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Abstract

This work investigates the feasibility of locking a laser frequency on
the 733 nm transition between the two excited states 41P1 and 41D2
of neutral calcium atoms using a two-color polarization spectroscopy
technique. Indeed, since the atoms are initially in the ground state
41S0, a 423 nm laser is used to pump them into the 41P1 state, then
the addition of the 733 nm laser creates a three-level system. The
use of polarized beams allows to obtain a signal that can be used to
retroact on the laser. The goal is to use this frequency stabilized laser
together with a 423 nm laser to realize a two-color magneto-optical
trap and thus achieve a sub-Doppler cooling.

To carry out this objective, we first stabilize the 423 nm laser
using the polarization spectroscopy technique. We describe the ex-
perimental setup and the resulting frequency stability, and we review
the theory of the polarization spectroscopy technique.

Moreover, we study the electromagnetically induced transparency
and Autler-Townes splitting phenomena in the three-level ladder sys-
tem 41S0 ´ 41P1 ´ 41D2 of neutral calcium atoms. The fitting of the
data we have collected with the theoretical expression requires the
prior determination of some parameters such as the optical density
and the temperature. Determining the temperature proves to be a te-
dious task because the frequency range for scanning the 423 nm laser
frequency is limited by mode hopes.

Furthermore, we stabilize the 733nm laser frequency with a two-
color polarization spectroscopy technique. We give a theoretical overview
of its working principle as well as the results obtained when perform-
ing it. We prove that this technique can be used to achieve a fre-
quency stability of about 1MHz, which makes it conceivable to use
this stabilization technique for a two-photon cooling scheme. Finally,
we briefly show that by using a similar setup and replacing the 733 nm
laser with a 403 nm laser, we are able to form the three-level system
41S0 ´ 41P1 ´ 121D2. Similar to what is demonstrated in this work,
this could be exploited to lock the 403 nm laser on the 41P1 Ø 121D2
transition of neutral calcium atoms.

In principle, the two-color polarization spectroscopy technique to
stabilize the frequency of a laser on the transition between two excited
states could be applied to other three-level system composed of S ´

P ´D Zeeman manifolds, in particular other alkaline earth atoms such
as magnesium or strontium.
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1 Introduction
Quantum computing has raised immense hopes among the general public

in recent years. Indeed, the possible applications are numerous and would
allow significant advances in many fields: chemistry and material science,
biology, machine learning [1], among others. These advances would be made
possible by the exponential speedup of algorithms and simulations executed
on quantum platforms. These promises seem achievable in the medium to
long term thanks to the development of various technologies: trapped ions,
superconducting circuits, quantum dots, photons and neutral atoms [2] for
instance. In particular, Rydberg atoms appear to be prime candidates be-
cause of their long coherence time, their strong coupling to light and the use
of Rydberg blockade to perform multiple qubit gates or simulate Ising model
[3]. In addition, progress has been made in the control of individual neutral
atoms using optical tweezers to form large-scale arrays [4] or to move atoms
while preserving the entanglement [5].

The goal of the Rydberg team is to experiment with neutral calcium atoms
as a possible platform for quantum simulation. Calcium is an alkaline earth
element and as such has two valence electrons. Therefore, if one electron is
in a Rydberg state, it might be possible to read this state non-destructively
by interacting with the core electron. Indeed, the energy shift induced by
the Coulomb interaction depends on the state of the Rydberg electron, as
already demonstrated for strontium [6].

1.1 Trapping calcium atoms in a magneto-optical trap
To carry out these experiments, the calcium atoms

1. need to be trapped in a vacuum so that they can be manipulated with-
out being expelled by collisions.

2. need to be cooled as low as possible to minimized thermal agitation
effects.

To achieve these two objectives, the use of a magneto-optical trap (MOT) was
chosen. This last technique was first reported by Steven Chu [7] and earned
him the 1997 Nobel Prize in Physics together with Claude Cohen-Tannoudji
and William D. Phillips.1

1The Nobel Prize in Physics 1997. NobelPrize.org. Nobel Prize Outreach AB 2023.
Sun. 5 Feb 2023. https://www.nobelprize.org/prizes/physics/1997/summary/
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Similar to an optical molasses, a magneto-optical trap is composed of six
perpendicular, counter-propagating laser beams that cool the atoms. How-
ever, the beams of opposite directions are of opposite circular polarization,
which, combined with a magnetic field, allows to trap the atoms. This tech-
nique has the great advantage of being very robust to intensity imbalances
between the optical beams and to their approximate polarization [8]. The
atoms can be cooled to the Doppler temperature

TDoppler “
ℏΓ
2kB

. (1)

For our purposes, the atoms will first be cooled in a 2D magneto-optical
trap before being transferred to the 3D MOT, which will limit the pressure
and thus the collisions in the latter. Furthermore, in order to cool the atoms
to a temperature below the Doppler limit of 0.8 mK for the simple 423 nm
transition between the 41S0 and 41P1 states of neutral calcium atoms, a two-
color cooling scheme similar to what has been demonstrated for magnesium
[9] will be tested. The objective is to take advantage of the lowest decay
rate of the 733 nm transition between the levels 41P1 and 41D2 of the cal-
cium atoms to reach a temperature of about 50 µK. The realization of this
two-color cooling scheme would enable to trap neutral calcium in optical
tweezers.

1.2 Laser frequency
In order to realize the two-color cooling technique, the frequencies of the

two lasers, 423 nm for the transition between the 41S0 and 41P1 states and
733 nm between the 41P1 and 41D2 states, must be stabilized below 1 MHz.
Therefore, the frequency noise of the lasers must be damped.

1.2.1 Frequency noise
For lasers we can distinguish two types of frequency noise: technical noise

and quantum noise [10].
The technical noise can have various causes, it can be due to variations

in pressure, temperature or mechanical vibrations, among others. Let’s take
the example of an external cavity diode laser. Its longitudinal modes are
determined by the length L of its cavity

νn “ n
c

L
, with n an integer. (2)
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Thus, a variation dL of the length of the cavity leads to a change in frequency

dν “ ´ν
dL

L
. (3)

For a visible frequency of 600 THz and a 10 cm long cavity, a simple 10 nm
change will induce a 60 MHz frequency shift. Consequently, the positions
of the cavity mirrors must be very well defined and ideally insensitive or
corrected in response to environmental variations such as temperature or
pressure drift.

Even if we consider that a laser is perfectly insensitive to technical noise,
spontaneous decay being intrinsically stochastic and inherent to the lasing
process, it will produce a frequency noise called quantum noise. Indeed,
even if the complex amplitude of the laser reaches a steady state through
the stimulated emission process, the spontaneous decay generates photons
in a random way. This creates amplitude and phase noise. As a result,
the laser is no longer a perfectly monochromatic source with a precisely
defined frequency, but has a finite linewidth [11]. This linewidth affects the
interaction of the laser light with the atoms and acts as a dephasing process.

1.2.2 Frequency control
In order to reduce the frequency noise of a laser, we can first use passive

means. This consists essentially in decoupling the laser from its environment
in order to reduce the effects of mechanical vibrations by damping them or
of temperature variations by insulating it for example. These techniques are
generally integrated in the design of lasers [12].

However, active means can also be used. This involves implementing
feedback loops on one or more physical variables such as temperature or the
position of a mirror in a cavity. Nevertheless, in order to stabilize the fre-
quency, it is interesting to use it directly as a control parameter. Some lasers
propose to control the frequency by using a reference cavity or a wavemeter
[12]. Though, these two techniques can be subject to drift or can be limited
by the precision of the wavemeter, it is therefore interesting to use spec-
troscopy techniques to have an atomic transition as an absolute reference. It
is this last option that we propose to implement to stabilize the lasers that
we will use for the two-color cooling scheme.

1.3 Thesis outline
The purpose of this master’s thesis is to implement the laser frequency sta-

bilization techniques required for the two-photon cooling scheme. To achieve
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this goal, feedback loops with spectroscopy techniques in an optogalvanic
lamp are implemented. To stabilize the beam at 423 nm corresponding to
the transition between the 41S0 and 41P1 states of neutral calcium atoms, po-
larization spectroscopy is used. The 733 nm beam is locked to the transition
between the 41P1 and 41D2 states using a two-color polarization spectroscopy.

In part 2 Theory, we introduce the theoretical elements justifying and
describing the different experiments that we carry out. We will recall the
useful derivations for a two-level system in the semi-classical approach, the
electromagnetic field being considered as classical and the internal energy
levels of the atoms being quantized. This will give us the theoretical tools
to describe the three main experiments we have performed: polarization
spectroscopy, absorption drop due to Autler-Townes splitting and finally two-
color polarization spectroscopy.

In part 3 Experimental Apparatus, we describe the implementation of
the experiments whose theories have been exposed in the previous part. First,
we describe the characteristics of our atomic source which is an optogalvanic
lamp. Then, we detail the Ti:Sapphire laser that we use at the wavelength
of 733 nm and whose frequency we wish to stabilize as well as the wavemeter
that we use to measure the frequency of the laser beams. Finally, we describe
the polarization spectroscopy, the absorption drop in the three-level system
and finally the two-color polarization spectroscopy experiments.

In part 4 Results, we gather the results of the three experiments that we
have first explained and then described. We fit our theoretical expressions
obtained in part 2 Theory, to the data collected in the setups detailed in
part 3 Experimental Apparatus. In addition, we present some results for
the excitation in a low Rydberg state 121D2 of neutral calcium atoms.
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2 Theory

2.1 - Electric dipole hamiltonian
Since we will be using laser beams in our experiments, we treat them as

classical electromagnetic waves, while retaining the quantized description of
atoms. This non-fully quantized treatment is the semi-classical viewpoint
[11]. In this subsection, we derive the expression of the electric dipole hamil-
tonian which accounts for the interaction of the atoms with the electromag-
netic field.

For an electromagnetic field describe by the couple vector potential and
potential

´

ϕ pr⃗, tq , A⃗ pr⃗, tq
¯

, (4)

in the Coulomb gauge (∇⃗ ¨ A⃗ “ 0), the general hamiltonian describing an
atom in this field [13] is

H “
ÿ

i

”

p⃗i ´ qiA⃗ pr⃗i, tq
ı2

2mi

` qiϕ pr⃗i, tq `
ÿ

jăi

qjqi

4πϵ0 |r⃗j ´ r⃗i|
loooooooomoooooooon

“VCoulptqi,r⃗iuiq

. (5)

The sum over the indices i concerns both electrons and protons. The first sum
describes the behavior of free particles in the electromagnetic field derived
from the potentials (4). The second sum describes the Coulomb interactions
between electrons and protons. Due to gauge invariance, the electromagnetic
field is the same under the gauge transformation

´

ϕ1
pr⃗, tq , A⃗1 pr⃗, tq

¯

“

ˆ

ϕ pr⃗, tq ´
B

Bt
χ pr⃗, tq , A⃗ pr⃗, tq ` ∇⃗χ pr⃗, tq

˙

, (6)

for any scalar function χ. We can therefore use the Göppert-Mayer transfor-
mation [14] using the scalar field

χ pr⃗, tq “ ´r⃗ ¨ A⃗ p0, tq , (7)

where we assume the atom to be at the origin. For an electromagnetic wave,
for which ϕ “ 0 because there are no charges, the potentials (6) in the
Göppert-Mayer gauge are

´

ϕ1
pr⃗, tq , A⃗1 pr⃗, tq

¯

“

´

r⃗ ¨ BtA⃗ p0, tq , A⃗ pr⃗, tq ´ A⃗ p0, tq
¯

. (8)

10



Eventually, the long wavelength approximation leads to the expression of
the electric dipole hamiltonian. This approximation consists in neglecting
the spacial dependence of the fields, as the typical size of the atom is much
smaller than the wavelength of the electromagnetic wave, we can consider
that the whole atom is subjected to the same amplitude of the electric field.
So we obtain

"

A⃗ pr⃗, tq « A⃗ p0, tq
E⃗ pr⃗, tq « E⃗ p0, tq “ ´BtA⃗ p0, tq

. (9)

In the Göppert-Mayer gauge and under the long wavelength approximation,
the hamiltonian (5) is

H “
ÿ

i

p⃗i
2

2mi

` VCoul ptqi, r⃗iuiq ´ d⃗ ¨ E⃗ ptq , with d⃗ “
ÿ

i

qir⃗i. (10)

d⃗ is the dipole operator. The hamiltonian (10) can be decomposed into two
components. The first is the atomic hamiltonian in the absence of an external
electromagnetic field

H0 “
ÿ

i

p⃗i
2

2mi

` VCoul ptqi, r⃗iuiq , (11)

whose eigenenergies correspond to the atomic levels. The second is the elec-
tric dipole hamiltonian

HDip “ ´d⃗ ¨ E⃗ ptq , (12)
which describes the interaction between the electromagnetic field and the
atom.

2.2 - Atom-light interaction in a two-level system
In this section, we focus on atom-light interaction in a two-level system.

This simple case will allow us to introduce the fundamental theoretical tools
we will need to understand the phenomena of polarization spectroscopy, ab-
sorption drop in a three-level system and two-color polarization spectroscopy.
To do so, we rely throughout this section on the lecture notes [11].

The two-level system is composed of the ground state |1y and the excited
state |2y, the other states are neglected. These two states are eigenstates of
the atomic hamiltonian (11) and their eigenenergies are respectively ℏω1 and
ℏω2. Consequently, by choosing the energy offset as the eigenenergy of the
ground state the atomic hamiltonian is simply

H0 “ ℏω0|2yx2|, (13)
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where ω0 “ ω2 ´ ω1. We can as well restrict the dipole operator on the
Hilbert space formed by the two states. Due to a symmetry argument its
diagonal terms vanish and it becomes

d⃗ “ d⃗12|1yx2| ` d⃗21|2yx1|, (14)

with d⃗12 “ d⃗21
˚

. We consider the simple case where the coupling electro-
magnetic wave is monochromatic and is described by the electric field

E⃗ “ E0 cos pωt ` ϕq⃗ϵ, (15)

where ω is the angular frequency and ϵ⃗ is the polarization vector.2 As a
consequence, the electric-dipole hamiltonian (12) describing the atom-light
interaction is

HDip ptq “ ´d⃗12 ¨ ϵ⃗ E0 cos pωt ` ϕq|1yx2| ` c.c. . (16)

2.2.1 Time independent hamiltonian

The hamiltonian (16) is still time dependent which complicates the analysis
of the evolution of the system. To get rid of this dependence, we can first
switch to the rotating frame defined by the electromagnetic wave by applying
the unitary transformation

U “

ˆ

1 0
0 eiωt

˙

. (17)

A change of basis embodied by a unitary transformation like (17) modifies a
generic hamiltonian H according to the relation

HU “ UHU :
` iℏ

dU

dt
U : (18)

Then, the total hamiltonian formed by the atomic hamiltonian (13) and of
the electric dipole hamiltonian (16) is transformed into

H “

˜

0 ´d⃗12 ¨ ϵ⃗ E0 cos pωt ` ϕqe´iωt

´d⃗21 ¨ ϵ⃗ E0 cos pωt ` ϕqeiωt ℏδ

¸

. (19)

δ “ ω0 ´ ω is the detuning between the resonance frequency of the two
levels and the frequency of the electromagnetic field. Eventually, as the

2Note that as we are in the long wavelength approximation (9), the spacial dependence
of the electric field is neglected. The eventual constant phase resulting of the term ´k⃗ ¨ r⃗
is absorbed into the global phase ϕ.
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cosines are the sums of complex exponentials, we can make the rotating
wave approximation by neglecting the rapidly varying non-diagonal terms
of the form e˘i2ωt. The reason is that these terms will create oscillatory
effects at angular frequency 2ω which will cancel on average because they
are much faster than the other terms governing the hamiltonian such as |δ|

and |d⃗12 ¨ ϵ⃗E0|. Another justification is to go back to the description of the
atom as a classical dipole, so if it is excited by an electromagnetic wave at
the angular frequency ω, we consider that the main response is the one at
the same frequency and we neglect the non linear response at the twice the
frequency. We define the Rabi frequency as

Ω “ ´
d⃗12 ¨ ϵ⃗ E0e

iϕ

ℏ
. (20)

For simplicity, we will consider that the polarization vector ϵ⃗ and the phase
ϕ are chosen so that the Rabi frequency (20) is real. We finally obtain the
time independent hamiltonian

H “ ℏ
ˆ

0 Ω
2

Ω
2 δ

˙

. (21)

2.2.2 Density matrix formalism

If we considered that the atom together with a perfectly monochromatic
laser light was an isolated system, then the wavefunction formalism governed
by the Schrödinger equation would be sufficient to describe the unitary evo-
lution of the atom. However, this is not the case, the atom interacts with
its environment leading to incoherent evolution and this is why we introduce
the density matrix formalism.

In this formalism, the positive and unitary trace density matrix operator
describing the atom ρ “

ř

i,j ρi,j|iyxj|, evolves according to the Lindblad
master equation

dρ

dt
“

1
iℏ

rH, ρs ` L pρq . (22)

The first term on the right hand side of equation (22) describes the unitary
evolution of the density matrix and leads to the same unitary evolution as
the Schrödinger equation in the wavefunction formalism. The second term
is the Lindblad operator and describes the incoherent evolution of the atom.
Indeed, due to Stinespring dilation lemma, see [15], there is always a unitary
process to describe the global evolution of a system and its environment,
however as we measure the system the projection on its Hilbert space leads
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to incoherent processes. The Lindblad operator is defined as

L pρq “ ´
1
2
ÿ

k

c:

kckρ ` ρc:

kck ´ 2ckρc
:

k, (23)

where tckuk are jump operators [16] describing the different incoherent pro-
cesses. To get an idea of the justification of the specific form of the Lindblad
operator (23), we develop a toy model in Appendix A Simple Case of
Lindblad Operator.

The jump operators are usually of the form

cij “
a

Γij|iyxj|. (24)

Such an operator (24) represents an incoherent jump from state |jy to a state
|iy at a rate Γij.

2.2.3 Specific examples of jump operators

Now that we have the general expression for the Lindblad operator (23),
let’s use specific examples of jump operators.

First, in quantum optics, one of the most important incoherent process
we can account for is spontaneous emission. In the case of a two-level system,
the decay from the excited state to the ground state is represented through
the jump operator

c1,2 “
a

Γ12|1yx2|, (25)
where Γ12 is the linewidth, also called spontaneous decay rate, of the transi-
tion. The value of the spontaneous decay rate for the transitions of neutral
calcium atoms we consider are detailed in Table 1.

Transition Wavelength Decay rate
41P1 Ñ 41S0 423 nm 34.2 MHz
41D2 Ñ 41P1 733 nm 2.2 MHz

Table 1: Wavelength and spontaneous decay rate of the transitions we con-
sider in neutral calcium. The numbers are taken from [17].

With this jump operator (25), the corresponding Lindblad operator is

Lsp pρq “ ´
1
2Γ12 t2ρ22|2yx2| ` ρ12|1yx2| ` ρ21|2yx1| ´ 2ρ22|1yx1|u . (26)

If we consider the Lindblad master equation (22), the Lindblad operator (26)
depletes the population of the excited state in favor of the ground state with

14



the terms proportional to ρ22. Moreover, due to its incoherent nature, it
reduces the coherence between the two levels, see the terms proportional to
the non-diagonal elements of the density matrix. A last remark is that if the
we assume that there is no laser light coupling the two levels H “ 0 and that
initially the atom is in the excited state ρ22 “ 1, then the evolution generated
by the Lindblad operator (26) alone and the Lindblad master equation (22)
is an exponential decay of the excited state population. This is exactly what
is predicted by the Weisskopf-Wigner theory of spontaneous emission [11]
due to interactions with the electromagnetic field vacuum modes.3

Then, in addition to spontaneous decay, we can look for dephasing effects.
We consider two main causes for these incoherent effects. First, the finite
linewidth γlas of the laser we discuss in 1.2.1 Frequency noise. Second,
the collisional dephasing effects associated with a rate γcoll, as we work with
optogalvanic lamps, see 3.1.1 Optogalvanic lamp. We care about these
dephasing effects as they limit the drop of absorption in the electromagnet-
ically induced transparency regime [18] that we would like to reach. The
jump operator for these processes [11], [19] is

cdph “
a

2γdph|1yx1|, with γdph “ γlas or γcoll. (27)

The Lindblad operator corresponding to both the finite linewidth of the laser
and the collisions is

Ldph pρq “ ´γdph tρ12|1yx2| ` ρ21|2yx1|u , with γdph “ γlas ` γcoll. (28)

Again, looking at the Lindblad master equation (22), the most significant
effect of the operator (28) is to decrease the amplitude of the coherent terms
of the density matrix. In addition, it broadens the transition linewidth as we
will see in the next subsection.

