=

√
1

m
∂2
xV (~r

(1)
x,com(t), ~r

(2)
x,com(t)) = ωx, (2.48)

ωx,str =

√
kx,str
m

=

√
1

m
∂2
xV (~r

(1)
x,str(t), ~r

(2)
x,str(t)) =

√
ω2
x − ω2

z . (2.49)

It is worth noting that the stretch mode here has lower frequency than the
centre-of-mass one, in contrast to the axial modes. This can be interpreted
as a consequence of the fact that any displacement from the equilibrium
position in the radial direction will decrease the Coulomb potential energy,
which is not the case in the axial direction.

2Strictly speaking, it is not a stretch mode, as the ion chain does not get “stretched”.
It is going to be called like this anyway in analogy to the axial mode.



CHAPTER 2. THE PAUL TRAP 12

trap axis
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∼ 100 µm
trap axis

dc

dcrf

rf

shim

shim

shim

shim

Figure 2.1: Simplified schematics of the segmented Paul trap depicted in two
cut views – one coplanar (left) and one perpendicular (right) to the trap axis.
The scale and the number of the electrodes are not realistic.

It should also ne noted that for our experimental parameters the spacing
between the two radial normal modes is much smaller than in the axial case

ωz,str − ωz,com ∼ 2π × 1.5 MHz (2.50)

ωx,com − ωx,str ∼ 2π × 0.14 MHz (2.51)

This implies that, when performing experiments involving one of them, we
have to mind the off-resonant coupling to the other.

Finally, one might be bothered by the fact that the expression Eq. (2.49)
is not defined for ωx < ωz. However, this is not a problem, since we operate
the trap in the regime where ωx, ωy > ωz.

2.6 The Segmented Trap

This section discusses the specific type of trap used to carry out this thesis
work. As mentioned before, it is a linear Paul trap, i.e. a trap with static
confinement in one direction, and stronger dynamic transverse potentials, as
described by Eq. (2.4), confining the ions in a linear chain along the trap
axis.

In addition to this, a segmented architecture for the static component of
the field is used, that is a series of small dc electrodes is distributed along the
whole length of the trap instead of two larger ones at the ends (see Fig. 2.1).
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The possibility of modulating the potentials applied to the single electrodes
enables the creation of a rich variety of potential profiles along the z axis,
opening up to a wide range of experimental possibilities [13, 14], such as

• transport along the axis,

• multiple potential wells, allowing the trapping of separate ion chains,

• merging and splitting of potential wells – hence of ion chains.

The radial confinement, on the other hand, is supplied by large rf elec-
trodes generating a homogeneous potential along the whole trap length, as
illustrated in Fig. 2.1.

Further from the trap axis, there is a series of additional large dc elec-
trodes (called shim electrodes), which are used to compensate for static stray
fields in the radial direction, thus guaranteeing that the equilibrium position
of the ions actually corresponds to a minimum of the rf potential amplitude,
in order to minimise the micromotion [13].

This segmented architecture is a promising candidate for scaling up to a
large-scale quantum computer, as it can be extended with relative ease – at
least from the point of view of electronics – to a trapped-ion chip with great
local mobility of the qubits [15].



Chapter 3

Laser-Ion Interaction

In ion-trap quantum computing the electronic state of the ion (which is the
degree of freedom normally used to define the qubit) is manipulated using
lasers – or microwaves, which are not used in our apparatus. It is therefore
important to discuss the laser-ion interaction, and in particular the types of
transitions that we use for handling beryllium ions.

Before starting, it is worth clarifying a few points about the notation:
when describing a system composed of n subsystems indexed by i ∈ {1, . . . , n},
the total Hilbert space Htotal is given by the tensor product of the Hilbert
spaces Hi of its subsystems

Htotal = H1 ⊗ . . .⊗Hn. (3.1)

In the same way, an operator acting on one of its subsystems (e.g. Hi) can
be written as a tensor product of the form

Î1 ⊗ . . .⊗ Îi−1 ⊗ Ôi ⊗ Îi+1 ⊗ . . .⊗ În, (3.2)

where Îj is the identity acting on Hj. In the following we will drop all the
tensor products and the identity operators, unless specifically required.

Furthermore, the tensor product of two operators acting on different sub-
systems will not be explicitly written, thus Âi ⊗ B̂j will be written as ÂiB̂j.
This is actually consistent with the notation introduced above, given the
algebraic rules for tensor products.

3.1 Approximations

As a first step we are going to introduce the approximations that are going
to be used throughout this chapter. It will turn out that trapped ions can be
described in a special regime of quantum optics, allowing for several useful
simplifications.

14
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3.1.1 Semi-Classical Description of Light

The standard Hamiltonian describing the interaction between a light mode
defined by the ladder operators âl, â

†
l with frequency ωl and a two-level system

with energy difference ωeg between ground |g〉 and excited state |e〉 is given
by [16]

Ĥ = ~ωl
(
â†l âl +

1

2

)
+ ~

ωeg
2
σ̂z + ~

g

2
(σ̂+âl + σ̂−â

†
l ), (3.3)

where σ̂z = |e〉〈e|− |g〉〈g|, σ̂+ = |e〉〈g| = (σ̂−)†, and g is the coupling strength.
The laser light used for ion manipulation can be well modelled as a large

coherent state of radiation

|α〉 = D̂(α) |0〉 , |α| � 1, (3.4)

where D̂(α) is the displacement operator. Driving the light mode connected
to âl with a laser corresponds to applying the displacement operator to its
ground state with an adequate α. If we apply this to Eq. (3.3) and use the
fact, that

D̂(−α)âlD̂(α) = âl + α, (3.5)

we obtain an interaction term of the form

Ĥint = ~
g

2
(σ̂+âl + σ̂−â

†
l ) + ~

g

2
(ασ̂+ + α∗σ̂−), (3.6)

where the first term accounts for the photon exchange between the light mode
and the two-level system, whereas the second one regards light as a purely
classical driving field. Since α � 1, the classical term dominates the inter-
action. Intuitively, this corresponds to stating that one-photon differences in
a laser field are negligible, which is a reasonable approximation. Therefore,
in the following the laser light will be considered as a classical driving field
[17], and the interaction Hamiltonian will be re-written in the form

Ĥint = ~
Ω

2
(eiϕσ̂+ + e−iϕσ̂−), (3.7)

where Ω = g |α| is the so-called Rabi frequency, and ϕ is defined as the phase
of the driving field 1 α = |α|eiϕ [18].

1Recall the correspondence E(t) = E0e
i(ωlt+ϕ) ∝ |α|ei(ωlt+ϕ) = αeiωlt between the

coherent state dimensionless parameter α and the classical field it is associated with.
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3.1.2 The Two-Level Atom

In a first approximation, the natural frequency spectrum of the transition
between two electronic states is related by a Fourier transform to the spon-
taneous decay process associated to that transition

P (t) = P0e
−t/τ1 , (3.8)

P̃ (ω) = F [P ](ω) ∝ 1

(ω − ω0)2 + τ−2
1

, (3.9)

where ω0 and τ1 are the central frequency and the decay time of the transi-
tion, respectively. Eq. (3.9) describes a Lorentzian profile with line width Γ
inversely proportional to τ1

Γ = τ−1
1 . (3.10)

The electronic transition that is manipulated in QIP must have a long enough
excited-state lifetime τ1 to allow for a good coherent behaviour (together
with a long enough phase coherence time τ2), implying that the linewidth of
the transition between the qubit states is much smaller than the frequency
separation from all other states.

The off-resonant coupling of the lasers to undesired transitions (which
would populate states outside of the qubit manifold) is minimised by using
laser sources with a narrow enough spectrum and with a careful selection of
polarisations – since the coupling strength of light to an atomic transition
depends strongly on the light polarisation. We can thus approximate the
space spanned by the chosen qubit electronic states of the ion during coherent
manipulations as a two-level system.

In the case of beryllium ions the qubit-state manipulation is performed
by a two-photon Raman process (see Sec. 3.3). Since both of the laser beams
driving it are produced by the same source, the effective linewidth of the
laser drive (which depends on the relative phase coherence of the two beams)
is on the hertz level, despite the linewidth of the laser source itself being on
the order of 1 kHz [12].

3.1.3 The Lamb-Dicke Regime

The interaction Hamiltonian of a system composed of a two-level atom with
one harmonic-oscillator degree of freedom being driven by a laser is [11]

Ĥint =
~Ω

2

(
ei(

~kl·~̂x−ωlt−ϕ)σ̂+ +H.c.
)
, (3.11)
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|g, n− 1〉
|g, n〉

|g, n+ 1〉

|e, n− 1〉
|e, n〉

|e, n+ 1〉

Ω
Ω

Ω
√
nηxΩ

√
n+ 1ηxΩ

ωeg ∼ 2π × 950 THz

ωx ∼ 2π × 14 MHz

Figure 3.1: The level diagram of the tensor-product space of a qubit and one
harmonic oscillator in the Lamb-Dicke regime, with the carrier and first-order
sidebands, and their coupling strengths.

where we can rewrite the scalar product in the exponential as

~kl · ~̂x =
2π

λ

√
~

2mωx
cos θx(âx + â†x) (3.12)

= ηx(âx + â†x). (3.13)

We have introduced the so-called Lamb-Dicke parameter ηx, where θx is the
angle between the wavevector of the laser and the direction of the motional
mode. In our apparatus – depending on the geometry of the laser configura-
tion – the Lamb-Dicke parameters for the motional modes of beryllium can
reach ηz ∼ 0.4 and ηx,y ∼ 0.15. Given that this thesis aims to work with the
radial modes, it can be assumed that

ηx � 1, (3.14)

thus we can expand the exponential in the Hamiltonian as

Ĥint =
~Ω

2

(
ei(−ωlt−ϕ)σ̂+ +H.c.

)
(3.15)

+ i
~ηxΩ

2

(
ei(−ωlt−ϕ)âσ̂+ −H.c.

)
+ i

~ηxΩ
2

(
ei(−ωlt−ϕ)â†σ̂+ −H.c.

)
+O(η2

x)

= Ĥcarr + ĤRSB + ĤBSB +O(η2
x), (3.16)
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where the first term (carrier) drives the usual Rabi flops between the qubit
states, and the following ones (red and blue sideband, respectively) addi-
tionally imply the exchange of one quantum of motion. These can be un-
derstood as different transitions in the tensor-product space of qubit and
motional states, as represented in the level diagram 3.1. As we can see from
Eq. (3.15), the coupling strength of the sideband transitions is smaller than
the carrier by a factor of ηx, but increases with

√
n as the motion is excited.

Higher order terms can be interpreted as transitions involving the exchange
of more quanta of motion, and will be suppressed by increasing orders of ηx,
thus they can be completely neglected as long as n = 〈ψmotion| â†â |ψmotion〉 is
small compared to η−2

x .
Since the transitions and lasers we work with have much smaller linewidth

than ωx, the system can be assumed to be in so-called sideband-resolved
regime, where one can select exactly which transition to drive with small
effect on the others, as formalised in 3.1.4.

As a last remark, it is worth mentioning that ηx depends strongly on the
angle between the motional mode and the wavevector of the laser. This can
be used to select to what mode of motion we want to couple the light to more
strongly by means of the laser geometry, as we will discuss in more detail in
Sec. 3.3.

3.1.4 The Rotating-Wave Approximation

Let us consider again a system composed of a qubit and a harmonic oscillator
being driven by a laser, assuming it to be in the sideband-resolved regime
and in the first-order Lamb-Dicke approximation, and that Ω � ωx. The
Hamiltonian – in the interaction picture with respect to Ĥ0 = Ĥqubit+Ĥmotion

– is given by

ĤI '
~Ω

2

(
ei[(ωeg−ωl)t−ϕ]σ̂+ +H.c.

)
(3.17)

+ i
~ηxΩ

2

(
ei[(ωeg−ωx−ωl)t−ϕ]âσ̂+ −H.c.

)
+ i

~ηxΩ
2

(
ei[(ωeg+ωx−ωl)t−ϕ]â†σ̂+ −H.c.

)
.

