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0
Introduction

Simulating quantum mechanical systems is a challenging computational task given the exponential scaling in
the number of parameters required to describe the system with increasing system size. This unavoidable prob-
lemmakes calculations for a few tens of spins already intractable on even themost powerful classical computers
in existence 1. It can be possible, however, to simulate a complex quantum system by using another quantum
system that can bemanipulatedmore easily, as proposed by Richard Feynman in 1982 2. While a universal quan-
tum computer would fulfill this requirement 3, experimental implementations of such devices are still far off
and it would be sufficient to use simpler special-purpose analog devices that can emulate a specific Hamiltonian
of interest4. Analog quantum simulators would be easier to construct and control and could allow for a bet-
ter understanding of the evolution of complicated quantum systems such as spin models in condensed-matter
physics.
Trapped ions provide an attractive platform for realising quantum simulation 5 as quantum information can be
encoded in the internal energy levels as well as the external motional states of the ions. Ion qubits have long
coherence times and strong long range interactions between ions can be mediated through Coulomb repulsion.
Thismakes it possible for state preparation, single and two-qubit gates, and state determination to be performed
with high fidelity, as has been demonstrated in laboratory experiments over the last two decades 6.
To date, most quantum simulation experiments with trapped ions have been performed with radio frequency
traps, also called Paul traps 7, where the systemof ions is confined using oscillating electric fields in a single poten-
tial well. A recent implementation involving 53 ion spins has been used to study dynamical phase transitions in
the transverse-field Ising model 8, but the ions are restricted to a linear string formation. This is because ions in
Paul traps inherently suffer from micromotion 9 which cannot only limit decoherence rates but also effectively
allow an arrangement of ions only along the spatial direction where micromotion is minimised. Penning traps,
on the other hand, confine ions with static electric and magnetic fields alone, meaning there is no micromotion
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and with a strongmagnetic field, highmotional frequencies can be achieved 10. The nature of the radial motion
in a Penning trap does mean that the laser cooling process is not as straightforward as compared to Paul traps 11,
but the application of small radio-frequency fields can help combat this problem whilst producing minimal
micromotion 12. In fact, the largest quantum-spin simulator built so far consists of hundreds of Beryllium ions
arranged on a naturally occurring triangular lattice in a single Penning trap 13.
While trapped ions are an excellent prospect for quantum information processing, the crucial issue for exper-
iments, as with other proposed platforms, has been scalability. Two-dimensional arrays of microtraps, where
each ion is placed in its own harmonic well, show much more promise in this direction as compared to trap-
ping in a common potential 14. Such proposals were initially made for arrays of Paul traps but apply equally
well in the case of Penning traps. Planar electrode structures in conjunction with a global magnetic field can
be optimised to create arbitrary configurations of trapped ions, allowing for the study of any lattice of choice 15.
It would be more straightforward to achieve this in the case of Penning traps as compared to Paul traps since
no pseudopotential approximation is required, and with no micromotion the traps are more resilient to stray
electric fields. With these miniaturised Penning trap arrays it would be feasible to gain individual control over
ions as well as devise tuneable interactions along more than one spatial dimension. Such couplings can be en-
gineered, for instance, through optical dipole forces that create coherent state-dependent displacements and
mimic an effective spin Hamiltonian by modifying the Coulomb energy of the ions 16.
In this thesis, work towards implementing a quantum spin simulator using micro-fabricated arrays of Penning
traps is organised as follows:

• Chapter 1 discusses the basic trappingmechanism in a Penning trap alongwith the classical and quantum
dynamics of a single trapped ion

• Chapter 2 generalises this discussion to ions in arrays of Penning traps with a complete normal mode
analysis in the classical and quantum regimes

• Chapter 3 describes the process of laser cooling ions in Penning traps

• Chapter 4 illustrates the generation of effective Ising-like spin interactions using optical dipole forces

• Chapter 5 summarises the design and optimisation of surface electrode structures to generate suitable
trapping potentials

• Chapter 6 characterises the expected performance of the proposed spin simulator based on different ion
lattice configurations

• Chapter 7 concludes this thesis and offers an outlook for further research

• Appendices A-H consist of the derivations of all major results presented in the main body of thesis
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1
Penning Traps

Trapping a charged particle in space requires a potential minimum in all three dimensions. Electrostatic fields
alone, however, cannot confine a charged particle in three dimensions *. The Penning trap uses a quadrupolar
electrostatic potential which confines along one of the trap axes but is anti-confining in the other two. Con-
finement in the plane perpendicular to the trapping axis is achieved through the use of a strong homogeneous
magnetic field along this axis. The classical motion of an ion in a Penning trap can be described as follows.

1.1 ClassicalMotion

Assume an ion of mass m and charge+e in an electrostatic potential varying spatially asV (x, y, z) =ϕ0(z
2−

(x2+ y2)/2) and a uniformmagnetic field B= B0 ẑ . Then the equation of motion of the ion is

mr̈=−e∇V + e(v×B), (1.1)

which can be written in terms of the three Cartesian components as

mẍ = eϕ0x + eB0 ẏ, (1.2a)

mÿ = eϕ0y − eB0 ẋ, (1.2b)

mz̈ =−2eϕ0z. (1.2c)

*This result is known as Earnshaw’s theorem and can be derived by considering the Laplace equation for a charged particle
in free space
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The general solutions to these equations are

x =
r+p
2

cos
�
ω+ t +δ+
�
+

r−p
2

cos
�
ω− t +δ−
�
, (1.3a)

y =− r+p
2

sin
�
ω+ t +δ+
�− r−p

2
sin
�
ω− t +δ−
�
, (1.3b)

z = rz cos(ωz t +δz ), (1.3c)

where the amplitudes {r+, r−, rz}† are assumed to be positive and the phases {δ+,δ−,δz} are determined by
the initial conditions. Themotion comprises of three frequencies, the axial frequencyωz , the reduced cyclotron
frequencyω+, and the magnetron frequencyω− defined as

ωz =
Æ

2eϕ0/m, (1.4a)

ω± =
ωc ±
p
ω2

c − 2ω2
z

2
, (1.4b)

with ωc = eB0/m being the true cyclotron frequency. For stable confinement of the ion we require these
frequencies to be real, leading to the stability criterion

ωz <ωc/
p

2, (1.5)

which translates to an upper bound on the potential,

ϕ0 <
eB2

0

4m
. (1.6)

In this sense, the quadrupole potential needs to be weaker than themagnetic potential. Increasing the potential
beyond this limit leads to the ion being no longer confined in the radial plane. The axial frequency ωz can
be either higher or lower thanω+ but is always higher thanω−. Typically we have the following hierarchy of
eigenfrequencies,

ω− <ωz <ω+. (1.7)

Themotion of the ion along the ẑ-axis is just simple harmonic motion at the frequencyωz . The motion along
the x̂- and ŷ-axes is coupled together and the trajectory of the ion is a superposition of the two circular orbits
corresponding to the fast reduced cyclotronmotion and the slowermagnetronmotion in the radial (x̂-ŷ) plane.
This epicyclic radial motion along with the total trajectory of the ion in three dimensions is depicted in fig. 1.1.

†The notation used here for the amplitudes of radial modes differs from the one typically found in other texts (for eg. in
ref. 11 ) by a factor of

p
2. This stems from the fact that the normal mode vectors in this thesis have been normalised. With the

notation kept consistent, the same discrepancy will be present in the following chapters
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The kinetic and potential energy of the ion are given as

Ek ≡ 1
2

mv2 =
1
4

m r 2
+ω

2
++

1
4

m r 2−ω2−+
1
2

m r+ r−ω+ω− cos
�
ω+ t −ω− t +δ+−δ−

�
+

1
2

m r 2
zω

2
z sin2(ωz t +δz ),

(1.8a)

Ep ≡ eV (r) =
1
2

mω2
z

§
r 2

z cos2(ωz t+δz )− 1
4
(r 2
++ r 2−)− 1

2
r+ r− cos
�
ω+ t −ω− t +δ+−δ−

�ª
. (1.8b)

Thus the total energy of the system

E = Ek + Ep =
1
2

mω2
z r 2

z +
1
2

mΩ(ω+ r 2
+−ω− r 2−) (1.9)

is a constant of motion. HereΩ= (ω+−ω−)/2. The total energy contained in each mode

Ez =
1
2

mω2
z r 2

z , (1.10a)

E+ =
1
2

mΩω+ r 2
+, (1.10b)

E− =−1
2

mΩω− r 2−, (1.10c)

is also constant while the time-averaged kinetic energy in each mode is given by

〈Ek z〉= 1
4

mω2
z r 2

z , (1.11a)

〈Ek+〉= 1
4

mω2
+ r 2
+, (1.11b)

〈Ek−〉= 1
4

mω2− r 2−. (1.11c)

Reducing the amplitude of the axial or reduced cyclotronmodes reduces the total energy contained in themode,
and these two modes are stable. On the contrary, the total energy of the magnetron motion is negative and the
ion can be seen as sitting on an effective potential hill in the radial plane. An increase in the amplitude r−, for
example due to collisions with background gas, will lead to a decrease in the total energy meaning this motion
is unstable, but typically in experiments the magnetronmotion is slow and weakly coupled to the environment
resulting in storage times long enough for effective stability 10.
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a. Radial Motion b. Total 3-D Motion

Figure 1.1: Motion of a single ion in a Penning trap

1.2 QuantumMotion

The quantum mechanical treatment of a single ion in the ideal Penning trap discussed can be carried out by
constructing the Hamiltonian operator

H =
(p− eA)2

2m
+ eV (r) (1.12)

in terms of the canonical position andmomentum operators r and p. In the symmetric gauge the vector poten-
tial is given by A= 1

2 (B× r) and the Hamiltonian can be expressed as H ≡Hxy +Hz , where

Hxy =
p2

x + p2
y

2m
+

1
2

mΩ2(x2+ y2)− 1
2
ωc (x py − y px ) (1.13a)

and

Hz =
p2

z

2m
+

1
2

mω2
z z2 (1.13b)

are respectively the radial and axial parts.
The axial part Hz is the Hamiltonian of a simple harmonic oscillator in one dimension and can be written in
the second quantised form in terms of the creation and annihilation operators‡

a†
z =

√√√ 1
2ħh mωz

pz + i
È

mωz

2ħh z, (1.14a)

‡The notation used here for the ladder operators corresponding to all modes is non-standard and differs other texts (for eg.
in ref. 11 and in ref. 10 ). A full derivation can be found in the appendices
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az =

√√√ 1
2ħh mωz

pz − i
È

mωz

2ħh z (1.14b)

as
Hz = ħhωz

�
a†

z az +
1
2

�
. (1.15)

With z0 =
p
ħh/(2mωz ), the operators z and pz take the form

z = i z0(az − a†
z ), (1.16a)

pz = mωz z0(az + a†
z ). (1.16b)

The radial part of the Hamiltonian Hxy contains a term dependent on the axial component of the angular
momentum Lz = x py − y px in addition to the Hamiltonian of a two-dimensional isotropic simple harmonic
oscillator. This term couples the motion in the radial plane. The construction of the operators

a†
+ =
s

1
4ħh mΩ

(px − i py )+ i

s
mΩ
4ħh (x − i y) (1.17a)

a+ =
s

1
4ħh mΩ

(px + i py )− i

s
mΩ
4ħh (x + i y) (1.17b)

a†
− =
s

1
4ħh mΩ

(px + i py )+ i

s
mΩ
4ħh (x + i y) (1.17c)

a− =
s

1
4ħh mΩ

(px − i py )− i

s
mΩ
4ħh (x − i y) (1.17d)

allows the radial motion to be decoupled, and reduces the radial Hamiltonian to

Hxy = ħhω+
�

a†
+a++

1
2

�
− ħhω−
�

a†
−a−+

1
2

�
. (1.18)

Defining r0 =
p
ħh/(2mΩ), the operators x , y , px and py take the form

x =
i r0p

2
(a+− a†

++ a−− a†
−), (1.19a)

y =
r0p
2
(a++ a†

+− a−− a†
−), (1.19b)

px =
mΩr0p

2
(a++ a†

++ a−+ a†
−), (1.19c)

py =− i mΩr0p
2
(a+− a†

+− a−+ a†
−). (1.19d)
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The three sets of creation and annihilation operators follow the standard commutation relations

[a j ,ak] = 0, [a†
j ,a†

k] = 0, [a j ,a†
k] = δ j k , (1.20)

for j , k = z,+,−.
The total Hamiltonian of the system is thus

H = ħhωz

�
Nz +

1
2

�
+ ħhω+
�

N++
1
2

�
− ħhω−
�

N−+
1
2

�
, (1.21)

where we define the number operators Nz = a†
z az , N+ = a†

+a+ and N− = a†
−a−.

The eigenstates of H are the composite number states |nz , n+, n−〉

H |nz , n+, n−〉= (ħhωz (nz +
1
2
)+ ħhω+(n++

1
2
)− ħhω−(n−+ 1

2
))|nz , n+, n−〉. (1.22)

These can be constructed from the |0,0,0〉 vacuum state by the application of raising operators

|nz , n+, n−〉= 1p
nz !n+!n−!

(a†
z )nz (a†

+)
n+(a†
−)n− |0,0,0〉 (1.23)

for any set of three non-negative integers {nz , n+, n−}.

Comparing the expression for the total classical energy and the quantum Hamiltonian, the classical ampli-
tudes and quantum phonon occupation numbers correspond as

r 2
z ∼ 4
�

nz +
1
2

�
z2

0 , (1.24a)

r 2
+ ∼ 4
�

n++
1
2

�
r 2

0 , (1.24b)

r 2− ∼ 4
�

n−+
1
2

�
r 2

0 . (1.24c)

It is clear from theHamiltonian that while the reduced cyclotron and axial motion can be be described in terms
of simple harmonic oscillators, the magnetronmotion corresponds to an inverted harmonic oscillator and with
increasing n− (which is the quantum analogue of increasing the classical amplitude r−) the energy of the system
decreases. This contrasting feature of the magnetron mode has implications on laser cooling and will be revis-
ited later.
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1.3 Axialisation drive

The application of an oscillatory electric field can help control the radial motion of ions in a Penning trap. Driv-
ing this additional field at the free cyclotron frequency can be used to couple the cyclotron and magnetron
motion to allow simultaneous efficient cooling of both modes. This technique is also called axialisation 17.

Classical Description

The general solutions for the radial motion of an ion in a Penning trap can be written in the complex form�
x
y

�
=

1
2

§ρ+p
2

�
1
i

�
e−iω+ t +

ρ∗+p
2

�
1
−i

�
e iω+ t
ª
+

1
2

§ρ−p
2

�
1
i

�
e−iω− t +

ρ∗−p
2

�
1
−i

�
e iω− t
ª

, (1.25)

where ρ+ = r+e−iδ+ and ρ− = r−e−iδ− .
With the addition of an oscillating quadrupolar potential

VRF =ϕRF(x
2− y2)cos(ωRF t ) (1.26)

to the static trapping potential, the axial mode is left unaffected while the two radial modes couple together
when the drive frequency is quasi-resonant with the sum frequency of the radial modes§. In the weak coupling
limitϕRF≪ϕ0 we can assume that the complex amplitudes of the cyclotron andmagnetronmodes vary slowly
with time so that ρ± ≡ ρ±(t ).
When the frequency of the axialisation drive is closely detuned to the true cyclotron frequency, the time depen-
dence of the mode amplitudes is captured by the pair of coupled equations

Ω2
RF

4
e−iδ tρ∗−(t )− iΩρ̇+(t ) = 0, (1.27a)

Ω2
RF

4
e iδ tρ+(t )− iΩρ̇∗−(t ) = 0, (1.27b)

whereδ ≡ωRF−(ω++ω−) =ωRF−ωc is the detuning,Ω= (ω+−ω−)/2, andΩRF =
p

2eϕRF/m. With
the initial conditions ρ+(0) = r+e−iδ+ and ρ−(0) = r−e−iδ− , we get the oscillating solutions

ρ+(t ) =
§
− ν−Æ

δ2+Ω4
RF/(4Ω2)

r+e−iδ+ +
Ω2

RF

4Ω
Æ
δ2+Ω4

RF/(4Ω2)
r−e iδ−
ª

e−iν+ t

+
§ ν+Æ

δ2+Ω4
RF/(4Ω2)

r+e−iδ+ − Ω2
RF

4Ω
Æ
δ2+Ω4

RF/(4Ω2)
r−e iδ−
ª

e−iν− t ,

(1.28a)

§For the cylindrically symmetric trap, ω++ω− =ωc .
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ρ−(t ) =
§
− Ω2

RF

4Ω
Æ
δ2+Ω4

RF/(4Ω2)
r+e iδ+ − ν−Æ

δ2+Ω4
RF/(4Ω2)

r−e−iδ−
ª

e−iν+ t

+
§

Ω2
RF

4Ω
Æ
δ2+Ω4

RF/(4Ω2)
r+e iδ+ +

ν+Æ
δ2+Ω4

RF/(4Ω2)
r−e−iδ−
ª

e−iν− t ,

(1.28b)

where the frequencies ν± are defined as

ν± =
δ ±Æδ2+Ω4

RF/(4Ω2)

2
. (1.29)

The absolute values of the amplitudes are

|ρ+(t )|2 = r 2
+

§
δ2

δ2+Ω4
RF/(4Ω2)

+
Ω4

RF/(8Ω
2)

δ2+Ω4
RF/(4Ω2)

(1+ cos
�Æ

δ2+Ω4
RF/(4Ω2) t
�
)
ª

+ r 2−
§
Ω4

RF/(8Ω
2)

δ2+Ω4
RF/(4Ω2)

(1− cos
�Æ

δ2+Ω4
RF/(4Ω2) t
�ª

− r+ r−
§ δΩ2

RF/(2Ω)
δ2+Ω4

RF/(4Ω2)
cos
�
δ++δ−
�
(1− cos
�Æ

δ2+Ω4
RF/(4Ω2) t
�
)
ª

+ r+ r−
§Æδ2+Ω4

RF/(4Ω2) Ω2
RF/(2Ω)

δ2+Ω4
RF/(4Ω2)

sin
�
δ++δ−
�
sin
�Æ

δ2+Ω4
RF/(4Ω2) t
�ª

,

(1.30a)

|ρ−(t )|2 = r 2−
§

δ2

δ2+Ω4
RF/(4Ω2)

+
Ω4

RF/(8Ω
2)

δ2+Ω4
RF/(4Ω2)

(1+ cos
�Æ

δ2+Ω4
RF/(4Ω2) t
�
)
ª

+ r 2
+

§
Ω4

RF/(8Ω
2)

δ2+Ω4
RF/(4Ω2)

(1− cos
�Æ

δ2+Ω4
RF/(4Ω2) t
�ª

+ r+ r−
§ δΩ2

RF/(2Ω)
δ2+Ω4

RF/(4Ω2)
cos
�
δ++δ−
�
(1− cos
�Æ

δ2+Ω4
RF/(4Ω2) t
�
)
ª

− r+ r−
§Æδ2+Ω4

RF/(4Ω2) Ω2
RF/(2Ω)

δ2+Ω4
RF/(4Ω2)

sin
�
δ++δ−
�
sin
�Æ

δ2+Ω4
RF/(4Ω2) t
�ª

.