2.2.4 Steady state of the optical Bloch equations

Now that we have the time-independent hamiltonian (21) and the different
components of the total Lindblad operator (26) and (28) we can detail the
Lindblad master equation (22) for a two-level system with the different terms
of the density matrix operator. These equations are called the optical Bloch
equations (OBEs).

3Although the Weisskopf-Wigner theory of spontaneous emission uses the electric dipole
hamiltonian (12), it takes into account the quantization of the electromagnetic field, which
is beyond the scope of the semi-classical viewpoint we have adopted here.
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Denoting γ12 “ Γ12
2 ` γcoll ` γlas, the four OBEs for the two-level system

(22) are
$

’

’

&

’

’

%

dρ11
dt

“ ´iΩ
2 pρ21 ´ ρ12q ` Γ12ρ22

dρ22
dt

“ iΩ
2 pρ21 ´ ρ12q ´ Γ12ρ22

dρ12
dt

“ ´iΩ
2 pρ22 ´ ρ11q ´ pγ12 ´ iδq ρ12

dρ21
dt

“ iΩ
2 pρ22 ´ ρ11q ´ pγ12 ` iδq ρ21

. (29)

Figure 1: ρ22, Re pρ21q and Im pρ21q steady state solutions for the two-level
systems (30), as functions of the detuning δ. The parameters are Ω “ 13.6
MHz, Γ12 “ 34.5 MHz and γcoll ` γlas “ 1 MHz

Simulations show that the solutions of these equations (29) converge to
their steady state in a typical time Γ´1

12 typically on the order of 1 µs. Because
of this fast convergence, we are interested in having a theoretical expression
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of the steady state solution of the OBEs (29) by imposing Btρ “ 0:
$

’

’

’

&

’

’

’

%

ρ12 “ Ω
2

´δ`iγ12
δ2`γ2

12`Ω2 γ12
Γ12

ρ22 “ 1
2Ω2 γ12

Γ12
1

δ2`γ2
12`Ω2 γ12

Γ12
ρ11 “ 1 ´ ρ22
ρ21 “ ρ˚

12

. (30)

The last two lines are simply the conditions for the density matrix to be a
positive and unitary trace operator.

In Figure 1, we can see the steady state solutions of the different terms
of the density matrix operator (30) as a function of detuning. The real
part of ρ21 has a dispersion profile and its imaginary part has an absorption
profile. We also see on Figure 1 and with the expressions (30) that the excited
state population and the imaginary part of the coherent term are Lorentzian
functions centered on zero detuning , which reflects the fact that the coupling
is more efficient when the laser is on resonance, and we can define the full
width at half maximum (FWHM)

δF W HM “ 2γs “ 2
c

γ2
12 ` Ω2 γ12

Γ12
. (31)

In addition to the plain transition linewidth Γ12, the dephasing processes
with rates γlas and γcoll and the use of the laser with a Rabi frequency Ω
have broadened the transition linewidth. In the latter case, this phenomenon
is known as power broadening [20] and it starts to have a significant effect
when the transition is saturated. Thus, the parameter γs as defined in (31)
is called the saturated linewidth of the transition.

2.2.5 Saturation of the transition

The light intensity is defined as

I “ x||E⃗ pr⃗, tq ||
2
y “

E2
0

2 , (32)

the last equality being valid for a monochromatic wave which is a good
approximation for a single mode laser. With this expression (32), we see
that the intensity is proportional to the square of the Rabi frequency (20).
Therefore, the power broadening effect we discussed earlier (31) is a function
of the beam intensity. To examine the other effects of the saturation of the
transition, we introduce the saturation parameter [11]

s “
Ω2

Γ12γ12

1

1 `

´

δ
γ12

¯2 “
so

1 `

´

δ
γ12

¯2 . (33)
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s0 is the maximal value the saturation parameter can reach when the laser
is on resonance. It is also defined as the ratio of the light intensity and the
saturation intensity

s0 “
I

Isat

, with Isat “
ℏ2Γ12γ12

2|d12|2
. (34)

The saturated transition linewidth which defines the FWHM (31) is simply

γs “ γ12
?

1 ` s0. (35)

The steady state solutions of the optical Bloch equations (30) can be ex-
pressed in terms of the saturation parameter

#

ρ22 “ 1
2

s
1`s

ρ12 “ Ω
2

´δ`iγ12
δ2`γ2

12

1
1`s

. (36)

The other coefficients of the density matrix can be deduced from the positiv-
ity and unit trace constrains of the density matrix operator. The population
in the excited state |2y goes from ρ0

22 “ 0, when there is no electromagnetic
wave, to 1

2
s

1`s
, when there is a field which couples the two states via absorp-

tion and stimulated emission processes. In the case of a strong saturation:
s " 1 the ratio s

1`s
tends towards 1. Thus, the two populations population

ρ11 and ρ22 converge to 1
2 , the population of the ground state |1y being always

higher and the one of the excited state |2y being always lower than this value,
see (36).

2.2.6 Evolution of a monochromatic wave in atomic medium

Now that we have examined the evolution of the two-level atom under the
influence of the electromagnetic field and find its steady state (30), we can
look at the evolution of the electromagnetic field itself as it passes through an
atomic medium and interacts with the atoms. Classically, with the Lorentz
model, see [11], atoms can be described as dipoles so that the atomic medium
obtains a polarization, which depends on the applied field and influences in
return the propagation of the field. Similarly, in the quantum case, when the
light couples the two internal levels of the atoms, their electronic structures
evolve over time so that they acquire a non-zero dipole moment. By analogy
with the classical case, we can then define the dielectric polarization of the
atomic medium and study its effect on the electromagnetic field.

First, since the steady state solution ρst of the optical Bloch equations
(30) is computed in the rotating frame of the electromagnetic wave, we start
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by inverting the basis change (17), such that the density matrix operator
becomes

ρ ptq “

ˆ

ρst
11 ρst

12e
iωt

ρst
21e

´iωt ρst
22

˙

. (37)

We introduced the superscript st to show the effect of the basis change, but
as we do not need it anymore, we remove it. Then, the mean value of the
dipole moment is

A

d⃗
E

“ Tr
´

ρd⃗
¯

“ ρ21d⃗12e
´iωt

` c.c. . (38)

The dielectric polarization is defined as

P⃗ “
∆N
V

A

d⃗
E

“ ϵ0χE⃗0e
´iωt

` c.c. , (39)

where ∆N
V

is the population difference between the ground and the excited
states per unit volume, and χ is the linear complex dielectric susceptibility.

Note that in the case of a non-saturating beam, the population difference
per unit volume is simply the atomic density because ρ11 ´ ρ22 « 1. For
simplicity, we will limit ourselves to this simple case, unless otherwise stated.
Indeed, in some cases, such as for polarization spectroscopy, the population
difference would be different as the pump beam saturates the transition. In
these cases, we will have to multiply the atomic density N

V
by the population

difference ρ11 ´ ρ22 ‰ 1 [20].
It then follows from the expression of the Rabi frequency (20), the one of

the coherent term (36), and the definition of the polarization (39) that the
linear complex dielectric susceptibility is

χ “ ´
N

V

|d12|2

ℏϵ0

ρ21

Ω “
N

V

|d12|2

ℏϵ0

1
2

δ ` iγ12

δ2 ` γ2
12 ` Ω2 γ12

Γ12

“ χ1
` iχ2. (40)

χ1 and χ2 are respectively the real and imaginary part of the linear dielectric
susceptibility. Now that we have an expression for the linear complex dielec-
tric susceptibility (40), we can deduce the expression for the refractive index
from Maxwell’s relation [11]

∆⃗E⃗ “
1
c2 p1 ` χq

B2E⃗

Bt2
“
n2

c2
B2E⃗

Bt2
. (41)

So that, since the linear dielectric susceptibility is generally small, the refrac-
tive index is, to a good approximation,

n “
?

1 ` χ « 1 `
χ

2 “ n1
` in2. (42)
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Again, we mark the difference between the real and imaginary part with the
superscripts 1 and 2. Therefore, the electric field evolves through the atomic
medium as

E⃗ pr⃗, tq “ E⃗e´ipωt´n1 ω
c

zqe´n2 ω
c

z
` c.c. . (43)

The real part of the susceptibility (40), or equivalently of the refractive index
(42), defines the dispersion of the wave and the imaginary parts of these
quantities define the absorption.4

2.2.7 Doppler broadening

For the moment, we have only considered fixed atoms but they can also be
in motion and have a non zero velocity v⃗ as it will be the case in optogalvanic
lamps. Then, each atom interacts with the electromagnetic field and under-
goes a Doppler shift. In their reference frame, the applied electromagnetic
wave has an angular frequency ω ´ k⃗ ¨ v⃗. Therefore, for the group of atoms
of velocity v⃗, everything happens as derived in the previous subsections, but
with a detuning that is now a function of the velocity

δ pv⃗q “ ω0 ´ ω ` k⃗ ¨ v⃗ “ δ ` k⃗ ¨ v⃗. (44)

Consequently, the electromagnetic field couples the two internal levels of
the atoms of this specific group typically if the norm of the velocity dependent
detuning (44) is smaller than the transition linewidth, taking into account
the power broadening and the dephasing phenomena

ˇ

ˇ

ˇ
δ ` k⃗ ¨ v⃗

ˇ

ˇ

ˇ
ă γs. (45)

We assume that the field propagates along the z axis and that the probability
distribution of the velocity along z is the Maxwell-Boltzmann one

w pvzq “ 1?
2πvth

exp
´

´
v2

z

2v2
th

¯

with vth “

b

kbT
m

. (46)

Then, all the expressions we derived previously and that involve the angu-
lar frequency ω of the light beam or equivalently the detuning δ, must be
weighted by this probability distribution (46) to take into account the dif-
ferent interactions of the electromagnetic wave with each group of atoms of
different velocity.

4Note that the amplitude could also be increased, instead of being damped, in the
case of a negative imaginary part of the complex refractive index (42). This is the case
in population inversion for instance, when before the propagation of the electromagnetic
field the population difference is negative ρ11 ´ ρ22 ă 0. This is the operating principle of
lasers [11].
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(a) Population density of level |1y. (b) Population density of level |2y.

Figure 2: Population densities for the two levels (47) and for different detun-
ings of the laser frequency. Ω “ 13, 6 MHz, Γ12 “ 34.5 MHz and γcoll`γlas “ 1
MHz are the same parameters as the ones used for Figure 1. The wavelength
is λ “ 423 nm and the temperature is T “ 500 K.

For example, we can define the resulting population densities for the two
levels

Ni pvzq dvz “ ρii pvzqw pvzq dvz. (47)

These quantities (47) describe how many atoms are in the level |iy as a
function of their velocity. On Figure 2, we plot the densities for both levels.
We see that indeed, the interaction of the atoms with the laser light depletes
the population density of the ground state when the condition (45) on the
detuning and the Doppler shift is satisfied. This is called a Bennet hole and,
when we consider the population density of the excited state, a Bennet peak
[21].

Another instance concerns the linear complex dielectric susceptibility
which becomes

χDoppler “

ż

χ pω ´ kvzqw pvzq dvz. (48)

χ is the previous expression of the linear dielectric susceptibility (40) in the
static case where the detuning is replaced by its velocity dependent expression
(44). Considering the imaginary part of the dielectric susceptibility (48),
which is proportional to the absorption coefficient, it is a convolution of a
Lorentzian function and a Gaussian function called a Voigt profile. In the
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Figure 3: ρ22, Re pρ21q and Im pρ21q taking into account Doppler broaden-
ing, as functions of the detuning δ. Exact (colored) and the approximated
gaussian expressions (black dashed) obtained as in expression (49). Ω “ 13, 6
MHz, Γ12 “ 34.5 MHz and γcoll`γlas “ 1 MHz are the same parameters as the
ones used for Figure 1. The wavelength is λ “ 423 nm and the temperature
is T “ 500 K.

case of an atomic vapor of hundreds K such that the Gaussian is much larger
than the Lorentzian, i.e. kvth " γs, we can approximate the Lorentzian as a
Dirac function and find an analytical approximation

χ2
Doppler “ N

V
|d12|2

ℏϵ0

πγ12
2γs

ş

dv?
2πv2

th

e

ˆ

´ v2
2v2

th

˙

1
π

γs

pδ ` kvq
2

` γ2
s

looooooooomooooooooon

“δDiracpω0´ω`kvq

“ N
V

|d12|2

ℏϵ0

πγ12
2γs

1?
2πkvth

exp
´

´
pω0´ωq

2

2pkvthq
2

¯

. (49)

Thus, the absorption coefficient is approximately a Gaussian function of the
detuning [21] and its width is the Doppler width kvth. This width is much
larger than the natural or saturated linewidth as we can see by comparing
the curves on Figure 1 without Doppler broadening and the ones on Figure 3
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where Doppler shifts are taken into account, all others parameters being the
same. In Figure 3, the imaginary part of the coherent term and the excited
state population are plotted for both the exact integration (colored lines)
and the approximated one (black dashed lines) as performed in (49). The
typical order of the full width at half maximum is 2kvth « 1600 MHz and
the amplitudes are lower compare to the curves on Figure 1.

2.3 Zeeman manifolds
As explained in 1 Introduction, we want to use a two-color polarization

spectroscopy technique to stabilize the frequency of a 733 nm laser on the
transition between the state 41P1 and the state 41D2 of neutral calcium atom.
Hence, by using specific polarization of the lasers we create different coupling
strengths between the Zeeman sub-levels of the manifolds. In this section,
we study how the Rabi frequency and the spontaneous decay are affected
when we consider the the Zeeman sub-levels. The coefficients needed in the
case of the Zeeman manifolds t41S0, 41P1, 41D2u of neutral calcium atom we
consider, are given in Appendix B Clebsch-Gordan Coefficients

2.3.1 Rabi frequency

From the expression (20) of the Rabi frequency in the simple case of a
two-level system, we can generalize the definition of the Rabi frequency to
two states

|Ji,miy, and |Jj,mjy (50)
of the Zeeman manifolds I and J , which is

Ωji “ ´

C

Jj,mj

ˇ

ˇ

ˇ

ˇ

ˇ

d⃗ ¨ E⃗0

ℏ

ˇ

ˇ

ˇ

ˇ

ˇ

Ji,mi

G

. (51)

By defining the quantization axis of the atom as the z axis, the dipole oper-
ator d⃗ can be decompose into its three spherical components [22]

d⃗ “ d´1ϵ⃗´ ` d0e⃗z ` d`1ϵ⃗` with ϵ⃗˘ “ ¯
e⃗x ˘ ie⃗y

?
2

. (52)

The vectors ϵ˘ are the polarization vectors of the circular components. Ac-
cording to the Wigner-Eckart theorem, the matrix coefficient of the compo-
nent s of the dipole operator between the two Zeeman sub-levels (50) is

xJj,mj |ds| Ji,miy “ xj |d| iy
loomoon

“dJI

xj |d| iy ¨ xJj,mj | Ji, 1;mi, sy , (53)
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where dJI is a reduced matrix element and xJj,mj | Ji, 1;mi, sy is a Clebsch-
Gordan coefficient [22]. dJI depends only on the choice of the Zeeman mani-
folds I and J and is independent of the sub-levels we consider. For instance,
it is the value d21 that we introduce in the expression (20) of the Rabi fre-
quency for a two-level system. Therefore, we introduce the notation

ΩJI “ ´
dJIE0

ℏ
. (54)

In the experiments, we are interested in two specific cases, when the
electromagnetic field is linearly polarized, for simplicity we consider the po-
larization along the x axis,

E⃗0 “ E0
1

?
2

pϵ⃗´ ´ ϵ⃗`q (55)

and when the electromagnetic field is circularly polarized, for simplicity we
consider the circular right polarization,

E⃗0 “ E0ϵ⃗`. (56)

In the case of the linearly polarized beam (55), the Rabi frequency be-
tween the two Zeeman sub-levels (50) is

Ωji “ ΩJI
1

?
2

pxJj,mj|Ji, 1,mi,´1y ´ xJj,mj|Ji, 1,mi,`1yq , (57)

and for the circular polarized beam, it is

Ωji “ ΩJI xJj,mj|Ji, 1,mi,`1y. (58)

Eventually, to determine the effective Rabi frequencies between the Zeeman
sub-levels of the manifolds I and J in the cases of the linearly and circularly
polarized beams, (57) and (57), we simply need to calculate the appropriate
Clebsch-Gordan coefficients.

2.3.2 Spontaneous decay rate

The spontaneous decay rates are also affected when we consider the cou-
pling between the Zeeman sub-levels. The spontaneous decay rate from a
state |Jj,mjy to a state |Ji,miy is Γij. All states t|Jj,mjyu

´JjďmjďJj
in a

Zeeman manifold J have the same total spontaneous decay rate towards the
manifold I. This property is mathematically described by the fact that the
quantity

ΓIJ “
ÿ

iPI

Γij, (59)
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is independent of the initial state |Jj,mjy that we consider in the manifold
J . Note also that the total decay rate (59) corresponds to the value we use
when we do not consider Zeeman sub-levels as in Table 1. The spontaneous
decay rate Γij from a state |Jj,mjy to a state |Ji,miy is expressed through
the expression (59) as [23]

a

Γij “
a

ΓIJ

1
ÿ

q“´1

ˆ

Ji 1 Jj

´mji
q mjj

˙

a

2Jj ` 1. (60)

The term in parenthesis in the expression (60) is the Wigner 3-j symbol, it
is related to the Clebsch-Gordan coefficient by the relation

p´1q
´j1`j2´M

?
2J ` 1

ˆ

j1 j2 J
m1 m2 ´M

˙

“ xj1, j2;m1,m2|J,My . (61)

We prefer to use the Clebsch-Gordan coefficients since we also use them to
determine the effective Rabi frequencies between the Zeeman sub-levels (57)
and (58).

2.4 Spectroscopy in a two-level system
Generally speaking, spectroscopy is the study of matter through its in-

teractions with the electromagnetic field, as the spectrum of an atom or
molecule tells us a lot about its internal structure. As we want to stabilize
the frequency of our lasers on the transitions of neutral calcium atoms, it is
natural to choose spectroscopic techniques.

Polarization spectroscopy is a spectroscopy technique well suited for a
transition between a ground state and an excited state and is not influenced
by Doppler broadening, which is why it is called a Doppler free technique
[21]. This feature is particularly useful for locking a laser because Doppler
broadening would flattens the signal considerably, as can be seen by com-
paring the real parts of the coherent terms on Figure 1 and 3, and so the
feedback loop would be less sensitive.

2.4.1 Saturation spectroscopy

To better understand polarization spectroscopy, let us first study the Lamb
dip phenomenon, on which the rather similar technique of saturation spec-
troscopy is based. We will not get into mathematical calculations, as we
only want to understand the Doppler-free characteristic of this spectroscopic
technique as of polarization spectroscopy.
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Assume a saturating pump beam propagating in the `z direction and a
weak counter-propagating probe beam, both with the same frequency. Ac-
cording to the condition (45), the pump beam interacts with atoms whose
velocity is in the range

kv P Ipump “ r´δ ´ γs,´δ ` γss . (62)

This strong pumping beam burns a Bennet hole over this interval (62), as
shown in Figure 4 (a), and since the probe beam does not saturate the
transition, the population density difference will be defined solely by the
pumping beam characteristics.