It can be seen that the time dependence of the terms depends on the laser
frequency, which is an experimental parameter that we can precisely and
freely tune. If we set ωl near resonance with one of the transitions, we
obtain one slowly-varying term in the Hamiltonian, whereas the others will
oscillate at a frequency on the order of ωx. In our limit it can be shown
that the contribution to the time evolution from those fast-oscillating terms
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is suppressed by

Ûoff resonant ∝
Ω

ωx
� 1, (3.18)

thus it is possible to neglect them and focus on the resonant transition. What
is presented here is a very specific example, but this approximation can be
applied to any system having sufficiently narrow transitions and detunings
that are much larger than the coupling strength.

3.1.5 The Micromotion Sidebands

In 3.1.3 we assumed that the motion was given by a standard harmonic
oscillator. However, as we have seen in chapter 2, this is only a zeroth-order
approximation. To study the effect of the dynamic nature of the Paul trap
without excessive complications [11], we insert Eq. (2.17) and Eq. (2.11) into
the interaction Hamiltonian (in the interaction picture) for the laser-driven
two-level ion, and expand the exponential as done in Sec. 3.1.3

ĤI =
~Ω

2

(
ei(klx̂(t)−ωlt−ϕ)σ̂+ +H.c.

)
(3.19)

=
~Ω

2

(
ei[ηx(u∗(t)âx+u(t)â†)−ωlt−ϕ]σ̂+ +H.c.

)
(3.20)

' ei[(ωeg−ωl)t−ϕ]
∑
n∈N

(iηx)
n

n!

(
e−iωxt

∑
r∈Z

C∗2re
−irωrf t â+H.c.

)n

. (3.21)

As in Sec. 3.1.4, the resonant terms of this sum can be selected varying
laser tuning, in the rotating-wave approximation. It can be seen from this
expression that there are additional resonances spaced by multiples of the
rf frequency ωrf , which we are going to call micromotion sidebands. In our
experiment these are normally far detuned from the drive frequency – since
ωx ∼ 2π × 14 MHz and ωrf ∼ 2π × 114 MHz – and can thus be neglected.

3.2 The Beryllium Ion

The aim of this section is to give the reader a brief introduction to the
ion species that was selected for the purpose of this thesis. More complete
information about this topic can be found in [12, ?].

In our apparatus we can perform experiments with both beryllium (9Be+)
and calcium (40Ca+) ions. For the experiment at which this thesis aims we
decided to use beryllium, mainly because it has longer coherence time than
the other species.
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Figure 3.2: Relevant electronic levels and transitions of beryllium (9Be+).
The red lines represent lasers which are combined to drive the Raman tran-
sitions, indicated by the dashed blue lines (FDQ, FIQ, FIS). The green
arrows correspond to lasers that excite short-lived states, which decay to∣∣S1/2, F = 2,mf = 2

〉
in nanoseconds (for the purpose of detection, cooling,

or re-pumping). All lasers have a wavelength of 313 nm, with differences
which are very small compared to the total frequency.
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At the beginning of every experimental sequence the ion is Doppler cooled
to average populations of the motional modes given by 〈n̂z〉 ∼ 2 and 〈n̂x,y〉 ∼ 0.4,
and its electronic state is initialised to

∣∣S1/2, F = 2,mF = 2
〉

by optically
pumping. It is also possible to perform sideband cooling – which reduces 〈n〉
to approximately 0.03 – but this is only done when the requirements on the
ion temperature are particularly stringent, as it requires carefully calibrating
several experimental parameters (among which are the motional frequencies)
and increases the duration of each experiment.

As sketched in figure 3.2, the qubit is encoded in two states of the hyper-
fine split ground state. In fact, there are two pairs of states that can be used
to this end. The first one is called the field-dependent qubit (FDQ) and it is
the most straight-forward choice, as it involves the state to which the ion is
initialised. Unfortunately, its frequency varies strongly with magnetic-field
fluctuations and therefore it has a limited coherence time (τ2 ∼ 0.5 ms). The
second possibility is the so-called field-independent qubit (FIQ) and, as the
name suggests, it preserves its frequency under small magnetic-field fluctua-
tions, allowing it to stay phase-coherent for τ2 ∼ 3.8 s. This is due to the fact
that the two states involved in the transition show Zeeman shifts with equal
sign and magnitude around B ∼ 119 Gauss. The main drawback of the FIQ
is that it needs a resonant π pulse on the FDQ both during initialisation and
before detection, therefore its contrast depends strongly on the calibration
of the FDQ.

The detection of the beryllium internal state is carried out using standard
state-selective fluorescence, i.e. the ion is illuminated with a laser resonant
with a dipole-allowed transition involving only the state

∣∣S1/2, 2, 2
〉
, in the

S1/2 manifold. This repeatedly drives a fast absorption-and-emission pro-
cess exclusively if the qubit is in that state. Thus, fluorescence is observed
depending on the internal state of the ion, effectively measuring the qubit.
The same laser with an additional red detuning is used for the initial Doppler
cooling and – together with the repump laser – for initialising the FDQ bright
state

∣∣S1/2, 2, 2
〉
.

The initialisation and detection of the FIQ require several additional
steps, since it cannot be directly initialised nor measured like the FDQ.
An experimental sequence includes the initialisation via a FDQ π pulse, the
qubit manipulation, an additional FDQ π pulse, and detection. The second
FDQ π pulse has the effect of transferring the population from the state∣∣S1/2, 1, 1

〉
to the bright state, effectively enabling the detection of the FIQ

state by indirect selective fluorescence.
Since the state

∣∣P3/2, 3, 3
〉

is tens of MHz broad, the detection beam off-
resonantly excites a small fraction of the population of the FIQ dark state∣∣S1/2, 2, 0

〉
(which is only 2π× 200 MHz away from the bright state) leading
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to so-called dark counts, therefore before applying the final FDQ π pulse and
detecting we usually drive a π pulse on the FIS transition to shelve the FIQ
dark state into

∣∣S1/2, 1,−1
〉
, which is further detuned from the bright state.

In our apparatus the hyperfine qubit transitions are manipulated using
Raman transitions – which will be explained in Sec. 3.3. Due to this, all
lasers we use for beryllium except the ionising one have wavelength around
313 nm, which is generated starting from laser sources in the infrared range
(with wavelengths 1050 nm and 1551 nm), which are frequency mixed to
obtain 626 nm light, that is finally frequency doubled. With all transitions
almost at the same wavelength, the optical setup is shared by all the beams
before the individual frequencies are generated in in several separate cavities
– e.g. the Raman and the repump lasers use the same infrared sources and
initial stage of frequency mixing. The individual timing and frequency fine
tunings are controlled using acousto-optical modulators (AOMs).

3.3 The Raman Transitions

As anticipated in Sec. 3.2, the hyperfine-split levels of the beryllium ground
state can be coherently coupled to each other via the following mechanism:
two states |g〉 and |e〉 are coupled to a third level |f〉 via dipole-allowed
transitions, both with an equal detuning (in the case of resonant drive) on
the order of 2π× 230 GHz, as sketched in Fig. 3.3 and Fig. 3.2. This results
in driving the transition between |g〉 and |e〉 in a two-photon process without
populating the third level. Although this looks like an additional technical
difficulty – due to the use of two distinct laser frequencies – the hyperfine-
split levels are close enough for a single laser modulated by only two different
double-pass AOMs to be sufficient.

In the following a short mathematical treatment of Raman transitions
is given, which proceeds differently from the derivations that I could find
in the literature, but yields equivalent results. For simplicity the motion
will be excluded from our treatment. As the central derivation is done, it
will be straightforward to recover it in analogy to the standard dipole and
quadrupole transitions.

Let us consider a so-called Λ system (see Fig. 3.3), i.e. a level structure
consisting of two states |g〉 , |e〉 both laser-coupled to a third higher-energetic
level |f〉 with coupling strengths Ωg,Ωe (given by the respective laser inten-

sities and dipole matrix elements, e.g. Ωg ∝ Ig 〈f | d̂ |g〉) and equal detuning
∆. Let us assume that Ωg,Ωe � ∆ and ωeg � ∆� ωfg, ωfe.

The Hamiltonian for this system can be written in the interaction picture
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Figure 3.3: Level structure of the states involved in the Raman transition.

as

ĤI =
~Ωg

2

(
ei∆t |f〉〈g|+H.c.

)
+

~Ωe

2

(
ei∆t |f〉〈e|+H.c.

)
, (3.22)

which leads to a time evolution operator ÛI (interaction picture) that can be
calculated with the Magnus expansion [19]

ÛI(t) = e
∑
n∈N M̂n(t), (3.23)

where

M̂1(t) = − i
~

∫ t

0

dt1Ĥ(t1), (3.24)

M̂2(t) = − 1

2!~2

∫ t

0

dt1

∫ t1

0

dt2[Ĥ(t1), Ĥ(t2)], (3.25)

M̂3(t) = − i

3!~3

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3([Ĥ(t1), [Ĥ(t2), Ĥ(t3)]] (3.26)

+ [Ĥ(t3), [Ĥ(t2), Ĥ(t1)]]),
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and so forth. By evaluating these expressions one obtains

M̂1(t) =
1

2∆
ei∆t(Ωg |f〉〈g|+ Ωe |f〉〈e|) +H.c., (3.27)

M̂2(t) = − i

4∆

(
t− sin(∆t)

∆

)[
Ω2
g(|f〉〈f | − |g〉〈g|) (3.28)

+ Ω2
e(|f〉〈f | − |e〉〈e|) + ΩgΩe(|g〉〈e|+ |e〉〈g|)

]
,

' − i

4∆
t
[
Ω2
g(|f〉〈f | − |g〉〈g|) + Ω2

e(|f〉〈f | − |e〉〈e|) (3.29)

+ ΩgΩe(|g〉〈e|+ |e〉〈g|)
]
,

M̂n = 0, ∀n > 2. (3.30)

Since Ωg,Ωe � ∆, the term M̂1 only represents a very fast oscillation with
minuscule amplitude – corresponding to the far-off-resonant excitation of |f〉
– and can therefore be neglected. This approximation is called adiabatic
elimination of |f〉.

Regarding M̂2, its time dependence contains two contributions: one grows
linearly with time and the other is a very fast oscillation with small ampli-
tude, which can be neglected analogously to M̂1. The remaining expression
Eq. (3.29) can be split into two parts with different effects. The first two
terms effectively shift the energy levels of |g〉, |e〉, and |f〉 (this can be easily
understood by transforming to Schrödinger picture) as a consequence of the
off-resonant couplings, resulting into the so-called AC Stark shift

ω̃eg = ωeg +
Ω2
g − Ω2

e

4∆
. (3.31)

The third term drives Rabi flops between |g〉 and |e〉 with an effective Rabi
frequency

Ω =
ΩgΩe

4∆
. (3.32)

To summarise, this results in a means to coherently drive the transition
between these two states with a two-photon process mediated by an off-
resonant state which we can adiabatically eliminate. Note that the approach
presented here is based on a simplistic model, which describes the Raman
transition adequately, but is insufficient to completely characterise the AC
Stark shift. Indeed, since ωeg � ∆, both |g〉 and |e〉 are in fact shifted by
both lasers, whereas we assumed each laser to couple to only one of the states.
Furthermore, in beryllium there are also other levels in the P1/2 manifold (to
which the state |f〉 belongs) contributing to the total AC Stark shift [20].

Raman transitions formally behave the same as standard dipole or quadrupole
ones, but some additional care must be taken when trying to add a detuning



CHAPTER 3. LASER-ION INTERACTION 25

trap axis

co
com

new

co
sw

new

co
sw

co
com

90
sw

Figure 3.4: Possible laser geometries at our disposal in the laboratory.

to the transition frequency, e.g. in order to drive a motional sideband. In-
deed, by looking at the level diagram 3.3, one can see that red-detuning the
effectively driven transition requires us to blue-detune the lowest-frequency
laser and to leave the other at the same frequency, and vice versa for the blue
detuning. This is a consequence of the fact that the frequency of the driven
transition is given by the difference between the two drive frequencies (due
to energy conservation).

If we were to take coupling to the ion motion into account (which is not
done explicitly here), we would find that the effective wavevector associated
with the Raman transition is given by the difference between the wavevectors
of the two drive lasers

~k = ~kg − ~ke, (3.33)

consistent with momentum conservation. This can be useful, as it allows one
to select which modes of motion the lasers couple to simply by changing the
laser geometry (as mentioned in section 3.1.3). Indeed, in the laboratory we
can choose among the following configurations (see figure 3.3):

• co-co: co com + co sw,

• co-co new: co com new + co sw new,

• co-90: co com + 90 sw,

• co-90 new: co com new + 90 sw.