(1.30b)

Since these are representative of the total energy contained in each mode, there is a periodic transfer of energy
between the magnetron and cyclotron modes. From the above equations it is clear to see that

|ρ+(t )|2+ |ρ−(t )|2 = r 2
++ r 2− (1.31)

is a constant of motion while the time-averaged values are given by

〈|ρ+(t )|2〉t = δ
2+Ω4

RF/(8Ω
2)

δ2+Ω4
RF/(4Ω2)

r 2
++

Ω4
RF/(8Ω

2)
δ2+Ω4

RF/(4Ω2)
r 2−− δΩ2

RF/(2Ω)
δ2+Ω4

RF/(4Ω2)
r+ r− cos
�
δ++δ−
�
, (1.32a)
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〈|ρ−(t )|2〉t = Ω4
RF/(8Ω

2)
δ2+Ω4

RF/(4Ω2)
r 2
++

δ2+Ω4
RF/(8Ω

2)
δ2+Ω4

RF/(4Ω2)
r 2−+

δΩ2
RF/(2Ω)

δ2+Ω4
RF/(4Ω2)

r+ r− cos
�
δ++δ−
�
. (1.32b)

For the resonant case, δ = 0 and we get

ν± =± eϕRF

2m(ω+−ω−) ≡±ωB . (1.33)

The solutions for the mode amplitudes simplify to

ρ+(t ) =
§

1
2

r+e−iδ+ +
1
2

r−e iδ−
ª

e−iωB t +
§

1
2

r+e−iδ+ − 1
2

r−e iδ−
ª

e iωB t , (1.34a)

ρ−(t ) =
§
− 1

2
r+e iδ+ +

1
2

r−e−iδ−
ª

e−iωB t +
§

1
2

r+e iδ+ +
1
2

r−e−iδ−
ª

e iωB t , (1.34b)

meaning

|ρ+(t )|2 = r 2
+ cos2(ωB t )+ r 2− sin2(ωB t )+ r+ r− sin

�
δ++δ−
�
sin(2ωB t ), (1.35a)

|ρ−(t )|2 = r 2− cos2(ωB t )+ r 2
+ sin2(ωB t )− r+ r− sin

�
δ++δ−
�
sin(2ωB t ), (1.35b)

and

〈|ρ+(t )|2〉t = 〈|ρ−(t )|2〉t =
r 2
++ r 2−

2
. (1.36)

Thus the average amplitudes of the two radial motions equilibrate when the axialisation drive is resonant with
the bare cyclotron frequency, ωc . It can be recognised that this behaviour resembles that of coupled driven
mechanical oscillators.
It is also important to note that the breaking of the cylindrical symmetry due to the form of the oscillating
quadrupole is necessary for the coupling of the two radial modes. Such an effect can not be achieved by simply
modulating the trapping potential at a frequency close to the cyclotron frequency 10. As a result additional
electrode structures need to be designed to produce the oscillating field.

Quantum description

With the application of an rf drive, the radial part of the quantummechanical Hamiltonian for the ion reads

Hr =H0+HI (t ), (1.37)

where
H0 ≡Hxy = ħhω+

�
a†
+a++

1
2

�
− ħhω−
�

a†
−a−+

1
2

�
. (1.38)
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The additional potentialVRF leads to an interaction term

HI (t )≡ eVRF(t ) = eϕRF(x
2− y2)cos(ωRF t ), (1.39)

where x and y are now operators. Writing these in the second quantised form, the interaction term in the
interaction picture simplifies to, in the rotating wave approximation,

VI (t ) = e i H0 t/ħh HI (t )e
−i H0 t/ħh

= ħh g (a+a†
−e iδ t + a†

+a−e−iδ t ),
(1.40)

where we have defined the coupling constant

g ≡ 2eϕRF

m(ω+−ω−) . (1.41)

Transforming back into the original frame,

HI (t ) = ħh g (a+a†
−e iωRF t + a†

+a−e−iωRF t ) (1.42)

and the total radial Hamiltonian is given by

H = ħhω+
�

a†
+a++

1
2

�
− ħhω−
�

a†
−a−+

1
2

�
+ ħh g (a+a†

−e iωRF t + a†
+a−e−iωRF t ). (1.43)

The terms a+a†
− and a†

+a− arising due to the axialisation drive effect the coupling between the bare radial
modes of the ion, as can be seen in fig. 1.2. Analogous to the treatment of two-level atoms interacting with laser
light in quantum optics 18, we can study the modes of the coupled system in the dressed-state formulism.
The explicit time-dependence in the Hamiltonian can be removed by a change of reference frame through the
application of the unitary operator

U (t ) = exp{iωRF

2
(a†
+a+− a†

−a−)t} (1.44)

so that

H ′ =U (t )H U †(t )+ i ħhU̇ (t )U †(t )

=
ħh(ω+−ω−−δ)

2
a†
+a++

ħh(ω+−ω−+δ)
2

a†
−a−+ ħh g (a+a†

−+ a†
+a−)+

ħh(ω+−ω−)
2

.
(1.45)

Defining the operators corresponding to the dressed modes

b †
+ = cos

θ

2
a†
+− sin

θ

2
a†
−, (1.46a)
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Figure 1.2: Coupling between the different levels of the cyclotron and magnetron modes. The |n+, n−〉 state can be coupled to
the |n++ 1, n−− 1〉 and |n+− 1, n−+ 1〉 states.

b+ = cos
θ

2
a+− sin

θ

2
a−, (1.46b)

b †
− = sin

θ

2
a†
++ cos

θ

2
a†
−, (1.46c)

b− = sin
θ

2
a++ cos

θ

2
a− (1.46d)

we can rewrite the Hamiltonian as

H ′ = ħhξ+
�

b †
+b++

1
2

�
+ ħhξ−
�

b †
−b−+

1
2

�
, (1.47)

where
θ= tan−1
�2g
δ

�
, (1.48a)

ξ± =
ω+−ω−±∆

2
, (1.48b)

∆=
Æ

4g 2+δ2. (1.48c)

The energy levels of the dress modes are thus given by the frequencies ξ±.
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2
Arrays of Penning Traps

2.1 ClassicalMotion

Wenow consider an array ofN identical Penning traps each containing a singly charged ion (of the same species)
arranged on an arbitrary lattice with lattice constant d . Each lattice site defines the quadrupole centre of the
corresponding Penning trap. The Coulomb interaction leads to an additional force on each of the ions and a
coupling between their motional states. As a result the system has 3N collective normal modes of motion.
In the laboratory frame of reference, with no oscillatory fields present, the Lagrangian of the system is given by

L=
N∑

j=1

§
1
2

m|Ṙ j |2+ eA j · Ṙ j − eΦ j

ª
, (2.1)

where m is the mass of each ion, R j = X j x̂ +Y j ŷ +Z j ẑ denotes the lab coordinates of ion j trapped at the
lattice site D j =D j x x̂+D j y ŷ+D j z ẑ , A j =

1
2 (B×R j ) is the vector potential in the symmetric gauge due to

themagnetic fieldB= B0 ẑ , andΦ j is the total scalar quadrupole potential. Φ j contains contributions from the
trapping potential which we assume varies near the trap sites in terms of the local coordinates r̄ j =R j −D j as

ϕ j =
1
2

mω2
z

§
z̄2

j −
x̄2

j + ȳ2
j

2

ª
(2.2)

and the Coulomb interaction with other ions

κ j =
1
2

∑
k ̸= j

e
4πε0|R j −Rk | =

ke e
2

∑
k ̸= j

1
|R j k | , (2.3)
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so that Φ j =ϕ j +κ j . Here ke = 1/(4πε0) is the Coulomb constant.
The normal mode analysis begins by finding the equilibrium configuration of ions, which is determined by the
minimum of the total potential energy. By expanding the system Lagrangian about the equilibrium position
of each ion R j 0 = X j 0 x̂ +Y j 0 ŷ +Z j 0 ẑ in a Taylor series up to second order, we get a Lagrangian in terms of
the generalised position vectors r j =R j −R j 0 which specify the displacement of each ion from its equilibrium
point. The second order term in the expansion effectively dictates the normal mode dynamics of the system
near the stable spatial configuration.
Finding such a configuration corresponds to an optimisation problem which gets increasingly difficult to solve
for the potential minimum as the number of ions increases. However, the Coulomb interaction term in the po-
tential energy can be treated as a perturbation to themuch stronger contribution from the trapping potential in
the limit where the ions are not too close together*. This approximation leads us to believe that the equilibrium
position of each ion does not lie too far away from its associated quadrupole centre. Starting with an initial
configuration where each ion is slightly perturbed from its quadrupole centre, we can numerically deduce the
(local) minimum of the potential energy through the time evolution of the system.
At this point it becomes more convenient to utilise vector notation and denote the set of all 3N generalised

position coordinates by a single 3N -dimensional vector q =
�

x1 ... xN y1 ... yN z1 ... zN

�T
. This allows us

to write the effective phonon Lagrangian in the compact form

L =
3N∑
j=1

§
1
2

mq̇2
j − 1

2

3N∑
k=1

W j k q̇ j qk − 1
2

3N∑
k=1

Φ j k q j qk

ª
, (2.4)

in which

W = mωc

ON IN ON

−IN ON ON

ON ON ON

 , (2.5a)

Φ=

Φx x Φxy Φx z

Φy x Φyy Φy z

Φz x Φzy Φz z

 (2.5b)

are 3N × 3N block matrices constructed in terms of N ×N sub-matrices, IN and ON which represent the
N ×N identity and zero matrices respectively, and

Φx x
j k =


− 1

2 mω2
z − ke e2∑

l ̸= j
R2

j l 0−3Rx2
j l 0

R5
j l 0

, j = k

ke e2 R2
j k0−3Rx2

j k0

R5
j k0

, j ̸= k
, (2.6a)

*This limit holds well for ions in quantum simulation experiments
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Φyy
j k =


− 1

2 mω2
z − ke e2∑

l ̸= j
R2

j l 0−3Ry2
j l 0

R5
j l 0

, j = k

ke e2 R2
j k0−3Ry2

j k0

R5
j k0

, j ̸= k
, (2.6b)

Φz z
j k =


mω2

z − ke e2∑
l ̸= j

R2
j l 0−3Rz2

j l 0

R5
j l 0

, j = k

ke e2 R2
j k0−3Rz2

j k0

R5
j k0

, j ̸= k
, (2.6c)

Φxy
j k = Φ

y x
j k =


3ke e2∑

l ̸= j
Rx

j l 0Ry
j l 0

R5
j l 0

, j = k

−3ke e2 Rx
j l 0Ry

j l 0

R5
j k0

, j ̸= k
, (2.6d)

Φy z
j k = Φ

zy
j k =


3ke e2∑

l ≠ j
Ry

j l 0
Rz

j l 0

R5
j l 0

, j = k

−3ke e2 Ry
j l 0

Rz
j l 0

R5
j k0

, j ̸= k
, (2.6e)

Φx z
j k = Φ

z x
j k =

3ke e2∑
l ̸= j

Rx
j l 0Rz

j l 0

R5
j l 0

, j = k

−3ke e2 Rx
j l 0Rz

j l 0

R5
j k0

, j ̸= k
, (2.6f)

where we define R j k0 = |R j 0−Rk0| and the indices j , k and l run from 1 to N .
By construction,W is a real antisymmetric matrix, while Φ is a real symmetric matrix. These properties will be
useful in determining the characteristics of the normal mode eigenfrequencies and eigenvectors.
From the Lagrangian, the equation of motion for the coordinate q j can be derived as

mq̈ j −
3N∑
k=1

W j k q̇k +
3N∑
k=1

Φ j k qk = 0 (2.7)

and these 3N equations can be written collectively in vector form as

mq̈ −W q̇ +Φq = 0, (2.8)

To find the normalmodes ofmotion, we substitute the ansatz q = q0e−iωt which yields aQuadratic Eigenvalue
Problem (QEP)

[ω2(m · I3N +ω(−iW )−Φ ]q0 = 0, (2.9)

to be solved for (complex) eigenvectors q0 and eigenvaluesω. The set of eigenvalues {ωλ} are the normalmode
frequencies while the corresponding normalised eigenvectors {qλ} give us the normal mode coordinates.
The general solution can be written as

q(t ) =
3N∑
λ=1

ρλqλe−iωλ t , (2.10)
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where ρλ are complex scalars. The motion of the ions in terms of the normal modes can then be retrieved as

r (t ) =Re(q(t )) =
1
2

3N∑
λ=1

(ρλqλe−iωλ t +ρ∗λq∗λe iωλ t ). (2.11)

The stability of the system is guaranteed if all frequencies are purely real. The existence of any complex eigenval-
ues means that the motion is unbounded or non-oscillatory, and the equilibrium configuration used to derive
the normal modes is unstable.
The total energy of the system is given by

E =
1
4

3N∑
λ=1

|ρλ|2(mω2
λ+ qH

λ Φqλ) (2.12)

and is again a constant of motion. The total energy contained in each mode is given by

Eλ =
1
4
|ρλ|2(mω2

λ+ qH
λ Φqλ) (2.13)

and its sign is determined by the quantity (mω2
λ
+qH

λ
Φqλ). This quantity is not trivially positive for eachmode

since Φ is not a positive-definite matrix in the case of Penning traps†, unlike Paul traps.
Typically we will observe N modes dominated by motion along the axial direction and it is convenient to con-
tinue calling thesemodes axialmodes in the context of theN ion array of Penning traps. Each of the axialmodes
has a positive total mode energy. Similarly there are 2N radial modes out of whichN have each a positive mode
energy and N have each a negative mode energy. We will call the radial modes with positive sign as reduced
cyclotron modes and the ones with negative sign as magnetron modes.
By linearising theQEP,we can derive from elementary identities in linear algebra the following relation between
the normal mode frequencies of an N -ion system and the strength of the magnetic field

3N∑
λ=1

ω2
λ =Nω2

c . (2.14)

This result holds even when the trap is imperfect. A real trap can suffer from misalignments between the mag-
netic field and the confining axis of the quadrupole potential. The trapping potential itself may not be of the
idealised cylindrically symmetric form and its Hessian matrix could have non-zero off-diagonal terms. The re-
sult (2.14) is valid as long as the trap is stable, and can as such be treated as a generalisation of the well known
Brown-Gabrielse invariance theorem for a single ion in a Penning trap 10,

ω2
++ω

2−+ω2
z =ω

2
c . (2.15)

†Φ can indeed be made positive-definite by moving to a suitable rotating frame. This approach is not considered here due to
lack of necessity, but is often used in the case of ion crystals in a single Penning trap where there is a natural bulk rotation of
the crystal 19.
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and could possibly have a similar significance in experiments. It must be emphasised that this extension to an
N -ion system does not follow trivially from the single-ion invariance theorem.
Some interesting behaviour can be observed in the normal modes of honeycomb lattices formed in the plane
defined by the confining axis, ẑ , and one of the anti-confining axes of the trapping potential, say x̂ . Since
these two axes are not symmetric the normal mode structure depends on the orientation of the bonds between
different ions along the two axes. Two different arrangements for a 54 ion honeycomb lattice with the respective
frequency spectra are shown in figure 2.1. The frequency spectrum for the arrangement on the left shows a clear
splitting of each of the cyclotron, axial and magnetron mode branches into two sub-branches. This splitting is
absent in the arrangement on the right and the modes form a (quasi-)continuum in each branch.

Figure 2.1: Equilibrium positions and frequency spectra for two different orientations of a 54 ion honeycomb lattice

2.2 QuantumMotion

For a system of N oscillating ions coupled together through Coulomb forces, the eigenstates of the motional
Hamiltonian become a linear combination of the individual modes of motion of each ion. These eigenstates
are the normal modes of the system.
From the Lagrangian derived earlier we can identify the canonical momentum variables p j conjugate to the
canonical position q j as

p j = mq̇ j − 1
2

3N∑
k=1

W j k qk . (2.16)
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The quantummechanical Hamiltonian of the system then reads as

H =
3N∑
j=1

§ p2
j

2m
+

1
4m

3N∑
k=1

W j k (p j qk − q j pk )− 1
8m

3N∑
k=1

T j k q j qk +
1
2

3N∑
k=1

Φ j k q j qk

ª
, (2.17)

where we define the matrix T =W 2, and q j and p j are now operators satisfying the commutation relations

[q j , qk] = 0, [p j , pk] = 0, [q j , pk] = i ħhδ j k . (2.18)

To diagonalise the Hamiltonian in the second quantised form H =
∑3N

λ=1 ħhωλ(a
†
λ
aλ +

1
2 ), we follow the

method employed in the case of ion Coulomb crystals in Penning traps 19 and form the phonon creation and
annihilation operators, a†

λ
and aλ, for the mode λ as linear combinations of the generalised position and mo-

mentum operators,

a†
λ
=

3N∑
j=1

(αλ j p j +βλ j q j ), (2.19)

aλ =
3N∑
j=1

(α∗λ j p j +β
∗
λ j q j ), (2.20)

where α andβ are complex numbers.
For the commutation relation [aλ,a†

k] = δλk to hold, the Hamiltonian must satisfy the commutation relation

[H ,a†
λ
] = ħhωλa†

λ
. (2.21)

Substituting the phonon operators in terms of the operators pl and ql in the Hamiltonian we get a set of
coupled equations for each mode λ

− i ħh
m
βλ j +

i ħh
2m

3N∑
k=1

W j kαλk = ħhωλαλ j , (2.22a)

i ħh
2m

3N∑
k=1

W j kβλk − i ħh
4m

3N∑
k=1

T j kαλk + i ħh
3N∑
k=1

Φ j kαλk = ħhωλβλk , (2.22b)

which can be written in vector form as

− i ħh
m
βλ+

i ħh
2m

W αλ = ħhωλαλ, (2.23a)

i ħh
2m

Wβλ− i ħh
4m

T αλ+ i ħhΦαλ = ħhωλβλ. (2.23b)
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Eliminatingβλ = iωλmαλ+
1
2W αλ, we arrive at

[ω2
λm · I3N +ωλ(−iW )−Φ]αλ = 0, (2.24)

which is the same quadratic eigenvalue problem we had to solve in the classical treatment.
To fix the normalisation of the eigenvectors αλ so that

�
aλ,a†

λ

�
= 1, we make the substitution αλ = cλγλ and

βλ = cλζλ, where γλ is normalised to one and cλ is a complex number. Then,

|cλ|2 = ωλ

ħh
§

1
mω2

λ
+ γH

λ
Φγλ

ª
(2.25)

is always non-negative and the commutator can be equal to positive unity only when ωλ and the quantity
(mω2

λ
+γH

λ
Φγλ) are of the same sign. We chooseωλ as positive for the frequencies satisfying (mω2

λ
+γH

λ
Φγλ)>

0 and as negative when (mω2
λ
+ γH

λ
Φγλ)< 0.

The creation and annihilation operators then reduce to

a†
λ
= cλ

3N∑
j=1

(γλ j p j + ζλ j q j ), (2.26a)

aλ = cλ
3N∑
j=1

(γ ∗λ j p j + ζ
∗
λ j q j ), (2.26b)

where

cλ =
√√√ ωλ

ħh(mω2
λ
+ γH

λ
Φγλ)

(2.27)

and the operators follow the standard commutation relations,

[a†
λ
,a†
λ′] = 0, [aλ,aλ′] = 0, [aλ,a†

λ′] = δλλ′ . (2.28)

The position and momentum operators can be written in the second quantised form

q j =−i ħh
3N∑
λ=1

cλ(γ
∗
λ j a

†
λ
− γλ j aλ), (2.29a)

p j = i ħh
3N∑
λ=1

cλ(ζ
∗
λ j a

†
λ
− ζλ j aλ). (2.29b)
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Tomake clear the nature of the mode frequencies, we can separate the Hamiltonian into three parts

H ≡Hz +H++H−

=
N∑
λ=1

ħh|ωzλ|(a†
zλazλ+

1
2
)+

N∑
λ=1

ħh|ω+λ|(a†
+λa+λ+

1
2
)−

N∑
λ=1

ħh|ω−λ|(a†
−λa−λ+

1
2
).

(2.30)

Each magnetron mode has a negative total energy and can as such be treated as an inverted harmonic oscillator.
The axial and reduced cyclotron modes are simple harmonic oscillators and have a positive total energy.
Comparing theHamiltonian to the classical energy contained in eachmode, we get the correspondence between
the quantum numbers and classical amplitudes as

|ρλ|2 ∼ 4
�

nλ+
1
2

�
(ħhcλ)

2. (2.31)

2.3 Axialisation drive

The coupling of different magnetron and cyclotron modes with each other can be achieved by the application
of aweak axialisation potential in addition to the static trapping potential at each trap centre. Such coupling has
the same kind of benefits for laser cooling ion arrays as for the single ion in a Penning trap‡. A classical analysis
of the effects of axialisation on the normal modes of a multiple ion system in the manner of the one made
previously for the single ion is more challenging since each magnetron mode could (off-resonantly) couple to
various cyclotron modes, especially when the modes are not too far spaced in the frequency spectrum. One
possible method to gain solutions of the motion of the ions in the presence of axialisation involves moving to
a reference frame rotating at half the drive frequency. In this frame the corresponding effective potential loses
its time dependence and a full normal mode analysis is possible. This is effectively the approach used in the
mode calculation of ion Coulomb crystals in Penning traps and a detailed description in both the classical and
quantum regimes can be found, for instance, in ref. 20 and ref. 19.
It is important to note that when the modes are spread wider, for instance when the ions are close together,
a single drive frequency could possibly not suffice to couple all radial modes with efficacy. In such a case a
superposition of different frequencies would be necessary in the applied voltage signal but this should not be a
major experimental issue.