(a) Difference of population density ∆Npumpdvz caused
by the pump beam.

(b) Im
´

ρprobe
21

¯

due to the probe beam.

Figure 4: Difference of probability densities ∆Npumpdvz “

pNpump
1 ´ Npump

2 q dvz caused by the pump beam and Im
´

ρprobe
21

¯

due to the probe beam for different detunings of the laser frequency.
pΩpump,Ωprobeq “ p13.6, 1.36q MHz, Γ12 “ 34.5 MHz and γcoll ` γlas “ 1
MHz. The wavelength is λ “ 423 nm and the temperature is T “ 500 K.

Similarly, the probe beam interacts with atoms whose velocity in the
range

kv P Iprobe “ r`δ ´ γ12,`δ ` γ12s . (63)
Since the probe beam is the one we are measuring, if we look at the absorption
of this beam, then it is defined by the imaginary part of the coherent term
ρ21 when only this beam is considered. The latter is a Lorentzian on the
typical interval (63), see Figure 4 (b).
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As we can see in Figure 4, the Bennet hole of the population density
difference ∆Npumpdvz and the imaginary part of the coherent term ρprobe

21
only overlap when the detuning is approximately zero or equivalently when
the beams are interacting with atoms of approximately zero velocity along
the z axis. Thus, since the imaginary part of the refractive index is obtained
by integrating over the velocities

Im pnq 9

ż

∆Npump
pvzq dvz ¨ Im

´

ρprobe
21

¯

, (64)

we see by looking at the curves on Figure 4 (a) and (b), that for non zero

Figure 5: Absorption coefficient up to a proportional factor (64) as a function
of the detuning. pΩpump,Ωprobeq “ p13.6, 1.36q MHz, Γ12 “ 34.5 MHz and
γcoll ` γlas “ 1 MHz. The wavelength is λ “ 423 nm and the temperature is
T “ 500 K. These parameters are the same as in Figure 4.

detuning we will obtain a gaussian signal, but that the signal will drop around
zero detuning. The exact integration is done numerically in Figure 5. The
drop in the absorption coefficient at zero detuning is referred as the Lamb
dip. Moreover, the width of the dip is Doppler free and depends, like the
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amplitude of the dip, on the degree of saturation of the pump beam. Because
of these two properties, this setup can be used as a spectroscopy technique
called saturation spectroscopy [21].

2.4.2 Polarization spectroscopy

In this subsection, we directly give the mathematical expressions for the
polarization spectroscopy signal and the refractive indices difference, however
the derivations are detailed in Appendix C Polarization Spectroscopy.

Instead of implementing a simple saturation spectroscopy, we choose to
use the polarization spectroscopy technique because it has some advantages
such as a better signal-to-noise ratio [21], [24]. The polarization spectroscopy
setup shown on Figure 6, is very similar to the one we described in the
previous subsection 2.4.1 Saturation spectroscopy. Indeed, the main idea
of using a saturating pump beam to burn a hole in the density population and
using a weak counter-propagating beam to probe it and to obtain a Doppler
free signal, is exactly the same.

Laser

423nm

4

2

HCL 2

Pump

Probe

Balanced

Photodetector

AOM

DDS 80MHz

AWG 100kHz

Lock in Amplifier

PBS

PBS

Figure 6: Setup for the polarization spectroscopy5. DDS : Direct Digital
Synthesizer, AWG: Arbitrary Waveform Generator, PBS : Polarization Beam
Splitter, AOM : Acousto-Optics Modulator, HCL: Hollow Cathode Lamp, λ

2 :
half-wave plate, λ

4 : quarter-wave plate.

However, as we can see in Figure 6, we introduce wave plates to specify the
polarization of the two beams. Since we take into account the polarization
of the beams, we have to consider the Zeeman sub-levels in return. To keep

5The figure is made with ComponentLibrary. ComponentLibrary by Alexander Franzen
is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
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things simple and stick to our case of interest for neutral calcium atoms, we
assume that the transition occurs between a S and a P Zeeman manifolds, as
shown in Figure 7, and that the beams propagate along the z axis. We also
consider that the pump beam is circular right polarized, as in Figure 7, and
that the counter-propagating probe beam that goes to the balanced photo-
detector, see Figure 6, is linearly polarized along the x axis.

41S0

41P1

mJ=0

0 +1-1

+: Pump beam

Probe beam:

        ( -- +)21
√2

Figure 7: Saturation of the transition m0 “ 0 Ø m1 “ 1, in the polarization
spectroscopy setup for the 423nm transition between the 41S0 and 41P1 states
of neutral calcium atoms.

Intuitively, looking at Figure 7, the new degree of freedom we introduce
with polarization spectroscopy compared to the Lamb dip phenomenon in a
two-level system is the fact that the probe beam now has two components
that we can use (sum, subtract) to get a better signal. This is exactly
the property that is exploited by the ensemble of the half-wave plate, the
polarization beam splitter and the balanced photo-detector placed after the
optogalvanic lamp, see Figure 6. The expression of the resulting intensity,
derived in C.1 Output signal, is

∆I “
E2

0
2 e´2Impntot`wtotq ω

c
LRe p∆nq

ω

c
L. (65)

E2
0

2 is the initial intensity of the probe beam, L is the length of the opto-
galvanic lamp and ω is the angular frequency of the laser light. The other
quantities are defined as

ntot “
n``n´

2 and ∆n “ n` ´ n´

wtot “
w``w´

2 and ∆w “ w` ´ w´

. (66)

n´ and n` are the refractive indices faced by the left and right circular
polarization components of the probe beam as they pass through the atomic
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medium in the presence of the pump beam. Likewise, w´ and w` are the
refractive indices of the optogalvanic lamp windows for the corresponding
circularly polarized components of the probe beam.

The useful features for using the signal (65) as an error signal and for
locking the laser frequency with it, reside in the real part of the difference
of refractive indices. The detailed derivation is given in C.2 Difference of
refractive indices and is

Re p∆nq “ ´
N

V

|d12|2

8ℏϵ0

Ω2γ12

2Γ12

π
?

2πkvthγs

e
´ δ2

2pkvthq
2 δ

δ2 ` 1
4 pγ12 ` γsq

2 . (67)

As the gaussian in the expression (67) varies slowly compared to the other
part of the expression, we can focus on the latter. This part is interesting
because it is very similar to the refractive index expression (42) that we
obtain for the two-level system without Doppler broadening, although the
full width at half maximum separating the signal extrema is now

δF W HM “ γ12 ` γs. (68)
Since it does not depend on Doppler broadening, polarization spectroscopy
is effectively a Doppler free spectroscopy technique. It corresponds to the
sum of the FWHMs induced by the probe and the pump beams (31) up to
a one half factor appearing when the frequency of both beams is swept at
the same time. Compared to the previous Lamb dip case, the gaussian in
the polarization spectroscopy signal (67) is simply an envelope function and
is not a background signal on which the spectroscopic signal appears as on
Figure 5.

The expression (67) is correct, but in order to adapt it to our experiment,
we must modify it slightly. Indeed, instead of using a mechanical chopper
combined with a lock-in amplifier, we use a chopped acousto-optic modulator
(AOM), see Appendix D Technicalities. Thus, only the ´1 order of the
resulting pump beam passes through the optogalvanic lamp. This implies
that the detuning of the pump beam have to be replace by δ ` δAOM , where
δAOM is the frequency of the signal driving the AOM. The final expression is

Re p∆nq “ ´
N

V

|d12|2

8ℏϵ0

Ω2γ12

Γ12

πe
´

pδ`δAOM q
2

2pkvthq
2

?
2πkvthγs

δ ` 1
2δAOM

`

δ ` 1
2δAOM

˘2
` 1

4 pγ12 ` γsq
2 ,

(69)
corresponding approximately to that without the effect of the acousto-optic
modulator (67) shifted by 1

2δAOM .6

6The computation of Re p∆nq with the detuning of the acousto-optic modulator is
the same as that detailed in C.2 Difference of refractive indices, although using the
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2.5 Absorption drop in a three-level system
We detailed in the previous section 2.4 Spectroscopy in a two-level

system, the technique we use to stabilize the 423 nm laser frequency on
the transition of neutral calcium atoms between the 41S0 and 41P1 Zeeman
manifolds. Since we also want to stabilize the 733 nm laser frequency on
the transition between the 41P1 and the 41D2 manifolds, we now have to
consider a three-level system. A peculiarity of these systems compared to the
two-level systems is that if the two lasers are on resonance, we can observe
a drop in absorption. There are two possible causes that we study here:
the electromagnetically induced transparency (EIT) and the Autler-Townes
splitting (ATS).

2.5.1 Three-level ladder system

To stick to the case of interest, that of neutral calcium atoms, we consider a
three-level ladder system, see Figure 8 (a), where the two light beams couple
the state |1y and the state |3y by the intervention of another state, state |2y,
with an intermediate energy.7

We derive the time-independent hamiltonian for the three-level ladder
system in Figure 8 (a). Since the steps are the same as in section 2.2 Atom-
light interaction in a two-level system, we will not go into the details
of the derivation. The time-dependent hamiltonian of the system is the sum
of the atomic hamiltonian and the electric-dipole hamiltonian describing the
couplings induced by the two electromagnetic fields. Analogously to the
expressions (13) and (16), and assuming that the polarization vector and the
phase of the two laser beams are correctly chosen, we obtain

H ptq “

¨

˝

0 ´d12Ep ptq 0
´d12Ep ptq ℏω12 ´d23Ec ptq

0 ´d23Ec ptq ℏω13

˛

‚. (70)

Then, we switch to the rotating frame of the electromagnetic waves by ap-
plying the unitary transformation (18) represented by the matrix

U “

¨

˝

1 0 0
0 eiωpt 0
0 0 eipωp`ωcqt

˛

‚. (71)

residue theorem with the pole ´δ ´ δAOM ` iγs.
7There are also Λ systems, where the coupling state |2y has an energy level higher than

the two other levels. In this case, the physics and mathematics are quite similar [25].
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Figure 8: Systems with control and probe fields at frequencies ωc and ωp

detuned such that ∆c “ ωc ´ ω23 and ∆p “ ωp ´ ω12. DDS : Direct Digital
Synthesizer, AOM : Acousto-Optics Modulator, HCL: Hollow Cathode Lamp,
AWG: Arbitrary Waveform Generator.

Finally, we make the rotating wave approximation and we define the real
Rabi frequencies,

Ωp “ ´
d12Ep,0

ℏ
and Ωc “ ´

d23Ec,0

ℏ
. (72)

The subscript p (c) usually stands for probe (control) and Ei0 is the i “ p or c
electric field amplitude. We also define the detunings of the lasers

∆p “ ω12 ´ ωp and ∆c “ ω23 ´ ωc. (73)
8The figure is made with ComponentLibrary. ComponentLibrary by Alexander Franzen

is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
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The time independent hamiltonian is

H “ ℏ

¨

˝

0 Ωp

2 0
Ωp

2 ∆p
Ωc

2
0 Ωc

2 ∆c ` ∆p

˛

‚. (74)

Furthermore, we take into account incoherent processes, spontaneous
decay processes (26) and dephasing processes (28) due to collisions and
linewidths of the lasers [19], represented by dephasing rates γp and γc. The
sum of the Lindblad operators is

L pρq “

¨

˝

Γ12ρ22 ` Γ13ρ33 ´γ12ρ12 ´γ13ρ13
´γ12ρ21 Γ23ρ33 ´ Γ12ρ22 ´γ23ρ23
´γ13ρ31 ´γ23ρ32 ´pΓ13 ` Γ23qρ33

˛

‚, (75)

where we introduce the quantities

γ12 “ Γ12
2 ` γp ` γc, γ23 “ Γ12`Γ23`Γ13

2 ` γc, γ13 “ Γ23`Γ13
2 ` γp . (76)

The steady state solutions of the Lindblad master equation (22) for the three-
level ladder system are detailed in Appendix E Three-Level Ladder Sys-
tem.

2.5.2 Dark state

Before using the density matrix formalism, we describe the dark state
phenomenon in the more simple wavefunction formalism in order to have a
physical intuition of the electromagnetically induced transparency.

When the frequencies of the two lasers match the two-photons resonance
condition

∆p ` ∆c “ 0, or equivalently ωp ` ωc “ ω12 ` ω23 “ ω13 (77)

the state

|ψy “
1

a

Ω2
p ` Ω2

c

¨

˝

´Ωc

0
Ωp

˛

‚, (78)

is an eigenstate of the hamiltonian (74) with a corresponding eigenenergy
E “ 0. It is a dark state.

The fact that this eigenenergy is equal to zero is different from the choice
of an energy reference as we have done with for the atomic hamiltonian (13)
and (70). Because of the change of basis (71), the hamiltonian (74) describes
the interaction of the atom and the light beams in the latter’s reference frame.
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Thus, this zero energy means that the state (78) does not interact with light
and this is why it is called a dark state. Mathematically, if we reverse the
basis change (71), using the two-photons resonance condition (77), the time
evolution of the dark state is

|ψptqy “
U :

a

Ω2
p ` Ω2

c

¨

˝

´Ωc

0
Ωp

˛

‚“
´1

a

Ω2
p ` Ω2

c

`

Ωc|1y ´ Ωpe
´iω13t

|3y
˘

. (79)

This time evolution (79), with the fact that the amplitudes for the states
|1y and |3y are independent of time, corresponds to the evolution under the
Schrödinger equation only considering the atomic hamiltonian. As a re-
minder and to be even more convinced of the non-interacting behaviour of
the dark state, we can consider the same electric-dipole hamiltonian in the
case of a two-level system (21). It has eigenenergies ∆

2 ˘ 1
2

?
∆2 ` Ω2 and leads

to Rabi oscillations. Whatever the initial superposition of the eigenstates of
the atomic hamiltonian, the amplitudes of the states |1y and |2y depend on
time as the atom interacts with the electromagnetic field.

Note that in the case where the control beam is much stronger than the
probe beam, |Ωc| " |Ωp|, the dark state (78) is very close to the ground
state |1y. As the atoms in the dark state do not interact with light, they
form a transparent medium, that is why this phenomenon is also called elec-
tromagnetically induced transparency because the application of a second
electromagnetic wave induces the formation of a transparent medium.

To get a better intuition on how the dark state is formed and why it is a
purely quantum state, let us consider the case where both detunings are zero
∆p “ ∆c “ 0 and take ℏ “ 1. According to expression (74), the hamiltonian
can be decomposed as

H “

¨

˝

0 Ωp

2 0
Ωp

2 0 Ωc

2
0 Ωc

2 0

˛

‚“

¨

˝

0 Ωp

2 0
Ωp

2 0 0
0 0 0

˛

‚

looooooooomooooooooon

“Hp

`

¨

˝

0 0 0
0 0 Ωc

2
0 Ωc

2 0

˛

‚

looooooooomooooooooon

“Hc

. (80)

The hamiltonians Hp and Hc (80) correspond to rotations on the sub-spaces
t|1y, |2yu and t|2y, |3yu. To look at the evolution of a quantum state we cannot
treat them separately because the intersection of their sub-spaces is non
trivial. However, at short time scale dt, small compared to the characteristic
time of the two rotations τi “ Ω´1

i , the propagator can be developed with
the Lie-Trotter formula

Updtq “ e´ipHp`Hcqdt
“ e´iHpdte´iHcdt

` O
`

dt2 rHp, Hcs
˘

. (81)
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Therefore, at this small time scale, the evolution operator (81) act on states
|1y and |3y as if the two distinct rotations generated by Hp and Hc were
applied

"

|1y Ñ |1y ` iΩp

2 dt|2y ` O pdt2 rHp, Hcsq

|3y Ñ |3y ` iΩc

2 dt|2y ` O pdt2 rHp, Hcsq
. (82)

From the evolution (82), it is clear that the superposition state (78) formed
from the two states |1y and |3y has a zero first time derivative. The coefficients
in front of |1y and |3y are chosen in such a way that the small amount of
atoms excited by stimulated absorption from |1y to |2y and de-excited by
stimulated emission from |3y to |2y have the same amplitude but an opposite
phase resulting in a destructive interference process. This is why dark states
are purely quantum states for atoms. Such a reasoning can be generalized
also in the case where ∆p ‰ 0, the two-photon resonance condition (77) being
still met.

Note that dark state can only be formed when there are strictly more than
two levels. Indeed, in two-level systems, the hamiltonian can be decomposed
with Pauli matrices tσiui. The propagator of such a hamiltonian is a rotation
on the Bloch sphere and sends two orthogonal states on another orthogonal
basis. Therefore, it prohibits any possibility of destructive phase interference.
This is why we can observe EIT in systems with three levels or more [25].

2.5.3 Absorption coefficient of a three-level ladder system

Assuming that we know the steady state expressions of the coefficient of
the density matrix operators, we can study the evolution of the laser beams
in the atomic medium in a similar way as for the two-level system. By
performing calculation similar to those detailed in 2.2.6 Evolution of a
monochromatic wave in atomic medium, we can determine the mean
dipole moment

A

d⃗
E

“ ρ21d⃗12e
´iωpt

` ρ32d⃗23e
´iωct

` c.c., (83)

and the dielectric polarization

P⃗ “
∆N
V

A

d⃗
E

“ ϵ0

´

χpE⃗p,0e
´iωpt

` χcE⃗c,0e
´iωct

` c.c.
¯

(84)

Since we are interested in the evolution of the probe beam through the atomic
vapor, and due to the linearity of the Maxwell’s equation (41), we only keep
the terms of the dielectric polarization oscillating at the angular frequency
ωp. We end up with the same expression for the refractive index as in the

35



two-level case (42)

n “ 1 ´
1
2
N

V

d2
12

ℏϵ0

ρ21

Ωp

. (85)

Though, the difference lies in the steady state expression for the coherent
term ρ21. We have seen that the imaginary part of the refractive index define
the absorption coefficient of the electromagnetic field (43). Consequently, we
focus on the expression of the coherent term ρ21 and its imaginary part.

2.5.4 Electromagnetically induced transparency

Now that we have studied the dark state phenomenon in the wavefunction
formalism, we move to a more realistic approach through the density matrix
formalism, as developed in the article [25]. Here, we directly introduce the
expression of the coherent term ρ12, which determines the absorption of the
probe beam (85), in the case where the control beam is much stronger than
the probe beam

Ωp ! Ωc. (86)
The coherent term between state |1y and |2y is then

ρ12 “ i
Ωp

2
δ13

δ13δ12 `
Ω2

c

4

“ i
Ωp

2
1
δ12

˜

1 ´
Ω2

c

4
1

δ13δ12 `
Ω2

c

4

¸

(87)

with δ12 “ γ12 ´ i∆p and δ13 “ γ13 ´ i p∆p ` ∆cq. The derivation of this
expression (87) and of a more general and more complex expression of the
imaginary part of ρ21, as well as the comparison of the expression (87) with
the exact solution for different values of the ratio Ωc

Ωp
, keeping all other pa-

rameters fixed, are done in Appendix E Three-Level Ladder System.
Suppose we are in the situation where the control laser is tuned to the

resonance of the transition between the state |2y and the state |3y, so that
∆c “ 0, and that the frequency of the applied probe beam is swept around
the resonance frequency ω12. We will compare the absorption in this case to
that of the simple two-level system (30) with a weak probe beam Ωp ! γ12,
such that the coherent term is

ρ2lvl
12 “

Ωp

2
´∆p ` iγ12

∆2
p ` γ2

12
“ i

Ωp

2
1
δ12

. (88)

Thus, in the three-level case (87), we have an additional function that mul-
tiplies the two-level expression (88). Let’s see the modifications it induces.