Given that the frequency of the lasers is on the order of 950 THz and the
difference between the two beams is around 1 GHz, it is clear that the first
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two configurations lead to a negligible coupling to the motion, since |~kco-co| =
|~kg| − |~ke| � |~kg|, |~ke|, whereas the others imply |~kco-90| = (|~kg| + |~ke|)/

√
2.

The difference between the two co-90 configurations is the direction of ~k: in
co-90 it is nearly perfectly axial, and in co-90 new it is purely radial (both

with an angular deviation on the order of (|~kg| − |~ke|)/(|~kg| + |~ke|) ∼ 10−6)
thus coupling exclusively to the axial and to the radial modes, respectively.
Obviously, the last point is only valid if we assume perfect alignment of the
beams to the trap, which is unrealistic. In the laboratory the undesired
coupling to the orthogonal modes is dominated by the imperfections in the
beam alignment, but its effect is usually suppressed by the fact that they are
off-resonant from the one we want to drive.

On the optical table the distribution of light among the beams works
as follows [12, 13]: after producing 313 nm light as mentioned in Sec. 3.2,
two polarising beam splitters (PBS) distribute it between the co com, co sw,
and 90 sw beam paths, where the frequencies and timings of the beams are
controlled using AOMs. Finally, the lasers are coupled into the trap using
optical fibres and mirrors.

The experiment discussed in this thesis is the first that operates with the
radial modes on this setup, therefore we had to add the optics required for
the new beams. The most straightforward way was deflecting the light going
to the co-co into another fibre going to the other side of the trap, as it allows
the use of the existing AOMs and control system without any modifications.
In order to be able to switch between the old and the new configurations, the
deflection is carried out using a mirror placed on a magnetic mount, which
can be inserted and removed by hand.

As a final remark about Raman transitions, it is worth mentioning an
effect that results from the treatment of the motion, which does not occur
in dipole and quadrupole transitions. Depending on the laser geometry, it is
possible to set the frequency difference between the drive lasers to match the
frequency of one of the motional modes to which they can couple, therefore
driving exclusively the motion without involving the internal state of the
ions. This can be used, for example, to realise the so-called phase gate, as
shown in [6].

3.4 The Final Hamiltonian

The main results of this chapter are summarised by the well-known Hamil-
tonian for the interaction between a semi-classical laser and a two-level ion
trapped in a three-dimensional harmonic potential in the first-order Lamb-
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Dicke approximation

ĤI '
~Ω

2

(
ei[(ωeg−ωl)t+ϕ]σ̂+ +H.c.

)
(3.34)

+
∑

q=x,y,z

i
~ηqΩ

2

(
ei[(ωeg−ωq−ωl)t+ϕ]σ̂+âq −H.c.

)
+
∑

q=x,y,z

i
~ηqΩ

2

(
ei[(ωeg+ωq−ωl)t+ϕ]σ̂+â

†
q −H.c.

)
= Ĥcarr +

∑
q=x,y,z

Ĥ
(q)
RSB +

∑
q=x,y,z

Ĥ
(q)
BSB, (3.35)

which can potentially be further simplified by applying the rotating-wave
approximation as soon as the laser frequency scale is known. Extending this
to many ions and lasers is straightforward, and will be the starting point for
the mathematical treatment of the entangling gate we aim to carry out – the
Mølmer Sørensen gate.



Chapter 4

The Mølmer Sørensen Gate

In the last twenty years the Mølmer Sørensen (MS) gate has become the
most popular type of entangling gate in trapped ions, because of its robust-
ness and relative experimental simplicity [21, 22, ?, 23, 24]. First of all, its
effect is independent of the motional state of the ions (in the Lamb-Dicke
approximation), allowing one to reach high fidelity with imperfect cooling
[25, 26, 27]. Also, it does not require single-ion addressing with the lasers,
which is challenging on a practical level; the addressing beams are difficult
to localise on a single qubit without crosstalk.1.

In this chapter, I will start with a few general considerations about entan-
gling gates in trapped ions, then briefly summarise the mathematics for the
MS gate, and finally discuss the experimental limitations and error sources.

4.1 Entangling Gates in Trapped Ions

In general, an entangling gate on n qubits is a unitary acting on the n-qubit
Hilbert space Û ∈ H⊗nqubit, which is able to map separable states to entangled
states and vice versa. From a physical point of view, this is a consequence of
some separable states not being eigenstates of the Hamiltonian describing the
gate, which implies that the qubit states interact with each other. Therefore,
in order to produce such gates one needs to implement a controlled interaction
between the physical qubit degrees of freedom.

In trapped ions this is not trivial, as one of the reasons they make good
qubits is that their internal state interacts weakly with everything apart from
electromagnetic radiation – in contrast to several other QIP implementations
(e.g. nuclear magnetic resonance systems), where one of the main efforts

1This advantage of not needing single-ion addressing is however lost as soon as such a
gate is applied to two ions out of a larger chain.

28
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is rather to minimise the unavoidable interactions. Unfortunately, coherent
electromagnetic coupling (via single-photon exchange) is not a mechanism we
can exploit in trapped ions, since it is slow compared to laser manipulations,
and it would require embedding the ions in a high-finesse cavity, which would
imply additional challenges.

However, by examining the final Hamiltonian Eq. (3.34), we see that
the entanglement between the internal and motional state of the ion can be
engineered by driving the motional sidebands. This is interesting, because
the motion of n ions in the same harmonic well is coupled by their Coulomb
repulsion (as explained in section 2.5), therefore it can bridge the interaction
between the qubits. This approach is efficient and very well controllable, as
the interaction between the internal and motional state relies entirely on the
laser drive, which we control directly.

Formally, over one gate time we are going to entangle the two-qubit in-
ternal state to one of the shared states of motion, let the system evolve, and
separate them in such a way that the final state is going to be the tensor
product of a two-qubit entangled state and the initial motional state∣∣ψ0

1

〉
1
⊗
∣∣ψ0

2

〉
2
⊗
∣∣ψ0

m

〉
mot
−→ |ψ(t)〉ent

1,2,mot −→ |ψfinal〉
ent
1,2 ⊗

∣∣ψ0
m

〉
mot

, (4.1)

where the superscript ent labels entangled states and the subscripts 1, 2, and
mot indicate the components of the Hilbert space relative to the first and
the second qubit state and the motional degree of freedom, respectively.

4.2 State-Dependent Force

Before starting the complete treatment of the MS gate, it is worth considering
a simpler example [28], which is useful to obtain some intuition about the
central topic of this chapter. Let us consider applying a laser field composed
of an equal superposition of the first red and blue motional sidebands to
a single ion, assuming both laser contributions to have phase ϕ = −π/2.
From Eq. (3.34) it follows that the Hamiltonian in the interaction picture,
after applying the first-order Lamb-Dicke approximation and rotating-wave
approximations is given by

ĤI =
~ηxΩ

2
(âx + â†x)σ̂x, (4.2)

where ηx is the Lamb-Dicke parameter, Ω the Rabi frequency, â and â† the
ladder operators of the x mode of motion (which we assume to be the only
one resonant with the laser), and σ̂x the Pauli x operator acting on the qubit.
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This leads to the following unitary evolution

ÛI(t) = D̂
(
−iηxΩt

2
σ̂x

)
(4.3)

= D̂
(
−iηxΩt

2

)
|+〉〈+|+ D̂

(
i
ηxΩt

2

)
|−〉〈−| , (4.4)

where D̂ is the coherent displacement operator and |±〉 = (|0〉 ± |1〉)/
√

2.
For an initial state |0〉qubit |0〉motion = (|+〉 + |−〉) |0〉 /

√
2, this gives rise to

the following time evolution

|ψ(t)〉 =
|+〉

∣∣−iηxΩt
2

〉
+ |−〉

∣∣iηxΩt
2

〉
√

2
. (4.5)

In the motional phase space this corresponds to splitting the ground-state
wavepacket into two coherent components (one related to |+〉 and one to |−〉)
and displacing them in opposite directions, generating a so-called Schrödinger’s
cat state of qubit and motion. This mechanism is exploited, for example, in
the creation of grid states [29].

If a symmetric detuning to the laser components (i.e. detuning the blue
sideband by +δ and the red by−δ) was added, it would result in an additional
time dependence in the Hamiltonian Eq. (4.2)

ĤI = i~ηxΩ(eiδtâx − e−iδtâ†x)σ̂x, (4.6)

obtaining the time evolution (up to a global phase)

ÛI(t) = D̂
(
ηxΩ

δ
[e−iδt − 1]

)
|+〉〈+|+ D̂

(
ηxΩ

δ
[e−iδt − 1]

)
|−〉〈−| , (4.7)

which can be interpreted in motional phase space as the same cat components
as above making circular loops in opposite directions.

4.3 Mathematics of the Mølmer Sørensen Gate

This section derives the time evolution following from the Mølmer Sørensen
Hamiltonian, defining the gate based on that result, and shows a simple
special case in order to develop some intuition about it.

4.3.1 General Time Evolution

The idea behind the MS gate [25, 27] is similar to the one presented in
Sec. 4.2, however with two qubits: we trap two ions in the same potential well
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and drive them with a laser containing equal contributions of two frequencies,
symmetrically detuned by ±δ with respect to the first red and blue sidebands
(relative to one of the shared modes of motion), with |δ| � ωmotion and
|δ| � |ωstr − ωcom|. The Hamiltonian for this situation – always in the
interaction picture and with the same set of approximations as in Sec. 4.2 –
is then

ĤMS(t) =
~ηΩ(t)

2

(
eiδ(t)tâ+ e−iδ(t)tâ†

)
Ŝϕ1,ϕ2 , (4.8)

Ŝϕ1,ϕ2 = σ̂(1)
ϕ1

+ σ̂(2)
ϕ2
, (4.9)

σ̂(i)
ϕ = eiϕσ̂

(i)
+ + e−iϕσ̂

(i)
− , (4.10)

where â, â†, η are related to the selected shared mode of motion, ϕ1 and ϕ2

are the respective relative phases of the laser to the qubits (which are labelled
as 1 and 2), and the superscript (i) indicates on which qubit the operator

σ̂
(i)
ϕ acts. With respect to Eq. (3.34), the phases have been redefined as
ϕi → ϕi − π/2 for convenience. Note that the coupling strength and the
detuning can be time-dependent.

The time evolution of this system can be calculated with the Magnus
expansion (as in Sec. 3.3). The mathematics for evaluating the terms in the
expansion is straightforward, and leads to

M̂1 = (α(t)â† − α(t)∗â)Ŝϕ1,ϕ2 , (4.11)

M̂2 = −iΦ(t)Ŝ2
ϕ1,ϕ2

, (4.12)

M̂n = 0, ∀n > 2, (4.13)

where

α(t) = −iη
2

∫ t

0

dt1Ω(t1)e−iδ(t1)t1 , (4.14)

Φ(t) =
η2

4

∫ t

0

dt1

∫ t1

0

dt2Ω(t1)Ω(t2) sin
(
δ(t1)t1 − δ(t2)t2

)
∈ R, (4.15)

and therefore
ÛMS(t) = D̂

(
α(t)Ŝϕ1,ϕ2

)
e−iΦ(t)Ŝ2

ϕ1,ϕ2 , (4.16)

where we could separate the exponential because M̂1 and M̂2 commute. We
obtained two distinct contributions, which can be interpreted as a state-
dependent coherent drive of the motion (as in Sec. 4.2) and a state-dependent
phase accumulation respectively. It is simple to show that Φ(t) is propor-
tional to the area in phase space included by the trajectory of α(t) [23]

Φ(t) = − Im

{∫ t

0

dα(t′)α(t′)∗
}
, (4.17)
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which is normally referred to as a geometric phase.
To understand the action of this time evolution on the two-qubit state,

we consider the two-qubit eigenstates of the Hamiltonian, which are given by
tensor products of the eigenstates of σ̂ϕ

|±ϕ〉 =
|0〉 ± eiϕ |1〉√

2
(4.18)

σ̂ϕ |±ϕ〉 = ± |±ϕ〉 . (4.19)

Given that Ŝ2
ϕ1,ϕ2

= 2(Î+ σ̂
(1)
ϕ1 σ̂

(2)
ϕ2 ), if we apply Eq. (4.16) to a general initial

state for the MS gate (i.e. the motion is initially disentangled from the
two-qubit state)

|ψ0〉 =
a1

∣∣∣+(1)
ϕ1 +

(2)
ϕ2

〉
+ a2

∣∣∣+(1)
ϕ1−

(2)
ϕ2

〉
+ a3

∣∣∣−(1)
ϕ1 +

(2)
ϕ2

〉
+ a4

∣∣∣−(1)
ϕ1−

(2)
ϕ2

〉
2

|α0〉 ,
(4.20)

we obtain

ÛMS(t) |ψ0〉 =
a1e
−i4Φ(t)

2

∣∣+(1)
ϕ1

+(2)
ϕ2

〉
|α0 + 2α(t)〉 (4.21)

+
a2

2

∣∣+(1)
ϕ1
−(2)
ϕ2

〉
|α0〉

+
a3

2

∣∣−(1)
ϕ1

+(2)
ϕ2

〉
|α0〉

+
a4e
−i4Φ(t)

2

∣∣−(1)
ϕ1
−(2)
ϕ2

〉
|α0 − 2α(t)〉 ,

which describes a trajectory in phase space and the corresponding geometric-
phase accumulation conditional on the two-qubit state.