‡ In ionic Coulomb crystals an additional rotating wall potential oscillating at radio frequencies is applied to lock the bulk
rotational angular frequency of the crystal to a set value. When each ion is placed in its own trap the array of ions does not
rotate as a whole and thus the need for such a potential is avoided.
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3
Laser Cooling of Ions

The thermalmotion of ions can be cooled through the average light pressure exerted by a laser. Doppler cooling
is a laser cooling technique 11 used in the regime where the motional sidebands of the trapped ions are not well
resolved with respect to the natural linewidth Γ of the relevant cooling transition so that ωλ < Γ . Doppler
cooling is more complicated in Penning traps as compared to harmonic traps due to the nature of the mag-
netron motion. To avoid confusion, the term cooling refers here to reducing the kinetic energy of the ions or
equivalently reducing the amplitude of motion.

3.1 Doppler Cooling of a Single Ion

A quantitative semi-classical analysis of Doppler cooling in a Penning trap begins by finding the change in am-
plitude of each mode before and after a photon scattering event due to the laser-ion interaction. By assuming
that the scattering event leaves the position of the ion unaltered but causes an instantaneous change in velocity
due to the momentum kick* we arrive at

∆r 2
z =
�

∆vz

. pn g me gaz

�2
− 2∆vz rz

ωz
sin (ωz t +δz ) , (3.1a)

∆r 2
+ =
∆v2

x +∆v2
y

4Ω2
− r+
Ω

�
∆vx sin
�
ω+ t +δ+
�
+∆vy cos
�
ω+ t +δ+
��

, (3.1b)

∆r 2− =
∆v2

x +∆v2
y

4Ω2
+

r−
Ω

�
∆vx sin
�
ω− t +δ−
�
+∆vy cos
�
ω− t +δ−
��

. (3.1c)

*This assumption is valid when timescale of the motion is much longer than the timescale of light-ion interaction and holds
for the typical values of frequencies in trapped ion experiments
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The changes in velocity can be found through conservation of momentum

∆v=
ħh(k−ks )

m
(3.2)

due to the absorption of a photon with momentum ħhk and spontaneous emission of a photon with momen-
tum ħhks . In the low intensity limit, the average rate of change in the mode amplitudes can be found by multi-
plying the change in amplitude with each scattering event by the photon incidence rate and the scattering cross
section and then averaging over the mode amplitudes, phases and scattering directions.
For a laser with uniform intensity I the number of photons per unit time per unit area is I/ħhω and the cross-
section takes the velocity dependent form

σ(ω,v) =
σ0(Γ/2)

2

(ω0+k · v+R/ħh −ω)2+(Γ/2)2 , (3.3)

where σ0 is a constant particular to the cooling transition and R= ħh2k2/2m.
Ignoring the smallR/ħh termanddefining the detuningδ =ω−ω0, we canmake the following approximation
for small velocities

σ(ω,v)≈ σ0(Γ/2)
2

δ2+(Γ/2)2

§
1+

2δ k · v
δ2+(Γ/2)2

ª
. (3.4)

If the laser wave vectork= k(ex x̂+ey ŷ+ez ẑ) is oriented along any general directionwe arrive at the equations
dictating the rate of change of the amplitudes,

d 〈r 2
z 〉

d t
= γs

§
2R

mω2
z
( fz + fs z )+

2δ ħhk2 fz

m(δ2+(Γ/2)2)
〈r 2

z 〉
ª

, (3.5a)

d 〈r 2
+〉

d t
= γs

§ R
4mΩ2

( fx + fy + fs x + fs y )+
δω+ħhk2( fx + fy )

mΩ(δ2+(Γ/2)2)
〈r 2
+〉
ª

, (3.5b)

d 〈r 2−〉
d t

= γs

§ R
4mΩ2

( fx + fy + fs x + fs y )−
δω−ħhk2( fx + fy )

mΩ(δ2+(Γ/2)2)
〈r 2−〉
ª

, (3.5c)

where fµ = e2
µ, fsµ = 〈e2

sµ〉ks
and γs ≡ I

ħhω · σ0(Γ/2)
2

(Γ/2)2+δ2 .
The first term on the right hand side of each equation is positive and refers to the heating rate due to sponta-
neous emission. The second term could be positive or negative depending on the detuning of the laser. For
a negative detuning δ < 0, the amplitude of both the axial and cyclotron modes decreases while that of the
magnetronmode increases. A positive detuning on the other hand leads to a shrinking magnetron radius while
the other twomodes get heated. This problem was anticipated, of course, from the negative total energy of the
magnetronmode. One could cool the axial motion separately with a red-detuned laser along the ẑ-axis but any
uniform laser beam along the radial plane will be of no use given the fact that the cooling requirements of the
cyclotron and magnetron modes are incompatible. Thus no combination of uniform beams can cool all three
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modes simultaneously.
One way to resolve this issue is the use of an inhomogeneous beamwith a positive intensity gradient on the half
of the radial plane where the direction of photon propagation coincides with the magnetron motion 11. The
intensity gradient imparts energy to the magnetron mode and reduces its amplitude and if the detuning is set
as negative such a beam can simultaneously cool the cyclotronmode as well. The axial motion can be cooled by
tilting the non-uniform beam so that there is a component along the ẑ-axis or by using a separate red-detuned
uniform beam.
While this can be easily achieved using standard Doppler cooling lasers, the final temperatures reached for both
radialmodes are greater thanonewould expect from the standardDoppler cooling limit 11, meaning that nonuni-
form beams are not a very efficient way of cooling in a Penning trap. For higher axial frequencies a higher in-
tensity gradient is required to cool the radial modes and with a laser beam having a fixed gradient, the final
temperatures reached increase. This effectively restricts the range ofmotional frequencies that allow for cooling
all three modes.
An alternative solution is to couple the cyclotron and magnetron modes by applying a weak quadrupolar elec-
tric field oscillating at the bare cyclotron frequency 17. As discussed before, this coupling technique is called
axialisation† and leads to a periodic exchange of energy between the two radial modes. From the rate equations
it is clear that for a given red-detuned laser, the rate of cooling of the higher frequency cyclotron mode is much
greater than the rate of heating of the magnetron mode. By transferring energy from the magnetron to the cy-
clotron mode and cooling the cyclotron by the usual Doppler cooling method, the amplitudes of both modes
can be reduced on average. It needs to be reemphasised that a simplemodulation of the trapping potential at the
true cyclotron frequency provides no benefit with respect to cooling the magnetron motion and the additional
driving force results in heating alone.
With the axialisation drive the system no longer consists of just electrostatic fields but since the amplitude of
such a drive is much lower than the amplitude of the rf drive required in Paul traps, the deleterious effects of
micromotion are accordingly much smaller. Moreover, axialisation works efficiently at all trap frequencies, al-
lowing trapping in regimes not accessible through the use of just inhomogeneous beams.
The derivation of the rate equations of the mode amplitudes is much more algebraically involved in the pres-
ence of axialisation. A simple description of laser cooling an ion with the axialisation technique has been made
previously 21. This model takes into account the position and time dependent forces due to the total electric
potential and the velocity dependent forces due to the magnetic field and the laser light. By switching to the
frame rotating at half the true cyclotron frequency one effectively solves for the normal modes of the system
with the complex frequencies reflecting the damping of the mode amplitudes over time. This however yields
only the cooling rate of each mode and no cooling limits since diffusive heating is not considered in the model.
Nevertheless it should be sufficient to numerically integrate the equations ofmotion of the trapped ionwhile in-
cluding the additional force due to axialisation and a stochastic process to simulate the photon scattering events

† Axialisation is sometimes referred to as, in the context of precision measurement experiments, as sideband cooling. This
should not be confused with the resolved sideband cooling technique. The same effect can also be achieved by coupling the
magnetron mode with the axial mode through the application of an axialising field VRF = ϕRFx z cos(ωRF t ) at the frequency
ωRF ≈ωz +ω−.
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due to light-ion interaction. By running the simulation a large number of times, the average amplitudes of each
mode can be found. Figure 3.1 shows the variation of the average amplitudes and phonon numbers during the
Doppler cooling process for a single 9Be+ ion.

a. Axial modes: average mode amplitudes b. Axial Modes: average phonon occupation numbers

c. Radial modes: average mode amplitudes d. Radial Modes: average phonon occupation numbers

Figure 3.1: Laser cooling of a single Be+ ion in a Penning trap. For B0 = 2.5 T and ωz = 2π · 2 MHz, ω+ = 2π · 3.723 MHz
and ω− = 2π · 0.537 MHz. The uniform laser beam is oriented at an angle of 20◦ to the radial plane. The axialisation voltage is
chosen to be ϕRF = 0.02ϕ0. The initial quantum numbers for each mode are chosen as 104± 5%. The final quantum numbers
achieved are 〈n+〉= 7.47, 〈nz 〉= 12.75 and 〈n−〉= 7.20, which means the motion is close to the ground state for each mode

3.2 Arrays of Traps

The semi-classical analysis of Doppler cooling ions in an array of Penning traps can be carried out in a similar
manner. The collective motion of the N ions is composed of the 3N normal modes of vibration. The change
in the amplitude of mode λ due to a single interaction event between a uniform laser beam and the ion j can be
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derived from the equations of motion as

∆r 2
λ ≡ r ′2λ − r 2

λ

=
1
ε2
λ

§
(mq̄T

λ ∆v)2+(mq̃T
λ ∆v)2− 2(mq̄T

λ ∆v)ελ rλ sin(ωλ t +δλ)+ 2(mq̃T
λ ∆v)ελ rλ cos(ωλ t +δλ)

ª
,

(3.6)
where ελ = (mω2

λ
+ qH

λ
Φqλ)/2ωλ, q̄λ and q̃λ are respectively the real and imaginary parts of the eigenvector

qλ, and∆v ≡∆v j is the change in velocity vector as a result of the absorption-emission process.
Defining the quantities
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2}k2 fsµ (3.8)

in terms of the Cartesian componentsµ= x, y, z of the mode eigenvector and the laser, and using other quan-
tities defined in the previous section, we can write the rate equation as

d
d t
〈r 2
λ 〉=
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§
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δ(mω2
λ
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λ
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λ 〉
ª

. (3.9)

If the laser beam is uniformly incident on all ions, the total rate of cooling can be found by simply summing the
above expression over all ions so that

d
d t
〈r 2
λ 〉=

N∑
j=1

γs

ε2
λ

§
Fλ j + Fλs j +

δ(mω2
λ
+ qH

λ
Φqλ)Fλ j/ħh

(γ/2)2+δ2
〈r 2
λ 〉
ª

. (3.10)

The first two terms on the right hand side of this equation are positive and denote the heating rate of the mode.
The second term is independent of the laser direction, meaning some form of heating is always present due
to spontaneous emission. The sign of the third term is determined by the detuning and the mode dependent
measure (mω2

λ
+ qH

λ
Φqλ). The magnitude depends on both the participation of each ion in the mode as well

as the direction of the laser beam. For instance, this would be zero for the axial centre of mass mode if the laser
is directed along the radial plane.
It is clear that the mode will be cooled if δ and (mω2

λ
+ qH

λ
Φqλ) are of different signs. Thus, not surprisingly,

the same complications arise for cooling the modes of an array of ions since (mω2
λ
+ qH

λ
Φqλ) is positive for the

N axial and N cyclotron modes but negative for the N magnetron modes. A laser of negative detuning cools
the axial and cyclotron modes but heats the magnetron modes while the reverse is true for a positive detuning.
A suitably oriented inhomogeneous beam could allow for the simultaneous cooling of all modes of the system.
However with the limited range of allowed frequencies and the additional issue ofmaintaining a steep intensity
gradient over the entire array of ions makes this an even more inefficient technique to cool the motion of an
array of ions as compared to a single ion. Once again, a more viable solution would be the application of a radio
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frequency potential in addition to the static trapping potential at each trap site such that the radial modes are
coupled. Axialisation in conjunction with a red-detuned uniform-intensity laser beamwould efficiently cool all
modes without considerable micromotion.
Like for the case of the single ion, it is straightforward to find the average amplitudes of each mode due to the
cooling process through numerical simulation. Fig. 3.2 and fig. 3.3 show the results for Doppler cooling a small
honeycomb lattice consisting of six 9Be+ ions arranged with their confining quadrupole axes tilted at angle of
20◦ with respect to the normal of the electrode plane. Such an orientation allows simultaneous cooling of all
modes with laser beams parallel to the electrode surface.
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a. Axial modes - average amplitudes b. Axial modes - average mode occupation numbers

b. Cyclotron modes - average amplitudes b. Cyclotron modes - average mode occupation numbers

c. Magnetron modes - average amplitudes b. Magnetron modes - average mode occupation numbers

Figure 3.2: Laser cooling of a six 9Be+ ion honeycomb lattice with lattice constant 30 µm with the confining axes tilted at
θ = 20◦ with respect to the radial plane. Here B0 = 2.5 T and ωz = 2π · 2 MHz. The uniform laser beam is oriented along
the electrode plane so that k = cosθx̂ + sinθ ẑ. The axialisation voltage is chosen to be ϕRF = 0.02ϕ0. The initial quantum
numbers for each mode are chosen as 104± 5%

28



λ ω+/(2π) ωz/(2π) ω−/(2π)
1 3.732 2 0.53709
2 3.7312 1.9951 0.53397
3 3.7301 1.9937 0.53308
4 3.7277 1.9898 0.53072
5 3.7268 1.9881 0.52959
6 3.7238 1.9868 0.52881

a. Mode frequencies

λ 〈r 2
+,λ〉/(µm)2 〈n+,λ〉 〈r 2

z,λ〉/(µm)2 〈nz,λ〉 〈r 2
−,λ〉/(µm)2 〈n−,λ〉

1 0.016521 11.2934 0.0078963 6.53881 0.011279 7.51005
2 0.011764 7.89309 0.011894 10.0755 0.0071947 4.6184
3 0.012028 8.07607 0.0043885 3.39967 0.014532 9.84396
4 0.015182 10.3081 0.013715 11.6618 0.010876 7.25306
5 0.0073386 4.72168 0.0048467 3.79457 0.011566 7.7503
6 0.012268 8.21238 0.022199 19.1554 0.015232 10.3708

b. Final average amplitudes and phonon numbers achieved

Figure 3.3: Normal mode frequencies of the six 9Be+ ion honeycomb lattice considered along with results for laser cooling of
each mode
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4
Spin-Spin Coupling

By isolating two suitable energy levels of an ion and controlling themwith high fidelity, the internal structure of
the ion can be effectively reduced to a spin-1/2 system, {|↑〉 , |↓〉}. Such level of control is possible to achieve with
thehelpofwell developed techniques in atomic physics. Then through the applicationof state-dependent forces
the total energy of the system of ions can be modified in a manner that depends on the internal (pseudo)spin-
state of the ions, thus generating an effective spin-spin interaction. 16

One possibility to engineer such interactions comes through spin-dependent optical dipole forces (ODF) ob-
tained frombichromatic laser radiation off-resonantwith respect to the internal transition. The two laser beams
can be labeled as U and L, so that their frequencies and wavevectors areωU ,ωL and kU ,kL respectively. The
interference of the two beams at the ion crystal results in a one-dimensional optical lattice or intensity standing-
wave if the beams have the same frequency. If the beams have a frequency differenceµR ≡ωU −ωL between
them, a traveling-wave interference pattern is produced instead and the ions experience an ODF oscillating at
the frequency µR. The ODF is directed either towards or away from regions of high laser intensity, depend-
ing on the AC Stark shift from the lasers. By appropriately tuning the frequency and polarisations of the laser
beams, it is possible to generate forces that are equal in magnitude but opposite in sign on the |↑〉 and |↓〉 spin
states, resulting in the ODF interaction

HODF =−
N∑

j=1

EO cos
�
kR ·R j −µR t
�
σ z

j , (4.1)

where EO is the magnitude of the AC Stark shift, kR ≡ kU − kL is the wavevector difference betwen the two
beams and R j =R j 0+ r j is the position of ion j in the lab frame. For small coherent displacements r j of the
ions from their equilibriumpositionsR j 0, we can assume that each ion is in theLamb-Dicke regimebasedon the
‘wavelength’ of the optical dipole force such that |kr ·r j | ≪ 1. TheODF interaction can then be approximated
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as

HODF ≈
N∑

j=1

EOkR · r j sin
�
kR ·R j 0−µR t
�
σ z

j . (4.2)

Quantummechanically, one solves for the evolution operator associated with theHamiltonian HODF. This can
be done by carrying out a Magnus expansion in the Interaction Picture 22. The explicit time dependence of the
interaction termmeans that the expansion could involve an infinite sequence of commutators of the interaction
term with itself at different times. This sequence truncates, however, after two terms 23.
The first term,VI (t ), involves a product of the position operators (or equivalently the creation and annihilation
operators corresponding to the normal modes of oscillation) and the Pauli spin operators σz .

VI (t )≡ e i HPH t/ħh HODF(t )e
−i HPH t/ħh

=−i ħhEO

N∑
j=1

sin
�
kR ·R j 0−µR t
�∑
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kνR
3N∑
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(α∗λ j ν e
iωλ t a†

λ
σ z

j −αλ j ν e
−iωλ t aλσ

z
j ),

(4.3)

where

HPH =
3N∑
λ=1

ħhωλ

�
a†
λ
aλ+

1
2

�
(4.4)

and ν = x, y, z . This term describes spin-motion entanglement generated by the optical dipole force and can
be minimised by adiabatically turning on and off the interaction 24, or by by tuning away from the motional
frequencies.
The second term, HSPIN(t ), involves the product of different spin operators and describes the effective spin-spin
interaction

HSPIN(t ) =
i

2ħh [WI (t ),VI (t )], (4.5)

where

WI (t ) =
∫ t

0
VI (t

′)d t ′. (4.6)

By explicitly calculating the commutator, we arrive at the expression for an Ising-like spin Hamiltonian

HSPIN =
∑

j j ′
J j j ′(t )σ

z
j σ

z
j ′ , (4.7)

with the static part of the spin-spin interactions J j j ′(t ) given by
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(4.8)
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Here γλ is the normalised normal mode eigenvector corresponding to the frequencyωλ, the indices ν, ν ′ run
over x, y, z and the ion-specific phases are defined as ϕ j = kR ·R j 0. This expression together with a calcula-
tion of the normal modes, can be used to determine the effective spin-spin interactions for the given frequency
difference and geometric arrangement of the ODF generating laser beams.
It is thus evident that the structure of the normal modes of the trapped ions is essential to the discussion of
the resulting interactions. The coupling terms have a dependence on the equilibrium configuration but this
dependence can be removed completely in certain conditions. For instance, if the ion system equilibrates in the
radial plane, the axial and radial modes decouple and the centre-of-mass (COM)mode is the highest frequency
mode among the axial modes withωz,C OM =ωz . Now if the wave vector is made to align precisely in the axial
direction so that kR = kR ẑ , the coupling terms simplify to

J 0
j j ′ =

F 2
O

4m

∑
λ

γλ j zγλ j ′z

µ2
R−ω2

λ

, (4.9)

where FO = E0kR and the index λ effectively runs only over the axial modes. Experiments carried so far using
both Paul traps (for eg. ref. 8) and Penning traps (for eg. ref. 13) are based on this simplification. As the detuning
of the bichromatic radiation from the spin-motional sidebands is varied, the couplings follow an approximate
power-law like decay J 0

j j ′ ∝ d−a
j j ′ with the inter-ion distance d j j ′ ≡ R j j ′0. This behaviour is evident from fig.