In the first case, ∆p " γ12 as the right term in the parenthesis of the
expression (87) has a ∆´2

p dependence, we can neglect it and we end up with
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Figure 9: Analytical expression of Im pρ21q (87) for different detunings of
the control laser and in absence of the control beam (dashed black). Rabi
frequencies pΩp,Ωcq “ p1.36, 18.7q MHz, transition linewidth pΓ12,Γ23q “

p35, 2.2q MHz, Γ13 “ 35 Hz9, and laser linewidth γp “ γc “ 1 MHz. Ωp

Ωc
«

0.073 so that the expression (87) is close to the exact solution, see E.1 Limit
Ωp ! Ωc,Γ12.

the same expression as in the two-level case (88). So there is effectively no
EIT, which is what we expect since the dark state is formed when the two-
photon resonance condition (77) is satisfied. We see in Figure 9 that in the
case where the control beam is not detuned, the expressions for the simple
two-level system and that for EIT are equivalent for ∆p " γ12. In the case
of large detuning ∆c “ 50 MHz or 100 MHz, the EIT expressions are quite
similar to those for the two-level system with a small additional dip at the
two-photon resonance (77).

9We did not find a tabulated value for the spontaneous decay rate from state 41D2 and
41S1 of neutral calcium, the evaluation to tens of Hz is done in 3.1.2 Neutral calcium
atoms
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In the second case ∆p “ 0, we obtain the expression

Im pρ21q “ ´
Ωp

2
1
γ12

˜

1 ´
Ω4

c

4
1

γ13γ12 `
Ω2

c

4

¸

(89)

We have here a rather different expression than in the two-level case. The
imaginary part of ρ21 and thus the absorption coefficient is reduced by the
factor in parenthesis in the expression (89) which tends to zero under the
condition

?
γ12γ13 ! Ωc. (90)

This is what we expect from EIT, as a macroscopic part of the atoms
are in the dark state and do not interact with light, the latter propagates
without being absorbed by these atoms in the dark state, consequently the
absorption coefficient is smaller. In Figure 9, we see that indeed, compared
to the two-level case, the EIT curve with a zero detuning of the control beam
shows a decrease in absorption.

As in the case of the two-level system, we must also take into account the
Doppler shifts effects

∆p Ñ ∆p ´ k⃗p ¨ v⃗ and ∆c ` ∆p Ñ ∆c ` ∆p ´

´

k⃗c ` k⃗p

¯

¨ v⃗. (91)

Since the general effect of Doppler broadening is to reduce the height of the
EIT dip [18], we try to minimize it. In a ladder system, we chose that the
two beams propagates in opposite directions in order to limit the effect of the
Doppler shifts on the ∆c ` ∆p diagonal element of the hamiltonian (74).10

When we introduced the dephasing Lindblad operator (28) in the subsec-
tion 2.2.3 Specific examples of jump operators, we detailed different
dephasing causes such as the laser linewidth or collisions, as we mentioned
that this could significantly affect EIT. In fact, this is true for systems where
the linewidth γ13 for the two levels forming the dark state, here |1y and |3y,
is negligible with respect to the linewidth γ12 of the transition between the
ground state |1y and the intermediate state |2y, see the definitions (76). This
is particularly true in the case of a Λ system where states |1y and |3y are two
sub-levels of the same Zeeman manifold, as the dominant term in γ13 is the
one corresponding to dephasing effects and will have a strong influence on
the condition (90) [18].11

10For a Λ system, we have to use co-propagating beams in order to minimize the effect
of the Doppler shifts [25], because the detuning is ∆c ´ ∆p.

11In a Λ system the state |2y has a higher energy than the state |3y, so that there is no
term Γ23 in the definition of γ13, on the opposite of the case of a ladder system (76).
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Note that we observe EIT for a control beam on resonance ∆c “ 0,
approximately when the control Rabi frequency Ωc is smaller than the typical
decay rate of the system like on Figure 9. Since we want to satisfy the
condition (90) in the three-level system in neutral calcium atoms and that
we have roughly Γ23 « Γ12

10 , see Table 1, we will be above this limit. Hence,
we switch to the Autler-Townes splitting regime [26].

2.5.5 Autler-Townes splitting

Autler-Townes splitting (ATS) is similar to electromagnetically induced
transparency. The configuration and the experimental setup are the same
as in Figure 8. Likewise, the hamiltonian and the Lindblad operator gov-
erning the optical Bloch equations are the same as those introduced for EIT
respectively (74) and (75). However, ATS occurs when the control field is
stronger, roughly when the Rabi frequency of the control field is higher than
the transition linewidth between the two states coupled by the probe beam
[18]

γ12 ď Ωc. (92)

If we continue to consider a control beam on resonance ∆c “ 0, switching
to the dressed state picture, a strong enough control beam applied between
states |2y and |3y will result in hybridized eigenstates and corresponding
eigenenergies [27]

|˘y “
1

?
2

p|2y ˘ |3yq , and E˘ “ ˘
Ωc

2 . (93)

The condition (92) corresponds to a sufficiently strong control Rabi frequency
Ωc so that the energy levels E˘ with their linewidths do not overlap, as
they are farther apart than the linewidth of the absorption signal between
states |1y and |2y. In this case, the probe beam couples the state |1y with
either the state |`y or the state |´y depending on which eigenenergy E˘

(93) its detuning is equal to. The difference with EIT is that there is no
more interference but that, depending on the detuning of the probe beam,
we form a two-level system, either t|1y, |`yu or t|1y, |´yu. Consequently, on
Figure 10 we can see for quite high control Rabi frequencies that the curves
look like two Lorentzian respectively centered on the eigenenergies E˘ of the
hybridized states (93).

Considering the specific case of the three-level ladder system of the neutral
calcium atom t41S0, 41P1, 41D2u with the corresponding spontaneous decay
rates in Table 1, the transition from the EIT to the ATS regime occurs
when the control Rabi frequency is about 17.1 MHz (92) and the condition
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Figure 10: Im pρ12q for different control Rabi frequencies. Control beam on
resonance ∆c “ 0, probe beam Rabi frequency Ωp “ 13.6 MHz, transition
linewidth pΓ12,Γ23q “ p35, 2.2q MHz, Γ13 “ 35 Hz12, and laser linewidth
γp “ γc “ 1 MHz.

to see EIT would be to have the control Rabi frequency much higher than
8.7 MHz (90). The two conditions are drawn under the assumption (86).
Therefore, we work in the Autler-Townes splitting regime in the different
experiments. Note that it would be interesting to examine precisely how the
two conditions defining EIT (90) and ATS (92) change when the ratio of the
probe Rabi frequency to the control Rabi frequency is increased.

12We did not find a tabulated value for the spontaneous decay rate from state 41D2 and
41S1 of neutral calcium, the evaluation to tens of Hz is done in 3.1.2 Neutral calcium
atoms
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2.5.6 Modelling influence of collisions

The data we collected show that the absorption drop does not perfectly
match the theoretical expression derived in E.2 Approximated analytical
expression. Indeed, as we decrease the power of the control beam, the
amplitude of the transparency peak tends to decrease faster than expected
from the theoretical expression, and if we try to fit the dephasing rates (75)
we obtain suspiciously high results of several tens of MHz. One possible
explanation is that, as we perform our experiment in an optogalvanic lamp,
the effects of the collisions between the calcium atoms and the buffer gas
could be more complex than just a simple dephasing process described by
the Lindblad operator (75). One possibility would be to try to introduce a
collision kernel as did in the article [28], but this would involve more complex
optical Bloch equations and thus the fitting of the data would take more
time. Therefore, we develop below an empirical model that could explain
the observations.

To model this effect mathematically, we draw an analogy with the model
of an error in a quantum circuit. A simple example of an error is a bit flip
X that occurs with a probability p on a qubit, see [29], and is modeled as

Uerr pρq “ p1 ´ pqρ ` pXρX “ p1 ´ pqI pρq ` pEbit_flip pρq . (94)

I and Ebit_flip are completely positive and trace preserving operators [15],
describing a physical evolution of a quantum state. With probability 1 ´ p
the state does not undergo a bit flip and evolves under the identity operator
I and in the other case the state evolves under the bit flip operator Ebit_flip

defined by its Kraus operator X.

To return to our three-level system, we introduce the completely positive
and trace preserving operators describing the evolution of the atoms.

• I is the identity: I pρq “ ρ.

• E2´lvl is the operator which associates to the initial state the steady
state solution of the optical Bloch equation for the interaction with the
423 nm laser only: E2´lvl pρq “ ρ2´lvl.

• Eabs is the operator which associates to the initial state the steady state
solution of the optical Bloch equation for the interaction with 423 nm
and 733 nm lasers: Eabs pρq “ ρabs.

The total evolution of our atomic vapor is modeled by the operator

Etot “ qI ` p1 ´ qq rpE2´lvl ` p1 ´ pqEabss , (95)
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where q and p are equivalent to the error probabilities in a quantum circuit
(94). q corresponds to the probability that a collision occurring during the
excitation from the state |1y to the state |2y prevents this transition from
occurring. p is defined in the same way but for the transition between the
states |2y and |3y. Then, the coherent term ρ12, which defines the absorption
of the probe beam in the optogalvanic lamp is

ρ12 “ Etot pρiniq12 “ p1 ´ qq
“

p ¨ ρ2´lvl
12 ` p1 ´ pq ¨ ρabs

12
‰

. (96)

The factor p1 ´ qq can be absorbed in the optical density and defined an
effective number of atoms interacting with the beams. Thus, in simulations,
we will only introduce a single empirical error probability parameter p to fit
the curves.

2.6 Two-color polarization spectroscopy
In this section, we theoretically discuss the two-color polarization spec-

troscopy technique we use to lock of the 733 nm laser onto the transition
between the state 41P1 and the state 41D2 of neutral calcium atoms. It
uses the same configuration, atomic levels and lasers, as the experiment of
the three-level ladder system and is quite similar to the polarization spec-
troscopy technique. This is why we named it as such.

2.6.1 Simple analogy with polarization spectroscopy

Before going into the details of the polarization of the light beams and the
resulting interaction between the different Zeeman sub-levels of the t41S0, 41P1, 41D2u

manifolds, we propose a simple introduction to two-color polarization spec-
troscopy based on the expression of the coherent term ρ12 (87). The goal is
to gain an overview by considering this simple expression as we did in the
case of polarization spectroscopy by first considering a two-level system be-
fore taking Zeeman sub-levels into account. We derive this simple expression
in the case of the three-level ladder system under the assumption (86).

We assume that the probe beam is locked on resonance ∆p “ 0, so that
the expression (87) is now

ρ12 “ i
Ωp

2
1
γ12

¨

˚

˝

1 ´
Ω2

c

4γ12

γ13 `
Ω2

c

4γ12
` i∆c

´

γ13 `
Ω2

c

4γ12

¯2
` ∆2

c

˛

‹

‚

. (97)

Note that if the control beam is turned off, then the entire parenthesis of
the expression (97) is simply equal to 1. Therefore, by chopping the control
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beam and using a lock-in amplifier, we can get rid of this constant signal.
Then, we have the signal

ρLIA
12 “ i

Ωp

2
Ω2

c

4γ2
12

γ13 `
Ω2

c

4γ12
` i∆c

´

γ13 `
Ω2

c

4γ12

¯2
` ∆2

c

. (98)

This expression (98) has the same dependence on the detuning as the coher-
ent term for the two-level system (30), though with different amplitude and
width. Since we exploit this specific detuning dependence in the case of the
two-level system to perform polarization spectroscopy and stabilize the 423
nm laser frequency, in an analogous way we can use the detuning dependence
of the expression (98) and a setup similar to polarization spectroscopy to lock
the 733 nm laser on resonance.

2.6.2 Output signal

Laser 733nm

Dichroic

Mirror

4

HCL 2

Control

Probe

Balanced

Photodetector

Laser 423nm
2

AOM

DDS 100MHz

AWG 100kHz

Lock in Amplifier

PBS

Figure 11: Setup for the two-color polarization spectroscopy13. DDS : Direct
Digital Synthesizer, AWG: Arbitrary Waveform Generator, PBS : Polariza-
tion Beam Splitter, AOM : Acousto-Optics Modulator, HCL: Hollow Cathode
Lamp, λ

2 : half-wave plate, λ
4 : quarter-wave plate.

The two-color polarization spectroscopy setup, see Figure 11, is exactly the
same as that of the polarization spectroscopy, see Figure 6, except that the
pump beam has been replaced by the 733 nm control beam as in the three-
level ladder experiment, see Figure 8. Like in polarization spectroscopy, we

13The figure is made with ComponentLibrary. ComponentLibrary by Alexander Franzen
is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
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consider the probe beam to be initially linearly polarized and the control
beam to be circularly polarized using the quarter wave plate shown in Fig-
ure 11. The presence of the half wave plate just after the quarter wave plate
in the path of the control beam serves only to correct any aberrations of the
dichroic mirror.

The fact that we are using the same optical elements after the optogal-
vanic lamp: a half wave plate, a polarization beam splitter, and a balanced
photo-detector, as in the polarization spectroscopy setup, implies that the
output signal of the balanced photo-detector would also be proportional to
the real part of the difference of the refractive indices for the two circularly
polarized components of the initially linearly polarized probe beam (65)

∆I “
E2

0
2 e´2Impntot`wtotq ω

c
LRe p∆nq

ω

c
L. (99)

2.6.3 Polarized light beams and Zeeman sub-levels

Since polarized beams are used, we need to examine the effective Rabi fre-
quencies, (57) and (58), as well as the spontaneous decay rates (60) between
the different Zeeman sub-levels.

The Figure 12 summarizes the coefficients for the Rabi frequencies, for
linearly14 (a) and circularly15 (b) polarized 733 nm laser beam, and the spon-
taneous decay rates of neutral calcium atom for the Zeeman manifolds 41S0,
41P1 and 41D2. The corresponding tables of the Clebsch-Gordan coefficients
are given in Appendix B Clebsch-Gordan Coefficients.

The general form of the hamiltonian is

H “ ℏ

˜

ÿ

i

∆i|iyxi| `
ÿ

i,j

Ωji

2 |jyxi|

¸

, (100)

where i and j are the different Zeeman sub-levels, ∆i is the corresponding
detuning, and Ωji is the corresponding Rabi frequency, see equations (57)
and (58) depending on the polarization of the beams. The Linbald operators
for spontaneous decays are of the form

Lsp “ ´
1
2

˜

ÿ

pi,jq

Γij

#

ÿ

k

ρkj|kyxj| ` ρjk|jyxk| ´ 2ρjj|iyxi|

+¸

, (101)

where pi, jq corresponds to a possible decay channel from state j to state
i, and Γij is the corresponding decay rate (60). For simplicity, we do not

14We consider a linear polarization along the x axis, as in 2.3.1 Rabi frequency
15We consider a circular right polarization, as in 2.3.2 Spontaneous decay rate
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Figure 12: Coupling of Zeeman sub-levels in the two-color polarization spec-
troscopy setup for 733 nm laser (a) linearly and (b) circularly polarized. The
numbers correspond to the coefficients multiplying the Rabi frequencies and
the spontaneous decay rate between P and D levels

consider dephasing Linbald operators for laser linewidth or collisions. We do
not develop an analytical expression, like in the three-level ladder system, see
E.2 Approximated analytical expression, because there are too many
levels. Instead, we directly perform simulations with the steady state solver
of QuTip [30].

Eventually, we can quickly analyze the systems presented in Figures 12 (a)
and (b) from a symmetry point of view. Indeed, when the control beam is
linearly polarized, we see in Figure 12 (a) that the coefficients applied to the
Rabi frequencies are antisymmetric and those applied to the spontaneous
decay rates are symmetric with respect to the Zeeman sub-levels. These
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symmetries imply symmetric expressions for the level population,

ρmj ,mj
“ ρ´mj ,´mj

, (102)

and anti-symmetric expressions for the coherent terms,

ρmj ,mi
“ ´ρ´mj ,´mi

. (103)

We can be convinced of this statement by examining the dependence of the
steady state coefficients of the density matrix for the two-level system (30)
on the sign of the Rabi frequency. Due to this symmetric behaviour, (102)
and (103), we expect the refractive indices for the two circularly polarized
components of the linearly polarized probe beam to be the same, so that the
output signal (99) is zero.

Compared to the linear polarization case, the symmetry is broken when
the control beam is circularly polarized, see Figure 12 (b). We expect the
refractive indices of the two components of the linearly polarized probe beam
to be different, such that the output signal (99) is non-zero.

2.6.4 Difference of refractive indices

We now know that the output signal of the balanced photo-detector is
proportional to the real part of the difference of the refractive indices (99).
To determine its expression, we can follow the same steps as those detailed in
the subsections 2.2.6 Evolution of a monochromatic wave in atomic
medium and 2.5.3 Absorption coefficient of a three-level ladder sys-
tem. The dielectric polarization, considering only the components oscillating
at the probe beam frequency ωp is

P⃗ p`q
p “ ϵ0χE0

pϵ⃗´ ´ ϵ⃗`q
?

2
e´iωpt

«
N

V
d12 pρ´1,0ϵ⃗´ ` ρ`1,0ϵ⃗`q e´iωpt, (104)

where ρ˘1,0 “ xJ “ 1,mj “ ˘1|ρ|0, 0y.16 From the expression (104), we
derive the linear dielectric susceptibility for the two circularly polarized com-
ponents of the linearly polarized probe beam

χ˘ “ ´
N

V

|d12|2

ℏϵ0

ρ˘1,0
?

2Ω˘1,0
with Ω˘1,0 “ ¯

Ωp
?

2
. (105)

16Note that we neglect the steady state term ρmP “0,mS“0 corresponding to a component
along the z axis for the dielectric polarization. As there is no direct coupling with Rabi
frequencies from the ground state to this level the resulting steady state coherent term
value should be small, if not zero.
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We assume that the probe beam is sufficiently weak, so that we can replace
the atomic density difference ∆N

V
with the simple atomic density ∆N

V
in the

expression for the refractive index (42).
Due to opposite sign of the Rabi frequencies Ω˘1,0, the difference of re-

fractive indices is

∆n “
1
2∆χ “

1
2
N

V

|d12|2

ℏϵ0

ˆ

ρ´1,0
?

2Ω´1,0
´

ρ`1,0
?

2Ω`1,0

˙

“
1
2
N

V

|d12|2

ℏϵ0

ρ`1,0 ` ρ´1,0

Ωp

(106)
Then the signal (99) is proportional to the sum of the steady state solu-

(a) Difference of the coherent terms without Doppler shift (b) Difference of the coherent terms with Doppler shift

Figure 13: Real part of the difference of the coherent terms, which is pro-
portional to the real part of the difference of refractive indices, without (a)
and with (b) Doppler shift at a temperature of 400 K. Rabi frequencies
pΩp,Ωcq “ p40, 150q MHz, the dephasing rates are γp “ γc “ 1 MHz, the
spontaneous decay rates are pΓ12,Γ23q “ p35, 2.2q MHz, Γ13 “ 35 Hz17, and
the detuning of the probe laser is ∆p “ 0. Simulations are run with QuTip
[30]

tions of the coherent terms between the ground state |0, 0y and the states
|1,´1y and |1,`1y. Combined with the antisymmetry argument (103) and
the general expression for the output signal (99), it is easy to see that the

17We did not find a tabulated value for the spontaneous decay rate from state 41D2 and
41S1 of neutral calcium, the evaluation to tens of Hz is done in 3.1.2 Neutral calcium
atoms
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resulting signal in the case of a linearly polarized control beam is zero, which
is effectively the result of simulations in Figure 13. In addition, we have to
take into account the Doppler broadening. Indeed, we are in a ladder con-
figuration and the wavelengths of the lasers are λp “ 423 nm and λc “ 733
nm. The effective wavevector k⃗eff “ k⃗p ´ k⃗c is therefore non zero and the
Doppler shifts k⃗eff ¨ v⃗ are significant, i.e. keffvth " γij. To take into ac-
count the different Zeeman sub-levels as well as the Doppler broadening, we
use the steady state solver of QuTip [30]. Simulations of the real part of
the sum of the two coherent terms in the refractive index expression (106)
yield a dispersion-like signal as shown in Figure 13 (a), which is broaden and
damped as we take into account the Doppler shifts in Figure 13 (b). The
signal in Figure 13 (a) is mainly due to the different control Rabi frequencies
coupling the states |J “ 1,mJ “ ´1y and |J “ 1,mJ “ `1y to the manifold
41D2, with 1?