4.3.2 The Gate Time

From Eq. (4.21) it is clear that during most of the time evolution the motional
state is entangled with the two-qubit state, which is not desirable for our
quantum gate. Therefore, δ(t) and Ω(t) should be set so that at some point
tg in time (which is called gate time) α(t) vanishes. When this is valid, we
can write the effect of Eq. (4.16) as a gate acting on the two-qubit Hilbert
space

ÛMS(tg) = Û2 qubit ⊗ Îmotion. (4.22)

As an example, one can calculate the effect this will have on the initial two-
qubit state |ψ0〉 = |00〉 |α0〉

ÛMS(tg) |ψ0〉 =
1

2

[(
e−i4Φ(tg) + 1

)
|00〉+ ei(ϕ1+ϕ2)

(
e−i4Φ(tg) − 1

)
|11〉

]
|α0〉 ,
(4.23)
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which is a maximally entangled state of the two qubits for Φ(tg) = π/8 +
nπ/4, ∀n ∈ Z, and is a separable state of qubits and motion.

This discussion also shows one of the main advantages of the MS gate over
alternate techniques: the action of ÛMS(tg) on the qubits is independent of
α0, which means that the gate can operate on “hot” ions – as long as their
state of motion does not cause any of our approximations to break down.

4.3.3 Gate Implementation with a Square Pulse

It is now interesting to evaluate α(t) and Φ(t) explicitly for the simplest
possible case, namely δ,Ω ≡ const. This is equivalent to a square pulse,
which is a good approximation for the standard pulse shaping we use in
beryllium experiments2 – not at all for transport gates, though, as will be
discussed in Chap. 5. Calculating Eq. (4.14) and Eq. (4.15) for this case is
straightforward and leads to

α(t) =
ηΩ

2δ

(
e−iδt − 1

)
, (4.24)

Φ(t) =
η2Ω2

4δ

(
t− sin(δt)

δ

)
. (4.25)

Given the condition α(tg) = 0, the gate time can be set to tg = 2πn/δ, ∀n ∈
Z, implying

Φ(tg) =
η2Ω2

4δ
tg =

πη2Ω2

2δ2
n, n ∈ Z, (4.26)

which can also be used to set the experimental parameters based on the
desired effective action of the gate.

4.4 Error Sources and Experimental Issues

As shown above, MS gates can significantly reduce the experimental difficul-
ties with respect to many other entangling schemes for trapped ions, most
importantly enabling the production of high-fidelity gates with imperfect
cooling and without requiring single-ion laser addressing. However, for the
physical realisation it is important to investigate the effect of other error
sources, in order to direct the focus of our experimental efforts.

2In the laboratory we use square pulses for all single-ion gates and beryllium experi-
ments. Since calcium has smaller Lamb-Dicke parameter and motional frequencies than
beryllium, multi-qubit gates with calcium and mixed species require some pulse shaping
to minimise the effect of the off-resonant coupling to the carrier.
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Figure 4.1: Comparison between the simulated time evolution of the two-
qubit populations during an ideal square-pulse MS gate (left) and the same
with the off-resonant excitation of the stretch mode (right). All the simula-
tions in this thesis have been performed with QuTiP [31].

The effects presented in this section can be analysed in the simple case of
the square pulse, as they are not determined directly by the time dependence
of Ω and δ. Other experimental issues specific to this time dependence will
be discussed in Chap. 5. A more extensive discussion about the effect of
various noise sources on entangling gates in trapped ions can be found in
[30].

4.4.1 Off-Resonant Couplings

As mentioned before, we usually work in the rotating-wave approximation,
which means that we neglect the off-resonant terms. However, some care
must be taken when defining the range of validity of such an approximation,
because in the experiment at which this thesis aims, not all transitions are
sufficiently far detuned. Indeed, a peculiarity of the radial modes of motion
is that the frequency difference between the centre-of-mass and the stretch
mode is not as large as for the axial modes – as shown in Sec. 2.5.2.

More quantitatively – given that with beryllium in our apparatus the
frequencies are typically ωx ∼ 2π × 15 MHz, ωy ∼ 2π × 13 MHz, and ωz ∼
2π × 2 MHz – when working on the x mode it is valid that the carrier, the
axial sidebands, and the y sidebands are far off resonance, but from Eq. (2.47)
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Figure 4.2: Simulated results of the proposed correction for the off-resonant
coupling to the stretch mode. The image on the left shows the correct be-
haviour of the populations at the gate time and the increased sensitivity to
timing errors. As can be seen in the image on the right, the motion of both
modes gets perfectly disentangled from the qubits at the gate time.

it turns out that ωx,com and ωx,str are only ∼ 2π×130 kHz apart, which is too
small for the rotating-wave approximation to hold. Indeed, when comparing
the simulations for a square pulse with and without taking into account the
off-resonant coupling to the stretch mode (see Fig. 4.1), it is clear that the
undesired mode gets populated significantly and that this affects the gate
fidelity strongly – it drops from 99.998% to 91%.

Since the modes cannot be shifted, it is necessary to find a workaround
to this problem. One possibility is to consider the stretch mode as a “second
gate mode”, and to try to match the detuning and the laser intensity to
drive a gate on that mode simultaneously, or at least to disentangle it from
the motion at the gate time. Assuming that the main mode we drive is the
centre-of-mass, this situation can be described by the Hamiltonian

Ĥ tot
MS = Ĥcom

MS + Ĥstr
MS (4.27)

=
~ηΩ

2

[(
eiδtâcom + e−iδtâ†com

)
+
(
ei(δ+∆)tâstr + e−i(δ+∆)tâ†str

)]
Ŝϕ1,ϕ2

(4.28)

where ∆ = ωx,com − ωx,str. Since [Ĥcom
MS , Ĥ

str
MS] = 0, the time evolution of

this Hamiltonian can be written as a product of the gates driven on the two
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modes separately

Û tot
MS(t) = D̂com

(
αcom(t)Ŝϕ1,ϕ2

)
D̂str

(
αstr(t)Ŝϕ1,ϕ2

)
e−i[Φcom(t)+Φstr(t)]Ŝ2

ϕ1,ϕ2 .

(4.29)
From the examples seen above, we know that the stretch mode will drive
faster gates, with smaller α and Φ than the centre-of-mass mode. In the case
of the square pulse, we can write down the equations

tg =
2πn

δ
=

2πm

δ + ∆
, n,m ∈ Z (4.30)

Φdesired = 2η2Ω2

(
1

δ
+

1

δ + ∆

)
tg, (4.31)

which we can use to set tg, δ, and Ω to reasonable values. As can be seen
from the results of the simulation shown in Fig. 4.2 (where δ was set to ∆/5,
tg = 2π/δ, and Ω was chosen accordingly), this does solve the problem (the
final fidelity is > 99.99%), but the time interval where the state is near to
the desired one is very narrower than in the ideal case, making the gate more
sensitive to timing and intensity errors.

4.4.2 Motional Decoherence and Frequency Instability

From Eq. (4.16), (4.14), and (4.15) it is clear that any drift in motional
frequency affects the outcome of the gate strongly, as it effectively changes
the detuning δ. Moreover, the motion must be coherent throughout the gate
time (since it is entangled with the two-qubit state), which implies that we
are sensitive to both slow and fast (with respect to the gate time) noise on
the motional frequency.

This kind of noise can be described by the Hamiltonian Eq. (4.8) (since
the detuning is symmetric), but the time dependence of δ has an unknown
component. In this discussion we are going to make the distinction between
slow and fast noise, as they have different outcomes. Both effects follow from
the statistical nature of expectation-value measurements3 applied to different
time scales.

The tool we use to study the consequences of both slow and fast noise
is the so-called Ramsey experiment [32], which – as shown in figure 4.3 –
consists of

3Averaging over a sufficient number of experiments (typically around 50) is necessary to
obtain information about the expectation values, since single shots can only give boolean
results.
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measure

π/2 π π π/2
carr RSB RSB carr

phase ϕ

wait τ

Figure 4.3: Pulse sequence for a Ramsey-type motional-coherence experi-
ment.

• a carrier π/2 pulse mapping the initial state |g, 0〉 to the superposition
(|g〉 − i |e〉)⊗ |0〉 /

√
2,

• a red-sideband π pulse effectively mapping the superposition to the
motional degree of freedom |g〉 ⊗ (|0〉+ |1〉)/

√
2,

• a waiting time τ during which the two components of the state accu-
mulate a random relative phase |g〉 ⊗ (|0〉 + eiϕdeph |1〉)/

√
2 due to the

motional phase noise,

• a red-sideband π pulse mapping the superposition back to the qubit
degree of freedom (|g〉+ ieiϕdeph |e〉)⊗ |0〉 /

√
2,

• a carrier π/2 pulse with phase ϕ, producing (up to a global phase) the

state
(

cos
(
ϕdeph−ϕ

2

)
|g〉+ eiϕ sin

(
ϕdeph−ϕ

2

)
|e〉
)
⊗ |0〉,

where it is assumed that the rotating-wave approximation can be applied.
The measured population of the excited state |e〉 for a given phase ϕ is going
to be given by the average over n experiments of

P|e〉(ϕ = π, τ) = sin2

(
ϕdeph − ϕ

2

)
(4.32)

=
1

2
[1− cos(ϕdeph − ϕ)] . (4.33)

If we assume ϕdeph is normally distributed around zero with standard devia-
tion σϕ(τ), the expectation value limn→∞ P|e〉(ϕ, τ) is [32]

lim
n→∞

P|e〉(ϕ, τ) =
1

2
(1− A cosϕ) , (4.34)

where the contrast A is given by

A =

∫ ∞
−∞

dϕdeph e
−
ϕ2

deph

2σ2
ϕ cos(ϕdeph) (4.35)

= e−
σ2
ϕ
2 . (4.36)
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Note that this result is also a good approximation for any ϕdeph symmetrically
distributed around zero with a low probability of ϕdeph/σϕ > 1 [32].

Slow Motional-Frequency Noise

Slow drifts can be modelled by a (normally distributed with standard devi-
ation σslow) random detuning δslow constant over the waiting time τ . There-
fore, the phase ϕdeph caused by δslow is going to be normally distributed with
standard deviation σslowτ , resulting into the following decay in contrast

Aslow = e−
σ2

slowτ
2

2 . (4.37)

Fast Motional-Frequency Noise

In order to study the effect of fast noise, on the other hand, we represent the
phase accumulation it causes as a random walk happening during the waiting
time τ . Given Gaussian motional drifts we obtain a final phase normally
distributed with standard deviation σfast

√
τ , where σfast is proportional to

the width of the frequency noise. This yields the contrast

Afast = e−
σ2

fastτ

2 . (4.38)

Effect of the Motional Dephasing on the MS Gate

The most straightforward way to study the effect of the decay in contrast
shown by Eq. (4.37) and (4.38) on the MS gate is by adding a dephasing
term to the master-equation solver used in the simulations. Even though this
does not yield a complete picture of the consequences of motional frequency
instability, it is useful to estimate the experimental requirements to this
regard.