4.1. When µR is tuned just aboveωz , the contribution of all other modes in the spin-spin coupling terms can
be neglected and hence all terms are equal and positive, thus allowing to simulate infinitely-long-ranged inter-
actions (a = 0). AsµR is increasingly tuned away fromωz , the range of interactions accordingly shortens and
Coulomb interactions (a = 1), monopole-dipole interactions (a = 2) and dipole-dipole interactions (a = 3)
can be simulated by choosing µR appropriately. Since all coupling terms are positive, the effective spin Hamil-
tonian corresponds to an antiferromagnetic Ising model.
It is worth reemphasising the relevance of theCOMmode of a particular branch ofmodes lying on one extreme

Figure 4.1: Tuneable Antiferromagnetic Couplings produced with increasing µR−ωz (in kHz) for a 61 ion 20 µm triangular
lattice
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of the branch. When the COMmode lies within the branch detuningµR in either direction fromωz does not
reveal a well-defined power law decay and the coupling terms are frustrated with different signs. A histogram
plot in fig. 4.2 shows this behaviour. This behaviour is in general expected whenever µR lies in the middle of
the branch of modes used.
The modulation of the terms due to phases originating from the static equilibrium configuration can also be

Figure 4.2: Histogram for couplings obtained when µR is close to the COM axial mode but the COM mode lies within the
axial branch for a 61 ion 20 µ m triangular lattice arranged in the x̂-ẑ plane.

suppressed by appropriately choosing the wave vector difference kR. This is because for an array of Penning
traps, the equilibriumpositions of the ions are also arranged (almost perfectly) in a periodic fashion. Take for in-
stance a simple triangular latticewith lattice constant d in the radial plane. The equilibriumconfiguration of the
ions is as shown in figure 4.3, withRx

j 0−Rx
j ′0 ≈ md/2 for an integer m. IfkU = (k sin(θR/2), k cos(θR/2), 0)

and kU = (−k sin(θR/2), k cos(θR/2), 0), the wave vector difference kR = 2k sin(θR/2)x̂ lies along the x̂-
axis alone and can be tuned by changing the angle of the two beams with respect to each other. If the condition
kd sin(θR/2) = nπ, n ∈ Z is met then for all pairs j , j ′, cos

�
ϕ j −ϕ j ′
� ≈ 1 and sin
�
ϕ j −ϕ j ′
� ≈ 0 and the

coupling terms
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∑
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λ

mω2
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λ
Φγλ
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λ j xγλ j x )

µ2
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λ

(4.10)

are approximately independent of the phases. Similar expressions for matching the phases can be derived in
the case of other lattices. Since the COM cyclotron mode with ω+,C OM = ω+ has the lowest frequency in
its branch, increasingly tuning the difference frequency µR below ω+ can produce a range of ferromagnetic
couplings, as depicted in fig. 4.4.

The above approximation fails quickly as the angle is varied to match a higher value of n since the equilib-
rium positions are not exactly periodic. Thus kR and, in turn, the strength of couplings that can be achieved are
limited but this approach does illustrate the possibility of generating both ferromagnetic and antiferromagnetic
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Figure 4.3: Equilibrium configuration of 61 ion 20 µ m triangular lattice with B-field out of plane

Figure 4.4: Tuneable Ferromagnetic Couplings produced with increasing ω+ −µR (in kHz) for a 61 ion 20 µm triangular
lattice

couplings using the same configuration of ions by changing the relative orientation and frequencies of the lasers.
More optimistically, by choosing a slightly irregular lattice so that the ions equilibrate exactly as the desired reg-
ular lattice, the phase dependence could be removed entirely. Suchmanipulation of the configuration is indeed
possible in microfabricated arrays and not possible to achieve in single traps since equilibrium positions in sin-
gle traps are naturally determined by the competition between the trapping potential and Coulomb repulsion.
The same effect could also be achieved using at each trap additional compensation electrodes, which in practice
would be required anyway for the desired level of control over individual ions.
These complications aside, the analysis in this chapter demonstrates amajor qualitative difference betweenquan-
tum simulation experiments using ion crystals in a single Penning trap and arrays of ions in separate traps. Due
to the bulk rotation of the crystal, the equilibrium positions of the ions in the radial plane vary sinusoidally as
a function of time with the bulk rotational frequency. This prohibits the use of radial modes for emulating
Ising-like interactions since there are no static terms, except for the approximate case when the simulation time
is very small.
The strategy for generating spin-spin interactions discussed in this thesis is based on the σzσz geometric phase
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gate where the spin-dependent force acts on theσz logical basis. Gates in theσϕ = cos(ϕ)σx+sin(ϕ)σy basis
can be implemented, for example, using the Mølmer-Sørensen protocol 25 or the Bermúdez protocol 26. There
exist ways alternative to optical dipole forces in order to generate interactions between ions. State-dependent
forces could be achieved through the application of microwave or radio frequency fields without the use of any
laser beams 27. Such laserless interaction minimises the errors caused due to light scattering and two qubit gates
based on this architecture have been demonstrated 28.
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5
Surface Electrode Traps

Surface electrode structures provide a logicalmeans to create two-dimensional arrays of individually controllable
Penning traps. As opposed to crystals of ions in large single traps where the arrangement of ions is determined
naturally by the trapping potential and the inter-ion Coulomb forces an array of traps containing a single ion
each provides much greater flexibility over the spatial configuration 29.
The optimisation of the electrode structure to achieve the desired trapping potential at a set of points in space
without the generation of any spurious traps is a non-trivial problem. Apart from producing a harmonic poten-
tial with identical spatial variance in the vicinity of the lattice sites, there are other constraints that the electrode
geometry must satisfy.
Ions in surface traps suffer from motional heating in the proximity of the electrodes due to electric-field noise
and the heating rate scales rapidly with decreasing ion-electrode distance 30. While recent studies suggest that
these effects can be significantly suppressed through techniques such as electrode-surface treatment 31 and cryo-
genic cooling 32, the control of ion systems invariably requires laser beams and it is desirable to avoid scattering
of light from the surface. As such the trap centres where the ions sit must be kept as far as possible from the
electrodes. This task becomes more difficult if the ions are to be trapped closer together to ensure stronger mo-
tional coupling 33.
For the ions to be confined in the stiff regime such that laser cooling is more efficient, the motional frequencies
obtained due to the trapping electrodes, and in turn the applied voltages, must be high enough. Any material
used for electrode fabrication has an intrinsic electric field breakdown limit and this makes it challenging to
achieve tight confinement of the ions at larger ion-electrode distances without surpassing this limit.
Two basic choices exist for the geometric layout of surface traps. One involves a single plane on which the elec-
trodes are arranged while the alternative consists of a bilayer configuration with the ions trapped in the region
between the two electrode planes. Theoretical studies suggest that ions can be brought much closer together
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for a given ion-electrode distance using bilayer traps and themirror symmetry leads to lower anharmonicities in
the trapping potential 33. Single layer traps on the other hand have an open planar structure which allows easier
access to lasers thereby reducing light scattering and its associated deleterious effects. Optical access in Penning
traps, in any case, can be quite restricted due to the trap chip being placed inside the bore of a superconducting
magnet. We focus our attention, therefore, on single layer surface electrode traps.
A method for obtaining optimal electrode geometries has been suggested originally for arrays of rf traps by Ro-
man Schmied et al. 15 but applies equally well in the case of electrostatic potentials. This approach can thus be
used for micro-fabricated Penning trap arrays without the need for any pseudopotential approximation. The
results in this thesis are based on the associated Mathematica Package, SurfacePattern, developed by Roman
Schmied *.
The package pixellates the plane of electrodes at the desired resolution and then returns the optimal pixel dis-
tribution of voltages by solving a linear optimisation problem such that certain constraints on the trapping
potential are met. These constraints include a specification of the derivatives of the potential at different points
in space. Given a lattice with a certain inter-ion separation and a height above the electrode plane where the
ions should be trapped, it is typically sufficient to specify a potential minimum at the lattice sites, along with
the required curvatures in the form of a Hessian matrix. The voltages required to reach the desired trapping
frequencies at a given height allow us to analyse the maximal ion-electrode distances that can be achieved.
In the case of infinite arrays of Penning traps, it suffices to specify these constraints for each point forming the
basis in a unit cell of the underlying Bravais lattice. Optimisation of finite arrays, on the other hand, requires
every single lattice point to be specified. While this makes it a considerably more intensive computational task,
the obtained curvatures are much higher than for infinite arrays 34 meaning for the same trapping frequencies
and electrode voltages the traps can be placed further away from the surface. With larger finite arrays, the size of
the linear programming problem to be solved ultimately causes failure of the interior solving routine inMathe-
matica to converge, limiting both the size of the system that can be simulated and the resolution of the resulting
electrode pattern. Moreover the inherent binary nature of the solutions returned suggests that the results pre-
sented in this thesis should as such be treated as preliminary optimisations which can most likely be improved
upon through much more flexible approaches that allow for a larger set of voltage values.

*This software package can be found here
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Figure 5.1: Optimal patterns for infinite honeycomb lattices for different angles of tilt. Here h/d = 5/3
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Figure 5.2: Variation of voltage required to achieve an axial frequency of ωz = 2π · 2MHz with increasing angle of tilt. Here
nearest neighbour distance d = 30µm and ion-electrode distance h = 50µm
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i. θ= 0◦ ii. θ= 20◦

iii. θ= 45◦ iv. θ= 90◦

Figure 5.3: Optimal patterns for finite (9 ion) square lattices for different angles of tilt. Here h/d = 2
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6
Benchmarking Results

Since the use of surface electrode traps allows amultitude of possible lattice formations it becomes important to
compare the advantages and disadvantages of employing the different available geometries to realise a quantum
spin simulator. Here 3 broad categories of the possible geometries are considered. For the sake of brevity these
will be called Geometry A, B and C and are illustrated with the help of a six ion honeycomb lattice in figure 6.1.
The largest quantum-spin simulator so far has been built in theNISTBoulder group of J. Bollinger and is based
on a centimeter sized three-dimensional Penning trap in which a crystal of around 200 9Be+ ions arranges nat-
urally in a triangular lattice in the radial plane. For a more faithful qualitative and quantitative comparison
of different possible geometric implementations of two-dimensional micro-Penning trap arrays between them-
selves andwith theNIST simulator, the results in this section are based on a 217 9Be+ ion triangular lattice with
nearest neighbour separation of 20 µm. For identical traps with a bare axial frequency ofωz = 2 MHz and a
magnetic field B0 = 2.5 T, all collective modes of motion can be Doppler cooled to low occupation numbers.
Thismeans the effects of spin-phonon entanglement can be suppressedmore easily and the beat-note frequency
of the ODF can be tuned closer to the mode frequency of choice.

Geometry A

This is the geometric arrangement of two-dimensional ion arrays studied most often and closely resembles the
natural formation of planar ion Coulomb crystals in large single Penning traps, such as the NIST trap. With
such an arrangement, the axial and radial motion is decoupled and the resulting normal mode calculation is
quite simplified. The frequency spectrum is shown in fig. 6.2 and clearly, the centre ofmassmode in each of the
mode branches is of either the highest or lowest frequency. This allows for the simulation of both ferromagnetic
and antiferromagnetic Ising-typeHamiltonianswith variable range couplings, using appropriately oriented and
detuned ODF lasers (or other methods). This is depicted in fig. 6.3.
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The creation of an ODF along the axial direction requires the lasers to be tilted with respect to the electrode
plane. Even if the spin-spin interactions are effected through laserless methods, the cooling of the axial modes
would invariably require a component of the laser beamalong the confining axis. Since laser cooling of allmodes
of motion cannot be achieved through laser beams parallel to the surface, light scattering and its associated
problems would be hard to avoid in such an arrangement.

Geometry B

By tilting quadrupole potential produced by each trap with respect to the normal of the electrode plane, the
resulting axial and radial modes are no longer decoupled. Such a geometric arrangement, however, allows for
laser cooling all modes with the help beams parallel to the electrodes, thus eliminating possible scattering of
light from the surface. When the angle of tilt is not too large (θ≲ 35◦ for the given lattice and trap parameters),
the centre of mass modes lie on either extrema of their respective branch. This is evident from fig. 6.4. Thus
again both ferromagnetic and antiferromagnetic type couplings can be achieved, as shown in fig. 6.5. With
certain orientations of the ODF generating laser beams it could be possible to attain this by changing a single
experimental parameter, the relative frequency µR. Due to the time dependence of the radial components of
the equilibrium positions in ion Coulomb crystals such interactions can fundamentally not be engineered in
the NIST simulator.
The electrode structure required becomes more complex, with higher voltages required to trap ions, and the
magnetic field also needs to be applied at angle with respect to the electrode plane. This complication in the
arrangement of the superconductingmagnet, however, is much less significant in comparison to the advantages
gained from employing this geometry.

Geometry C

With a lattice of ions along the confining axis and one of the anti-confining axes of the traps efficient cooling
is possible with an appropriately oriented laser beam along the electrode plane. The optimal surface electrode
patterns are not too complicated and the trap can be realised with the magnetic field pointing in the direction
of the confining axis. The COMmodes lie away from the extrema of their respective branches, as is clear from
fig. 6.6. As a result, variable range couplings cannot be achieved by tuning the difference frequency of the ODF
lasers alone. Fig. 6.7 and fig. 6.8 show the behaviour of the spin-spin couplings for different detunings.
ForGeometry C,more complicatedways to engineer such interactions would need to be employed, for instance
themethod suggestedbyKorenblit et al. 35. It couldbepossible however touse such an arrangement for the study
of spin disorder dynamics, for example, in quantum spin glasses 19. Since the defining axes of the lattice are not
symmetric, the Coulomb interaction between the ions also leads to the emergence of interesting phenomena in
the normal modes of certain lattices, for example, the honeycomb lattice. This was discussed before in Chapter
2.
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i. Geometry A

ii. Geometry B

iii. Geometry C

Figure 6.1: Illustration of different geometries studied using a 6 ion honeycomb lattice trapped above the electrode plane
(voltage is applied to the shaded regions while the unshaded regions are grounded). The empty circles represent the quadrupole
centres while the filled circles show the equilibrium positions of the ions. The three arrows at each quadrupole centre denote
the quadrupole axes. The magnetic field is always aligned along the ẑ-axis, represented by the long axis of the quadrupole.
i. Geometry A: Lattice in the radial plane with the magnetic field perpendicular to this plane
ii. Geometry B: Each quadrupole is tilted about the ŷ-axis through the angle θ. In the figure show, θ= 20◦. The dashed arrows
depict the normal of the electrode plane or equivalently the plane formed by the lattice of quadrupole centres. The magnetic
field is also aligned at the same angle with respect to this plane
iii. Geometry C: Lattice formed in the x̂ − ẑ plane so that the magnetic field points along the plane
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i. Cyclotron Modes

ii. Axial Modes

iii. Magnetron Modes

Figure 6.2: Frequency spectrum of a 217 ion triangular lattice (d = 20 µm) arranged with Geometry A. Shown here are the
cyclotron, axial and magnetron branches of the normal modes. The centre of mass frequency in each mode branch is marked
with a cross.
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i. Cyclotron Branch

ii. Axial Branch

iii. Magnetron Branch

Figure 6.3: Spin-spin coupling terms generated with an optical dipole force for a 217 ion triangular lattice (d = 20µm) arranged
with Geometry A. For exciting the radial modes, the ODF can be created by two laser beams so that the difference wave vector
kR lies along the x̂-axis. When the beatnote frequency µR lies to the red of the cyclotron branch, all couplings J j j ′ are negative
and a ferromagnetic Ising interaction can be engineered. These couplings follow an approximate power law decay J j j ′ ∝ d a

j j ′
and the exponent a increases with increasing |µR−ω+|. Similar tuneable ferromagnetic couplings can be achieved by tuning to
the blue of the magnetron COM mode. When the difference wave vector lies along the ẑ-axis and µR is to the blue of ωz , all
couplings are positive and hence variable range antiferromagnetic Ising like interactions can be generated by increasingly tuning
away from the axial branch. The coupling strengths can be increased by using more powerful lasers or by increasing the angle
between the two beams. 45



i. Cyclotron Modes

ii. Axial Modes

iii. Magnetron Modes

Figure 6.4: Frequency spectrum of a 217 ion triangular lattice (d = 20 µm) arranged with Geometry B (θ= 20◦ ). Shown here
are the cyclotron, axial and magnetron branches of the normal modes. The centre of mass frequency in each mode branch is
marked with a cross
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i. Cyclotron Branch ii. Axial Branch

iii. Magnetron Branch iv. Halfway Between Axial and Cyclotron Branches

Figure 6.5: Spin-spin coupling terms generated with an optical dipole force for a 217 ion triangular lattice (d = 20µm) arranged
with Geometry B (θ= 20◦ ). The ODF can be created by two laser beams along the plane of the electrodes so that the difference
wave vector is given by kR = kR cos(θ)x̂+ kR sin(θ)ẑ. When the beatnote frequency µR lies to the red of the cyclotron branch,
all couplings are negative and a ferromagnetic Ising interaction can be engineered. These couplings follow an approximate power
law decay J j j ′ ∝ d a

j j ′ and the exponent a increases with increasing |µR−ω+|. Similar tuneable ferromagnetic couplings can be
achieved by tuning to the blue of the magnetron COM mode. For the radial modes, lasers parallel to the electrode plane can
also be used to create a wavevector difference along the ŷ-axis. When µR is increasingly tuned away from the axial branch, all
couplings are positive and hence variable range antiferromagnetic Ising like interactions can be generated. The strength of these
couplings is limited by the angle of tilt θ.
This behaviour is similar to the one observed in Geometry A but for larger detunings from the desired COMmode, the coupling
terms vary over a greater range of magnitude for a given inter-ion distance. This is because the axial and radial modes are not
decoupled and the difference wave vector chosen also results in participation of all modes. The contribution of the radial modes
outweighs that of the axial modes when µR lies close to the cyclotron or magnetron modes and all couplings are negative. When
µR is closer to the axial branch the contribution from the axial modes dominates in the coupling terms and hence these are all
positive. Between the axial and cyclotron branches when the competition between these contributions is more even, roughly
half the couplings are positive with the other half negative. An approximate dipole-dipole like behaviour is still evident in the
magnitudes of the coupling strengths. Here ω+−ωz ≈ 2π · 1.72 MHz.
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i. Cyclotron Modes

ii. Axial Modes

iii. Magnetron Modes

Figure 6.6: Frequency spectrum of a 217 ion triangular lattice (d = 20 µm) arranged with Geometry C. Shown here are the
cyclotron, axial and magnetron branches of the normal modes. The centre of mass frequency in each mode branch is marked
with a cross
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i. Cyclotron Branch

ii. Axial Branch

iii. Magnetron Branch

Figure 6.7: Spin-spin coupling terms generated with an optical dipole force for a 217 ion triangular lattice (d = 20µm) arranged
with Geometry C. The ODF exciting either the radial or axial modes can be generated with laser beams parallel to the electrode
plane. For the beatnote frequency really close to the desired COMmode only that mode is principally excited and all couplings
are of the same sign and order of magnitude. Increasing |µR −ωCOM| to 2π · 0.1 kHz leads to a frustration in the signs of
different couplings, meaning only long range couplings can be achieved.
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i. Cyclotron Branch

ii. Axial Branch

iii. Magnetron Branch

Figure 6.8: Histogram plots for spin-spin coupling terms for a 217 ion triangular lattice (d = 20µm) arranged withGeometry C
when the beat note frequency µR is tuned slightly away from the COM frequency of each branch. Here |µR−ωCOM|= 2π ·0.1
kHz
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7
Conclusions and Outlook

In this thesis, a thorough theoretical treatment of quantum spin simulators based on arrays of micro-fabricated
Penning traps is presented. This includes the analysis of the normal modes of motion in the classical regime, a
prescription toquantise themotion, and amethod for generating spin-spin interactionsby coupling thephonon
motion and state-dependent forces. In addition, a semi-classical study of Doppler cooling of a system of ions in
Penning traps is carried out. Different geometries for ion lattices are considered and an overview of methods to
optimally generate them using surface electrode structures is offered. Although the results presented are based
on 9Be+ ions, the theoretical analysis can be applied to other ions as well. In fact an evenmore generalised treat-
ment can be found in the appendices and used in the study of mixed-species ion arrays.
Numerical results included here indicate the possibility of simulating variable range IsingHamiltonians of both
the ferromagnetic and antiferromagnetic type using suitably arranged arrays of Penning traps. On the other
hand, only the latter kind of couplings can be achieved with ion Coulomb crystals in single Penning traps. This
qualitative advantage along with the much greater level of control over the configurations of ions manageable
through surface electrode trapsmakesmicro-fabricated trap arrays amore viable prospect for experimental quan-
tum simulations of two-dimensional models.
This thesis represents the first step towards an experimental implementation of such a simulator. On the the-
oretical side, further work needs to be done on the optimisation of surface electrode patterns for realising the
traps. It would be also interesting to examine the addition of a transverse field to the Ising model and the quan-
tum phase transitions that could be achieved. Many more issues would invariably arise during the process of
designing the actual experiment and these would have to be accordingly resolved.
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A
Quadratic Eigenvalue Problem

The Quadratic Eigenvalue Problem (QEP) is a kind of non-linear eigenvalue problem where the aim is to find
set of scalars λ and non-zero eigenvectors u and v that satisfy the equations�

λ2M +λC +K
�

u = 0 (A.1a)

vH �λ2M +λC +K
�
= 0 (A.1b)

where M , C and K are n × n complex matrices and u and v are respectively the right and left eigenvectors
corresponding to the eigenvalue λ. The QEP has 2n eigenvalues with upto 2n right and 2n left eigenvectors.
Although QEPs have found widespread application in certain fields of physics such as the dynamic analysis of
structuralmechanical, and acoustic systems, they aremuch less frequently encountered or solved in comparison
to the standard eigenvalue problem (SEP),

Au = λu (A.2)

and the generalised eigenvalue problem (GEP)

Au = λB u (A.3)

This section summarises some useful properties relevant to the type of QEPs encountered while studying the
normal mode dynamics of trapped ions in the stable regime. Here, stability means that the eigenvalues are
all finite, real, and non-zero, and hence the motion of the ions is bounded. If the solution of the QEP yields
any imaginary or infinite eigenvalues the ions can not be confined with the given combination of electric and
magnetic fields in the trap.
Noting the symmetries present in thematrices in our equations ofmotionwe additionally restrict our discussion
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to a class of the standard QEP [λ2M +λC +K]u = 0 where the matrices M ,C and K are Hermitian, M and
K are non-singular and real, and C ∗ = −C . For typical physical systems, including ours, M refers to the mass
matrix, K is the stiffness matrix while C is the damping matrix that captures the effect of velocity dependent
forces.
Amore general and thorough treatment ofQEPs, their applications, and techniques for numerical solution can
be found in the review paper by Tisseur et al. 36.