6 and 1 factors, respectively, as indicated in Figure 12 (b). In
Figure 13 (b), the center of the dispersion-like signal verifies the two-photon
resonance condition (77). So if the 423 nm is already locked to transition
between the state 41S0 and the state 41P1, we can use the signal in Figure 13
(b) to lock the 733 nm laser on the 41P1 Ø 41D2 transition.
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3 Experimental Apparatus

3.1 Atomic source
The atomic source we use in the different experiments is an optogalvanic

lamp, also called a see through hollow cathode lamp. It allows to obtain
an atomic vapor of neutral atoms, in our case calcium, and to shine lasers
through it, which is well adapted for spectroscopy.

3.1.1 Optogalvanic lamp

In our various experiments, the atomic sources we use are optogalvanic
lamps, from SpectroLamps, for calcium atoms. The working principle of
the hollow cathode lamp light sources is detailed in [31] which is our main
reference in this subsection. The optogalvanic lamp has the same operating
principle as a hollow cathode lamp, although it is designed to be used as a
reference for locking lasers, see [32].

Figure 14: Drawing of a optogalvanic lamp taken from [32]

As shown in Figure 14, the see through hollow cathode lamp consists of
two electrodes. The cathode is coated with the atomic species of interest, in
our case calcium. The glass envelope contains a buffer gas which is a noble
element, usually neon or argon. This buffer gas is ionized when a potential is
applied between the two electrodes. The ion nuclei will then be attracted by
the cathode and when they reach the cathode, they collide with the calcium
layer and neutral atoms are sputtered.

The buffer gas used is always a noble gas so that it does not form molecules
that would otherwise have rotating and vibrating modes. These modes would
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generate a broad spectrum that would probably interfere with the one of the
species of interest.

To control the lamp, we can change the current intensity applied to it.
We need to find a balanced value for the current. Indeed, on the one hand,
the higher the current, the more atoms of the species of interest are emit-
ted and therefore the higher the signal intensity. On the other hand, the
higher the current, the higher the temperature of the atoms, which implies
more significant Doppler broadening effect. In addition, a higher current also
equates to a shorter lifetime for the hollow cathode lamp, as the emission rate
of the atoms is higher. Besides, the lamp is manufactured to operate for a
certain amount of time at up to 5 mA current according to its manufacturer
SpectroLamps.

3.1.2 Neutral calcium atoms

With the optogalvanic lamp, we obtain a vapor of neutral calcium atoms
mainly in the ground state [33]. Calcium atoms are alkaline earth metals of
atomic number Z “ 20, so their ground state electronic structure is rArs p4sq2

or 41S0. The excited electronic states that are of interest in the experiments
are rArs p4sq1

p4pq
1 or 41P1 separated from the ground state by 423 nm and

rArs p4sq1
p4dq

1 or 41D2 separated from 41P1 by 733 nm, see Figure 15.

41S0

41P1

41D2

423 nm34,5 MHz

733 nm2,2 MHz

Figure 15: Structure of neutral calcium atom

In Figure 15, the transition wavelengths are indicated in plain arrow and
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the decay rates by the dotted lines, their values are given in Table 1. No
references was found for the decay rate for the quadrupole transition from
the state 41D2 to the state 41S0. However, we can get a rough estimate
because the decay rate of a quadrupole transition is approximately [34]

ΓQP
eÑg «

ω5
0 |xg|Qe|ey|

2

πℏϵ0c5 with |xg|Qe|ey| “
1
2exr⃗

2
y «

e

2

ˆ

a0
n2

Z

˙2

. (107)

n is the principal quantum number of the outermost electron of the state
41D2, Z is the number of protons and a0 is the Bohr radius. Using the
expression (107), the quadrupole decay rate from the state 41D2 to the state
41S0 is of the order of tens of hertz. Furthermore, there is a possibility for
atoms in the 41P1 state to decay into a different state 31D2, but the associated
decay rate is 0.35 kHz [17] so we neglect it.

3.2 Ti:Sapphire MSQUARED SolsTiS laser
The 733 nm laser source we want to lock onto the 41P1 Ø 41D2 transi-

tion of neutral calcium atoms is a Ti:Sapphire M SQUARED SolsTiS laser
with a narrow tunable linewidth. In order to be able to compare the stabil-
ity of this laser with internal locking techniques and two-color polarization
spectroscopy, we give here a quick description of the laser based on its user
manual [12].

On Figure16, we can see the main elements constituting the Ti:Sapphire
laser.

• The Ti:S Rod is the laser medium. It defines the gain envelope, i.e.,
for a specific frequency component, the factor by which the beam is
amplified as it passes through the Ti:Sapphire medium.

• The optical diode imposes the direction of light propagation within the
bow-tie cavity. It works in a similar way to a Faraday isolator [35].

• The piezo-mounted mirror M3 can modify the length of the bow-tie
cavity and hence change the frequency of the longitudinal modes.

• The birefringent filter selects the wavelength of the light oscillating
in the cavity. This selection is narrower than the width of the gain
envelope of the Ti:Sapphire medium, although it is still quite large.18

• The étalon acts similarly to a Fabry-Pérot cavity and provides a more
accurate selection of the wavelength of the light beam [36].

18There is no detailed number about the width of the different optical components.
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Figure 16: Plan of the Ti:Sapphire laser, adapted from [12]. The mirrors of
the bow-tie cavity are labeled Mi.

• In the SolsTiS - SRX Ti:Sapphire laser model we use, there is also an
additional reference cavity after the bow-tie cavity that can be used
to feedback to the piezo-mounted mirror M3 to have a fine tuning and
good frequency stability of the laser.

There are two locking options for this Ti:Sapphire M SQUARED SolsTiS
laser. The first is to use the étalon whose length can be controlled to stabilize
the frequency. Second, the reference cavity can be used to control the piezo-
mounted mirror M3 to obtain an even more accurate control of the laser
frequency.19

3.3 HighFinesse WS6 - 200 Series wavemeter
The goal of this master’s thesis is to stabilize the frequency of the 423 nm

and 733 nm lasers. To be able to quantify their stability we use a HighFinesse
WS6 - 200 Series wavemeter. For technical reasons, we use two different

19Using the reference cavity, the user manual announces a linewidth of about 50 kHz
calculated over 100 µs. Besides, the user manual of the Ti:Sapphire announces that the
laser in free operation has a frequency stability of about 100 MHz/hours/K [12].
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wavemeters, although they are the same models, in two separate laboratories
called B20 and B25. The wavemeter recording the frequency of the 423nm
laser is the one in B25, and the wavemeter recording the frequency of the
733nm laser is the one in B20.

On the data sheet of the HighFinesse WS6 - 200 Series wavemeter [37],
their are two main characteristics that influence the frequency measurement.
The first one is the absolute precision of 200 MHz of the wavemeter. It
corresponds to the proximity of the average frequency it measures to the
actual value. If we tune the lasers according to the wavemeter then we
could be up to 200 MHz detuned from what we expect, though by using a
spectroscopy technique we get rid of this problem. The second characteristic
is the standard deviation of 4 MHz. It means that even for a locked laser
whose actual frequency standard deviation is less than this limit, the standard
deviation of the frequency measurement that the wavemeter would return
would be about 4 MHz.

This announced standard deviation of 4 MHz is in principle too large
in our case, because to achieve the two-color cooling scheme we would like
to stabilize the lasers frequency below 1 MHz. To check what is the actual
standard deviation of this wavemeter model, we monitor the frequency with
the wavemeter in B20 of a 729 nm laser locked with a high finesse cavity
with a frequency standard deviation below 5 kHz [38], so that most of the
signal noise is caused by the wavemeter. It turns out that the standard devi-
ation calculated over 5 minutes is about 0.4 ´ 0.6 MHz, see subsection 4.3.2
Locking of the 733 nm laser. Consequently, as this standard deviation
is below the 1 MHz limit we want to reach we can use these wavemeters to
monitor the frequency of both lasers.20

3.4 423 nm Polarization spectroscopy
The experimental setup for the polarization spectroscopy is shown in Fig-

ure 17 which corresponds to the description in Figure 6. The optical compo-
nents are labeled in white from 1 to 9.

• The 423 nm laser beam comes directly from a Toptica DL pro laser.

• 1 is a half-wave plate, which coupled to the polarization beam splitter
2, allows adjustment of the amount of power for the probe and the
pump beams.

20Note that the standard deviation of the wavemeter in B25 laboratory could be different
from the one in B20 laboratory.
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Figure 17: Experimental setup of the polarization spectroscopy in an opto-
galvanic lamp with neutral calcium atoms

• 3 is the acousto-optic modulator, a Gooch & Housego model 3100-
125. We use it as a chopper, the 0 order being blocked and the ´1
order being used as the pump beam. It is supplied by a 100 MHz
amplified RF signal from a DDS board and modulated via a switch,
a Mini-circuits ZASWA-2-50DR+, and a square wave signal from an
arbitrary waveform generator, a Keysight 33500B Series, at 100 kHz.
The waveform generator also feeds the lock-in amplifier to achieve the
same internal frequency as the signal.

• 4 is a quarter wave plate that transforms the linearly polarized pump
beam into a circularly polarized beam.

• 5 is an optogalvanic lamp, from SpectroLamps, containing the neutral
atoms of calcium. The current is regulated with an analogical current
controller. In the lamp, the pump and the probe beams must be as
much superposed as possible.

• 6 is an iris to avoid reflections of the pump beam on the windows of
the optogalvanic lamp to illuminate the photo-detector.

• 7 is the half wave plate to correct the difference of refractive indices
induced by the windows of the see through hollow cathode lamp and to
rotate the polarization of the probe beam so that the final signal has
the correct expression (65).
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• 8 is a polarization beam splitter, which projects the electromagnetic
field onto each of the x and y axes. Therefore, the balanced photo-
detector 9, a Nirvana detector model 2007, returns the difference of
intensity Ix ´ Iy.

Then, the output signal of the balanced photo-detector goes to the lock-in
amplifier, a model SR830 from Stanford Research Systems, to be demod-
ulated, to filter the noise at frequencies different from 100 kHz and to be
eventually amplified.

3.5 Absorption drop in a three-level system
The experimental setup for observing the absorption drop in the three-

level ladder system t41S0, 41P1, 41D2u of neutral calcium atoms is shown in
Figure 18, which corresponds to the description in Figure 8 (b). The optical
parts are labeled in white from 1 to 5 and correspond to the description made
below.

Figure 18: Experimental setup for the three-level ladder system in a calcium
optogalvanic lamp.

• The 423 nm laser beam is coming from the Toptica DL pro laser and
the 733 nm laser is from a narrow linewidth, tunable Ti:Sapphire M
SQUARED SolsTiS laser.

• 1 is an 80 MHz acousto-optic modulator, from IntraAction Corp. model
ASM-802B8, modulated via a switch, a Mini-circuits ZASWA-2-50DR+,
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and a waveform generator, Keysight 33500B Series, at 100 kHz. This
acousto-optic modulator and the block wall allow only the `1 order of
the 423 nm beam to pass to the optogalvanic lamp and to the photo-
detector.

• 2 is the optogalvanic lamp, from SpectroLamps, containing the neutral
atoms of calcium. The current is regulated with a high voltage power
supply Model PS310 from Stanford Research Systems.

• 3 is the dichroic mirror transmitting the 423 nm blue light and reflecting
the 733 nm red control beam coming from the optical fiber 4.

• Eventually, the 423 nm probe beam goes onto the photo-detector 5, a
Thorlabs model PDA36A-EC.

The resulting output signal is then filtered through a lock-in amplifier,
model SR830 from Stanford Research Systems. The reference signal for the
lock-in amplifier is created by the same waveform generator signal used to
modulate the acousto-optic modulator.

3.6 423 nm - 733 nm Two-color polarization spectroscopy
The experimental setup to lock the 733 nm laser, based on two-color po-

larization spectroscopy, is shown in Figure 19, which corresponds to the de-
scription in Figure 11. The optical devices are labeled in white from 1 to
8.

• As in the three-level ladder system setup, the 423 nm laser beam is
coming from the Toptica DL pro laser and the 733 nm laser is from a
narrow linewidth, tunable Ti:Sapphire M SQUARED SolsTiS laser.

• 1 is an 80 MHz acousto-optic modulator, from IntraAction Corp. model
AOM-802B8, which is powered by a DC RF signal, so that the 423
nm beam going to the experiment is the `1 order coming out of the
acousto-optic modulator. This acousto-optic modulator is of no use
in this setup but is needed if we want to return to the Autler-Townes
splitting setup described in the previous subsection, to chop the 423
nm probe beam.

• 2 is the optogalvanic lamp, from SpectroLamps, containing the neutral
calcium atoms. The current is set with a high voltage power supply
Model PS310 from Stanford Research Systems.
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Figure 19: Experimental setup for the two-color polarization spectroscopy
technique in a calcium optogalvanic lamp.

• 3 is a 100 MHz acousto-optic modulator, from IntraAction Corp. model
AOM-1002AF1 21, which is modulated by a switch, a Mini-circuits
ZASWA-2-50DR+, and a 100 kHz square wave signal from a Keysight
33500B Series waveform generator. The latter also feeds the lock-in
amplifier, model SR830 from Stanford Research Systems, which is used
to filter noise from the signal. With the block wall, only the ´1 order
of the beam is sent to the experiment.

• 4 is the quarter wave plate mentioned in Figure 11 that is used to
change the initial linear polarization of the 733 nm beam to a circular
polarization.

• 5 is the dichroic mirror transmitting the 423 nm beam and reflecting
the 733 nm control beam.

• 6 is the half wave plate allowing to correct the difference of refractive
indices induced by the windows of the optogalvanic lamp. This half

21The acousto-optic modulator AOM-1002AF1 is designed for a laser light at 630 nm
wavelength, though it was the closest one we found [39]. The resulting diffraction efficiency
for the 733 nm laser beam is about 40 % before chopping.
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wave plate also rotates the polarization of the 423 nm probe beam,
so that once it passes through the polarization beam splitter 7 and is
detected in the balanced photo-detector 8, model 2007 from Nirvana
detector, the signal is proportional to the real part of the difference of
refractive indices (99).
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4 Results

4.1 423 nm Polarization spectroscopy
In this section, we present our results for polarization spectroscopy with

the 423 nm laser light and the transition of neutral calcium atoms between
the states 41S0 and 41P1. We first examine the dispersion-like signal we
obtain with the setup, and then we attempt to characterize the frequency
stability of the laser when we use the polarization spectroscopy technique to
lock it.

4.1.1 Polarization spectroscopy signal

The dispersion-like signals shown in Figure 20 (a) and (b) are recorded
on an oscilloscope, model TBS 1104 from Tektronix. To transform the time
scale into a frequency scale, we calibrate the voltage provided by the EVIL
PI-controller [40] to the laser frequency using the wavemeter22. In the end,
using the slope in voltage per unit time of the ramp signal applied with the
EVIL PI-controller, we get a coefficient in frequency per unit time and we
convert the oscilloscope time axis to a frequency axis by multiplying the
recorded time by this coefficient, albeit with an arbitrary frequency offset.

We collect the data with the experimental setup shown in Figure 17 for
the fixed parameters:

• The probe beam power is 0.12 mW.

• The radii of the probe and the pump beam are 0.46 mm, according to
the gaussian fit realized with the beam profiler from Thorlabs.

• The time constant of the lock-in amplifier is 300 µs.

• The sensitivity of the lock-in amplifier is 2 mV.

Then we change the intensity applied to the optogalvanic lamp and for each
intensity we take seven different values for the pump beam power. These
values are tabulated in Table 2.

First, it should be noted that the current intensities in the polarization
spectroscopy setup are set with an analog current controller, so the error
on the current intensity can be estimated to be about 0.5 mA. Second, the
beams powers are measured in front of the optogalvanic lamp windows. To

22The wavemeter in the B25 laboratory see 3.3 HighFinesse WS6 - 200 Series
wavemeter.

59



Intensity in mA 5 7 9
Pump beam power in mW 2.0 3.0 4.0 5.0 6.0 7.0 7.8

Table 2: Parameters to get polarization spectroscopy signal. The current
intensities are those applied to the optogalvanic lamp. The power is measured
in front of the lamp.23

be more precise, we calculate the transmission coefficient of the intensity T1
for one window of the lamp cell. To do this, we turn off the lamp and measure
the square root of the ratio between the output and the input power as the
beam passes through the lamp. This transmission coefficient is not negligible
and is evaluated over five measurements to

T1 “ 0.809 ˘ 0.003. (108)

We use this value in our fits to determine the Rabi frequencies of the two
beams in the atomic medium.

(a) Polarization spectroscopy signals for different pump
beam power and a current intensity of 9 mA

(b) Polarization spectroscopy signals for different current
intensities and a 7.8 mW pump power

Figure 20: Polarization spectroscopy curves (colored lines) and their fit
(dashed black lines) with the expression for the polarization spectroscopy
signal (67).

23In fact, with the powermeter we measure half of these values for the pump beam power
as it is a chopped signal.
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For each current, we fit the curves with the theoretical expression (67)
derived in subsection 2.4.2 Polarization spectroscopy, where we take into
account the transmission coefficient of the intensity (108). In Figure 20 (a),
the seven curves, corresponding to the seven values of pump beam power and
a current intensity of 9 mA applied to the optogalvanic lamp, are fitted with
the following parameters: a temperature, a dephasing rate, an amplitude
factor, a center frequency, and an offset, although the latter parameter should
be close to zero.

In Figure 20 (b), we plot the polarization spectroscopy signal for different
intensities applied to the optogalvanic lamp and for the same pump beam
power of 7.8 mW. We can see that the higher the current intensity, the higher
the signal amplitude and the steeper the slope around zero. This is logical
because the signal is proportional to the density of neutral calcium atoms
and that a higher intensity implies a higher atomic density. Also, since
polarization spectroscopy is Doppler free, a higher temperature would not
affect the width of the signal. Thus, increasing the intensity applied to the
optogalvanic lamp can be a simple and effective way to improve the frequency
stability when locking the laser with the polarization spectroscopy.

The seven curves associated with the same current intensity, like in Fig-
ure 20 (a), should have the same temperature and the same dephasing rate
due to collisions and the laser linewidth. This is because a fixed current
intensity applied to the lamp determines the temperature and the velocity
distribution and thus the collision rate in the lamp. First, concerning the
fitted temperatures, the mean values and the standard deviations for each
current intensity applied to the optogalvanic lamp are reported in Table 3.
The standard deviations for the fitted temperatures in Table 3 are signifi-

Current intensity
5 mA 7 mA 9 mA

Temperature Mean Value 250 279 421
in K Standard deviation 62 49 73

Table 3: Mean values and standard deviation of the seven fitted temperatures
for the seven pump power and a given current intensity, see Table 2.

cant, although these values for the 7 mA and 9 mA current intensities are
consistent with those we derive more correctly in a next subsection: 4.2.3
Determining the temperatures, when we examine the drop of absorption
in the three-level ladder system of neutral calcium atoms.

The fitted dephasing rates are plotted in Figure 21, they clearly show a
decreasing behaviour as a function of the pump beam power. We do not
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Figure 21: Fitted dephasing rate as a function of the pump beam power for
the different current intensities applied to the optogalvanic lamp.

know how to explain this behaviour, it could be related to what we observe
in the absorption drop in the three-level system and forced us to introduce
an empirical error probability, see 2.5.6 Modelling the influence of col-
lisions, to be able to fit the data and which turn out to be dependent on the
733 nm control beam power. Note that the dephasing rates seem to converge
for high pump powers to values of a few MHz which are the typical values
we expect.