From the results of such simulations (which are shown in Fig. 4.4) it is
clear that the motional phase-coherence time τdeph must be at least a few
hundreds of microseconds, in order not to reduce the MS gate fidelity below
99%.

Discriminating Between Slow and Fast Noise

Since the outcome of a Ramsey experiment shows the combined effect of
the slow and fast drifts, it is not always possible to determine the extent
to which the two kinds of noise contribute to the motional dephasing based
on this experiment alone. However, it is important to be able to make this
distinction, as it helps to direct our experimental efforts.
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Figure 4.4: Simulated dependence of the fidelity w.r.t. a target state on the
dephasing rate τ−1

deph.

This issue can be solved by additionally performing a Ramsey experiment
with motional spin echo, which consists of the addition of a carrier π pulse
“sandwiched” between two red-sideband π pulses in the middle of the wait
time. Tracking the state evolution over this experiment yields:

• carrier π/2: (|g〉 − i |e〉)⊗ |0〉 /
√

2,

• red-sideband π: |g〉 ⊗ (|0〉+ |1〉)/
√

2,

• waiting time τ/2: |g〉 ⊗ (|0〉+ ei(δslowτ/2+ϕ
(1)
fast) |1〉)/

√
2,

• echo pulses: |g〉 ⊗ (ei(δslowτ/2+ϕ
(1)
fast) |0〉+ |1〉)/

√
2

• waiting time τ/2: |g〉 ⊗ (ei(δslowτ/2+ϕ
(1)
fast) |0〉+ ei(δslowτ/2+ϕ

(2)
fast) |1〉)/

√
2

• red-sideband π: ei(δslowτ/2+ϕ
(1)
fast)(|g〉+ iei(ϕ

(2)
fast−ϕ

(1)
fast) |e〉)⊗ |0〉 /

√
2,

• carrier π/2 with phase ϕ:
(
cos
(
ϕfast−ϕ

2

)
|g〉+ eiϕ sin

(
ϕfast−ϕ

2

)
|e〉
)
⊗ |0〉

where ϕ
(1)
fast, ϕ

(2)
fast are the random phases accumulated during the first and the

second waiting time, respectively, ϕfast = ϕ
(2)
fast − ϕ

(1)
fast, and the global phase

was neglected in the last step. It is clear that the “population inversion”
operated by the echo pulses effectively nullifies the action of slow drifts and
leaves us with the fast noise alone. A more detailed discussion about the
further informations that one can obtain with this technique is given in [33].
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Improving the Motional Frequency Stability

From Eq. (2.34) it follows that the experimental parameters on which the
radial mode frequencies depend are the static voltage applied in the axial di-
rection, and the amplitude and frequency of the oscillating radial potential.
From the characteristics of our experimental apparatus, it turns out that the
main source of error among these quantities is the amplitude of the rf po-
tential, which did not require stabilisation before the experiments attempted
in this thesis. Therefore, after the theoretical analysis the focus was moved
onto the rf stabilisation. Due to unexpected technical difficulties, the latter
turned out to be the main work of this thesis, and is thus described in a
dedicated chapter (Chap. 6).



Chapter 5

Transport Gates

As previously mentioned, one of the main issues on the way towards the
production of a serviceable quantum computer is the scalability of the device.
In this chapter I will introduce transport gates, argue why they are valuable
from the perspective of scalability, discuss the implementation of transport
MS gates, and study the related experimental issues.

5.1 Working Mechanism

The idea behind transport gates is fairly simple: in principle, in the frame
of reference of the qubit there is no difference between a laser pulse being
applied to an ion and the ion itself travelling through a constantly-on laser
beam, therefore it is possible to implement gates based on the transport [6].
This can be beneficial, in that it allows the transfer of part of the experi-
mental complexity from the optics to the electronics. Indeed, in this kind
of gate the pulse timing is handled by the dc electrodes of the Paul trap,
which are technically simpler to characterise and operate than the AOMs.
As a motivation, it is worth stressing that AOMs are challenging devices
to employ, as their behaviour (including response time and conversion effi-
ciency) varies strongly depending on their model and alignment, to the point
where the reproducibility of the experiments in which they are used might
be compromised.

Furthermore, combining the transport-gate principle to the segmented-
trap architecture enables the recycling of the laser beams by reflecting them
back into different trap zones, thereby improving the scalability of the optical
apparatus [6, 7].

However, transporting the ions without spoiling their motional coherence
is not trivial, as they should “perceive” the same environment throughout the

41
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trap axis

laser beam

mirror

Figure 5.1: Illustration of parallel transport gates on a segmented trap setup.
The scale and the number of electrodes are not realistic.

duration of the transport. This is implemented by changing the potentials
applied to the dc electrodes such that the potential well in which the ion
is trapped moves at a constant velocity along the axis, as described in [14].
Due to experimental imperfections, it is impossible to guarantee completely
constant velocity and axial confinement strength. Therefore, exploiting the
axial mode of motion is problematic for two reasons. First of all, the motional
frequency would not be constant. Secondly, in order to couple to this mode,
the effective wave vector ~k would have to point in the axial direction, resulting
in a large and time-dependent Doppler shift (which is given by the scalar

product of ~k and the transport velocity). Since both these problems can be
significantly reduced by working with the radial modes, we decided to employ
the latter for this thesis.

5.2 Laser-Ion Interaction During Transport

The laser-ion interaction of an ion trapped in a potential well moving with
velocity ~vw(t) can be described by transforming to the co-moving frame of
the trapping potential. This leads to rewriting every velocity- and space-
dependent quantity as a time-dependent parameter by inserting the velocity
~vw(t) and position ~rw(t) = ~rw0 +

∫ t
t0

dt′~vw(t′) of the well into the laser-ion
interaction Hamiltonian, obtaining

ĤI =
~Ω(t)

2

(
ei[
~kl·~̂r−(ωeg−ωl−δD(t)+δS(t))t+ϕ]σ̂+ +H.c.

)
, (5.1)
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where ~̂r is the position operator of the ion in the moving well, Ω(t) is pro-

portional to the laser intensity at the position, ~rw(t), δD(t) = ~kl · ~vw(t) takes
into account the Doppler shift due to the transport, and δS(t) ∝ Ω(t) is the
AC Stark shift induced by the Raman beams. Since the beams we use are to
a good approximation Gaussian and the velocity fluctuates by only around
1% in time, we will treat Ω(t) as a Gaussian “pulse”.

Apart from the Doppler and the AC Stark shift, this Hamiltonian is
equivalent to the one given by Eq. (3.11) and can be expanded in the Lamb-
Dicke approximation to obtain a very similar form to Eq. (3.34). Note that
the AC Stark shift is present in the case of standard gates as well, but it has
been neglected in Chap. 4 because in the square-pulse MS gate it is constant
and can therefore be compensated by tuning the centre laser frequency ωl.

5.3 The Transport Mølmer Sørensen Gate

Since the Doppler and the AC Stark shift act on the carrier frequency, they
add an asymmetric component to the detuning δ used in the MS gate

δRSB(t) = δ + δD(t) + δS(t), (5.2)

δBSB(t) = −δ + δD(t) + δS(t), (5.3)

therefore we need to neglect them at first in order to be able to use the results
from Sec. 4.3. They are investigated with the help of simulations in Sec. 5.4.
As mentioned in Sec. 5.2, the transport of the ions through the laser beam
can be modelled as a Gaussian pulse

δ ≡ const, Ω(t) = Ω0e
− (t−t0)2

τ2 . (5.4)

Despite the Gaussian distribution being an excellent approximation for the
physical pulse shape and a very powerful mathematical tool (being analytic),
it has a very un-physical property: it is never zero. Thus, it does not make
sense to interpret the gate time tg as the time over which one integrates to
obtain α and Φ. Rather, we are going to integrate over the entire domain R
and use the pulse width τ as an equivalent parameter to tg, which is consistent
with the fact that the physical situation implies a pulse with a finite support

α = −iηΩ0

2

∫ +∞

−∞
dt e−

t2

τ2 +iδt, (5.5)

Φ =
η2Ω2

0

4

∫ +∞

−∞
dt

∫ t

−∞
dt′ e−

t2+t′2
τ2 sin(δt− δt′). (5.6)
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Figure 5.2: Dependence of |α| and Φ for a Gaussian pulse on the pulse width
τ (which corresponds to the gate time in a square gate).

The integral for α is straightforward to evaluate, and the one for Φ can be
solved by substituting 2i sin(δt− δt′) = eiδ(t−t

′) − e−iδ(t−t′) and transforming
to rotated coordinates u = (t+ t′)/

√
2 and v = (t− t′)/

√
2 in order to obtain

two independent integrals [6]

α = −i
√
π

2
ηΩ0τe

− δ
2τ2

4 , (5.7)

Φ =
η2Ω2

0

8i

(∫ +∞

−∞
du e−

u2

τ2

∫ +∞

0

dv e−
v2

τ2 +i
√

2δv −
∫ +∞

−∞
du e−

u2

τ2

∫ +∞

0

dv e−
v2

τ2−i
√

2δv

)
=
π

4
η2Ω2

0τ
2e−

δ2τ2

2 erfi

(
δτ√

2

)
= −α2erfi

(
δτ√

2

)
, (5.8)

where we used the identity erf(iz)/i = erfi(z). One must be careful with
the imaginary error function erfi, as it does not saturate to a fixed value like
its real counterpart does. Indeed, as plotted in Fig. 5.2, erfi grows rapidly
enough to compensate for the decay term e−δ

2τ2/2 and leads to asymptotic
linear behaviour, consistent with the intuition about the effect of a longer
gate time that one gets from the treatment of the square-pulse case.

The trajectory in the motional phase-space can be obtained by integrating
α from −∞ to the time t, which yields the expression

α(t) =
√
πηΩ0τe

− δ
2τ2

4
erf
(
t
τ
− i δτ

2

)
+ 1

2
, (5.9)
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Figure 5.3: Reference traces for the simulated results of the ideal case of an
MS gate with a Gaussian pulse. The left plot shows the time evolution of
the two-qubit populations. The right plot shows the motional phase-space
trajectory, i.e. the path followed by α(t) starting from zero.

which can only be evaluated numerically, and for which some example plots
can be found in [6].

5.4 Error Sources and Experimental Issues

As mentioned above, the transport version of the MS gate introduces new
experimental difficulties with respect to the standard one. In this section
I will discuss how such effects affect the gate and the possible methods of
reducing their influence.

Fig. 5.3 shows the simulation of an ideal MS gate with a Gaussian pulse.
The final fidelity with respect to the target state in this case is 99.99%,
and could be further improved by a systematic computer optimisation of the
experimental parameters.

5.4.1 Delay between the Ions

An issue not previously discussed is that the ions travel through the beam
with a significant delay with respect to each other. Indeed, from equation
Eq. (2.41) we find that they are going to be spaced by approximately 5 µm,
which is a relevant fraction of the typical beam waist 30 µm.
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Figure 5.4: Simulated time evolution of the populations (left) and phase-
space trajectory (right) for the transport MS gate when taking into account
the delay between the ions. It is clear that adjusting the experimental pa-
rameters is enough to compensate for this effect.

To quantify the impact of this effect, we can calculate the time evolution
of the gate with two different intensity profiles for the two ions Ω1(t),Ω2(t)
and equal detuning δ(t)

Ĥdelay
MS (t) =

~η
2

(
eiδ(t)tâ+ e−iδ(t)tâ†

) (
Ω1(t)σ̂(1)

ϕ1
+ Ω2(t)σ̂(2)

ϕ2

)
, (5.10)

from which we can calculate the time evolution of the system in the same
way as in Sec. 4.3

Ûdelay
MS (t) = D̂

(
α1(t)σ̂(1)

ϕ1
+ α2(t)σ̂(2)

ϕ2

)
e−iΓ̂ϕ1,ϕ2 (t), (5.11)

where

αj(t) = −iη
2

∫ t

t0

dt′Ωj(t
′)eiδ(t

′)t′ , j ∈ {1, 2}, (5.12)

Γ̂ϕ1,ϕ2(t) =
η2

4

∫ t

t0

dt′
∫ t1

t0

dt′′ sin(δ(t′)t′ − δ(t′′)t′′) (5.13)

× (Ω1(t′)σ̂(1)
ϕ1

+ Ω2(t′)σ̂(2)
ϕ2

)(Ω1(t′′)σ̂(1)
ϕ1

+ Ω2(t′′)σ̂(2)
ϕ2

).