Some Properties

1. Unlike SEPs and GEPs, the eigenvectors of the QEP in general do not form a linearly independent set
since there can be more than n eigenvectors. We can rewrite the QEP as Q(λ)u = 0, where the λ-matrix
Q(λ) = λ2M + λC +K is called regular if detQ(λ) is not identically zero for any arbitrary value of λ.
SinceK is non-singular, it is easy to see that detQ(λ) ̸= 0 for λ= 0. Hence for the class ofQEPs studied
here, Q(λ) is regular and there exists a set of n linearly independent eigenvectors if Q(λ) has 2n distinct
eigenvalues 37. This is a non-trivial generalisation of standard results for the SEP and the GEP.
For simplicity we will assume the lack of any degenerate eigenvalues and with this we are guaranteed a
subset of eigenvectors that can forms a basis in the n-dimensional vector space.
Additionally, in general the eigenvectors of theQEParenotorthogonal in the conventional linear-algebraic
sense i.e. uH

j uk ̸= δ j k . Nevertheless we can derive some generalised orthogonality and normalisation
conditions by employing the symmetry properties of our matrices.

2. For an eigenvector u with eigenvalue λ, we have

λ2M u +λC u +K u = 0 (A.4)

Since eigenvalues are all real and M ,C and K are Hermitian it is easy to see by taking the conjugate
transpose of the QEP that

λ2uH M +λuH C + uH K = 0 (A.5)

Thus if u is a right eigenvector of the QEP with eigenvalue λ then it is also a left eigenvector with the
same eigenvalue.

3. Taking just the complex conjugate on the other hand yields

λ2M u∗−λC u∗+K u∗ = 0 (A.6)

where we have used the fact that M and K are real and C ∗ = −C . Thus if u is an eigenvector with
eigenvalue λ then so is u∗ with eigenvalue −λ. Thus eigenvectors and their corresponding eigenvalues
come in pairs {u, u∗} and {λ,−λ} respectively.

4. Combining the above equations, we get

λ2uH M u∗+λuH C u∗+ uH K u∗ = 0 (A.7a)

λ2uH M u∗−λuH C u∗+ uH K u∗ = 0 (A.7b)

which means
uH C u∗ = 0 (A.8)
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5. For two distinct eigenvalues λ j and λk corresponding to the eigenvectors u j and uk respectively,

λ2
j M u j +λ j C u j +K u j = 0 (A.9a)

λ2
k M uk +λk C uk +K uk = 0 (A.9b)

Then
λ2

k uH
k M u j +λk uH

k C u j + uH
k K u j = 0 (A.10a)

λ2
j uH

k M u j +λ j uH
k C u j + uH

k K u j = 0 (A.10b)

and hence
(λ2

k −λ2
j )u

H
k M u j +(λk −λ j )u

H
k C u j = 0 (A.11)

Since λ j ̸= λk , the eigenvectors u j and uk satisfy the following generalised condition for orthogonality:

(λk +λ j )u
H
k M u j + uH

k C u j = 0 (A.12)

6. For two distinct eigenvalues λ j and λk corresponding to the same eigenvector u ,

λ2
j M u +λ j C u +K u = 0 (A.13a)

λ2
k M u +λk C u +K u = 0 (A.13b)

Then
(λ2

j −λ2
k )M u +(λ j −λk )C u = 0 (A.14)

M−1C u =−(λ j +λk )u (A.15)

Thus u is an eigenvector of M−1C with eigenvalue−(λ j +λk ).

Linearisation of theQEP

One technique to solve aQEP is tomap it onto aGEPwith the same eigenvalues and twice the dimension of the
original problem, and then utilising the known methods for solution of GEPs. This linearisation process can
be easily carried out by using the substitution v = λu in λ2M u+λC u+K u = 0 and rewriting the equation
as

λM v +λC u +K u = 0, (A.16)

yielding the GEP corresponding to the so-called first companion form�
On In
−K −C

��
u
v

�
= λ
�
In On

On M

��
u
v

�
(A.17)
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whereOn and In are respectively n×n zero and identitymatrices. This procedure is analogous to the reduction
of a second-order differential equation to a first-order equation.

55



B
Normal Mode Analysis: Classical Description

We consider a system of N Penning traps containing a single ion each (with charge+e) arranged arbitrarily in
space. The Coulomb interaction between ions leads to a coupling between their motional states, resulting in
3N collective normal modes of motion.

Lagrangian Formulation

We begin by defining the different sets of coordinates we will use in the course of the normal mode analysis.
In the laboratory frame of reference, it is convenient to use a coordinate system with axes parallel to the axes
defined by the form of each quadrupole potential. Equivalently the local coordinates of each ion with respect
to its trap centre can be expressed in a coordinate system aligned with the lab frame axes.
Let the quadrupole center j and the position of the ion j in the reference frame of the lab be defined by the
coordinatesD j =D j x x̂+D j y ŷ+D j z ẑ andR j =X j x̂+Y j ŷ+Z j ẑ respectively. Then the local coordinates
of the ion j with respect to this quadrupole center are given by the vector r̄ j = x̄ j x̂ + ȳ j ŷ + z̄ j ẑ = R j −D j .
Because of the Coulomb repulsion the equilibrium position of the ion R j 0 = X j 0 x̂ +Y j 0 ŷ +Z j 0 ẑ in the lab
frame does not coincide with its corresponding quadrupole center.
The trapping electrodes create a static quadrupole electric potential centered at each site j . This potential sat-
isfies the Laplace equation and can be written asϕ j =

∑
µν ϕ

µν
j 0 r̄µj r̄ νj , where the indices µ and ν run over the

Cartesian components, x , y and z .
The electrostatic potential acting on the ion j due to the Coulomb interaction with other ions is

κ j =
∑
k ̸= j

e
4πε0|R j −Rk | = ke e

∑
k ̸= j

1
|R j k | , (B.1)
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where ke = 1/(4πε0) is the Coulomb constant.
The total electric potential, in the absence of any oscillating fields, is thus given by Φ j =ϕ j +κ j .
A static homogeneous magnetic field B = B0 sinθ cosψx̂ + B0 sinθ sinψŷ + B0 cosθ ẑ creates the vector po-
tential A j at the site j . In the symmetric gauge, A j =

1
2 (B×R j ).

In the laboratory frame of reference, the Lagrangian of the system is then given by

L=
N∑

j=1

§
1
2

m j |Ṙ j |2+ eA j · Ṙ j − eΦ j

ª
(B.2)

where m j is the mass of the j th ion.
The normal mode analysis begins by finding the equilibrium configuration of ions, which is determined by the
minimum of the total potential energy. By expanding the system Lagrangian about the equilibrium position of
each ion in a Taylor series up to second order, we get a Lagrangian in terms of the generalised position vectors
r j =R j−R j 0 which specify the displacement of each ion from its equilibriumpoint. The second order term in
the expansion effectively dictates the normal mode dynamics of the system near the stable spatial configuration
and is given by

L=
N∑

j=1

§
1
2

m j |ṙ j |2+ e
2
(B× r j ) · ṙ j − e
∑
µν

ϕµνj 0 rµj r νj

ª

− ke e2

2

N∑
j=1

N∑
k ̸= j

§∑
µ

3Rµ2
j k0
−R2

j k0

R5
j k0

(rµj − rµk )
2+
∑
µ ̸=ν

3Rµj k0
Rνj k0

R5
j k0

(rµj − rµk )(r
ν
j − r νk )
ª

,

(B.3)

Putting together all generalisedposition coordinates into a single3N -dimensional vector q =
�

x1 ... xN y1 ... yN z1 ... zN

�T
we can express the Lagrangian in a more compact form,

L=
3N∑
j=1

§
1
2

M j j q̇
2
j − 1

2

3N∑
k=1

W j k q̇ j qk − 1
2

3N∑
k=1

V j k q j qk − 1
2

3N∑
k=1

K j k q j qk

ª
(B.4)

in which M ,W ,V and K are 3N × 3N block matrices constructed in terms of N ×N sub-matrices

M =

M x x ON ON

ON M yy ON

ON ON M z z

 (B.5a)

W = eB0

 ON cosθ · IN − sinθ sinφ · IN
−cosθ · IN ON sinθ cosφ · IN

sinθ sinφ · IN − sinθ cosφ · IN ON

 (B.5b)
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V =

V x x V xy V x z

V y x V yy V y z

V z x V zy V z z

 (B.5c)

K =

K x x K xy K x z

K y x K yy K y z

K z x K zy K z z

 (B.5d)

Here IN and ON represent the N ×N identity and zero matrices respectively and the components of other
sub-matrices are defined as

Mµµ
j k = m jδ j k (B.6)

V µν
j k = 2eϕµνj 0δ j k , (B.7)

Kµµ
j k =


−ke e2∑

l ̸= j
R2

j l 0−3Rµ2
j l 0

R5
j l 0

, j = k

ke e2 R2
j k0−3Rµ2

j k0

R5
j k0

, j ̸= k
, (B.8a)

Kµν
j k =K νµ

j k =


3ke e2∑

l ̸= j
Rµj l 0

Rνj l 0

R5
j l 0

, j = k

−3ke e2 Rµj l 0
Rνj l 0

R5
j k0

, j ̸= k
, µ ̸= ν , (B.8b)

where indices j and k run from 1 to N while again the indicesµ and ν refer to the components x , y and z .
With Φ=V +K , the effective phonon Lagrangian can be written as

L=
3N∑
j=1

§
1
2

M j j q̇
2
j − 1

2

3N∑
k=1

W j k q̇ j qk − 1
2

3N∑
k=1

Φ j k q j qk

ª
, (B.9)

By construction, M is a real diagonal matrix , W is a real antisymmetric matrix, while Φ is a real symmetric
matrix. These properties will be useful in determining the characteristics of the normal mode eigenfrequencies
and eigenvectors.

Equations ofMotion

Through the Euler-Lagrange equations
d
d t

§
∂ L
∂ q̇ j

ª
=
∂ L
∂ q j

(B.10)
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we can derive from the Lagrangian the equations of motion of our system.
Noting that

∂ L
∂ q̇ j

=M j j q̇ j − 1
2

3N∑
k=1

W j k qk (B.11)

and
∂ L
∂ q j

=
1
2

3N∑
k=1

W j k q̇k −
3N∑
k=1

Φ j k qk (B.12)

we get

M j j q̈ j − 1
2

3N∑
k=1

W j k q̇k =
1
2

3N∑
k=1

W j k q̇k −
3N∑
k=1

Φ j k qk (B.13)

or

M j j q̈ j −
3N∑
k=1

W j k q̇k +
3N∑
k=1

Φ j k qk = 0 (B.14)

Thus the equations of motion reduce to, in vector form,

M q̈ −W q̇ +Φq = 0, (B.15)

To find the normal modes of motion, we substitute the oscillating trial solution q = q0e−iωt which yields the
QEP

[ω2(M +ω(−iW )−Φ ]q0 = 0, (B.16)

that can be solved for complex eigenvectors q0 and eigenvaluesω, which in general can be complex. The set of
eigenvalues {ωλ} are the normal mode frequencies while the corresponding normalised eigenvectors {qλ} give
us the normal mode coordinates.
The general solution can be written as

q(t ) =
3N∑
λ=1

ρλqλe−iωλ t (B.17)

where ρλ are complex scalars. The motion of the ions in terms of the normal modes can then be retrieved as

r (t ) =Re(q(t )) =
1
2

3N∑
λ=1

(ρλqλe−iωλ t +ρ∗λq∗λe iωλ t ) (B.18)

For real frequencies, the collective motion is bounded and hence all ions are confined.
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Mode Energies

With the general solution for r (t )

r (t ) =
1
2

3N∑
λ=1

§
ρλqλe−iωλ t +ρ∗λq∗λe iωλ t

ª
(B.19)

the velocity vector can be written as

ṙ (t ) =
1
2

§ 3N∑
λ=1

−iωλρλqλe−iωλ t + iωλρ
∗
λq∗λe iωλ t
ª

(B.20)

Taking the transpose on both sides,

r T (t ) =
1
2

3N∑
λ=1

§
ρλqT

λ e−iωλ t +ρ∗λqH
λ e iωλ t
ª

(B.21)

ṙ T (t ) =
1
2

3N∑
λ=1

§
− iωλρλqT

λ e−iωλ t + iωλρ
∗
λqH
λ e iωλ t
ª

(B.22)

The total energy of the system is given by

E =
3N∑
j=1

§
1
2

M j j ṙ 2
j +

1
2

3N∑
k=1

Φ j k r j rk

ª
=

1
2

ṙ T M ṙ +
1
2

r TΦr

(B.23)

Substituting equations B.21 and B.22,

E =
1
4

3N∑
λ′=1

§
− iωλ′ρλ′q

T
λ′ e
−iωλ′ t + iωλ′ρ

∗
λ′q

H
λ′ e

iωλ′ t
ª

M ṙ

+
1
4

3N∑
λ′=1

§
ρλ′q

T
λ′ e
−iωλ′ t +ρ∗λ′q

H
λ′ e

iωλ′ t
ª
Φr

(B.24)

60



Using qT
λ′Φ=ω

2
λ′q

T
λ′M + iωλ′q

T
λ′W and qH

λ′ Φ=ω
2
λ′q

H
λ′ M − iωλ′q

H
λ′W

E =
1
4

3N∑
λ′=1

§
− iωλ′ρλ′q

T
λ′ e
−iωλ′ t + iωλ′ρ

∗
λ′q

H
λ′ e

iωλ′ t
ª

M ṙ

+
1
4

3N∑
λ′=1

§
ρλ′ e
−iωλ′ t (ω2

λ′q
T
λ′M + iωλ′q

T
λ′W )+ρ

∗
λ′ e

iωλ′ t (ω2
λ′q

H
λ′ M − iωλ′q

H
λ′W )
ª

r

=
1
4

3N∑
λ′=1

§
ωλ′ρλ′ e

−iωλ′ t (−i qT
λ′M ṙ +ωλ′q

T
λ′M r + qT

λ′ (iW )r
ª

+
1
4

3N∑
λ′=1

§
ωλ′ρλ′ e

iωλ′ t (i qH
λ′ M ṙ +ωλ′q

H
λ′ M r + qH

λ′ (−iW )r
ª

(B.25)

We can calculate the first of these sums as

E1 =
1
4

3N∑
λ′=1

ωλ′ρλ′ e
−iωλ′ t
§
− i qT

λ′M ṙ +ωλ′q
T
λ′M r + qT

λ′ (iW )r
ª

=
1
8

3N∑
λ′=1

ωλ′ρλ′ e
−iωλ′ t

3N∑
λ=1

§
− i qT

λ′M (−iωλρλqλe−iωλ t + iωλρ
∗
λq∗λe iωλ t )+ (ωλ′q

T
λ′M + qT

λ′ (iW ))(ρλqλe−iωλ t +ρ∗λq∗λe iωλ t )
ª
+ωλ′q

T
λ′M r + qT

λ′ (iW )r
ª

=
1
8

3N∑
λ′=1

ωλ′ρλ′ e
−iωλ′ t

3N∑
λ=1

ρλe−iωλ t
§
−ωλqT

λ′M qλ+ωλ′q
T
λ′M qλ+ qT

λ′ (iW )qλ
ª

+
1
8

3N∑
λ′=1

ωλ′ρ
∗
λ′ e

iωλ′ t
3N∑
λ=1

ρ∗λe iωλ t
§
−ωλqT

λ′M q∗λ +ωλ′q
T
λ′M q∗λ + qT

λ′ (iW )q∗λ
ª

=
1
8

3N∑
λ′=1

ωλ′ρλ′ e
−iωλ′ t

3N∑
λ=1

ρλe−iωλ t
§
· 0
ª

+
1
8

3N∑
λ′=1

ωλ′ρ
∗
λ′ e

iωλ′ t
3N∑
λ=1

ρ∗λe iωλ t
§

1
ωλ

(ω2
λqT
λ M q∗λ + qT

λ Φq∗λ)δλλ′
ª

=
1
8

3N∑
λ=1

|ρλ|2(ω2
λqT
λ M q∗λ + qT

λ Φq∗λ)

(B.26)
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and the second of these sums as

E2 =
1
4

3N∑
λ′=1

ωλ′ρ
∗
λ′ e

iωλ′ t
§

i qH
λ′ M ṙ +ωλ′q

H
λ′ M r + qH

λ′ (−iW )r
ª

=
1
8

3N∑
λ′=1

ωλ′ρ
∗
λ′ e

iωλ′ t
3N∑
λ=1

§
i qH
λ′ M (−iωλρλqλe−iωλ t + iωλρ

∗
λq∗λe iωλ t )+ (ωλ′q

H
λ′ M + qH

λ′ (−iW ))(ρλqλe−iωλ t +ρ∗λq∗λe iωλ t )
ª

=
1
8

3N∑
λ′=1

ωλ′ρ
∗
λ′ e

iωλ′ t
3N∑
λ=1

ρλe−iωλ t
§
ωλqH

λ′ M qλ+ωλ′q
H
λ′ M qλ+ qH

λ′ (−iW )qλ
ª

+
1
8

3N∑
λ′=1

ωλ′ρ
∗
λ′ e

iωλ′ t
3N∑
λ=1

ρ∗λe iωλ t
§
−ωλqH

λ′ M q∗λ +ωλ′q
H
λ′ M q∗λ + qH

λ′ (iW )q∗λ
ª

=
1
8

3N∑
λ′=1

ωλ′ρ
∗
λ′ e

iωλ′ t
3N∑
λ=1

ρλe−iωλ t
§

1
ωλ

(ω2
λqH
λ M qλ+ qH

λ Φqλ)δλλ′
ª

+
1
8

3N∑
λ′=1

ωλ′ρ
∗
λ′ e

iωλ′ t
3N∑
λ=1

ρ∗λe iωλ t
§
· 0
ª

=
1
8

3N∑
λ=1

|ρλ|2(ω2
λqH
λ M qλ+ qH

λ Φqλ)

(B.27)
Thus the total energy is given by

E = E1+ E2

=
1
8

3N∑
λ=1

|ρλ|2(ω2
λqT
λ M q∗λ + qT

λ Φq∗λ)+
1
8

3N∑
λ=1

|ρλ|2(ω2
λqH
λ M qλ+ qH

λ Φqλ)

=
1
4

3N∑
λ=1

|ρλ|2(ω2
λqH
λ M qλ+ qH

λ Φqλ)

(B.28)

where the last simplification follows from the Hermiticity of matrices M and Φ.
Thus the total energy of the system as well as the energy contained in each mode,

Eλ =
1
4
|ρλ|2(ω2

λqH
λ M qλ+ qH

λ Φqλ) (B.29)

is constant.
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C
Normal Mode Analysis: QuantumDescription

From the Lagrangian of the systemwe can identify canonical conjugate variables to formulate ourHamiltonian.
The generalised momentum corresponding to the generalised position q j is given by

p j =
∂ L
∂ q̇ j

=M j j q̇ j − 1
2

3N∑
k=1

W j k qk (C.1)

These variables satisfy the standard commutation relations

[q j , qk] = 0, [p j , pk] = 0, [q j , pk] = i ħhδ j k (C.2)