4.1.2 Locking of the 423 nm laser

We use the polarization spectroscopy dispersion-like signal, as in Figure 20,
to lock the 423 nm laser of the neutral calcium atom transition between the
state 41S0 and the state 41P1. The dispersion-like signal is sent to the EVIL
PI-controller [40], then the DevilClient software allows us to control the PI
parameters of the control loop. The corrected voltage is then fed back to the
piezoelectric controller of the 423 nm Toptica DL pro laser.

The results of the locking of the 423 nm laser are shown in Figure 22
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Figure 22: Variation of the frequency of the 423 nm laser over 20 minutes
with the free-running laser (blue) and with the laser locked with polariza-
tion spectroscopy (orange). Arbitrary offsets are added for the two curves.
Standard deviations are calculated over the whole 20 minutes. The lock-in
amplifier parameters are: time constant 300 µs, sensitivity 2 mV and a phase
of 115 deg.

where the blue line corresponds to the free-running laser and the orange
line to the laser locked with the polarization spectroscopy technique. The
parameters leading to the locking situation in Figure 22 are listed below:

• The probe and pump beam have effective radii of 0.5 mm.

• The pump beam power is 6.6 mW.24

• The probe beam power is 0.2 mW.

• The current in the optogalvanic lamp is 6 mA.
24As it is chopped, the powermeter measures a 3.3 mW power.
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The parameters for the lock-in amplifier are the same as in the previous
subsection 4.1.1 Polarization spectroscopy signal and are recall in the
caption of Figure 22.

First, note that we subtract an arbitrary frequency offset for the two
measurements to better view them in MHz unit. Initially, their average
values are about 709 THz and the two signals are separated by several tens
of MHz. Indeed, even if we tune the laser to a frequency close to that
of the transition, the accuracy is limited to a few tens of MHz, because
the wavemeter only displays digits up to the 100 MHz. The advantage of
polarization spectroscopy is that it guarantees that the laser frequency is
locked with respect to that of the 41S0 Ø 41P1 neutral calcium transition.

Figure 23: Standard deviation of the frequency calculated over 5 minutes of
the 423 nm laser locked with polarization spectroscopy for 8 hours.

Secondly, we clearly see in Figure 22, that locking the 423 nm laser with
the polarization spectroscopy improves its stability on short time scale of
tens of seconds and on long time scale of 20 minutes. Thus, the polarization
spectroscopy setup allows us to mitigate some technical noise on both short
and long term, as discussed in the introduction subsection 1.2.1 Frequency
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noise. To further characterize the stability of the 423 nm locked laser, we
measure the standard deviation of the frequency over 5 minutes for 8 hours,
see Figure 23. This measurement shows that the stability of the laser is
generally bellow 1 MHz. To measure the frequency of the laser, we use
the wavemeter WS6 - 200 Series from High Finesse in the B25 laboratory.
As mentioned in the subsection 3.3 HighFinesse WS6 - 200 Series
wavemeter, the measurement noise induced by this model of wavemeter is
estimated to be about 0.6 MHz for the 729 nm light that we use as a reference
for the other wavemeter in the B20 laboratory, so that some hundreds of kHz
of the noise in Figure 23 is probably due to the wavemeter itself. However, the
actual influence of the wavemeter on the 423 nm laser frequency measurement
is not clear. Finally, according to the simulation, a stability of less than 1
MHz for the 423 nm laser should be sufficient to realize the two-photon
cooling scheme for neutral calcium atoms.

4.2 Absorption drop in a three-level system
In this section, we present the results of the absorption drop in the three-

level ladder system of neutral calcium atoms. Direct fitting of the data with
the analytical expressions developed in the theoretical part leads to absurd
parameters, such as temperatures of 1500 K for the calcium atomic vapor
when a 7 mA current intensity is applied to the optogalvanic lamp. As a
consequence, we perform additional measurements to fix some parameters.
Therefore, before showing the results of the data fitting, we determine the op-
tical densities and temperatures depending on the current intensities applied
to the optogalvanic lamp.

4.2.1 Data parameters

The data displaying absorption drop is collected on an oscilloscope, model
TBS 1104 from Tektronix. The 733 nm Ti:Sapphire M SQUARED SolsTiS
laser locked with the étalon is tuned to the resonance of the transition be-
tween the state 41P1 and the state 41D2 of neutral calcium atom. The 423
nm Toptica DL pro laser frequency is scanned by applying a voltage ramp
to its piezoelectric controller. As in the case of polarization spectroscopy,
we calibrate the voltage provided by the EVIL PI-controller to the laser fre-
quency measured with the wavemeter to be able to transform the time axis
into a frequency axis.

We repeat the measurements for different current intensities applied to the
optogalvanic lamp, for different values of the 733 nm control beam power and
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always keeping the same intensity for the 423 nm control beam. The values
are shown in Table 4.

Intensity in mA 7 8 9 10 11
733 nm power Mean value 0 2.51 4.62 7.56 10.54

in mW Std 0 0.04 0.23 0.14 0.24
423 nm power25 Mean value 4.04

in mW Std 0.04

Table 4: Parameters to get transparency peaks within the absorption curves.
The current intensities are those applied to the optogalvanic lamp. The
powers values for the 733 nm and 423 nm beams are the ones measured
before passing through the lamp.

In total, we have 25 curves because for each current intensity in Table 4,
we collect data for all five values of the control beam power. Compared to
polarization spectroscopy, we use a high-voltage power supply Model PS310
from Stanford Research Systems so that the current intensity value is more
precisely defined. Regarding the power of the probe and control beams, even
though we try to keep the same values for the different experiments, they
always fluctuate over time. For each experiment, we measure the power of
the control beam and each time we change the current intensity, we measure
the power of the probe beam. In total, we obtain five measurements for each
power parameter whose mean value and standard deviation are displayed in
Table 4.

4.2.2 Determining the optical densities

To facilitate the fitting of the data with the theoretical expression devel-
oped in section 2.5 Absorption drop in a three-level system, we try to
determine and fix some parameters. The first parameter we examine is the
optical density

OD “ ´ log
ˆ

Iout

Iin

˙

. (109)

Iout is the output intensity and Iin is the input intensity of the probe beam
as it passes through the atomic medium. To calculate the optical density
due to the neutral calcium vapor in the optogalvanic lamp and not to take
into account the intensity reflection coefficients of the windows of the lamp

25When we measure the power of the probe beam with the powermeter we obtain half
of this quantity, but we have to remember that we are chopping the signal so that half of
the time the beam is blocked.
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(108), we replace the input intensity Iin by the transmitted intensity when
the lamp is off.

Figure 24: Optical density as a function of the current intensity applied to
the optogalvanic lamp. The five series of measurement are displayed as well
as the mean values (dark points) and the standard deviation (length of the
error bar). These values correspond to the ones reported in Table 5.

The measurement of the optical density (109) is done with the 423 nm
Toptica DL pro laser locked with the polarization spectroscopy setup. Then,
the beam passes through the optogalvanic lamp with a current intensity set
with a high voltage power supply Model PS310 from Stanford Research Sys-
tems. For a fixed transmitted power of the probe beam of roughly 100 µW26

when the lamp is off, we decrease the current intensity applied to the lamp
from 11 mA to 7 mA in 1 mA steps before turning the lamp off. The optical
density values are then calculated using the expression (109) and we repeat
the process five times and display it on Figure 24. The mean value and stan-
dard deviation of the optical density for each current intensity are reported

26The probe beam is chopped, the corresponding measure of the powermeter is then
50 µW.
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in Table 5

Optical Density Current intensity
7 mA 8 mA 9 mA 10 mA 11 mA

Mean Value 0.065 0.087 0.111 0.13 0.16
Standard deviation 0.003 0.004 0.007 0.01 0.02

Table 5: Mean value and standard deviation of the optical density as a
function of the current intensity applied to the optogalvanic lamp. These
values are displayed on Figure 24.

From now on, we will use the mean values in Table 5.

Note that we cannot directly use the optical density value (109) reported
in Table 5. Indeed, the optical density depends on the parameters of the
experiment as we can see by detailing the expression (109) with the general
expression (43) of the linear complex dielectric susceptibility of the atomic
medium

OD “
ω

c
LIm pχexp

q “
ω

c
L
N

V

|d12|2

ℏϵ0

Im pρexp
21 q

Ωexp
“ α

Im pρexp
21 q

Ωexp
. (110)

The last term of the optical density expression (110) depends on the exper-
iment we are performing, for example whether it is a two-level system or
a three-level system. These particularities of the experiment will lead to a
different coherent term ρexp

21 and/or Rabi frequency Ωexp in the expression
(110). Nonetheless, the coefficient α defined in the expression (110) can be
considered as depending only on the current intensity applied to the opto-
galvanic lamp. Indeed, the current intensity determines the atomic density
of neutral calcium atoms. Then, even if we sweep the 423 nm laser frequency
over a typical range of 1 GHz, this is negligible compared to its absolute
frequency of 709 THz, so that its frequency is taken as a constant. Thus, if
we determine the coefficient α (110) for each current intensity through the
optical density measurements reported in Table 5, we could also use these
values in the three-level configuration when adding the 733 nm laser.

Let’s look at the detailed expression of the coefficient α (110) in the con-
figuration we use to measure the optical densities in Table 5 using the steady
state expressions for a two-level system (30)

α “
1
OD

¨
1

ş

wpvqdv γ12
2

1
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12`Ω2 γ12
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«
1
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12

(111)
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wpvq is the Maxwell-Boltzmann velocity distribution (46), δpvq is the detun-
ing with the Doppler shift (44). Looking at the expression of the integral
(49), the approximation in expression (111) amounts to replacing the satu-
rated linewidth of the transition γs (35) with the unsaturated linewidth of
the transition γ12. This is justified because the Rabi frequency, for a power
of 100 µW and a beam radius of 1 mm is about 14 MHz, is sufficiently low
that we also get a low relative error

γs ´ γ12

γs

“ 0.08. (112)

Finally, to determine the coefficient α (111), it is sufficient to determine
the temperature as a function of the current intensity such that we know the
velocity distribution in equation (111). Once we have obtained α, the general
form of the transmitted light intensity at the output of the optogalvanic
lamp would only require to use the steady state expression for the coherent
term, which we do for the three-level ladder system in E.2 Approximated
analytical expression, and the Rabi frequencies for the two beams, as the
absorption signal is

Iout “ Iin exp
ˆ

´α
Im pρexp

21 q

Ωexp

˙

. (113)

4.2.3 Determining the temperatures

To determine the temperature of the atomic vapor inside the optogalvanic
lamp, we use the data set for different current intensities and with the 733 nm
laser turned off, see Table 4. The corresponding curves are the colored lines
plotted in Figure 25 and arbitrarily shifted by 1 GHz to better distinguish
them. At first, we see in Figure 25 that we lack information because we only
have the tip of the absorption peak and not the tails of the signal converging
to the value when the light is too far detuned to interact with the atoms.
Indeed, the frequency range we can scan with the Toptica DL pro laser is
limited to a few hundreds of MHz because of mode hopes. However, we
can recover enough information to determine temperature by using the five
curves together. Indeed, the probe beam is the same in all five experiments,
so it follows that the input intensities and the Rabi frequencies are the same.
The differences between the five curves are:

• The calcium atomic density, which depends on the current intensity
applied to the optogalvanic lamp.

• The temperature, which changes the expression of the coherent terms
in the output signal (113) due to the Doppler broadening.
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Though, as we know the optical densities in Table 5, the atomic densities
can be viewed as a function of temperatures.

Therefore, by introducing one parameter for the input intensity for all
five curves and a temperature parameter for each curve, we can fit all the
curves at once. To do this, we use the steady state expression for the coherent
term for a two-level system (30), the expression of the coefficient α (111),
along with the optical density values set in Table 5. The result of the fit are
represented by the black dashed lines in Figure 25.

Figure 25: Absorption curves with the 733 nm beam turned off (colored)
and the fitted curves (black dashed), for a single amplitude fitting parameter
and individual temperature parameters. For each current the curves are
arbitrarily displaced by 1 GHz. The fitted temperatures are reported in
Table 6 and plotted in Figure 26.

In the fitting function, we fixed the 423 nm Rabi frequency to 60 MHz
which is the typical value we expect for the probe beam power equal to 4.04
mW, see Table 4, and a radius of about 1 mm. The curve fit is shown in
Figure 25. The fitted temperature parameters are reported in Table 6 and
displayed in Figure 26.

A first remark concerns the fixed value of the Rabi frequency. The value
of 60 MHz is a rough estimate so we verify that changing it by ˘20 MHz, only
changes the fitted temperature parameters by 3 ´ 4 K, which is smaller than
the standard deviation we obtain for the fitted temperatures, see Table 6.
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Figure 26: Fitted temperatures as a function of the current intensity applied
to the optogalvanic lamp. The error bars correspond to the standard devia-
tions reported in Table 6.

For this reason, we retain the temperature values reported in Table 6 to fit
the data in the next subsection.

The second remark is that the temperature in the 9 mA current case
seems to be high compare to the other cases, see Figure 26. One possible
explanation is that since this was the very first measurement of the 25 ones,
it might be that the thermal equilibrium state inside the optogalvanic lamp
was not reached.27

A third remark is that it is important to fit all five curves at the same
time with only one fitting parameter for the amplitude because we only get
a limited part of the gaussian-like absorption signal, see Figure 25. Because
of this limitation, we only get the center of the signal and not the tail end
of the gaussian. Fitting the curves individually, so having for each curve one
parameter for the amplitude along with the five temperature parameters,

27The information we found on hollow cathode lamp is that the typical heating time is
about 10 ´ 15 minutes [31] and could change depending on the atomic species.
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Temperature Current intensity
7 mA 8 mA 9 mA 10 mA 11 mA

Mean Value 323 334 383 385 444
Standard deviation 19 19 21 21 24

Table 6: Mean value and standard deviation of the temperatures for each
current intensity applied to the optogalvanic lamp. These values corresponds
to the ones we get from the fits on Figure 25 and are displayed on Figure 26.

we obtain absurd values for temperature. It ranges from 197 K for a 9 mA
current to 1583 K for a 7 mA current. However, we know that a higher
current is equivalent to a higher temperature inside the optogalvanic lamp.
Moreover, we can compare the results with the temperatures for currents of
30 mA to 70 mA in a hollow cathode lamp for neutral calcium atoms which
are of the order of 750 K to 1200 K [33].

With the temperature values from Table 6 and the optical density values
from Table 5, we are able to calculate the coefficients α (111). In conclusion,
the only remaining parameters we need to consider for fitting the data, are
those that determine the ratio of the steady state coherent term ρ12 to the
Rabi frequency of the probe beam, for which we get a theoretical expression
developed in Appendix E Three-Level Ladder System.

4.2.4 Fitting the data

Now that we have the values of the optical densities in Table 5, the tem-
peratures in Table 6, and that we can easily calculate the coefficient α (111),
the parameters that remain free and that we must adjust are:

• The effective radius of the 423 nm laser. As the value of the probe
beam power in Table 4 and the intensity reflection coefficient (108) are
fixed, the radius allows to adjust the Rabi frequency of the 423 nm
laser. This parameter is the same for all 25 measurements.

• The effective radius of the 733 nm laser, for analogous reasons to those
of the effective radius of the 423 nm laser. This parameter is also unique
for the 25 measurements.

• The detuning of the control 733 nm laser, which is different from one
measurement to the other as we only use the étalon locking of the
Ti:Sapphire and not the reference cavity which is more stable.
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Figure 27: The absorption drop curves (colored) in the three-level ladder
system of neutral calcium for a current intensity of 11 mA applied to the
lamp are arbitrarily displaced by 1 GHz. Some of the parameters used to
plot the fitted curves (black dashed) are reported in Table 7.

• Likewise, we introduce a frequency shift for the 423 nm probe laser for
each measurement.

• The voltage amplitude of the signal that multiplies the exponential
absorption part of the signal (113). This parameter is the same for all
measurements because the intensity of the probe beam is fixed.

• The empirical error probabilities (96) that we introduce in 2.5.6 Mod-
elling influence of collisions. We introduce such a probability for
each measurement.

• Eventually, for each curve, we introduce a general offset that should be
close to zero.
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To fit the data we use the expression for the coherent term of the three-level
ladder system developed in E.2 Approximated analytical expression.
Although we fit the 25 data curves (colored) at the same time due to the
shared parameters, we have displayed the fitted curves (black dashed) only
for the set corresponding to the 11 mA current intensity in Figure 27.28 In
this figure, the curves are arbitrarily shifted by 1 GHz to better distinguish
them. Some of the fitted parameters are tabulated in Table 7.

Current intensity “ 11 mA 733 nm power in mW
0 2.51 4.62 7.56 10.54

Radius 423 nm Mean 0.76 mm
Std 10´6 mm

Radius 733 nm Mean 0.76 mm
Std 10´6 mm

Amplitude Mean 0.866 V
Std 0.009 V

Error probability Mean 0.405 0.601 0.887 1.00
p1 ´ pq Std 0.002 0.002 0.002 0.002

Table 7: Fitted parameters for the case of a 11 mA current intensity applied
to the optogalvanic lamp, though they are found by fitted the 25 measure-
ments. The corresponding curves are plotted in Figure 27.

The fitted radii, in Table 7, are of the right order of magnitude, although
they are smaller than the measured value of 0.85 mm that we obtain with
the beam profiler for the 423 nm beam and the 733 nm beam. However, we
realigned the experiment after taking the measurements plotted in Figure 27
and before measuring the beams radii with the beam profiler, because strong
reflection effects can occur with the lamp, it is possible that the beams were
distorted which would modify their fitted radii. Another possible explanation
is that we have measured the optogalvanic lamp window intensity reflection
coefficient (108) for the 423 nm laser. As a consequence, the reflection co-
efficient in intensity for the 733 nm laser could be different which would
influence the radius of the 733 nm to get the right Rabi frequencies. Also
note that in all the previous calculations and models, we consider uniform
beams and therefore uniform Rabi frequencies. This is to keep things simple.
Especially, since the beams are not perfectly gaussian but have a more com-
plex shape that would have been difficult and time-consuming to integrate
the expression of the steady state coherent term as a function of the beams
shapes and the relative positions of their centers.

28We perform the fit with the curve_fit function from the scipy.optimize library.
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The empirical error probabilities p1 ´ pq are reported in Table 7. If we
had more time, we could have looked for an empirical model for these prob-
abilities and explained them as a function of some physical parameters of
the atomic vapor inside the lamp. In addition, when performing our fit, we
only consider the atomic density instead of the difference of atomic densities
between the ground state and the excited state. By quickly examining the
consequences of this approximation, we find that most of parameters have
not been changed significantly. The relative differences are generally small,
for instance temperatures are changed by 1 ´ 4 K, except in particular for
these empirical probabilities, though they are still necessary to fit the data.
Therefore, if one wishes to examine the physical explanation behind these
empirical probabilities, it would be important to consider the difference of
atomic densities instead of just the calcium atomic density.

4.3 423 nm - 733 nm Two-color polarization spectroscopy
In this section, we present the results obtained for the two-color polariza-

tion spectroscopy: the dispersion-like signal and the 733 nm laser frequency
stability when it is locked with this spectroscopic technique.

4.3.1 Two-color polarization spectroscopy signal

To obtain the two-color polarization spectroscopy signal, we lock the 423
nm laser with the polarization spectroscopy technique and scan the Ti:Sapphire
M SQUARED SolsTiS laser around the 733 nm wavelength. The dispersion-
like signals in Figure 28 are recorded on an oscilloscope, model TBS 1104
from Tektronix. Previously, in the polarization spectroscopy and to see trans-
parency peaks in the absorption curves, we scanned the 423 nm Toptica DL
pro laser frequency and we had to calibrate the voltage provided by the EVIL
PI-controller to the laser frequency using the wavemeter. Since the internal
controller of the CW Ti:Sapphire M SQUARED SolsTiS laser allows us to
set the swept frequency range directly, we do not need to do this calibration
here. The time axis is converted to a frequency axis by finding the coordi-
nates of the extrema of the voltage ramp, which is applied to the piezoelectric
controller of the laser and is displayed on another channel of the oscilloscope,
the difference of which corresponds to the frequency range.