Given that in our case Ω1(t) and Ω2(t) are Gaussian profiles with Ω1(t) =
Ω2(t + ∆t) (where ∆t is the delay) and that the effect of the gate for a
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Gaussian pulse is given by the limit t0 → −∞, t→∞, it follows that

α1 = −iηΩ0

2

∫ ∞
−∞

dt e−
t2

τ2 iδt = −iηΩ0

2

∫ ∞
−∞

dt e−
(t+∆t)2

τ2 iδt = α2, (5.14)

therefore the final motional state is unaffected by the delay. Regarding Γ̂ϕ1,ϕ2 ,
some intuition about its form can be acquired by examining the terms in
its integral. For instance, Ω1(t′)Ω1(t′′)(σ̂

(1)
ϕ1 )2 and Ω2(t′)Ω2(t′′)(σ̂

(2)
ϕ2 )2 can be

integrated as in the ideal case and yield 2ΦÎ, where Φ is given by Eq.(5.8).
The remaining two terms (which are mathematically challenging to evaluate
explicitly) give a reduced contribution because of the smaller overlap between

the two Gaussian profiles, resulting in something of the form Φ̃σ̂
(1)
ϕ1 σ̂

(2)
ϕ2 , where

Φ̃ = Φ for ∆t = 0 and Φ̃→ 0 for ∆t� τ . This implies that

lim
∆t→0

Γ̂ϕ1,ϕ2 = ΦŜ2
ϕ1,ϕ2

, (5.15)

lim
∆t/τ→∞

Γ̂ϕ1,ϕ2 = 2ΦÎ, (5.16)

which is equivalent to stating that for vanishing delay the ideal MS gate is
recovered, and that the state-dependent phase accumulation is weakened by
∆t to the point that it gets reduced to a global phase when the ions are very
far apart.

This was confirmed by the simulation shown in Fig. 5.4, from which it
was found that for our experimental parameters the ideal-case fidelity can
be recovered by slightly decreasing the transport velocity – i.e. by increasing
the effective gate time in order to compensate for the weakening of the state-
dependent phase accumulation.

5.4.2 AC Stark Shift

Since the beryllium qubit is driven by Raman transitions, we need to take
into account the AC Stark shift caused by the off-resonant coupling to the
adiabatically eliminated state. We must however be careful, because the
model we used in Sec. 3.3 is highly simplified. Since ∆� ωeg, it is clear that
both drive lasers will off-resonantly couple both qubit states to |f〉, inducing
additional AC Stark shifts. In addition to this, the state |f〉 belongs to
a set of closely-lying P1/2 levels, and it is not the only one with an allowed
dipole transition to the qubit states. Therefore – even though the two-photon
Raman transition is adequately described in Sec. 3.3 – the AC Stark shift
on the qubit levels contains several contributions from other off-resonant



CHAPTER 5. TRANSPORT GATES 48

transitions

δS =
∑

l∈{co,sw}

∑
|f〉∈P1/2

 Ω
(l)
fg

2

4(ωfg − ωl)
−

Ω
(l)
fe

2

4(ωfe − ωl)

 , (5.17)

where Ω
(l)
ij is the Rabi frequency associated with the coupling between the

states |i〉 and |j〉 by the laser l – thus it is proportional to the product
between the matrix element of the transition and the laser intensity. Note
that this expression depends strongly on the polarisation of light which can
be engineered to reduce δS effectively [6]. A detailed discussion about AC
Stark shifts in hyperfine qubits is given in [20].

Since δS depends strongly on the involved state, it is expected to be
different between the FDQ and the FIQ transitions. Indeed, on the FDQ
it is stronger, thus contributing to the FIQ being a more desirable qubit
choice. This property of the FIQ implies that the qubit states receive similar
total shifts, and it turns out that this is also valid when applying only one
of the two Raman lasers, making this feature insensitive to power imbalance
between the two beams [12].

Given that the beam centres of the two Raman lasers are close to each
other, in the simulations the AC Stark shift was approximated as being
proportional to the effective Rabi frequency of the induced transition, which
is given by the Gaussian

δS(t) = δS0e
(t−t0)2

τ2 ∝ Ω(t) =
Ωg(t)Ωe(t)

4∆
= Ω0e

(t−t0)2

τ2 , (5.18)

where

Ω0 =
Ω0
gΩ

0
e

4∆
e−(t0g−t0e)2

, t0 =
τ 2
g t

0
e + τ 2

e t
0
g

τ 2
g + τ 2

e

, τ =
τgτe√
τ 2
g + τ 2

e

, (5.19)

and where Ω0
l is the maximum Rabi frequency, t0l the effective pulse centre

(i.e. the instant at which the ion travels through the beam centre), and τl
the effective pulse width (i.e. the time the ion takes to travel through the
beam waist) of laser l ∈ {g, e}.

There are several techniques applied to compensate for the AC Stark
shift, which are only mentioned here and discussed in detail in the literature.
They can be divided into two categories; one aims to actively correct for
the detuning in real time. This can be done either by keeping track of the
detuning over time and compensating for it with laser pulses (which is useless
for MS gates, where the main problem is the asymmetric detuning), or by
tuning the carrier frequency in real time, which would however nullify two
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Figure 5.5: Simulated effect of the AC Stark shift (with maximum shift
3 kHz) on the Gaussian-pulse MS gate.

of the reasons to use transport gates, since the timing would become more
complicated than with standard gates, and realising parallel gates in the
same beam would become very difficult. The techniques of the second kind,
on the other hand, consist in engineering the laser configuration so that the
terms in Eq. (5.17) compensate each other, which has the advantage of being
independent of the laser intensity. To provide an example, in [6] this is done
by selecting the beam polarisations.

In our case we plan to use the FIQ transition, where the contributions to
the AC Stark effect partly compensate each other. Nevertheless, this is not
sufficient to make it a negligible error source. Indeed, from the simulations
shown in Fig. 5.5 it can be concluded that for a maximum shift of 3 kHz
(which is the worst-case scenario we observed in the lab) we obtain a gate
infidelity around 2% and a non-negligible entanglement to the motion. Thus,
in order to obtain a high-fidelity gate, it will be necessary to further reduce
the effects of the AC Stark shift. A proposal is formulated in Sec. 5.4.4.

5.4.3 Doppler Shift

The Hamiltonian given in Eq. (5.1) includes the Doppler shift δD = ~kl · ~v,
where ~v is the transport velocity. This shift describes the change in observed
light wavelength in the moving frame of the ions. It effectively shifts the
carrier frequency, thereby causing an asymmetric detuning in the MS gate.

The strength of the Doppler shift depends on two experimental imper-
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fections, namely the laser misalignment with respect to the trap axis and
the time-dependent velocity. Indeed, if the alignment were perfect, in the
co-90-new beam configuration ~kl would be perpendicular to ~v with an an-
gular imprecision on the order of 10−6 rad, leading to a negligible effect.
Furthermore, if the velocity were constant, δD would be constant as well,
thus it could be compensated by calibrating the carrier frequency with a
corresponding offset.

In the following it is advantageous to define the angle θ = ~kl^~v − π/2,
and to split the velocity into a constant and a time-dependent component
~v(t) = ~v0 + ~v′(t). Since ~v is purely in axial direction, we can treat it as a
scalar function, obtaining

δD =
2π

λl
[v0 + v′(t)] sin θ = δ0

D + δ′D(t), (5.20)

where λl = 2π/|~kl| is the wavelength of the effective wave vector of the Raman
transition. It is worth noting that the constant component of δD can indeed
be compensated with proper laser calibration, thus we can reduce our focus
on δ′D(t).

From the results of [34] we assume that on our apparatus the time de-
pendence can be approximated to first order as parabolic, with the minimum
velocity at the beam centre

v′(t) = v1(t− t0)2, (5.21)

where t0 is the instant at which the ion travels through the beam centre.
Thus the time-dependent component of the Doppler shift is given by

δ′D(t) = δ1
D(t− t0)2, δ1

D =
2πv1

λl
sin θ. (5.22)

The sign of the Doppler shift depends on the sign of the angle θ, and its
effect on the MS gate is not symmetric around θ = 0, as shown in Fig 5.6.
The asymmetry is mainly due to the fact that the phase-space trajectory
leads to a better disentanglement from the motion in the case of negative θ,
as shown in Fig. 5.7.

It is worth mentioning that since the publication of [34] the time-dependent
component of the velocity has been reduced to approximately 1% of the total
[14]. This implies that the effective pulse profile in the frame of reference of
the ion is still Gaussian to a very good approximation, therefore the time-
dependent Doppler shift is the only effect of the non-constant velocity that
cannot be corrected by tuning the gate time, laser intensity, and detuning.
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Figure 5.6: The fidelity of the MS gate with a Gaussian pulse as a function
of the beam misalignment. The Doppler shift is the only effect considered
here.

Figure 5.7: Comparison of the effect of the Doppler shift on the phase-space
trajectory for θ = +5◦ (left) and θ = −5◦ (right). The difference between
these trajectories explains the asymmetry in θ of the fidelity shown in Fig. 5.6.
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Figure 5.8: Simulated effect of competing AC Stark and Doppler shift. The
left plot shows the time evolution of the measurable populations, and the
phase-space trajectory α(t) is shown on the right..

5.4.4 Competing Doppler and AC Stark shift

The possibility of obtaining different signs for δD by modifying the alignment
of the apparatus implies that we can set up the experiment so that the
Doppler and the AC Stark shift give opposite contributions. Since they have
different time profiles, they cannot compensate for each other completely, but
by tuning the experimental parameters one can achieve at least a fidelity of
99.9%, as shown in Fig. 5.8. This is a significant improvement with respect
to the case where only one of these effects is considered, where the fidelity is
typically 98%.

The one based exclusively on the angle θ is not a reliable and flexible
method, as it requires changing the alignment of the optical apparatus with
great precision every time the laser power alters. However, it is in principle
possible to modify the transport waveforms to systematically match the pro-
file of δD(t) to δS(t), which can potentially recover the loss in fidelity due to
the time-dependent AC Stark shift.



Chapter 6

The RF Stabilisation

As discussed in Sec. 4.4.2, it is crucial for the purpose of this thesis to have
a stable radial motional frequency, and the level of stability is a new re-
quirement for our apparatus. As mentioned at the end of Sec. 4.4.2, the
only parameters contained in Eq. (2.34) that can vary over time are the dc
potential applied in the axial direction, and the amplitude and frequency of
the radial rf potential. Regarding the dc potential, it is stable enough to
enable the encoding of a qubit in the axial motional state [29] with calcium
ions, which is more than enough for our needs. The effect of a rf frequency
oscillation δωrf on the radial frequency is suppressed by O(δωrf/ωrf), thus it
is totally negligible – moreover ωrf drifts by a few hundred Hz over several
hours. Therefore, the only remaining quantity to stabilise is the amplitude
of the rf voltage.

Note that the statement about the dc stability is not valid in the case of
transport gates – as experimental imperfections cause the axial confinement
to vary over time. However, a fractional change in the dc voltage influences
the radial frequency approximately ten times less than the same fractional
change in the rf amplitude. Moreover, given the properties of the apparatus,
we expect the fractional changes of the static potential to be significantly
smaller than the ones of the rf amplitude before stabilisation.

6.1 The RF Circuit

The way the rf voltage is generated is depicted in Fig. 6.1, and the com-
ponents of the circuit are listed in Tab. 6.1. Many of the small parts are
grouped in the so-called rf box, as noted in Fig. 6.1. I will explain the system
step by step, starting from the top left in Fig. 6.1.

• The signal is produced by a rf generator.