The Hamiltonian of the system is then

H =
3N∑
j=1

q̇ j p j − L

=
3N∑
j=1

§
M j j q̇

2
j − 1

2

3N∑
k=1

W j k q̇ j qk

ª
−

3N∑
j=1

§
1
2

M j j q̇
2
j − 1

2

3N∑
k=1

Φ j k q j qk − 1
2

3N∑
k=1

W j k q̇ j qk

ª
=

3N∑
j=1

§
1
2

M j j q̇
2
j +

1
2

3N∑
k=1

Φ j k q j qk

ª
,

(C.3)

or in terms of the canonical variables,

H =
3N∑
j=1

§ p2
j

2M j j
+

1
4M j j

3N∑
k=1

W j k p j qk −
3N∑
k=1

W j k

4Mkk
q j pk − 1

8

3N∑
k=1

T j k q j qk +
1
2

3N∑
k=1

Φ j k q j qk

ª
, (C.4)
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where T =W M−1W is a real symmetric matrix.
To diagonalise theHamiltonian in the secondquantised formH =

∑3N
λ=1 ħhωλ(a

†
λ
aλ+

1
2 ), we form the phonon

creation and annihilation operators, a†
λ
and aλ, for themodeλ as linear combinations of the generalised position

and momentum operators.

a†
λ
=

3N∑
k=1

(αλk pk +βλk qk ) (C.5)

aλ =
3N∑
k=1

(α∗λk pk +β
∗
λk qk ) (C.6)

where αλk andβλk are complex numbers. For the commutation relation [aλ,a†
λ′] = δλλ′ to hold, the Hamil-

tonian must satisfy the commutation relation

[H ,a†
λ
] = ħhωλa†

λ
(C.7)

This commutator can be calculated by substituting H and a†
λ
in terms of the canonical variables and involves

the following sub-components

�
p2

l ,a†
λ

�
= [p2

l ,
3N∑
k=1

(αλk pk +βλk qk )]

=
3N∑
k=1

[p2
l , (αλk pk +βλk qk )]

=
3N∑
k=1

(αλk[p
2
l , pk]+βλk[p

2
l , qk])

=
3N∑
k=1

(αλk · 0+βλk · (−2i ħhδl k pl ))

=−2i ħhβλl pl

(C.8a)

�
pl qm ,a†

λ

�
= [pl qm ,

3N∑
k=1

(αλk pk +βλk qk )]

=
3N∑
k=1

[pl qm , (αλk pk +βλk qk )]

=
3N∑
k=1

(αλk[pl qm , pk]+βλk[pl qm , qk])

=
3N∑
k=1

(αλk · (i ħhδmk pl )+βλk · (−i ħhδl k qm))

= i ħhαλm pl − i ħhβλl qm

(C.8b)
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�
ql pm ,a†

λ

�
= [ql pm ,

3N∑
k=1

(αλk pk +βλk qk )]

=
3N∑
k=1

[ql pm , (αλk pk +βλk qk )]

=
3N∑
k=1

(αλk[ql pm , pk]+βλk[ql pm , qk])

=
3N∑
k=1

(αλk · (i ħhδl k pm)+βλk · (−i ħhδmk ql ))

= i ħhαλl pm − i ħhβλm ql

(C.8c)

�
ql qm ,a†

λ

�
= [ql qm ,

3N∑
k=1

(αλk pk +βλk qk )]

=
3N∑
k=1

[ql qm , (αλk pk +βλk qk )]

=
3N∑
k=1

(αλk[ql qm , pk]+βλk[ql qm , qk])

=
3N∑
k=1

(αλk (i ħhδmk ql + i ħhδl k qm)+βλk · 0)

= i ħhαλm ql + i ħhαλl qm

(C.8d)

Then,

�
H ,a†

λ

�
=

N∑
l=1

−2i ħhβλl pl

2M l l
+

N∑
l=1

N∑
m=1

Wl m

4M l l
(i ħhαλm pl − i ħhβλl qm)−

N∑
l=1

N∑
m=1

Wl m

4Mmm
(i ħhαλl pm − i ħhβλm ql )

− 1
8

N∑
l=1

N∑
m=1

Tl m(i ħhαλm ql + i ħhαλl qm)+
1
2

N∑
l=1

N∑
m=1

Φl m(i ħhαλm ql + i ħhαλl qm)

=
N∑

l=1

−2i ħhβλl pl

2M l l
+

N∑
l=1

N∑
m=1

Wl m

4M l l
(i ħhαλm pl )−

N∑
l=1

N∑
m=1

Wl m

4M l l
(i ħhβλl qm)

−
N∑

l=1

N∑
m=1

Wl m

4Mmm
(i ħhαλl pm)+

N∑
l=1

N∑
m=1

Wl m

4Mmm
(i ħhβλm ql )− 1

8

N∑
l=1

N∑
m=1

Tl m(i ħhαλm ql )

− 1
8

N∑
l=1

N∑
m=1

Tl m(i ħhαλl qm)+
1
2

N∑
l=1

N∑
m=1

Φl m(i ħhαλm ql )+
1
2

N∑
l=1

N∑
m=1

Φl m(i ħhαλl qm)

(C.9)
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UsingWl m =−Wml , Tl m = Tml and Φl m = Φml and switching indices�
H ,a†

λ

�
=

N∑
l=1

−2i ħhβλl pl

2M l l
+

N∑
l=1

N∑
m=1

Wl m

4M l l
(i ħhαλm pl )+

N∑
l=1

N∑
m=1

Wl m

4Mmm
(i ħhβλm ql )

+
N∑

l=1

N∑
m=1

Wl m

4M l l
(i ħhαλm pl )+

N∑
l=1

N∑
m=1

Wl m

4Mmm
(i ħhβλm ql )− 1

8

N∑
l=1

N∑
m=1

Tl m(i ħhαλm ql )

− 1
8

N∑
l=1

N∑
m=1

Tl m(i ħhαλm qL)+
1
2

N∑
l=1

N∑
m=1

Φl m(i ħhαλm ql )+
1
2

N∑
l=1

N∑
m=1

Φl m(i ħhαλm ql )

(C.10)

Comparing the coefficients of pl and ql with [H ,a†
λ
] = ħhωλ

∑3N
l=1(αλl pl +βλl ql ),

−i ħhβλl

M l l
+

i ħh
2

N∑
m=1

Wl m

M l l
αλm = ħhωλαλl (C.11a)

i ħh
2

N∑
m=1

Wl m

Mmm
βλm − i ħh

4

N∑
m=1

Tl mαλm + i ħh
N∑

m=1

Φl mαλm = ħhωλβλl (C.11b)

These can be written in vector form as

−i ħhM−1βλ+
i ħh
2

M−1W αλ = ħhωλαλ (C.12a)

i ħh
2

W M−1βλ− i ħh
4

T αλ+ i ħhΦαλ = ħhωλβλ (C.12b)

Eliminatingβλ = iωλMαλ+
1
2W αλ,

i ħh
2

W M−1(iωλMαλ+
1
2

W αλ)− i ħh
4

T αλ+ i ħhΦαλ = ħhωλ(iωλMαλ+
1
2

W αλ), (C.13)

or
i ħh
4

T αλ− ħh2ωλW αλ− i ħh
4

T αλ+ i ħhΦαλ = i ħhω2
λMαλ+

ħh
2
ωλW αλ, (C.14)

or
ω2
λMαλ− iωλW αλ−Φαλ = 0, (C.15)

which is the same QEP encountered in the classical analysis in Appendix B.
The QEP yields 6N eigenvectors and 6N eigenvalues. 3N eigenvectors will be used to form the creation opera-
tors while the other 3N eigenvectors to form the annihilation operators. We note that if the pair (νλ, uλ) satisfies
the QEP then the pair (−νλ, u∗

λ
) also satisfies the QEP. Thus the total set of 6N eigenpairs

S = {(νλ, uλ), | ν2
λM uλ− iνλW uλ−Φuλ = 0} (C.16)
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forλ running over 1 to 6N can be divided into two equally sized subsets depending on the sign of the frequency:

S+ := {(νλ, uλ), | ν2
λM uλ− iνλW uλ−Φuλ = 0 ν > 0}

S− := {(−νλ, u∗λ), | ν2
λM uλ− iνλW uλ−Φuλ = 0, ν > 0} (C.17)

where the index λ now runs from 1 to 3N . Selecting the 3N eigenpairs which form the creation operators can
be done by checking the commutation relations

[aλ,aλ′] = 0,
�
a†
λ
,a†
λ′
�
= 0,
�
aλ,a†

λ′
�
= 1 (C.18)

1.

[aλ,aλ′] =
∑

j k

�
(α∗λ j p j +β

∗
λ j q j ), (α

∗
λ′k pk +β

∗
λ′k qk )
�

=
∑

j k

�
α∗λ jα

∗
λ′k[p j , pk]+α

∗
λ jβ
∗
λ′k[p j , qk]+β

∗
λ jα
∗
λ′k[q j , pk]+β

∗
λ jβ
∗
λ′k[q j , qk]
	

=
∑

j k

�
α∗λ jβ

∗
λ′k (−i ħhδ j k )+β

∗
λ jα
∗
λ′k (i ħhδ j k )
	

= i ħh
∑

j

�
β∗λ jα

∗
λ′ j −α∗λ jβ

∗
λ′ j
	

(C.19)

This equates to zero when λ= λ′. For λ ̸= λ′,
[aλ,aλ′] = i ħh(βH

λ α
∗
λ′ −αH

λ β
∗
λ′)

= i ħh
§
(−iωλα

H
λ M − 1

2
αH
λ W )α∗λ′ −αH

λ (−iωλ′Mα
∗
λ′ +

1
2

W α∗λ′)
ª

= ħh�(ωλ−ωλ′)α
H
λ Mα∗λ′ +α

H
λ (−iW )α∗λ′
	

= 0

(C.20)

2. �
a†
λ
,a†
λ′
�
=
∑

j k

�
(αλ j p j +βλ j q j ), (αλ′k pk +βλ′k qk )

�
=
∑

j k

�
αλ jαλ′k[p j , pk]+αλ jβλ′k[p j , qk]+βλ jαλ′k[q j , pk]+βλ jβλ′k[q j , qk]

	
=
∑

j k

�
αλ jβλ′k (−i ħhδ j k )+βλ jαλ′k (i ħhδ j k )

	
= i ħh
∑

j

�
βλ jαλ′ j −αλ jβλ′ j

	
(C.21)
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Again this equates to zero when λ= λ′. For λ ̸= λ′,�
a†
λ
,a†
λ′
�
= i ħh
§∑

j

�
β∗λ jα

∗
λ′ j −α∗λ jβ

∗
λ′ j
	ª∗

= i ħh · 0
= 0

(C.22)

3. �
aλ,a†

λ′
�
=
∑

j k

�
(α∗λ j p j +β

∗
λ j q j ), (αλ′k pk +βλ′k qk )

�
=
∑

j k

�
α∗λ jαλ′k[p j , pk]+α

∗
λ jβλ′k[p j , qk]+β

∗
λ jαλ′k[q j , pk]+β

∗
λ jβλ′k[q j , qk]
	

=
∑

j k

�
α∗λ jβλ′k (−i ħhδ j k )+β

∗
λ jαλ′k (i ħhδ j k )
	

= i ħh
∑

j

�
β∗λ jαλ′ j −α∗λ jβλ′ j

	
(C.23)

For λ ̸= λ′,�
aλ,a†

λ′
�
= i ħh(βH

λ αλ′ −αH
λ βλ′)

= i ħh
§
(−iωλα

H
λ M − 1

2
αH
λ W )αλ′ −αH

λ (iωλ′Mαλ′ +
1
2

W αλ′)
ª

= ħh�(ωλ+ωλ′)α
H
λ Mαλ′ +α

H
λ (−iW )αλ′
	

= 0

(C.24)

For λ= λ′, �
aλ,a†

λ

�
= i ħh(βH

λ αλ−αH
λ βλ)

= i ħh
§
(−iωλα

H
λ M − 1

2
αH
λ W )αλ−αH

λ (iωλMαλ+
1
2

W αλ)
ª

= ħh�ωλα
H
λ Mαλ+ωλα

H
λ Mαλ+α

H
λ (−iW )αλ
	

=
ħh
ωλ

�
ω2
λα

H
λ Mαλ+ω

2
λα

H
λ Mαλ+ωλα

H
λ (−iW )αλ
	

=
ħh
ωλ

�
ω2
λα

H
λ Mαλ+α

H
λ Φαλ
	

(C.25)

To fix the normalisation of the eigenvectors αλ so that
�
aλ,a†

λ

�
= 1, we make the substitution αλ = cλγλ,
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where γλ is normalised to one. Then,

�
aλ,a†

λ

�
=
ħh|cλ|2
ωλ

�
ω2
λγ

H
λ Mγλ+ γ

H
λ Φγλ
	

= 1

(C.26)

Then
|cλ|2 = ωλ

ħh
§

1
ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ

ª
(C.27)

Noting that since |cλ|2 is non-negative,
�
aλ,a†

λ

�
= 1 only when the quantity ωλ/(ω

2
λ
γH
λ

Mγλ + γ
H
λ
Φγλ) is

positive. This expression helps us pick out the 3N eigenpairs to form the creation operators

(ωλ,αλ) =

(νλ, uλ) , ν2
λ

uH
λ

M uλ+ uH
λ
Φuλ > 0

(−νλ, u∗
λ
) , ν2

λ
uH
λ

M uλ+ uH
λ
Φuλ < 0

(C.28)

Second-Quantisation of Canonical Operators

Some identities

Without proof we have the following identities for our system:

1.
6N∑
λ=1

γλγ
H
λ

ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ
= Φ−1 (C.29)

2.
6N∑
λ=1

ωλγλγ
H
λ

ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ
=O3N (C.30)

3.
6N∑
λ=1

ω2
λ
γλγ

H
λ

ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ
=M−1 (C.31)

4.
6N∑
λ=1

ω3
λ
γλγ

H
λ

ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ
= i M−1W M−1 (C.32)

5.
6N∑
λ=1

ω4
λ
γλγ

H
λ

ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ
=−M−1W M−1W M−1+M−1ΦM−1 (C.33)
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We have our creation and annihilation operators as

a†
λ
=

3N∑
k=1

(αλk pk +βλk qk ) (C.34)

aλ =
3N∑
k=1

(α∗λk pk +β
∗
λk qk ) (C.35)

In vector forma† =
�
a†

1 ... a†
3N

�T
anda =
�
a1 ... a3N

�T
; p =
�

p1 ... p3N

�T
and q =
�
q1 ... q3N

�T
;

matrices α=
�
α1 ... α3N

�T
andβ=
�
β1 ... β3N

�T
a† = αT p +βT q (C.36)

a = αH p +βH q (C.37)

With the matrixΛ= diag(ω1, ...,ω3N ) consisting of all corresponding eigenvalues

β= i MαΛ+
1
2

W α (C.38)

Then
α∗a†−αa = (α∗α∗H −ααH )p +(α∗β∗H −αβH )q (C.39)

(α∗α∗H −ααH )p =
§ 6N∑
λ=1

ωλγλγ
H
λ

ħh(ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ)

ª
p

=
1
ħhO3N p

= 0

(C.40)

(α∗β∗H −αβH )q = (α∗(iΛα∗H M − 1
2
α∗H W )−α(−iΛαH M − 1

2
αH W ))q

=
§

i(α∗Λα∗H +αΛαH )M − 1
2
(α∗α∗H −ααH )W

ª
q

=
§

i
6N∑
λ=1

ω2
λ
γλγ

H
λ

ħh(ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ)

M +
1
2

6N∑
λ=1

ωλγλγ
H
λ

ħh(ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ)

W
ª

q

=
§ i
ħh M−1M +

1
2ħhO3N W
ª

q

=
i
ħh q

(C.41)

Thus
α∗a†−αa =

i
ħh q (C.42)
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q =−i ħh(α∗a†−αa) (C.43)

And

q j =−i ħh
3N∑
λ=1

(α∗λ j a
†
λ
−αλ j aλ)

=−i ħh
3N∑
λ=1

cλ(γ
∗
λ j a

†
λ
− γλ j aλ)

(C.44)

where

cλ =

√√√ |ωλ|
ħh|ω2

λ
γH
λ

Mγλ+ γH
λ
Φγλ|

(C.45)

Similarly
β∗a†−βa = (β∗α∗H −βαH )p +(β∗β∗H −ββH )q (C.46)

(β∗α∗H −βαH )p =−(α∗β∗H −αβH )T p

=− i
ħh p

(C.47)

(β∗β∗H −ββH )q =
§
(−i Mα∗Λ+ 1

2
W α∗)(iΛα∗H M − 1

2
α∗H W )

− (i MαΛ+
1
2

W α)(−iΛαH M − 1
2
αH W )
ª

q

=
§

M (α∗Λ2α∗H −αΛ2αH )M +
i
2

W (α∗Λα∗H +αΛαH )M

+
i
2

M (α∗Λα∗H +αΛαH )W − 1
4

W (α∗α∗H −ααH )W
ª

q

=
§

M
6N∑
λ=1

ω3
λ
γλγ

H
λ

ħh(ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ)

M +
i
2

W
6N∑
λ=1

ω2
λ
γλγ

H
λ

ħh(ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ)

M

+
i
2

M
6N∑
λ=1

ω2
λ
γλγ

H
λ

ħh(ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ)

W +
1
4

W
6N∑
λ=1

ωλγλγ
H
λ

ħh(ω2
λ
γH
λ

Mγλ+ γH
λ
Φγλ)

W
ª

q

=
§

M (
−i M−1W M−1

ħh )M +
i
2

W (
M−1

ħh )M +
i
2

M (
M−1

ħh )W +
1
4

W (
O3N

ħh )W
ª

q

=
§−iW
ħh +

iW
2ħh +

iW
2ħh
ª

q

= 0
(C.48)

Thus
β∗a†−βa =− i

ħh p (C.49)

p = i ħh(β∗a†−βa) (C.50)
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And

p j = i ħh
3N∑
λ=1

(β∗λ j a
†
λ
−βλ j aλ) (C.51)
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D
Trap Imperfections

Consider an arbitrary spatial configuration ofN Penning traps, each containing a singly charged ion of the same
species. In a real experimental setup, the trapping potential may not be of the idealised form expected from the
optimisation of the electrode structures, and may also vary from one lattice site to the other. Similarly the
magnetic field could bemisaligned with the confining direction of the potential. If no defects due to impurities
are present in the system * so that m j = m, the mass matrix M simplifies to

M = m · I3N (D.1)

Defining ẑ as the common confining direction of the traps andwith the polar angleθ and azimuthal angleφ rep-
resenting themisalignmentof the static homogeneousmagnetic fieldwith respect to ẑ axis,B= B0 sinθ cosφ x̂+
B0 sinθ sinφŷ +B0 cosθ ẑ so that

W = mωc

 ON cosθ · IN − sinθ sinφ · IN
−cosθ · IN ON sinθ cosφ · IN

sinθ sinφ · IN − sinθ cosφ · IN ON

 (D.2)

whereωc = eB0/m is the true cyclotron frequency.
The (harmonic) imperfections in the trapping potential are captured by the blockmatrixV in the general form

V =

V x x V xy V x z

V y x V yy V y z

V z x V zy V z z

 (D.3)

*In the presence of impurity defects, the normal mode analysis of the imperfect trap is equivalent to the more general analysis
presented in Appendix B
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with the component matrices defined as
V µν

j k = 2eϕµνj 0δ j k , (D.4)

The Coulomb repulsion can again be expressed through the matrix

K =

K x x K xy K x z

K y x K yy K y z

K z x K zy K z z

 (D.5)

with

Kµµ
j k =


−ke e2∑

l ̸= j
R2

j l 0−3Rµ2
j l 0

R5
j l 0

, j = k

ke e2 R2
j k0−3Rµ2

j k0

R5
j k0

, j ̸= k
, (D.6a)

Kµν
j k =K νµ

j k =


3ke e2∑

l ̸= j
Rµj l 0

Rνj l 0

R5
j l 0

, j = k

−3ke e2 Rµj l 0
Rνj l 0

R5
j k0

, j ̸= k
, µ ̸= ν , (D.6b)

Here indices j and k run from 1 to N while the indices µ and ν refer to the Cartesian components x , y and z .
The equilibrium positions in an imperfect trap will, of course, differ from those in a perfectly designed trap.
The matrix V is traceless as a direct consequence of Laplace’s equation, while the matrix K is traceless because
the Coulomb forces being internal forces in the system of ions pairwise cancel each other and the total sum
equates to zero. V and K are also both real and symmetric. As a result the stiffness matrix Φ=V +K is a real
symmetric traceless matrix.
Following the procedure outlined in Appendix B, the normal modes of the system can be obtained by solving
the QEP