We collect the data with the experimental setup shown in Figure 11 for
the fixed parameters:

• The current intensity applied to the optogalvanic lamp is 7 mA.
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Figure 28: Two-color polarization spectroscopy dispersion-like signal. Power
of the 423 nm: 4.4 mW. Current intensity applied to the optogalvanic lamp:
7 mA. The lock-in amplifier parameters are: time constant 1 ms, sensitivity
20 mV and a phase of ´50 deg.29

• The probe beam power is 4.4 mW.

• The radii of the probe and the control beam are approximately the
same and evaluated to 0.85 mm, according to the gaussian fit realized
with the beam profiler from Thorlabs.

• The time constant of the lock-in amplifier is 1 ms.

• The sensitivity of the lock-in amplifier is 20 mV.

• The swept frequency range for the 733 nm control beam is 2 GHz.

29Fitting the data in Figure 28 with the model presented in section 2.6 Two-color
polarization spectroscopy and plotted in Figure 13 (b) is out of question, as a single
simulation already takes a few tens of minutes.
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To obtain the different curves in Figure 11, we only change the control beam
power, the values are t10, 20, 30, 40, 56u in mW.30

In Figure 28, we can see the effect of changing the 733 nm control beam
power while keeping all other parameters constant. Changing the control
power does not significantly modify the width of the dispersion-like signal,
as this characteristic is essentially set by the Doppler width. However, to
some extent, the higher the control beam power, the higher the amplitude
of the resulting signal. Therefore, the slope around zero can increase with
higher 733 nm laser power, resulting in better frequency stability when using
this signal to lock the SolsTiS laser. As shown in Figure 28, the slope
corresponding to the highest power we can achieve is also the steepest, so we
work with the highest power possible. One possibility that could be explored
to achieve a steeper slope would be to increase the current intensity applied
to the optogalvanic lamp. This would increase the temperature and thus the
width of the signal, but in the meantime it would also increase the atomic
density of the calcium neutral atoms and the amplitude of the signal, which
could provide a better signal to lock the 733 nm laser.

4.3.2 Locking of the 733 nm laser

Now that we get the dispersion-like signal as in Figure 28, we can lock
the 733 nm laser on the neutral calcium transition between the state 41P1
and the state 41D2. As with the polarization spectroscopy, the output signal
from the lock-in amplifier is sent to the EVIL PI-controller [40] and we use
the DevilClient software to set the proportional and integral parameters of
the control loop. The corrected voltage is sent back to the SolsTiS control
unit also called ICE-Bloc. As detailed in the manual of the SolsTiS laser [12]
and the note on locking the laser to a reference cavity [41], we feedback using
the slow control channel of the piezo-mounted mirror. The main reason for
this choice is the control ranges and sensitivities of the fast and slow external
inputs. For the slow (fast) external input, the control range is 30 GHz (80
MHz) and the sensitivity is of 1.5 GHz/V (4 MHz/V). First, as we can see in
Figure 28, the frequency scale of the dispersion-like signal is typically 1 GHz
and in addition, since the EVIL PI-controller allows only a few volts and not
20 V to be swept, the frequency scan range of the fast external input is not
relevant.

The resulting locking of the 733 nm laser is shown in Figures 29 (a) and
(b). The parameters use to lock the laser are:

30As the control beam is chopped the measured powers with the powermeter are
t5, 10, 15, 20, 28u in mW
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(a) Frequency of the 733 nm stabilized over 2 hours with
the two-color polarization spectroscopy (blue), the refer-
ence cavity (orange), and the étalon (green).

(b) Comparison of the stability over 7 hours of the 733 nm
with the two-color polarization spectroscopy technique
and with the reference cavity of the SolsTiS laser.

Figure 29: Comparison of the frequency stability of the 733 nm laser for the
different stabilization options: the two-color polarization spectroscopy, the
reference cavity, and the étalon. For the two-color polarization spectroscopy,
the parameters are: the 423 nm power is 4.3mW, the 733 nm power is 80
mW, for the lock-in amplifier the time constant is 1 ms, and the sensitivity
is 2 mV.

• The intensity in the optogalvanic lamp is 7 mA.

• The 423 nm probe beam power is 4.3 mW.

• The 733 nm control beam power is 80 mW. With the powermeter we
measure 40 mW as the beam is chopped.

• The effective radii of the two beams are 0.85 mm.

• The time constant of the lock-in amplifier is 1 ms.

• The sensitivity of the lock-in amplifier is 2 mV.

As in the case of the polarization spectroscopy for the 423 nm laser, we
arbitrarily subtract a frequency offset from the different signals, because with
two-color polarization spectroscopy, the 733 nm laser frequency is stabilized
with respect to the transition between the excited states 41P1 and 41D2 of
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the neutral calcium atoms, but with the internal stabilization options of the
SolsTiS laser, we rely on the precision of the WS6 - 200 Series wavemeter.

In Figure 29 (a), we compare the frequency stability of the 733 nm laser
with the different options available to us: two-color polarization spectroscopy
(blue), the SolsTiS reference cavity (orange), and the SolsTiS étalon (green).
We find that the frequency stability using only the étalon is worse than for
the other two options, which is logical as we use both in addition to the
locking of the étalon. Therefore, we compare the stability with the reference
cavity and with the two-color polarization spectroscopy over a longer time
scale of 7 hours in Figure 29 (b). On this longer time scale, we can clearly see
that the long-term drift of the two-color polarization spectroscopy technique
is smaller than that experienced by the reference cavity of the SolsTiS laser.
However, on short time scale of a few tens of seconds, the stability seems to
be equivalent.

Figure 30: Frequencies of the 733 nm and the 423 nm lasers locked respec-
tively with two-color polarization spectroscopy and polarization spectroscopy
over 8 hours. The 729 nm is locked to a high finesse cavity and is used as a
reference for the wavemeter which is used to read the 733 nm frequency.

In an attempt to understand the remaining instability of the 733 nm
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laser when locked with the two-color polarization spectroscopy, we examine
the frequency correlations between the 733 nm, the 729 nm, and the 423 nm
lasers that we recorded simultaneously for 8 hours, see Figure 30.

We expect to observe long term correlations between the 733 nm and
the 423 nm frequencies, as they essentially verify the two-photon resonance
condition. The correlations between the 733 nm frequency and the 729 nm
frequency should come from the fact that, since we consider the 729 nm as a
reference because it is locked to a high-finesse cavity, the long term drift of
the 729 nm frequency should be caused by the wavemeter with which we also
measure the 733 nm frequency. However, in Figure 30, these correlations are
not significant. For instance, during the last hours of the measurement, the

Figure 31: Comparison of the frequency standard deviation calculated over
5 minutes for 7 hours. The 733 nm is locked with the two-color polarization
spectroscopy technique (blue) and with the reference cavity of the SolsTiS
laser (green). The 729 nm laser (orange) is locked to a high finesse cavity
and is used as a reference.

423 nm and 729 nm lasers frequencies are relatively constant, while the 733
nm frequency decreases. However, it should be remembered that we use two
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different wavemeters in two different laboratories to record on the one hand
the 423 nm laser frequency and on the other hand the 733 nm and 729 nm
lasers frequencies. Thus, they could be subject to different and uncorrelated
drifts.

Eventually, we can study the stability of the 733 nm frequency over a short
time scale by examining the standard deviation calculated over 5 minutes for
7 hours, see Figure 31. First, we note that the standard deviation of the 733
nm laser locked with two-color polarization spectroscopy is slightly smaller
than that which we get using the reference cavity and is generally less than
0.8 MHz.31 From the simulation, this would be stable enough for us to achieve
the two-photon cooling scheme. The standard deviation of the frequency of
the 729 nm reference laser in Figure 31 also gives us an idea of the noise
induced by the finite precision of the wavemeter. Even though, in the latter
part of the measurement most of the 733 nm frequency instability could be
explained by the measurement noise of the wavemeter, we find that during
the first few hours of the measurement the wavemeter alone cannot explain
all of the 733 nm frequency instability.

4.4 Rydberg excitation
Similar to what we did with the three-level ladder system setup, we briefly

examine the excitation to a low Rydberg state. Instead of using the 733 nm
laser, we use a 403 nm Toptica DL Pro laser so that the third state of the
ladder system is the state 121D2 instead of the state 41D2 of neutral calcium
atom. Since the lifetime of the Rydberg state is generally much longer and
that the two wavelengths are closer, which limits the Doppler broadening, it
could be interesting to see if we can reach the regime of electromagnetically
induced transparency, as it has been done with erbium [42].

In Figure 32 we check for the presence of the 121D2 state near the fre-
quency recorded in the NIST database of 743.4681 THz [43]. To do this, we
lock the 423 nm with the polarization spectroscopy technique and we sweep
the frequency of the 403 nm laser. On the contrary of the three-level ladder
system setup, it is the 403 nm control laser beam that is chopped at 100 kHz
via an arbitrary waveform generator, a switch and an acousto-optic modula-
tor and not the 423 nm probe beam. The output signal is sent to a lock-in
amplifier to filter out noise. A noteworthy difference from the previous se-

31One difference between the two data sets is that in the case of the reference cavity, we
were using the Sprout-G pump laser from Lighthouse Photonics at its maximum output
power of 18 W and in the case of two-color polarization spectroscopy at an output power
of 16 W. Indeed, at 16 W the intensity seems to be more stable, we do not know to what
extent this could affect the frequency stability of the Ti:Sapphire laser.
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Figure 32: Absorption peak at the two-photon resonance in the three-level
system of the neutral calcium atoms t41S0, 41P1, 121D2u. Power of the 423
nm: 6.7 mW, radius of 0.5 mm. Power of the 403 nm: 22 mW, radius of 1.0
mm. Time constant of the lock-in amplifier: 3ms. Sensitivity of the lock-in
amplifier: 200 mV

tups is that we use a telescope to decrease the size of the 423 nm beam by a
factor of 3 and to correct for the expansion of the 423 nm beam. Thus, the
effective beam diameter measured with the beam profiler from Thorlabs is
0.5 mm. Likewise, the effective beam diameter for the 403 nm laser beam is
1.0 mm. The telescope allows to obtain a higher Rabi frequency while using
the same amount of power for the 423 nm beam and thus obtain a higher
amplitude for the resulting signal. We quickly try to observe a signal without
the telescope but we cannot see anything.

To get the Figure 32, which is the absorption peak due to the presence
of the 121D2 state as a function of the 403 nm laser frequency, we read the
frequency on the wavemeter, the voltage on the oscilloscope and we take the
rolling average on 10 points to get a smoother signal. The peak at 743.4688
THz corresponds to the absorption due to reaching the two-photon resonance
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between the 41S0 state and the 121D2 state. Since we see this absorption
peak, it might be possible to implement the same two-color polarization
spectroscopy technique, which we use to stabilize the 733 nm laser on the
41P1 Ø 41D2 transition, to stabilize in this case the 403 nm laser on the
41P1 Ø 121D2 transition of neutral calcium atoms [44].
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5 Conclusion
In this master’s thesis we study the theory and we implement two frequency

stabilizing techniques. We start with the polarization spectroscopy for the
423nm beam between the 41S0 ground state and the 41P1 excited state of
neutral calcium atoms. The resulting frequency stability for this beam is
of the order of 1 MHz. Then we continue with the two-color polarization
spectroscopy with the additional 733 nm laser and the 41D2 state. We also
reach a frequency stability of about 1 MHz for the 733 nm Ti:Sapphire laser
for the transition between the 41P1 state and the 41D2 state.

In addition, we develop an empirical model to fit the transparency peak we
get in the Autler-Townes splitting regime as we are using a quite powerful 733
nm control beam. Indeed, the transparency peak tends to disappear faster
than what we expect from exact calculation of the steady state solution of the
optical Bloch equations. This observation forced us to introduce an empirical
error probability to fit the collected data. We think that this might be due
to collisions inside the lamp. Hence, as the simulations taking into account
velocity distribution predict an even smaller peak in the electromagnetically
induced transparency regime we doubt whether it would be possible to reach
it in the present configuration.

Eventually, the main goal which underlies this master’s thesis is to be
able to use these frequency stabilized lasers to realize a two-photon cooling
scheme. According to simulations, the 1 MHz frequency stability that we
demonstrate from the measurements with the wavemeters for both lasers
should be enough to realize this cooling technique. Nonetheless, the question
remains whether we could effectively accomplish this sub-Doppler cooling
or not. Besides, some elements are still unclear, notably the influence of
the wavemeters on the frequency measurements and the determination of
the parameters allowing to get an optimal stability in the two spectroscopic
setups. Regarding the first problem, a beat note measurement of the lasers
with reference lasers locked to high finesse cavities could be a solution to
obtain a more accurate characterization of the frequency stability. For the
second problem, it would be necessary to dive into more detailed theoretical
models and simulations to get rid of the empirical parameters we introduced.
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Appendix A Simple Case of Lindblad Operator
In this appendix we propose a toy model to derive the form of the Lind-

blad operator with its jumps operators (23). To do so, we make two strong
assumptions about the evolution of the system due to its interactions with
the environment.

First, as in [45] we assume that the environment is decoupled from the
state of the system because it is a kind of a reservoir and is independent of
time, or at least it evolves on a much longer time scale than the system of
interest. Therefore, the density matrix operator for the system S and the
environment E is of the form

ρ ptq “ ρS ptq b ρE p0q . (114)

The second assumption we introduce to obtain a simple model is that the
completely positive and trace preserving map representing the evolution of
the density operator during an infinitesimal time dt from t to t ` dt is in-
dependent of time t. So that in the operator-sum representation [15] the
evolution of the system and the environment is

ρ pt ` dtq “ V pρ ptqq “
ÿ

l

Vlρ ptqV :

l . (115)

The operators tVlul
32 verify the condition

ÿ

l

V :

l Vl “ 1SˆE. (116)

The first condition (114) implies that the time derivative of the system
density matrix is

BρS

Bt
“ TrE

ˆ

Bρ

Bt

˙

“ TrE

ˆ

ρ pt ` dtq ´ ρ ptq

dt

˙

. (117)

Using the second (115) and third relations (116), we can express the right-
hand side of the equation (117) as

dt
BρS

Bt
“ TrE

˜

ÿ

l

Vlρ ptqV :

l ´
1
2

´

V :

l Vlρ ptq ` ρ ptqV :

l Vl

¯

¸

. (118)

32One example of such operators are
␣?

1 ´ p 1,
?

p X
(

,which we introduced in subsec-
tion 2.5.6 Modelling influence of collisions and which describe a bit flip error.
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We introduce an orthonormal basis t|nyun of the Hilbert space of the envi-
ronment E, which diagonalizes the density operator ρE p0q

ρE p0q “
ÿ

n

λn|nyxn|, with λn ě 0. (119)

We recall the useful mathematical relations
"

TrE rA ¨ pBS b CEqs “ TrE rA ¨ p1S b CEqs ¨ BS

TrE rpBS b CEq ¨ As “ BS ¨ TrE rp1S b CEq ¨ As
. (120)

Then developing the relation (118) we get

dtBρS

Bt
“

ř

l,n p1S b xn|q ¨ Vlρ ptqV :

l ¨ p1S b |nyq ´ 1
2
ř

l,m λm¨

TrE

”

V :

l Vl pρS ptq b |myxm|q ` pρS ptq b |myxm|qV :

l Vl

ı

“
ř

l,n,m λm p1S b xn|q ¨ Vl ¨ p1S b |myq ρS ptq p1S b xm|q ¨

V :

l ¨ p1S b |nyq

´1
2
ř

l,m λm p1S b xm|qV :

l ¨ p1S b
ř

n |nyxn|q¨

Vl ¨ p1S b |myq ¨ ρS ptq

´1
2
ř

l,m λmρS ptq ¨ p1S b xm|qV :

l ¨ p1S b
ř

n |nyxn|q

¨Vl ¨ p1S b |myq

(121)

By defining the operators

cl,n,m “

c

λm

dt
p1S b xn|q ¨ Vl ¨ p1S b |myq , (122)

we end up with the Lindblad operator

BρS

Bt
“

ÿ

l,n,m

cl,n,mρSc
:

l,n,m ´
1
2

´

ρSc
:

l,n,mcl,n,m ` c:

l,n,mcl,n,mρS

¯

, (123)

up to a reindexation. Since the Lindblad operator derives from a completely
positive and trace preserving map V (115), it effectively describes a physical
evolution as the density operator will remain positive and of unit trace under
this evolution (123). A more general and detailed derivation of the Lindblad
operator is given in [45].
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Appendix B Clebsch-Gordan Coefficients
In this appendix we detail the tables of the Clebsch-Gordan coefficients

xj1, j2;m1,m2|J,My (124)

that we use in this work. Based on [46] we recall the three relations

xj1, j2;m1,m2|J,My “ 0 if M ‰ m1 ` m2, (125)

xj1, j2;m1,m2|J,My “ p´1q
j1`j2´J

xj2, j1;m2,m1|J,My (126)
xj1, j2;m1,m2|J,My “ p´1q

j1`j2`J
xj2, j1; ´m2,´m1|J,´My (127)

Such that we focus on the cases where M ě 0 and j1 ě j2. In addition, all
the transitions that we consider satisfy the condition

J “ j1 ` j2 (128)

The simplest case involves the 41S0 manifold, such that j2 “ 0 and

xj1, 0;m1, 0|J,My “ δJ“j1δM“m1 (129)

For the case involving the 41P1 and 41D2 states, we need the coefficients
in Table 8

M 2 1 0
pm1,m2q p1, 1q p1, 0q p0, 1q p1,´1q p0, 0q p´1, 1q

x1, 1;m1,m2|2,My 1
b

1
2

b

1
2

b

1
6

b

2
3

b

1
6

Table 8: Values of the Clebsch-Gordan coefficients for pj1, j2, Jq “ p1, 1, 2q,
taken from [46].
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Appendix C Polarization Spectroscopy

C.1 Output signal
We assume that the probe beam after the first polarization beam splitter,

see Figure 6, is polarized along the x axis so that its complex field can be
decomposed into two circular polarization components

E⃗p`q
pz, tq “

E0

2 e´ipωt´kzqe⃗x “
E0

2
?

2
e´ipωt´kzq

p´ϵ⃗` ` ϵ⃗´q . (130)

ϵ⃗˘ “ ¯
e⃗x˘ie⃗y?

2 correspond to the left and right circular polarization vectors.
Now suppose that as the right (left) circular polarization passes through

the lamp of length L, it encounters a complex refractive index n` (n´) due
to the interaction with the atoms in the optogalvanic lamp and another
complex refractive index w` (w´) due to the windows of the lamp. Then,
we can define the quantities

ntot “
n``n´

2 and ∆n “ n` ´ n´

wtot “
w``w´

2 and ∆w “ w` ´ w´

. (131)

The resulting field at the output of the lamp is

E⃗
p`q

out “ E0
2

?
2

´

´e´ipωt´pn``w`q ω
c

Lqϵ⃗` ` e´ipωt´pn´`w´q ω
c

Lqϵ⃗´

¯

“ E0
2

?
2e

´ipωt´pntot`wtotq ω
c

Lq
`

´eip∆n`∆wq ω
2c

Lϵ⃗` ` e´ip∆n`∆wq ω
2c

Lϵ⃗´

˘

.

(132)
As shown in Figure 6, after the optogalvanic lamp, the probe beam passes
through a half-wave plate. Assuming that the fast axis of the wave plate is
rotated by an angle θ compared to the x axis, the effect of this half-wave
plate on the polarization axis of the probe beam using Jones calculus [47], is
described by the matrix

MHW P pθq “ ´i

ˆ

cos 2θ sin 2θ
sin 2θ ´ cos 2θ

˙

, (133)

in the tx, yu basis. Then, with the second polarization beam splitter, see
Figure 6, the field is projected onto each linear component x and y. Taking
into account the effect of the half-wave plate, the two components going to
the inputs of the balanced photo-detector are

Ep`q
x “ ´iE0

4 e
´ipωt´pntot`wtotq ω

c
Lq

`

eip∆n`∆wq ω
2c

Lei2θ ` e´ip∆n`∆wq ω
2c

Le´i2θ
˘

Ep`q
y “ ´E0

4 e
´ipωt´pntot`wtotq ω

c
Lq

`

eip∆n`∆wq ω
2c

Lei2θ ´ e´ip∆n`∆wq ω
2c

Le´i2θ
˘
.