53
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Figure 6.1: Schematic of the rf circuit. Thin lines represent rf-signal trans-
mission, thick lines are used for dc voltages, the thicker rectangle denotes the
rf box, and black squares indicate ports on the rf box. The components are
listed in Tab. 6.1. The labels written near the ports correspond to the ones
currently present in the apparatus. A detailed explanation of the circuit can
be found in the text.
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Splitters 1 & 3 Mini-Circuits ZFSC-2-4-S+
Splitters 2 & 4 Mini-Circuits ZMSC-2-1+
First mixer Mini-Circuits ZLW-3+
Second mixer Mini-Circuits ZX05-1L-S+
Coupler Mini-Circuits ZFDC-20-1H-S+
Attenuators Mini-Circuits MCL VAT-xW2+

where x = attenuation value
Amplifier Mini-Circuits ZFL-1000VH2
Eval board Analog Devices ADL5511
RF generator Rohde & Schwarz SMC100A
Trap RF amp Mini-Circuits TIA-1000-4
PID box Newport New Focus LB1005

Table 6.1: Components of the rf circuit pictured in Fig. 6.1.

• The splitters 1 and 2 distribute part of the signal to the EOMs that are
used to compensate for the frequency modulation due to the micromo-
tion of beryllium. It is important to use a signal from the same source,
because the phase between micromotion and compensation must be
fixed.

• The first mixer after splitter 2 modulates the signal amplitude based
on the dc voltage which the output of a PID controller applies to its
IF input. This is how the amplitude stabilisation is applied.

• Between splitter 3 and 4 an additional rf signal (at a few MHz) is added
to the main one. It is called the rf tickle, and can be used for exam-
ple to find the frequency of the radial modes of motion without laser
manipulations. This is however impossible with beryllium, because the
tickle generation circuit cannot reach high enough frequencies.

• The signal passes through an initial amplification stage (at low power,
around 100 mW) and is fed to an interlock, which can interrupt the
circuit whenever the amplitude exceeds a set limit.

• After the interlock, the signal is amplified further, reaching a power on
the order of 10 W.

• A bidirectional coupler is used for monitoring the signal going to the
trap (CPL IN) and the reflection (CPL OUT). Normally, both should
be fed to the interlock CPL FWD and CPL RFL ports respectively,
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Figure 6.2: Schematic of a helical resonator.

but the reflection is instead often monitored with a spectrum analyser
in order to optimise impedance matching.

• A helical resonator couples the signal into the trap. Its main effects
are: increasing the voltage amplitude of the signal, applying additional
frequency and noise filtering, and simplifying impedance matching.

• A small fraction of the signal after the resonator is picked off using a
capacitive divider and is fed into an evaluation board that returns its
RMS amplitude. The amplitude is then stabilised by a PID controller
feeding back on the first mixer.

More details about the parts of the circuit that are not treated extensively
in this thesis can be found in [13, 12].
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Figure 6.3: Lumped-circuit model for a helical resonator, where ZL repre-
sents the impedance of the transmission line (usually 50 Ω), LA and LH the
inductances of the antenna and the helical coil, M the inductive coupling
between them, RH the resistance of the helix, CH the self-capacitance of the
helix, CC the shield-to-helix capacitance, RC the shield resistance plus the
shield-helix one, and ZT the complex impedance of the trap.

6.2 The Helical Resonator

As mentioned in Sec. 6.1, the signal is coupled into the trap using a helical
resonator. This is a common choice in Paul traps, as it allows one to reach
high voltages on the electrodes, simplifies the impedance matching of the
trap to the rest of the circuit, and filters much of the noise it receives [35].
Next its architecture, working principle, and the simulations of the circuit
will be presented.

A helical resonator consists of a small coil (antenna coil) inductively
coupling the signal into a larger one (helix or helical coil), which is welded or
soldered to a grounded cylindrical shield – as sketched in Fig. 6.2. The other
end of the helix and a ground wire are then used to feed the signal to the trap.
Intuitively speaking, one expects this device to increase the rms voltage of
the input signal (since the inductive coupling is equivalent to a transformer)
and to show the signature of a resonance between the inductance of the helix,
its self-capacitance, and the capacitive coupling to the shield.

According to [35], such a system can be modelled as the lumped circuit
illustrated in Fig. 6.31, where all properties can be calculated based on the

1The effect of the parasitic properties of the system was taken into account by modifying
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Figure 6.4: Complete model for the helical resonator, the trap, and the
pickoff. CM represents the matching capacitor, RD the resistor used to drain
the static charges, RT , LT , and CT the trap properties, CP1 and CP2 the
capacitors used to sample the signal, and ZB the impedance of the evaluation
board (50 Ω in our case). All other components are listed in Fig. 6.3.

geometry and material of the resonator, and on the rf frequency2. Although
it looks similar to a RLC circuit, the interplay between the helical resonator,
the inductive coupling, and the trap leads to richer behaviour. An exact
analytical solution of the circuit can be derived, but it yields very lengthy
expressions, from which it is hard to get any useful intuition. An approxi-
mate treatment proposed in [35] is unfortunately valid in a slightly different
experimental regime from ours, as the assumptions about the inductance and
frequency range made there break down in our case. Thus, a simulation was
used to predict the behaviour of the system.

Additionally, our apparatus contains a few extra components with re-
spect to that described in Fig. 6.3. Firstly, as the resonator was originally
designed [13], it was assumed that the trap could be described as a purely
capacitive load. However, when testing the system it turned out that it is
best described by a series RLC circuit, and that the inductance LT is large
enough to significantly decrease the resonance frequency of the system. As a
consequence, in order to achieve the frequency necessary to trap beryllium, a
capacitor between the helix and the trap is needed – referred to as matching

the values of the lumped components of our model.
2All formulae and a detailed discussion on helical resonators and their design is given

in [35].
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Parameter Exp. value Parameter Exp. value Parameter Exp. value
LA 50 nH LH 75 nH M 0.1
CH 0.9 pF CC 3.35 pF CM 18 pF
RH 77 mΩ RC 152 mΩ RD 1 MΩ
RT 4 mΩ LT 100 nH CT 27 pF
CP1 0.5 pF CP2 100 pF ZL, ZB 50 Ω

Table 6.2: Estimated experimental parameters for our system.

capacitor. Due to its presence, static charges that accumulate on the rf elec-
trodes (e.g. due to laser-induced ionisation) cannot flow to ground through
the helix. In order to drain them without otherwise changing the circuit be-
haviour, a large resistor (on the order of 1 MΩ) is placed between the signal
going to the trap and ground. We decided to employ a resistor instead of
a large inductor (which would be the standard choice for eliminating static
charges, since it acts as a low-pass filter on the drained current) because it
is placed in a region with strong magnetic noise.

For reasons that will be discussed in Sec.6.3, we decided to insert a ca-
pacitive divider in parallel to the trap, in order to sample a small fraction
of the signal – the so-called pickoff. The simulations indicate that both the
large resistor and the pickoff have small effects on the overall behaviour of
the system, however it is nonetheless interesting to include them in the final
model, which is portrayed in Fig. 6.4.

For the simulation I assumed the input power to be 38 dBm on a 50 Ω
transmission line (which corresponds to approximately 18 V rms voltage),
and estimated the experimental parameters based on [35] and [13] (obtain-
ing what is listed in Tab. 6.2). The simulation – which was performed with
LTSpice – yields the steady-state rms amplitude and phase of the voltage
across CT (which is how the voltage applied to the trap electrodes is mod-
elled) as a function of the input drive frequency assuming an input phase
of zero. Its results show a resonance at 111.5 MHz, which is approximately
1.5 MHz lower than what we observe in the lab – a difference which can
comfortably be attributed to the uncertainty in our estimates for the lumped
circuit model. The voltage amplitude, on the other hand, is significantly
lower than what is predicted by [13], which seems to indicate that the power
effectively applied to the resonator is higher than what I assumed. Given the
linearity of the circuit, however, this seems to be the only relevant difference
between the observations and the model.

As a last remark, it is worth mentioning how we use the helical resonator
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Figure 6.5: Results of the simulation for the circuit. The horizontal axis
represents the drive frequency, the peaked curve is the steady-state rms am-
plitude of the voltage across CT , and the other curve is the phase of that
signal with respect to the drive.
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to perform the impedance matching (see [35] for more detail). In order to
maximise the fraction of the input power being applied to the electrodes, the
total impedance of the circuit including the antenna coil, the resonator, and
the trap must match that of the input transmission line. Given the finished
apparatus, the parameters which are easiest to modify are the inductance LA
and the inductive coupling M , since the antenna coil is simple to deform by
hand, and its position relative to the helix can be changed by moving the cap.
One of these parameters would not be enough to change the total impedance
sufficiently for our purpose, so we usually modify both by trial and error,
until we minimise the reflection – which as mentioned is monitored on a
spectrum analyser with the help of the directional coupler shown in Fig. 6.1.

Following from the frequency dependence of the impedances of inductors
and capacitors in an ac circuit, the impedance matching (and thus the trans-
mission through the resonator) has a profile in the frequency domain. If only
a RLC resonator were connected to the inductive coupling, the maximum-
transmission frequency would correspond to the resonance of the resonator.
However, since the circuit is rather complex and contains several resonating
loops, the voltage applied to the electrodes is given by the convolution of
the transmission spectrum and some internal resonance profile. Thus, the
frequency for which minimum reflection is reached does not generally cor-
respond to the one yielding maximum voltage. These two frequencies are
however close to each other (approximately 100 kHz in our case), since the
voltage is ultimately constrained by the transmission through the resonator.

6.3 The Feedback System

The feedback scheme applied in order to stabilise the rf amplitude is similar
to the one used in [36]: a small fraction of the signal is sampled and fed to
an evaluation board (Analog Devices ADL5511), which outputs a dc voltage
proportional to its RMS amplitude. The output of the board is then given
as an error signal to a PID controller (Newport New Focus LB1005), which
feeds back on the signal by changing the dc-coupled voltage applied to the
IF port of a mixer. The devices are listed in Tab. 6.1. Initially we used a
different PID controller (SRS SIM960), to which we might return depending
on the results yielded by the current one – as it is slower, but has a stabler
setpoint.

A critical point when designing a feedback system is the choice of where
to sample the signal [36]. Indeed, it should be picked off as close to the
trap electrodes as possible – otherwise it cannot take into account the noise
introduced by the following components in the circuit – but at the same time
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Figure 6.6: Comparison between the measured radial motional frequency of
beryllium (green) and the evaluation board readout (red) as a function of
time. Here the signal is sampled before the resonator.

it should not influence the behaviour of the resonator too strongly. During
this thesis two possibilities were tested, as described in the following.

6.3.1 Sampling Before the Resonator

The first (and most straightforward) attempt we made to sample the signal
was to insert an additional coupler into the rf box, right before the output
going to the resonator, which sent approximately 1% of the signal to the
evaluation board. This scheme is not depicted in any of the figures in this
thesis, because it was not our final choice.

To assess the reliability of the read-out signal (given by the correlation
of the signal and the motional frequency), we kept track of the motional fre-
quency as a function of time (with repeated sideband or tickle experiments),
while also measuring the output of the evaluation board. Even though this
method has poor time resolution (as the experiments we use to determine
the motional frequency last at least a few seconds each), it gives us a useful
indication of the correlation between the motional frequency and the eval
board readout.

As shown in Fig. 6.6, the two data sets do not seem correlated. Our
conclusion was that the resonator introduces some strong drift, which makes
the signal picked off beforehand entirely unreliable.
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Figure 6.7: Layout of the new resonator base with the PCB. The grey com-
ponent at the bottom is screwed on top of the vacuum chamber and feeds
the signal to the trap, the copper part at the top is the cap, and the large
aluminium piece in the middle is the base sustaining the resonator (which is
barely visible in this image).

6.3.2 Sampling After the Resonator

The latest point in the circuit before the vacuum chamber one can sample
the signal from is between the helical resonator and the contacts feeding the
signal to the trap. We thus decided to insert a pickoff there (consisting of a
capacitive divider [36]), as sketched in Fig. 6.1.

This approach required some larger adaptations to the apparatus than
what is presented in Sec. 6.3.1, but it was still not too invasive – it did
not require opening or modifying the vacuum chamber. In order to apply
these changes, we decided to fit the matching capacitor and the pickoff on a
printed-circuit board (PCB, which is going to be discussed in Sec. 6.4). This
can be screwed to the resonator on one side and to the trap on the other
thanks to some copper contacts that are soldered on top of it, as shown in
Fig. 6.7.