[ω2m · I3N +ω(−iW )−Φ]q0 = 0, (D.7)

or dividing by m,
[ω2 · I3N +ω(−iW ′)−Φ′]q0 = 0, (D.8)

where we define the matrices W ′ = W /m and Φ′ = Φ/m. The stability of an imperfect trap setup can be
determined by checking if all eigenvalues are real.
Linearisation of the QEP in the first-companion form yields the GEP�

O3N I3N

Φ′ iW ′

��
q0

ωq0

�
−ω
�
I3N O3N

O3N I3N

��
q0

ωq0

�
= 0 (D.9)

which is actually just the SEP
Av =ωv (D.10)
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with 6N -dimensional eigenvectors v =
�
q0 ωq0

�T
and 6N eigenvaluesω belonging to the 6N×6N matrix

A

A=
�
O3N I3N

Φ′ iW ′

�
(D.11)

Then
A2v =ω2v (D.12)

where

A2 =
�
Φ′ iW ′

iW ′Φ′ Φ′−W ′2

�
(D.13)

Since the sum of eigenvalues of a matrix is equal to its trace,

6N∑
λ=1

ω2
λ = tr(A2) = tr(2Φ′−W ′2) =−tr(W ′2) (D.14)

Noting that the frequencies come in pairs of positive-negative values in the stable regime we can express this
sum in terms of the 3N positive frequencies,

3N∑
λ=1

ω2
λ =−1

2
tr(W ′2) (D.15)

Since

W ′2 =ω2
c

(−cos2θ− sin2θ sin2φ) · IN sin2θ sinφ cosφ · IN sinθ cosθ cosφ · IN
sin2θ sinφ cosφ · IN (−cos2θ− sin2θ cos2φ)IN sinθ cosθ sinφ · IN
sinθ cosθ cosφ · IN sinθ cosθ sinφ · IN (− sin2θ sin2φ− sin2θ cos2φ)IN


(D.16)

we can explicitly calculate its trace as

tr(W ′2) =Nω2
c {−2cos2θ− 2sin2θ sin2φ− 2sin2θ cos2φ}

=−2Nω2
c

(D.17)

Thus
3N∑
λ=1

ω2
λ =Nω2

c (D.18)

This result can be treated as a non-trivial generalisation of the well known Brown-Gabrielse invariance theorem
for a single ion in an imperfect Penning trap,

ω2
++ω

2−+ω2
z =ω

2
c (D.19)
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E
Normal Modes of a Single Ion

Classical Regime

From the normalmode analysis of Penning trap arrays it is straightforward to deduce the equation ofmotion for
a single ion in a Penning trap consisting of the radially symmetric quadrupole potentialV (x, y, z) =ϕ0(z

2−
(x2+y2)/2) and a uniformmagnetic fieldB= B0 ẑ . Since no other ions are present in the system the Coulomb
terms can be omitted and the local coordinates are equivalent to the equilibrium position of the ion r (t ) =�

x y z
�T

.
For an ion of mass m and charge +e , the matrices M , W and Φ in the QEP [ω2M +ω(−iW )−Φ ]q0 = 0
reduce to

M = m

1 0 0
0 1 0
0 0 1

 (E.1a)

W = mωc

 0 1 0
−1 0 0
0 0 0

 (E.1b)

Φ= m

−ω2
z/2 0 0

0 −ω2
z/2 0

0 0 ω2
z

 (E.1c)

76



where we define the true cyclotron frequencyωc = eB0/m and the axial frequencyωz =
p

2eϕ0/m. The
eigenvectors obtained from solving the QEP are

q+ =
1p
2

 1−i
0

 , q− =
1p
2

 1−i
0

 , qz =

00
1

 (E.2)

and these correspond to the positive eigenvalues,ω+,ω− andωz , where

ω± =
ωc ±
p
ω2

c − 2ω2
z

2
(E.3)

The general solution for r (t ) can then be written as

r (t ) =Re(ρ+q+e−iω+ t +ρ−q−e−iω− t +ρz qz e−iωz t ) (E.4)

which gives with the substitution ρ+ = r+e−iδ+ , ρ− = r−e−iδ− , ρz = rz e−iδz ,

x =
r+p
2

cos
�
ω+ t +δ+
�
+

r−p
2

cos
�
ω− t +δ−
�

(E.5a)

y =− r+p
2

sin
�
ω+ t +δ+
�− r−p

2
sin
�
ω− t +δ−
�
, (E.5b)

z = rz cos(ωz t +δz ), (E.5c)

QuantumRegime

With the generalised position operators defined as x , y , and z , the conjugate momentum operators can be
defined as

px = m(ẋ − ωc

2
y) (E.6a)

py = m(ẏ +
ωc

2
x) (E.6b)

pz = mż (E.6c)

The normalised eigenvectors, frequencies and constant pre-factors used to form the creation and annihilation
operators for the phonon modes can again be calculated by following the procedure described in Appendix B.
Explicitly,

γ+ =
1p
2

 1−i
0

 , ω+ =
ωc +
p
ω2

c − 2ω2
z

2
, ζ+ = i mΩγ+, c+ =

1p
2ħh mΩ

(E.7a)
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γ− =
1p
2

1i
0

 , −ω− =−ωc −
p
ω2

c − 2ω2
z

2
, ζ− = i mΩγ−, c− =

1p
2ħh mΩ

(E.7b)

γz =

00
1

 , ωz , ζz = i mωzγz , cz =
1p

2ħh mωz

(E.7c)

This yields

a†
+ =
s

1
4ħh mΩ

(px − i py )+ i

s
mΩ
4ħh (x − i y) (E.8a)

a+ =
s

1
4ħh mΩ

(px + i py )− i

s
mΩ
4ħh (x + i y) (E.8b)

a†
− =
s

1
4ħh mΩ

(px + i py )+ i

s
mΩ
4ħh (x + i y) (E.8c)

a− =
s

1
4ħh mΩ

(px − i py )− i

s
mΩ
4ħh (x − i y) (E.8d)

a†
z =

√√√ 1
2ħh mωz

pz + i
È

mωz

2ħh z (E.8e)

az =

√√√ 1
2ħh mωz

pz − i
È

mωz

2ħh z (E.8f)

The three sets of creation and annihilation operators follow the standard commutation relations

[a j ,ak] = 0 (E.9a)

[a†
j ,a†

k] = 0 (E.9b)

[a j ,a†
k] = δ j k (E.9c)

for j , k = z,+,−.
Defining r0 =
p
ħh/4mΩ and z0 =

p
ħh/2mωz , the position and momentum operators take the form

x = i r0(a+− a†
++ a−− a†

−) (E.10a)

y = r0(a++ a†
+− a−− a†

−) (E.10b)

z = i z0(az − a†
z ) (E.10c)

px = mΩr0(a++ a†
++ a−+ a†

−) (E.10d)
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py =−i mΩr0(a+− a†
+− a−+ a†

−) (E.10e)

pz = mωz z0(az + a†
z ) (E.10f)

The total Hamiltonian can be written in second quantised form as

H = ħhω+(a†
+a†
++

1
2
)− ħhω−(a†

−a†
−+

1
2
)+ ħhωz (a

†
z a†

z +
1
2
) (E.11)
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F
Normal Modes of Linear Chains

Consider a linear chain of identical Penning traps, each containing a single ion (of the same species), along one
of the radial coordinate axes, say x . If the quadrupole potential at each trap j is of the cylindrically symmetric
formV j =ϕ0(z

2− (x2+ y2)/2), the matrixV takes the diagonal form

V = m

−ω2
z/2 · IN ON ON

ON −ω2
z/2 · IN ON

ON ON ω2
z · IN

 , (F.1)

where we defineωz =
p

2eϕ0/m
If B= B0 ẑ ,

W = eB0

ON IN ON

−IN ON ON

ON ON ON

 (F.2)

The equilibrium positions of the ions in such a system naturally all lie along this axis, meaning for any pair of
ions j and k , R j k0 = R j k0 x̂ and hence

Rx
j k0 = R j k0

Ry
j k0
= 0

Rz
j k0 = 0

(F.3)
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As a result all off-diagonal sub-matrices K x x , K xy , K y x , K x z , K z x , K y z , and K zy equate toON and K has the
much simplified form

K =

K x x ON ON

ON −K x x/2 ON

ON ON −K x x/2

 (F.4)

At this point it becomes convenient towrite down the equations ofmotion for the vectors along each rectangular

coordinate axis x =
�

x1 ... xN

�T
, y =
�
y1 ... yN

�T
, and z =
�

z1 ... zN

�T
so that equation [num] can be split

into the following three

mẍ − eB0 ẏ − mω2
z

2
x +K x x x = 0 (F.5a)

mÿ + eB0 ẋ − mω2
z

2
y − K x x

2
y = 0 (F.5b)

mz̈ +mω2
z z − K x x

2
z = 0 (F.5c)

Definingωc = eB0/m and dividing the equations by the mass m,

ẍ −ωc ẏ − ω
2
z

2
x +

K x x

m
x = 0 (F.6a)

ÿ +ωc ẋ − ω
2
z

2
y − K x x

2m
y = 0 (F.6b)

z̈ +ω2
z z − K x x

2m
z = 0 (F.6c)

Since the matrix K x x/m is real, symmetric and positive semidefinite, its eigenvalues are real and non-negative.
Then, for an eigenpair {Ω2

λ
, qλ} of K x x/m,

K x x

m
qλ =Ω

2
λqλ (F.7a)

qT
λ

K x x

m
=Ω2

λqT
λ (F.7b)

Taking the inner product with qλ, we get

qT
λ ẍ −ωc qT

λ ẏ − ω
2
z

2
qT
λ x +Ω2

λqT
λ x = 0 (F.8a)

qT
λ ÿ +ωc qT

λ ẋ − ω
2
z

2
qT
λ y − Ω

2
λ

2
qT
λ y = 0 (F.8b)

qT
λ z̈ +ω2

z qT
λ z − Ω

2
λ

2
qT
λ z = 0 (F.8c)
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Defining the new coordinates Xλ = qT
λ

x =
∑N

j=1 qλ j x j , Yλ = qT
λ

y =
∑N

j=1 qλ j y j , and Zλ = qT
λ

z =∑N
j=1 qλ j z j , these equations transform into the equations of a motion like those of a single ion with coordi-

nates (Xλ,Yλ,Zλ)

Ẍλ−ωc Ẏλ− (ω
2
z

2
−Ω2

λ)Xλ = 0 (F.9a)

Ÿλ+ωc Ẋλ− (ω
2
z

2
+
Ω2
λ

2
)Yλ = 0 (F.9b)

Z̈λ+(ω
2
z −
Ω2
λ

2
)Zλ = 0 (F.9c)

The axial motion is decoupled from the radial degrees of freedom. Substituting the ansatz Zλ = Zλ0e−iωzλ t ,

−ω2
zλZλ0+(ω

2
z −
Ω2
λ

2
)Zλ0 = 0, (F.10)

giving

ω2
zλ = (ω

2
z −
Ω2
λ

2
) (F.11)

With this definition, the radial equations transform to

Ẍλ−ωc Ẏλ−
ω2

zλ

2
(1− ελ)Xλ = 0 (F.12a)

Ÿλ+ωc Ẋλ−
ω2

zλ

2
(1+ ελ)Yλ = 0, (F.12b)

with ελ = 3Ω2
λ
/2ω2

zλ. These are the equations of motion for the so-called elliptical Penning trap, where the
‘ellipticity’ ελ reflects the breaking of radial symmetry due to Coulomb repulsion. Again these equations can be
solved using the ansatz Xλ =Xλ0e−iωλ t and Yλ = Yλ0e−iωλ t , yielding

−ω2
λXλ0+ iωcωλYλ0−

ω2
zλ

2
(1− ελ)Xλ0 = 0 (F.13a)

−ω2
λYλ0− iωcωλXλ0−

ω2
zλ

2
(1+ ελ)Yλ0 = 0 (F.13b)

For non-trivial solutions, we require����� ω2
λ
+ω2

zλ(1− ελ)/2 −iωcωλ

iωcωλ ω2
λ
+ω2

zλ(1+ ελ)/2

�����= 0 (F.14)
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The radial frequencies are then given by

ωλ± =

√√√ω2
c −ω2

zλ±
Æ
ω2

c (ω2
c − 2ω2

zλ)+ω
4
zλε

2
λ

2
(F.15)

For a two ion chain with equilibrium distance d ,

K x x

m
=

 2ke e2

md 3 − 2ke e2

md 3

− 2ke e2

md 3
2ke e2

md 3

 (F.16)

such that the two eigenvalues areΩ2
1 = 0 andΩ2

2 = 4ke e2/md 3.
Then the two axial frequencies areωz1 = ωz , which corresponds to the COM frequency and the stretch fre-
quencyωz2 =
p
ω2

z − 2ke e2/md 3. Likewise the radial frequencies are

ω±1 =ω± (F.17a)

ω±2 =

√√√ω2
c −ω2

z2±
Æ
ω2

c (ω2
c − 2ω2

z2)+ω
4
z2ε

2
2

2
(F.17b)

When the ions are sufficiently far apart, we can approximate

ωz2 ≈ωz (1− ke e2

mω2
z d 3
)

=ωz − ke e2

mωz d 3

(F.18)

Thus we can define the exchange frequency for the axial modes

Ωz
e x ≡ωz2−ωz ≈ e2

4πε0mωz d 3
(F.19)

83



Similarly,

ω±2 =

√√√ω2
c −ω2

z2±
Æ
ω2

c (ω2
c − 2ω2

z2)+ 9Ω4
2/4

2

≈
√√√ω2

c −ω2
z2±
Æ
ω2

c (ω2
c − 2ω2

z2)

2

=
ωc ±
Æ
ω2

c − 2ω2
z2

2

=
ωc ±
p
ω2

c − 2ω2
z + 4ke e2/md 3

2

≈ ωc

2
± 1

2

p
ω2

c − 2ω2
z
�
1+

2ke e2

md 3(ω2
c − 2ω2

z )
	

=ω±± ke e2

md 3
p
ω2

c − 2ω2
z

=ω±± ke e2

m(ω+−ω−)d 3

(F.20)

Thus we define for the radial modes a similar exchange frequency given by

Ω±e x ≡ω±2−ω± ≈± e2

4πmε0(ω+−ω−)d 3
(F.21)

For a linear chain along the trapping axis we could do a similar analysis. The K matrix simplifies to

K =

−K z z/2 ON ON

ON −K z z/2 ON

ON ON K z z

 (F.22)

while all other matrices are the same as above.

ẍ −ωc ẏ − ω
2
z

2
x − K z z

2m
x = 0 (F.23a)

ÿ +ωc ẋ − ω
2
z

2
y − K z z

2m
y = 0 (F.23b)

z̈ +ω2
z z +K z z mz = 0 (F.23c)

The matrix K z z/m is real, symmetric and positive semidefinite. If

K z z

m
qλ =Ω

2
λqλ (F.24a)
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qT
λ

K z z

m
=Ω2

λqT
λ (F.24b)

then taking the inner productwith qλ, and again definingXλ = qT
λ

x =
∑N

j=1 qλ j x j ,Yλ = qT
λ

y =
∑N

j=1 qλ j y j ,
and Zλ = qT

λ
z =
∑N

j=1 qλ j z j ,

Ẍλ−ωc Ẏλ− (ω
2
z

2
+
Ω2
λ

2
)Xλ = 0 (F.25a)

Ÿλ+ωc Ẋλ− (ω
2
z

2
+
Ω2
λ

2
)Yλ = 0 (F.25b)

Z̈λ+(ω
2
z +Ω

2
λ)Zλ = 0 (F.25c)

The axial motion is decoupled from the radial degrees of freedom. With the ansatz Zλ = Zλ0e−iωzλ t ,

−ω2
zλZλ0+(ω

2
z +Ω

2
λ)Zλ0 = 0, (F.26)

giving
ω2

zλ = (ω
2
z +Ω

2
λ) (F.27)

The radial equations are simply

Ẍλ−ωc Ẏλ−
ω2

zλ

2
Xλ = 0 (F.28a)

Ÿλ+ωc Ẋλ−
ω2

zλ

2
Yλ = 0, (F.28b)

which are just the equations of motion for a cylindrically symmetric Penning trap. It is then straightforward to
show from the previous analysis for a single ion that there are two radial frequencies

ωλ± =
ωc ±
Æ
ω2

c − 2ω2
zλ

2
(F.29)

Again for two ions separated by an equilibrium distance d along the z-axis,ωz1 = ωz andω±1 = ω± while
the exchange frequencies are given by

Ωz
e x ≡ωz2−ωz ≈ e2

2πε0mωz d 3
(F.30)

and

Ω±e x ≡ω±2−ω± ≈± e2

2πε0m(ω+−ω−)d 3
, (F.31)

which are twice the values for the planar configuration.
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G
Doppler Cooling

A quantitative analysis of Doppler cooling a system of N ions in an array of Penning traps begins, in the semi-
classical limit, by finding the change in amplitude of each mode before and after a photon scattering event due
to the laser-ion interaction.
The general solution for the collective motion of the ions can be written in terms of the normal mode vectors
and frequencies as

r (t ) =
3N∑
λ=1

Re[ρλqλe−iωλ t ]

=
1
2

3N∑
λ=1

§
ρλqλe−iωλ t +ρ∗λq∗λe iωλ t

ª (G.1)

where ρλ are complex constants, and for the sake of simplicity allωλ are assumed to be positive.
Then the velocity vector is given by

ṙ (t ) =
1
2

3N∑
λ=1

§
− iωλρλqλe−iωλ t + iωλρ

∗
λq∗λe iωλ t
ª

(G.2)
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We can extract the amplitude of a single mode of motion λ from the ion positions and velocities as

qH
λ {(−iωλM −W )r +M ṙ }= 1

2

3N∑
λ′=1

ρλ′ e
−iωλ′ t
�− iωλqH

λ M qλ′ − qH
λ W qλ′ − iωλ′q

H
λ M qλ′
	

+
1
2

3N∑
λ′=1

ρ∗λ′ e
iωλ′ t
�− iωλqH

λ M q∗λ′ − qH
λ W q∗λ′ − iωλ′q

H
λ M q∗λ′
	

=− i
2

3N∑
λ′=1

ρλ′ e
−iωλ′ t
�
(ωλ+ωλ′)q

H
λ M qλ′ + qH

λ (−iW )qλ′
	

− i
2

3N∑
λ′=1

ρ∗λ′ e
iωλ′ t
�
(ωλ−ωλ′)q

H
λ M q∗λ′ + qH

λ (−iW )q∗λ′
	

=− i
2ωλ

(ω2
λqH
λ M qλ+ qH

λ Φqλ)ρλe−iωλ t

=−iελρλe−iωλ t

(G.3)

wherewehaveused relations fromAppendix [] anddefined the real quantityελ = (ω2
λ
qH
λ

M qλ+qH
λ
Φqλ)/2ωλ.