The correlation of this signal to the motional frequency was tested with
the same experiment as in Sec. 6.3.1 and the results are shown in Fig. 6.8.
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Figure 6.8: Comparison between the measured radial motional frequency of
calcium and the evaluation board readout as a function of time. Here the
signal is sampled after the resonator. Qualitative comparison shows clear
correlation between the two data sets. This data was taken while locking,
which explains the higher stability than the one observed in Fig. 6.6.

In this case it was possible to use Eq. (2.34) to fit the data to the function

ωx(Vboard) =
√
a V 2

board − b, (6.1)

which connects the eval board readout Vboard to the motional frequency ωx,
where a, b ∈ R+ are the fit parameters. The correlation between ωx and
Vboard is much stronger than what can be achieved by sampling the signal
before the resonator. The discrepancies between the two data sets in Fig. 6.8
can be due to many factors, among which some additional noise introduced
after the pickoff, the noise on the line transmitting the board readout to the
multimeter we used to record its output (which is a ten-meter coaxial cable in
a rather noisy environment), and the poor resolution of the frequency scans.

It is however important to bear in mind that this result alone is not
sufficient to prove that this signal can be used to implement a serviceable
feedback. Indeed, more complete information can be gained by applying the
feedback to the system and testing its effect on both slow and fast noise
(according to Sec. 4.4.2) as it is going to be presented in Sec. 6.5.
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Figure 6.9: Circuit diagram of the PCB. The signal sampled by the the
pickoff is output through an SMA port.

Figure 6.10: Layout of the top (left) and bottom (right) of the PCB (designed
with Altium Designer). The red and blue areas represent the tracks printed
respectively on the top and on the bottom, the thin purple lines are the
physical edges of the PCB, and the circles are plated vias. The components
C200 and C201 are two alternatives for CM , C202 and C203 are CP1 and
CP2, respectively, R200 is RD, J200,J201,J203,J204 are the solder pads for
the contacts, and J202 is a SMA connector.
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Figure 6.11: Top (left) and bottom (right) view of the PCB (designed with
Altium Designer). The copper contacts are hollow cylinders in which the
wires from the resonator and the trap can be tightened with a screw (the
screw holes are visible in the image). The two top capacitors are two al-
ternatives for CM , thus only one of them is going to be mounted on the
PCB.

6.4 The Printed-Circuit Board

In order to insert the capacitive divider after the resonator, a PCB is a
very convenient choice, as it can be fit into the existing apparatus with few
adaptations (we only needed to redesign the aluminium base supporting the
resonator), it allows us to easily substitute the components (which was prob-
lematic with the previously adopted solution), and it makes the apparatus
more flexible for future adaptations – as many functionalities could be added
just by designing a new PCB. Nevertheless, some special care must be taken
in the design stage, since this PCB is used in a rather unusual regime, namely
radio frequency and high voltage.

Let me first mention two issues that we do not need to worry about,
that is to say the resistivity of the tracks and the impedance matching along
the circuit. Since at 110 MHz the skin depth of copper is approximately
6 µm – i.e. 90% of the current flows within 14 µm from the surface – and
the standard track thickness is 35 µm, it is enough to draw tracks several
millimetres wide to have roughly the same conductivity in the PCB as in
the copper rods and coaxial cables that are used in the rest of the circuit.
Regarding the impedance matching, it is only worth considering the circuit as
a transmission line when its length is comparable to or larger than the quarter
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wavelength of the signal, which is not the case here [37] – as the length of
the tracks is a few centimetres, whereas the wavelength of a 110 MHz signal
in copper is approximately 1.6 m – thus we can neglect the local impedance
of the circuit on the PCB. Note that this does not mean that we can neglect
the impedance matching to external devices and transmission lines, which
is given by the interplay between the circuit on the PCB, the trap, and the
resonator.

6.4.1 The PCB Material

Due to the size of the tracks being much smaller than the quarter wavelength
of the signal, we can neglect the antenna-like radiative losses from the circuit.
However, one must take into account that there is an oscillating electric field
around the tracks, which polarises the dielectric substrate. Thus, depending
on the material, some energy is dissipated by means of resistive losses, giving
rise to dielectric losses. To minimise this effect, we use a low-loss material
for the PCB (Rogers 4350B), which has a much lower loss tangent than the
standard FR-4 dielectric. Unfortunately we cannot quantify this difference
precisely, as no numeric values are given by the PCB manufacturers for our
frequency range (with lower voltages dielectric losses become relevant in the
GHz regime) and we did not test the two materials with equivalent designs.

Given the frequency and length scale of interest, the field around the
lines can be assumed to be distributed as in electrostatics, leading to some
intuition about where the losses are most significant, which can be used
to further reduce them. First of all, it is clear that any capacitive coupling
between signal and ground causes a strong field in the region between the two,
therefore any overlap between their tracks must be avoided. Furthermore, if
there is a strong voltage amplitude or phase difference across a component,
one might consider drilling some of the dielectric away.

The first version of the PCB was made of standard FR-4 dielectric and
had one side completely covered by a ground plane (i.e. total overlap between
the tracks and ground). When first testing it we noticed that most power
was being dissipated and that the situation was worsening with time. After a
few tens of minutes the material around the first centimetre of the track had
darkened due to the heat produced. In the following weeks we observed that
manually removing the ground plane from under the tracks, using a thinner
layer of dielectric, and removing the material around the matching capacitor
helped, which made it clear that the dielectric losses are a major issue.

Based on these guidelines, we obtained the final design depicted in Fig. 6.10
and Fig. 6.11, where the ground of the SMA connector is connected to the
system ground through a mid-air cable in order to minimise the capacitive
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Figure 6.12: Comparison between the time evolution of the motional fre-
quency while applying the lock and maximising the motional frequency
(green) and with minimum lock gain and minimising the reflection (blue).
The blue data are shifted by 0.043 MHz in order to be in the same region of
the plot as the green ones.

coupling to the signal, and the PCB material is cut away around CM , which
is a region in which we observed experimentally strong losses.

6.4.2 The Capacitors

As mentioned above, where a capacitive coupling is present, the dielectric
loss due to the polarisation of the medium present in the region can become
problematic. This is also true inside capacitors, which must therefore be
chosen accordingly. Here, the problem is again that we operate them in an
unusual regime, therefore the relevant specifications in the relevant frequency
range are not given by the manufacturers. In particular, while testing one of
the temporary versions of the PCB, we concluded that the Vishay Vitramon
VJ1111D180JXRAJ capacitor dissipates less power than the other option we
tried (AVX 1808HA180JAT1A), and is therefore more adequate to be used
as CM , which is subject to strong fields.
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Figure 6.13: Contrast of the motional Ramsey experiment as a function of
the waiting time with different settings, namely with and without locking
and with and without the motional echo. The solid lines represent the fit-
ted Gaussian decay with characteristic dephasing time τdeph. Image credit:
Karan Mehta.
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6.5 Applying the Feedback

As mentioned at the beginning of this chapter, the sampled rf signal is pro-
cessed by an evaluation board (Analog Devices ADL5511), which sends a
dc signal to a fast PID controller (Newport New Focus LB1005). The PID
controller then changes the voltage applied to the IF port of a mixer, thereby
modulating the amplitude of the rf signal earlier in the rf chain, as shown in
Fig. 6.1.

As explained in Sec. 6.2, the frequency where the reflected power from
the helical resonator is minimised is approximately 100 kHz below that at
which the voltage amplitude on the trap electrodes (and therefore the radial
motional frequency of the ions) is maximised. Thus, setting the rf frequency
to minimise the reflected power yields a value slightly detuned from the
maximum of the curve shown in Fig. 6.5, making the motional frequency
more sensitive to oscillations in the system parameters which modify the
electronic properties of its components and thereby shift the resonance profile
(e.g. thermal variations). It may therefore be beneficial to set the rf frequency
such that the radial motional frequencies are maximised. Note that this also
reduces the effect of the frequency noise generated after the pickoff, which
cannot be corrected by the feedback system.

Fig. 6.12 shows the results of tuning the rf frequency based on the radial
mode frequency and applying the feedback versus basing on the reflection and
tweaking the PID parameters to minimum. Even though the improvement
is clear, it is unclear how much of the radial mode frequency drift is caused
by frequency noise versus the different lock settings; this requires further
investigation.

The effects of the feedback can be further characterised using the motional
Ramsey experiments with and without motional echo, as shown in Fig. 6.13.
Following from the discussion in Sec. 4.4.2, we conclude that the slow drifts
dominate the motional dephasing process, and that the lock seems to be
unable to prevent them. The fact that the motional coherence time is smaller
when locking suggests that there is some slow noise in the feedback system.

The fast noise, on the other hand, seems to be low enough to allow for
more than a millisecond motional coherence also without locking, which is
enough to drive high-fidelity MS gates. The behaviour of the contrast in the
experiments with motional echo is not completely consistent with Eq. (4.38),
which predicts an exponential decay. This discrepancy can however be due to
many factors, such as the time needed to apply the echo pulses being longer
than 100 µs and potentially the noise on timescales close to the Ramsey wait
time.
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6.6 Next Steps

From the previous section it is clear that slow radial-mode frequency drift is
currently the dominant effect limiting the radial mode stability and coher-
ence. To reduce drift, there are several possibilities that can be tested. In
the following I list the ones we plan to try out in the near future.

First of all, we observed that the motional frequency, the evaluation board
readout, and their correlation can be influenced by moving some cables, which
indicates that significant noise is picked up in several parts of the circuit.
Once the most critical points (i.e. the cables that influence the signal more
strongly) are identified, it should be straightforward to reduce this problem
considerably – for example by adding rf chokes and replacing or re-arranging
cables.

Secondly, the quality of the lock also strongly depends on the stability
of the voltage reference used by the PID controller for its setpoint. Since
the fast noise is not currently the limiting factor, it may be advantageous to
switch back to the slower PID controller (SRS SIM960), which has a lower
control bandwidth than the current one, and possibly a stabler setpoint. As
an alternative to this, or as an additional measure, we could stabilise the
temperature of the PID controller, which is currently placed on top of the rf
box which dissipates heat in an uncontrolled way. In the same spirit, both
the supply voltage and the temperature of the evaluation board could be
stabilised.

Thirdly, since the output of the evaluation board covers a small fraction of
the input range of the PID controller, one could think about amplifying it in
order to improve the resolution of the stabilisation. It is however important
to carefully choose an amplifier that does not introduce significant noise.



Chapter 7

Summary and Outlook

In this thesis I have presented our theoretical and experimental efforts to-
wards the realisation of transport Mølmer Sørensen gates. As argued in
Chap. 5, such gates can be relevant in that they represent the translation of
a fundamental building block of quantum computation to a scalable work-
ing principle. In addition to this, I introduced the relevant physics and
the relevant parts of the apparatus, such that a reader with a background
in quantum information processing should be able to follow the whole text
without difficulty.

The theoretical and computational study of the gate was aimed at iden-
tifying the main sources of gate infidelity, in order to direct our experimental
efforts. From the discussions in Chap. 4 and 5 it is clear that the most prob-
lematic error sources are the rf amplitude instability, the AC Stark shift, and
the Doppler shift. Due to time constraints, the first was the one on which
we focussed our efforts so far, whereas a solution to the other effects was
proposed and will be further investigated in the future.

As described in Chap. 6, the work on the rf stability led to several mod-
ifications of the apparatus, the most significant one being the addition of
a printed circuit board, which enables us to sample the rf signal after the
helical resonator and enhances the flexibility of the setup for future modifi-
cations (such as using rf signals to drive transitions between the calcium S
states).

The rf amplitude stabilisation turned out to be more challenging than we
originally expected, and is currently under active development. In particular,
our most recent observations suggest that the slow drifts in the rf circuit and
in the feedback system are the main limitation to the motional phase coher-
ence of the ions, and are therefore being investigated. Given the complexity
of the apparatus, identifying the sources of these drifts is not trivial, and is
being done by trial and error.

72
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Once we stabilise the rf amplitude sufficiently to get the coherence time
to the desired level (see Sec. 4.4.2), it will be necessary to investigate the
feasibility of the mutual compensation of the AC Stark and Doppler shift
proposed in Sec. 5.4.4. Being the new Raman beam path ready to operate,
this might be the last step towards the realisation of high-fidelity transport
Mølmer Sørensen gates.
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