Taking the complex conjugate of the previous equation, we get

q∗Hλ {(iωλM −W )r +M ṙ }= iελρ
∗
λe iωλ t (G.4)

Splitting the eigenvector into its real and imaginary parts,

qλ = q̄λ+ i q̃λ (G.5)

we get
qλ+ q∗

λ

2
= q̄λ (G.6a)

qλ− q∗
λ

2
= i q̃λ (G.6b)

qH
λ
+ q∗H

λ

2
= q̄H

λ = q̄T
λ (G.6c)

qH
λ
− q∗H

λ

2
=−i q̃H

λ =−i q̃T
λ (G.6d)

Then adding together equations G.3 andG.4 or subtracting equationG.3 from equationG.4 yields respectively

ωλ q̃T
λ M r + q̄T

λ W r − q̄T
λ M ṙ = ελ rλ sin(ωλ t +δλ) (G.7a)

ωλ q̄T
λ M r − q̃T

λ W r + q̃T
λ M ṙ = ελ rλ cos(ωλ t +δλ) (G.7b)
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where we have substituted ρλ = rλe−iδλ .
Squaring and adding these two we get the expression for the amplitude of each mode in terms of the position
and velocity vectors as

r 2
λ =

1
ε2
λ

§
(ωλ q̃T

λ M r + q̄T
λ W r − q̄T

λ M ṙ )2+(ωλ q̄T
λ M r − q̃T

λ W r + q̃T
λ M ṙ )2
ª

(G.8)

It can also be useful to re-express the position and velocity vectors as

r (t ) =
3N∑
λ=1

§
rλ q̄λ cos(ωλ t +δλ)+ rλ q̃λ sin(ωλ t +δλ)

ª
(G.9)

ṙ (t ) =
3N∑
λ=1

§
−ωλ rλ q̄λ sin(ωλ t +δλ)+ωλ rλ q̃λ cos(ωλ t +δλ)

ª
(G.10)

At a time t just before a photon absorption event, we have

ωλ q̃T
λ M r (t )+ q̄T

λ W r (t )− q̄T
λ M ṙ (t ) = ελ rλ sin(ωλ t +δλ) (G.11a)

ωλ q̄T
λ M r (t )− q̃T

λ W r (t )+ q̃T
λ M ṙ (t ) = ελ rλ cos(ωλ t +δλ) (G.11b)

while at the time t ′ just after the photon is re-emitted,

ωλ q̃T
λ M r (t ′)+ q̄T

λ W r (t ′)− q̄T
λ M ṙ (t ′) = ελ r ′λ sin

�
ωλ t ′+δ ′λ
�

(G.12a)

ωλ q̄T
λ M r (t ′)− q̃T

λ W r (t ′)+ q̃T
λ M ṙ (t ′) = ελ r ′λ cos

�
ωλ t ′+δ ′λ
�

(G.12b)

If the photon scattering event is instantaneous and leaves the position unchanged but the ion interacting with
the photon gets amomentum kick, the position and velocity vectors at times t and t ′ are related as r (t ′) = r (t )
and ṙ (t ′)− ṙ (t ) =∆v . Subtracting G.11a from G.12a, and G.11b from G.12b,

− q̄T
λ M∆v = ελ(r

′
λ sin
�
ωλ t ′+δ ′λ
�− rλ sin(ωλ t +δλ)) (G.13a)

q̃T
λ M∆v = ελ(r

′
λ cos
�
ωλ t ′+δ ′λ
�− rλ cos(ωλ t +δλ)) (G.13b)

and hence
ελ r ′λ sin
�
ωλ t ′+δ ′λ
�
= ελ rλ sin(ωλ t +δλ)− q̄T

λ M∆v (G.14a)

ελ r ′λ cos
�
ωλ t ′+δ ′λ
�
= ελ rλ cos(ωλ t +δλ)+ q̃T

λ M∆v (G.14b)

Squaring and adding equations G.14a and G.14b,

ε2
λ r ′2λ = ε

2
λ r 2
λ+(q̄

T
λ M∆v)2−2(q̄T

λ M∆v)ελ rλ sin(ωλ t +δλ)+(q̃
T
λ M∆v)2+2(q̃T

λ M∆v)ελ rλ cos(ωλ t +δλ)
(G.15)
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and the change in the amplitude of mode λ due to a single laser-ion interaction event is given by

∆r 2
λ ≡ r ′2λ − r 2

λ

=
1
ε2
λ

§
(q̄T
λ M∆v)2+(q̃T

λ M∆v)2− 2(q̄T
λ M∆v)ελ rλ sin(ωλ t +δλ)+ 2(q̃T

λ M∆v)ελ rλ cos(ωλ t +δλ)
ª

(G.16)
In the low intensity limit, the average rate of change in the mode amplitudes can be found by multiplying the
change in amplitudewith each scattering event by the photon incidence rate and the scattering cross section and
then averaging over the mode amplitudes, phases and scattering directions.
For a laser with uniform intensity I over the extent of the ionmotion, the number of photons incident per unit
time per unit area is I/ħhω, while the cross-section takes the velocity dependent form

σ(ω,v) =
σ0(Γ/2)

2

(ω0+k · v+R/ħh −ω)2+(Γ/2)2 (G.17)

whereω0 and Γ are respectively the frequency and natural linewidth of the cooling transition used, ω and k
are respectively the frequency and wave vector of the laser and σ0 is a constant pertaining to the transition.
Assuming the ion has already been somehow cooled so that the velocity is small,

σ(ω,v)≈ σ0(Γ/2)
2

δ2+(Γ/2)2

§
1+

2δ k · v
δ2+(Γ/2)2

ª
(G.18)

where δ =ω−ω0 is the detuning of the laser.
Considering the interaction of the laser with the j th ion, the change in velocity of the ion due to the absorp-
tion of a photon with momentum ħhk and spontaneous emission of a photon with momentum ħhks can be
quantified as

∆v j = v′j − v j =
ħh(k−ks )

m j
(G.19)

through the conservation of momentum, so that the Cartesian components are given as

∆vµj =
ħh(kµ− kµs )

m j
, µ= x, y, z (G.20)

Using this result,
q̄T
λ M∆v = m j

∑
µ

q̄µ
λ j∆vµj = ħh
∑
µ

q̄µ
λ j (k

µ− kµs ) (G.21a)

q̃T
λ M∆v = m j

∑
µ

q̃µ
λ j∆vµj = ħh
∑
µ

q̃µ
λ j (k

µ− kµs ) (G.21b)
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and
(q̄T
λ M∆v)2 = ħh2
∑
µ

(q̄µ
λ j )

2(kµ− kµs )2+
∑
µ ̸=ν

q̄µ
λ j q̄

ν
λ j (k

µ− kµs )(kν − kνs ) (G.22a)

(q̃T
λ M∆v)2 = ħh2
∑
µ

(q̃µ
λ j )

2(kµ− kµs )2+
∑
µ ̸=ν

q̃µ
λ j q̃

ν
λ j (k

µ− kµs )(kν − kνs ) (G.22b)

The cross-section can be approximated as

σ(ω,v j )≈ σ0(Γ/2)
2

(Γ/2)2+δ2

§
1+ 2δ

∑
ρ,λ(−ωλ rλkµ q̄µ

λ j sin(ωλ t +δλ)+ωλ rλkµ q̃µ
λ j cos(ωλ t +δλ))

(Γ/2)2+δ2

ª
(G.23)

by substituting

k · v j =
∑
µ

kµvµj

=
∑
µ,λ

§
−ωλ rλkµ q̄µ

λ j sin(ωλ t +δλ)+ωλ rλkµ q̃µ
λ j cos(ωλ t +δλ)

ª (G.24)

Defining

γs ≡ I
ħhω ·

σ0(Γ/2)
2

(Γ/2)2+δ2
(G.25)

we get the rate equation for the amplitude of mode λ as

∆r 2
λ

∆t
=
γs j

ε2
λ

§
(q̄T
λ M∆v)2+(q̃T

λ M∆v)2(1)− 2(q̄T
λ M∆v)ελ rλ sin(ωλ t +δλ)(2)+ 2(q̃T

λ M∆v)ελ rλ cos(ωλ t +δλ)(3)

ª
·
§

1(a)+
2δ

(Γ/2)2+δ2

∑
µ,λ′
(−ωλ′Aλ′k

µ q̄µ
λ′ j sin(ωλ′ t +δλ′)(b)

+ωλ′Aλ′k
µ q̃µ

λ′ j cos(ωλ′ t +δλ′)(c)
)
ª

(G.26)
We now average each sub-product over the phases {δλ′}

〈(1) · (a)〉{δλ′ } = (q̄T
λ M∆v)2+(q̃T

λ M∆v)2 (G.27a)

〈(1) · (b )〉{δλ′ } = 0 (G.27b)

〈(1) · (c)〉{δλ′ } = 0 (G.27c)

〈(2) · (a)〉{δλ′ } = 0 (G.27d)

〈(2) · (b )〉{δλ′ } =
∑
µ

ελωλA2
λkµ q̄µ

λ j (q̄
T
λ M∆v) (G.27e)

〈(2) · (c)〉{δλ′ } = 0 (G.27f)
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〈(3) · (a)〉{δλ′ } = 0 (G.27g)

〈(3) · (b )〉{δλ′ } = 0 (G.27h)

〈(3) · (c)〉{δλ′ } =
∑
µ

ελωλA2
λkµ q̃µ

λ j (q̃
T
λ M∆v) (G.27i)

Averaging over the scattering directions, and using the relations 〈kµs 〉k̂s
= 0, 〈kµs kνs 〉k̂s

= 0, µ ̸= ν and
〈(kµs )2〉k̂s

= k2 f µs
〈q̄T
λ M∆v〉

k̂s
= ħh
∑
µ

q̄µ
λ j k

µ (G.28a)

〈q̃T
λ M∆v〉

k̂s
= ħh
∑
µ

q̃µ
λ j k

µ (G.28b)

〈(q̄T
λ M∆v)2〉

k̂s
= (ħh
∑
µ

q̄µ
λ j k

µ)2+ ħh2
∑
µ

(q̄µ
λ j )

2k2 f µs (G.28c)

〈(q̃T
λ M∆v)2〉

k̂s
= (ħh
∑
µ

q̃µ
λ j k

µ)2+ ħh2
∑
µ

(q̃µ
λ j )

2k2 f µs (G.28d)

Finally, averaging over the amplitude of motion, we get the rate equation of the Doppler cooled mode

d
d t
〈r 2
λ 〉=

γs

ε2
λ

§
(ħh
∑
µ

q̄µ
λ j k

µ)2+(ħh
∑
µ

q̃µ
λ j k

µ)2+ ħh2
∑
µ

{(q̄µ
λ j )

2+(q̃µ
λ j )

2}k2
j f µs

+
2δελωλ

(Γ/2)2+δ2
{ħh(∑

µ

q̄µ
λ j k

µ)2+ ħh(
∑
µ

q̃µ
λ j k

µ)2}〈r 2
λ 〉
ª (G.29)

Defining
Fλ j = (ħh
∑
µ

q̄µ
λ j k

µ)2+(ħh
∑
µ

q̃µ
λ j k

µ)2 (G.30)

Fλs j = ħh2
∑
µ

{(q̄µ
λ j )

2+(q̃µ
λ j )

2}k2
j f µs (G.31)

we can write the equation more succinctly as

d
d t
〈r 2
λ 〉=

γs

ε2
λ

§
Fλ j + Fλs j +

2δελωλFλ j/ħh
(Γ/2)2+δ2

〈r 2
λ 〉
ª

(G.32)

If all ions are of the same species and a uniform laser beam is incident on all ions, the total rate of cooling can be
found by simply summing over all ions so that

d
d t
〈r 2
λ 〉=

N∑
j=1

γs

ε2
λ

§
Fλ j + Fλs j +

2δελωλFλ j/ħh
(Γ/2)2+δ2

〈r 2
λ 〉
ª

(G.33)
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It is clear that the mode will be cooled if δ and ελ are of different signs. If this criterion is met, final amplitude
reached in the steady state is given by

〈r 2
λ 〉= ħh

(Γ/2)2+δ2

2|δελ|ωλ

∑
j (Fλ j + Fλs j )∑

j Fλ j
(G.34)

which is minimised for the detuning |δ|= Γ/2.
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H
Spin-Spin Coupling

The derivation in this Appendix follows closely the methodology from ref. 19.
An ODF leads to the interaction term

HODF =−
N∑

j=1

EO cos
�
kR ·R j −µR t
�
σ z

j (H.1)

Expanding about the equilibrium positions,

cos
�
kR ·R j −µR t
�
= cos
�
kR ·R j 0−µR t +kR · r j

�
(H.2)

Dropping the term with no r j dependence and in the Lamb-Dicke regime,

HODF ≈
N∑

j=1

EOkR · r j sin
�
kR ·R j 0−µR t
�
σ z

j (H.3)

Then the effective spin Hamiltonian is given by

HSPIN =
i

2ħh [WI (t ),VI (t )] (H.4)

where
VI (t ) = e i HPH t/ħh HODF(t )e

−i HPH t/ħh (H.5)

WI (t ) =
∫ t

0
VI (t

′)d t ′ (H.6)
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and

HPH =
3N∑
λ=1

ħhωλ(a
†
λ
aλ+

1
2
) (H.7)

In terms of operators,

kR · r j =−i ħh
∑
ν

kνR
3N∑
λ=1

(α∗λ j νa
†
λ
−αλ j νaλ) (H.8)

Then

HODF =−i ħhEO

N∑
j=1

sin
�
kR ·R j 0−µR t
�∑

ν

kνR
3N∑
λ=1

(α∗λ j νa
†
λ
−αλ j νaλ)σ

z
j (H.9)

and

VI (t ) =−i ħhEO

N∑
j=1

sin
�
kR ·R j 0−µR t
�∑

ν

kνR
3N∑
λ=1

(α∗λ j ν e
i HPH t/ħh a†

λ
σ z

j e−i HPH t/ħh−αλ j ν e
i HPH t/ħh aλσ

z
j e−i HPH t/ħh )

(H.10)
Using the B-C-H formula,

e i HPH t/ħh a†
λ
σ z

j e−i HPH t/ħh = e iωλ t a†
λ
σ z

j (H.11a)

e i HPH t/ħh aλσ
z
j e−i HPH t/ħh = e−iωλ t aλσ

z
j (H.11b)

and hence we get

VI (t ) =−i ħhEO

N∑
j=1

sin
�
kR ·R j 0−µR t
�∑

ν

kνR
3N∑
λ=1

(α∗λ j ν e
iωλ t a†

λ
σ z

j −αλ j ν e
−iωλ t aλσ

z
j )

≡− ħhEO

2

∑
j ,ν,λ

kνR( fλ j (t )α
∗
λ j νa

†
λ
σ z

j − gλ j (t )αλ j νaλσ
z
j )

(H.12)

where we define the functions

fλ j (t )≡ e iϕ j e i(ω−µR)t − e−iϕ j e i(ω+µR)t (H.13a)

gλ j (t )≡ e iϕ j e−i(ω+µR)t − e−iϕ j e−i(ω−µR)t (H.13b)

ϕ j = kR ·R j 0 (H.13c)

Then
WI (t ) =− ħhEO

2

∑
j ,ν,λ

kνR( f̄λ j (t )α
∗
λ j νa

†
λ
σ z

j − ḡλ j (t )αλ j νaλσ
z
j ) (H.14)

where

f̄λ j (t )≡
∫ t

0
fλ j (t

′)d t ′ = e iϕ j

i(ωλ−µR)
(e i(ωλ−µR)t − 1)− e−iϕ j

i(ωλ+µR)
(e i(ωλ+µR)t − 1) (H.15a)
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ḡλ j (t )≡
∫ t

0
gλ j (t

′)d t ′ =− e iϕ j

i(ωλ+µR)
(e−i(ωλ+µR)t − 1)+

e−iϕ j

i(ωλ−µR)
(e−i(ωλ−µR)t − 1) (H.15b)

Then

HSPIN =
i

2ħh
ħh2E2

O

4

∑
j , j ′

∑
ν,ν ′

∑
λ,λ′

kνRkν
′

Rα
∗
λ j να
∗
λ′ j ′ν ′ f̄λ j (t ) fλ′ j ′(t )[a

†
λ
σ z

j ,a†
λ′σ

z
j ′]

− i
2ħh
ħh2E2

O

4

∑
j , j ′

∑
ν ,ν ′

∑
λ,λ′

kνRkν
′

Rα
∗
λ j ναλ′ j ′ν ′ f̄λ j (t )gλ′ j ′(t )[a

†
λ
σ z

j ,aλ′σ
z
j ′]

− i
2ħh
ħh2E2

O

4

∑
j , j ′

∑
ν ,ν ′

∑
λ,λ′

kνRkν
′

Rαλ j να
∗
λ′ j ′ν ′ ḡλ j (t ) fλ′ j ′(t )[aλσ

z
j ,a†

λ′σ
z
j ′]

+
i

2ħh
ħh2E2

O

4

∑
j , j ′

∑
ν ,ν ′

∑
λ,λ′

kνRkν
′

Rαλ j ναλ′ j ′ν ′ ḡλ j (t )gλ′ j ′(t )[aλσ
z
j ,aλ′σ

z
j ′]

(H.16)

The commutation relations are
[a†
λ
σ z

j ,a†
λ′σ

z
j ′] = 0 (H.17a)

[a†
λ
σ z

j ,aλ′σ
z
j ′] =−δλλ′σ z

j σ
z
j ′ (H.17b)

[aλσ
z
j ,a†

λ′σ
z
j ′] = δλλ′σ

z
j σ

z
j ′ (H.17c)

[aλσ
z
j ,aλ′σ

z
j ′] = 0 (H.17d)

and hence

HSPIN =
i ħhE2

O

8

∑
j , j ′

∑
ν,ν ′

∑
λ

kνRkν
′

R (α
∗
λ j ναλ j ′ν ′ f̄λ j (t )gλ j ′(t )−αλ j να

∗
λ j ′ν ′ ḡλ j (t ) fλ j ′(t ))σ

z
j σ

z
j ′

=
i ħhE2

O

8

∑
j , j ′

∑
ν,ν ′

∑
λ

kνRkν
′

RRe(α
∗
λ j ναλ j ′ν ′)( f̄λ j (t )gλ j ′(t )− ḡλ j (t ) fλ j ′(t ))σ

z
j σ

z
j ′

− ħhE2
O

8

∑
j , j ′

∑
ν ,ν ′

∑
λ

kνRkν
′

R Im(α
∗
λ j ναλ j ′ν ′)( f̄λ j (t )gλ j ′(t )+ ḡλ j (t ) fλ j ′(t ))σ

z
j σ

z
j ′

(H.18)

Explicitly,

f̄λ j (t )gλ j ′(t ) =
e i(ϕ j+ϕ j ′ )

i(ωλ−µR)
(e−i2µR t − e−i(ωλ+µR)t )− e−i(ϕ j−ϕ j ′ )

i(ωλ+µR)
(1− e−i(ωλ+µR)t )

− e i(ϕ j−ϕ j ′ )

i(ωλ−µR)
(1− −i(ωλ−µR)t )+

e−i(ϕ j+ϕ j ′ )

i(ωλ+µR)
(e i2µR t − e−i(ωλ−µR)t )

(H.19a)
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ḡλ j (t ) fλ j ′(t ) =− e i(ϕ j+ϕ j ′ )

i(ωλ+µR)
(e−i2µR t − e i(ωλ−µR)t )+

e−i(ϕ j−ϕ j ′ )

i(ωλ−µR)
(1− e i(ωλ−µR)t )

+
e i(ϕ j−ϕ j ′ )

i(ωλ+µR)
(1− e i(ωλ+µR)t )+

e−i(ϕ j+ϕ j ′ )

i(ωλ−µR)
(e i2µR t − e i(ωλ+µR)t )

(H.19b)

The time-independent part of these functions is given by

f̄λ j (t )gλ j ′(t )+ ḡλ j (t ) fλ j ′(t ) =
4µR sin
�
ϕ j −ϕ j ′
�

µ2
R−ω2

λ

(H.20a)

f̄λ j (t )gλ j ′(t )− ḡλ j (t ) fλ j ′(t ) =−
4ωλi cos
�
ϕ j −ϕ j ′
�

µ2
R−ω2

λ

(H.20b)

Thus, the static part of the effective spin Hamiltonian is

HSPIN =
ħhE2

O

8

∑
j , j ′

∑
ν ,ν ′

∑
λ

4ωλ cos
�
ϕ j −ϕ j ′
�

µ2
R−ω2

λ

kνRkν
′

RRe(α
∗
λ j ναλ j ′ν ′)σ

z
j σ

z
j ′

− ħhE2
O

8

∑
j , j ′

∑
ν ,ν ′

∑
λ

4µR sin
�
ϕ j −ϕ j ′
�

µ2
R−ω2

λ

kνRkν
′

R Im(α
∗
λ j ναλ j ′ν ′)σ

z
j σ

z
j ′

(H.21)

The above is just the expression for an Ising-like spin Hamiltonian

HSPIN =
∑

j j ′
J 0

j j ′σ
z
j σ

z
j ′ , (H.22)

with the coupling terms given by

J 0
j j ′ =

E2
O

2

∑
ν,ν ′

∑
λ

ω2
λ

mω2
λ
+ γH

λ
Φγλ

kνRkν
′

R

µ2
R−ω2

λ

cos
�
ϕ j −ϕ j ′
�
Re(γ ∗λ j νγλ j ν ′)

− E2
O

2

∑
ν ,ν ′

∑
λ

ωλµR

mω2
λ
+ γH

λ
Φγλ

kνRkν
′

R

µ2
R−ω2

λ

sin
�
ϕ j −ϕ j ′
�
Im(γ ∗λ j νγλ j ′ν ′).

(H.23)

where γλ is the normalised normal mode eigenvector corresponding to the frequencyωλ, the indices ν , ν ′ run
over x, y, z and the ion-dependent phases are defined asϕ j = kR ·R j 0.
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