(134)
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Eventually, since the intensity is the square modulus of the incoming field
and the balanced photo-detector returns the difference of the two intensities,
we obtain the signal

∆I “
E2

0
2 e´2Impntot`wtotq ω

c
L cos

´

Re p∆n ` ∆wq
ω

c
L ´ 2θ

¯

. (135)

Choosing the angle between the x axis, which is the initial polarization axis
of the probe beam, and the fast axis of the half-wave plate to be

θ “
π

4 ` Re p∆wq
ω

2cL (136)

and assuming that Re p∆nq ω
c
L is small, the final signal is

∆I “
E2

0
2 e´2Impntot`wtotq ω

c
LRe p∆nq

ω

c
L. (137)

We can get the value (136), for the angle θ between the initial polarization
axis of the probe beam and the fast axis of the last half-wave plate, by
adjusting the half wave plate to have an output signal equal to zero when
the lamp is off. Indeed, in this case, the real part of the difference of the
refractive indices is zero as well as the output signal (135) when the half wave
plate is rotated by the angle (136).

C.2 Difference of refractive indices
In this subsection, we calculate the real part of the difference of refractive

indices in the polarization spectroscopy setup for the usual case where the
probe beam intensity is weak relative to the saturation intensity (34). The
reference we use for the calculation is [48] leading to the analytical expression
in [21]. The ground state 41S0 and the excited state 41P1, see Figure 7, would
be referred as state |1y and state |2y. When the distinction between the two
sub-levels of interest in the 41P1 Zeeman manifold is required, they will be
differentiated by the superscripts ` and ´.

The linewidth of the transition when considering only the saturating
pump beam is γs. In the case of the weak probe beam, we can neglect
the Rabi frequency with respect to the linewidth |Ωprobe| ! γ12. Thus, the
linear dielectric susceptibility (40) becomes

χ “ ∆N
V

|d12|2

ℏϵ0
1
2

δ`iγ12
δ2`γ2

12
with ∆N “ N pρ0

11 ´ ρ0
22q . (138)

Nρ0
ii is the population in level i neglecting the weak probe beam (36). In-

deed, given the assumption that the probe beam is weak, it will barely affect
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the atomic medium traversed by the pump beam. Therefore, as the pump
beam saturates the m0 “ 0 Ø m1 “ `1 transition, this results in different
population differences denoted by ∆N` and ∆N´. The population differ-
ences, expressed with the saturation parameter s (33) of the pump beam,
are

∆N` “ N
`

ρ11 ´ ρ`
22
˘

“ Np1 ´ s
1`s

q

∆N´ “ N
`

ρ11 ´ ρ´
22
˘

“ Np1 ´ 1
2

s
1`s

q
. (139)

Thus, using the expression for the saturation parameter (33), the relations
(138) and (139), and taking into account the Doppler shifts for the two
counter-propagating beams, the difference of refractive indices in the polar-
ization spectroscopy setup is

∆n “
|d12|2

2ℏϵ0

ş

dv?
2πv2

th

e
´ v2

2v2
th

1
2

δ´kv`iγ12
pδ´kvq

2
`γ2

12
¨ ∆N`´∆N´

V

“ ´N
V

|d12|2

8ℏϵ0

ş

dv?
2πv2

th

e
´ v2

2v2
th

1
pδ´kvq´iγ12

¨
Ω2
2

2γ12
Γ12

pδ`kvq
2

`γ2
s

. (140)

We can neglect the sign in front of the expression (140) because it could be
reversed by rotating the half-wave plate in front of the second polarization
beam splitter, see Figure 6, by an angle ∆θ “ π

2 in (135).
As the gaussian varies over a typical scale much larger than the other two

functions (kvth " γ12, γs), we can consider it as a constant and integrate the
remaining function with the residue theorem. As of the three poles of the
function, δ ´ iγ12 and ´δ ˘ iγs, only one has a positive imaginary part. As
a consequence, we consider a closed integral path around it. The remaining
function to be integrated, thus not taking into account the gaussian, con-
verges to zero quickly enough for the integral (140) to be equal to the residue
at ´δ ` iγs.

∆n “ ´N
V

|d12|2

8ℏϵ0
e

´ δ2

2pkvthq
2

?
2πkvth

1
2δ´ipγ12`γsq

¨
2πi Ω2

2
2γ12
Γ12

2iγs

“ ´N
V

|d12|2

8ℏϵ0

Ω2γ12
2Γ12

π?
2πkvthγs

e
´ δ2

2pkvthq
2 δ`i 1

2 pγ12`γsq

δ2` 1
4 pγ12`γsq

2

(141)

Finally, the output signal of the balanced photo-detector is proportional to
the real part of the difference of refractive indices, which is

Re p∆nq “ ´
N

V

|d12|2

8ℏϵ0

Ω2γ12

2Γ12

π
?

2πkvthγs

e
´ δ2

2pkvthq
2 δ

δ2 ` 1
4 pγ12 ` γsq

2 . (142)

This expression (142), which is plotted in Figure 33, has a dispersion-like
shape, which is then also the case for the output signal (137) and centered
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on the atomic resonance or zero detuning. Due to this property, we can use
the polarization spectroscopy technique to lock the laser frequency to the
resonance. Furthermore, since the signal (142) in Figure 33 is plotted for
different Rabi frequencies of the pump beam, we see the power broadening
effect. Indeed, the higher the Rabi frequency, the further apart the extrema
of the curves are. Nevertheless, as the Rabi frequency also changes the signal
amplitude, a lower Rabi frequency is not tantamount to a steeper signal as
can be seen in Figure 33.

Figure 33: Real part of the difference of refractive indices Re p∆nq in the
polarization spectroscopy experiment. For different values of the pump Rabi
frequency Ωpump. Decay rate Γ12 “ 34.5 MHz, dephasing rates γcoll `γlas “ 1
MHz, wavelength λ “ 423 nm and temperature T “ 600 K.
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Appendix D Technicalities
In this appendix, we detail the different devices such as the lock-in amplifier

and the acousto-optic modulator that we use in our experiments to be able
to filter out noise.

D.1 Lock in amplifier
In all of our experiments, polarization spectroscopy, observation of the

absorption drop in a three-level ladder system, and two-color polarization
spectroscopy, we use lock-in amplifiers to filter out noise added to the signal.
Specifically, we typically use a square wave signal from a waveform generator
and a switch to chop the control beam at a typical frequency of 100 kHz and
create an internal reference signal for the lock-in amplifier at the same fre-
quency, as shown on Figure 34. Since the quantities governing the evolution
of the optical experiments, the Rabi frequencies and the spontaneous decay
rates, are about 1´10 MHz, we can still make the approximation that despite
the chopped excitation at 100 kHz, the atoms still reach their steady state.
In this approximation, the signal going to the photo-detectors is modulated
and alternates between the one we get in the steady state regime when the
control beam is blocked and the one when it is not. Note that the bandwidths
of the photo-detectors that we use are also higher than 100 kHz, in the case
of the Thorlabs model PDA36A-EC it is 10 MHz and for the Nirvana de-
tector model 2007 it is 125 kHz. The output signal of the photo-detector is
then sent to the lock-in amplifier, which will act as a bandpass filter centered
on the reference frequency 100 kHz allowing to suppress noise at different
frequencies and to eventually amplify the filtered signal.

Lock in Amplifier

AWG 100kHz Output

Photo-detectorExperiment

Figure 34: Illustration of a lock in amplifier fed by an arbitrary waveform
generator (AWG).

To describe more mathematically the operating principle of a lock-in am-
plifier, we rely on the detailed note [49]. The lock-in amplifier is fed with
an external reference signal, coming from a waveform generator in our case,
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such as a square wave signal at angular frequency ωref . From this signal, the
lock-in amplifier generates an internal sinusoidal reference signal

Ureferenceptq “ Vref sin pωref t ` θref q. (143)

By considering the component of the signal at the angular frequency ωsig

Usignalptq “ Vsig sin pωsigt ` θsigq, (144)

the lock-in amplifier multiplies it with its internal reference signal (143) as
shown in Figure 34. The resulting signal is

Uoutputptq “
1
2VrefVsig tcos prωref ´ ωsigs t ` rθref ´ θsigsq

´ cos prωref ` ωsigs t ` rθref ` θsigsqu . (145)

Since the signal of interest is chopped at the same frequency as the reference
signal of the lock-in amplifier, we wish to retain only the DC component of
the output signal (145). As a consequence, a low-pass filter is applied to
keep the low-frequency components of the photo-detector signal (145) which
are finally amplified, see Figure 34. Therefore, the lock-in amplifier acts as a
band-pass filter around its reference frequency and in our case, it allows to
attenuate noise at frequencies different from 100 kHz.

There are three main parameters of the lock-in amplifier that we can
adjust:

• The phase of the internal reference signal θref . Indeed, we can see that
the resulting DC component of the output signal (145) is proportional
to the cosine of the difference between this phase and that of the signal
θsig.

• The time constant which defines the cutoff frequency of the low-pass
filter.

• The sensitivity which defines the gain of the lock-in amplifier.

D.2 Acousto-optic modulator
Acousto-optic modulators are electronic devices that contain a medium,

such as quartz for instance, whose refractive index n changes when it is
subjected to mechanical stress by a piezoelectric transducer [50]. The piezo
is driven by a periodic radio frequency (RF) signal of frequency fRF . Due
to the electro-mechanical properties of the piezo, a standing acoustic wave is
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created in the medium and a modulation of the refractive index occurs. This
modulation has the same periodicity as the applied RF signal and we define
its wavelength as Λ. When passing through the acousto-optics modulator,
the light is subject to Bragg diffraction. The light of wavelength λ and
frequency ν arriving with the Bragg angle

θB “
λ

2nΛ , (146)

in the medium will come out in possibly different orders, the mth order being
separated of the 0th order by 2m times the Bragg angle (146). In this case, it
means that the light has interacted with m phonons inside the acousto-optics
modulator and therefore its frequency will be shifted by the quantity [51]

∆ν “ m ˆ fRF . (147)

Piezo transducter

2 B
B

Λ

Figure 35: Illustration of a beam light interacting with an acousto-optics
modulator resulting in both a transmitted and a first order diffracted beam.
ΘB is the Bragg angle, Λ is the wavelength of the sound wave in the medium.

A calculation [51] gives the intensity of the first order compared to the
beam intensity

I1 “ I0 sin2
´

α
?
P
¯

, (148)

where I0 is the input power of the light beam and P is the power of the
applied RF signal applied. Eventually, in our experiments we use acousto-
optics modulators to replace mechanical choppers. To do so, we modulate
the input RF signal with a switch and a square wave signal at fmod “ 100
kHz generated by an arbitrary waveform generator. When the square signal
is zero, the light is not diffracted and is blocked by a beam wall after the
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acousto-optic modulator. When the square signal is on, the light is diffracted
and its trajectory is modified by an angle 2θB. It then avoids the beam
block and continues to the experiment. Note that using an acousto-optics
modulator instead of a mechanical device to chop the signal allows to use
higher frequencies, for instance mechanical choppers can go up to 10 kHz,
though it can also induce a detuning in spectroscopy techniques.
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Appendix E Three-Level Ladder System
In this appendix, we focus on solving the optical Bloch equations (22) for

the hamiltonian (74) describing a three-level ladder system and the Lindblad
operator (75) describing the incoherent processes.

Strictly speaking, there are nine equations contained in the matrix equa-
tion (22), however they can be summarized into five ones by taking into ac-
count the hermitian character of the density matrix operator, i.e. ρi,j “ ρ˚

j,i,
and its unit trace, i.e. ρ11 ` ρ22 ` ρ33 “ 1 implying 9ρ11 ` 9ρ22 ` 9ρ33 “ 0. We
recall that we consider real Rabi frequencies and that we use the quantities
γij defined in the expression (76).

$

’

’

’

’

’

&

’

’

’

’

’

%

9ρ11 “ Γ12ρ22 ` Γ13ρ33 ` iΩp

2 pρ12 ´ ρ21q

9ρ33 “ ´ pΓ13 ` Γ23q ρ33 ` iΩc

2 pρ32 ´ ρ23q

9ρ12 “ ´ pγ12 ´ i∆pq ρ12 ` iΩc

2 ρ13 ` iΩp

2 pρ11 ´ ρ22q

9ρ13 “ ´ pγ13 ´ i p∆p ` ∆cqq ρ13 ` iΩc

2 ρ12 ´ iΩp

2 ρ23

9ρ23 “ ´ pγ23 ´ i∆cq ρ23 ´ iΩp

2 ρ13 ` iΩc

2 pρ22 ´ ρ33q

(149)

In this appendix, we consider only the steady state regime and we therefore
set the time derivatives to zero.

E.1 Limit Ωp ! Ωc,Γ12

In this subsection, we solve the optical Bloch equations (149) describing
the three-level ladder system in the limit where the intensity of the control
beam is much higher than the one of the probe beam

Ωp ! Ωc,Γ12 (150)

Following the article [25], simple theoretical expressions for the steady state
solutions of ρ12 and ρ13 can be found under this assumptions. Indeed, this
means that the probe beam coupling atoms initially in the ground state
|1y to other states is relatively weak compare to the other processes. As a
consequence, the initial coefficients of the density matrix ρp0q

ij “ δi“j“1 change
only slightly to ρp0q

ij ` ρ
p1q

ij . Then, equations (149.3) and (149.4) form a close
system for ρp1q

12 and ρ
p1q

13 because we neglect the lower order terms like Ωpρ
p1q

ij

0 “ ´ pγ12 ´ i∆pq ρ
p1q

12 ` iΩc

2 ρ
p1q

13 ` iΩp

2
0 “ ´ pγ13 ´ i p∆p ` ∆cqq ρ

p1q

13 ` iΩc

2 ρ
p1q

12
. (151)
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To simplify and since ρp0q

12 “ ρ
p0q

13 “ 0 we do not write the exponent p1q in the
rest of this subsection. The solutions are

ρ12 “ iΩp

2
γ13´ip∆p`∆cq

pγ13´ip∆p`∆cqqpγ12´i∆pq`
Ω2

c
4

ρ13 “ ´
ΩpΩc

4
1

pγ13´ip∆p`∆cqqpγ12´i∆pq`
Ω2

c
4

(152)

(a) Theoretical expression [25] of Im pρ21q (b) Relative error of the analytical solution

Figure 36: Comparison of Im pρ21q from the expression (152) and the
exact solution, for different Rabi frequencies of the probe beam. Con-
trol Rabi frequency Ωc “ 37.4 MHz, transition linewidth pΓ12,Γ23,Γ13q “

p34.5, 2.5, 0.35q MHz, dephasing rates γp “ γc “ 1 MHz and a control beam
on resonance ∆c “ 0

In Figure 36 (a) we plot the imaginary part of the coherent term ρ21 for
the simplified expression (152) in color and the exact solution, in dashed
black, using a matrix solver. We fix the control Rabi frequency and use
different probe Rabi frequencies. In Figure 36 (b) we calculate the relative
error between the simplified expression (152) and the exact expression. Not
surprisingly, the higher the ratio Ωc

Ωp
, the smaller the relative error between

the exact expression and simplified expression. When the ratio Ωc

Ωp
is close to

1 then the approximation (150) collapses and we obtain important relative
error. However, in the experiments we conduct, we sometimes work with
ratios close to 1. This is why we develop a more accurate expression in
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the next subsection. This expression would be independent of the ratio of
the Rabi frequencies and would assume only a small decay rate from state
|3y to state |1y compared to the others typical frequencies of the problem.
This approximation is reasonable in our case because we consider the neutral
calcium atoms whose state |1y is 41S0 and whose state |3y is 41D2, so they
are only directly coupled by quadrupole transition.

E.2 Approximated analytical expression
Returning to the optical Bloch equations (149), in this subsection we de-

rive an analytical expression for Im pρ21q in the steady state regime. To do
this, we first neglect the two terms with Γ13 in the equations (149), as this
decay rate is much smaller than any other decay rates or Rabi frequencies
for the levels of neutral calcium atoms we consider. We use the notations
defined in (76) and introduce the two-photon detuning ∆ “ ∆p ` ∆c. The
equations (149) can then be rewritten with the real and imaginary parts of
the coefficients of the density matrix
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

ΩpIm pρ12q “ Γ12ρ22
ΩcIm pρ23q “ Γ23ρ33

γ23Re pρ23q “
Ωp

2 Im pρ13q ´ ∆cIm pρ23q

γ13Im pρ13q ´ ∆Re pρ13q “ Ωc

2 Re pρ12q ´
Ωp

2 Re pρ23q
Ωp

2 Re pρ13q ´ Ωc

2 pρ22 ´ ρ33q “ ∆cRe pρ23q ´ γ23Im pρ23q

γ12Re pρ12q “ ´Ωc

2 Im pρ13q ´ ∆pIm pρ12q

´
Ωp

2 pρ11 ´ ρ22q ´ ∆pRe pρ12q “ Ωc

2 Re pρ13q ´ γ12Im pρ12q

γ13Re pρ13q ` ∆Im pρ13q “ ´Ωc

2 Im pρ12q `
Ωp

2 Im pρ23q

. (153)

The unitary trace relation is not written for simplicity. In the following, we
will refer to these equations (153) as p153.iq for i P t1 to 8u. For instance,
with equation p153.1q, we see that it is sufficient to have an expression for
ρ22 to determine Im pρ21q. Replacing Re pρ23q with equation p153.3q, the
equations p153.4q and p153.5q become

$

’

’

’

’

&

’

’

’

’

%

ˆ

γ23γ13 `

´

Ωp

2

¯2
˙

Im pρ13q ´ γ23∆Re pρ13q “

Ωp

2 ∆cIm pρ23q ` γ23
Ωc

2 Re pρ12q
Ωp

2 ∆cIm pρ13q ´ pγ2
23 ` ∆2

cq Im pρ23q “

γ23
Ωp

2 Re pρ13q ´ γ23
Ωc

2 pρ22 ´ ρ33q

. (154)

Then, replacing Re pρ12q by its expression equation p153.6q as well as Im pρ12q

and Im pρ23q thanks to the equations p153.1q and p153.2q, we obtain the
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system of four equations
$

’

’

’

’

’

’
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’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

γ23
Ωc

2 ρ22 ´

´

γ23
Ωc

2 ` Γ23
Ωc

pγ2
23 ` ∆2

cq

¯

ρ33 “

γ23
Ωp

2 Re pρ13q ´
Ωp

2 ∆cIm pρ13q
ˆ

γ23γ13 `

´

Ωp

2

¯2
`

γ23
γ12

`Ωc

2

˘2
˙

Im pρ13q ´ γ23∆Re pρ13q “

Γ23
2

Ωp

Ωc
∆cρ33 ´ Γ12

2γ12
Ωc

Ωp
γ23∆pρ22

´
Ωp

2 p1 ´ 2ρ22 ´ ρ33q ` Γ12
Ωp

´

γ12 `
∆2

p

γ12

¯

ρ22 “

Ωc

2 Re pρ13q ´ Ωc

2
∆p

γ12
Im pρ13q

γ13Re pρ13q ` ∆Im pρ13q “ ´Γ12
2

Ωc

Ωp
ρ22 ` Γ23

2
Ωp

Ωc
ρ33

. (155)

The last equation p155.4q allows to replace Re pρ13q in the previous expres-
sions. By doing this and using the equation p155.2q we obtain an expression
for Im pρ13q

Im pρ13q “

Γ23
2

Ωp

Ωc

´

∆c

γ23
` ∆

γ13

¯

ρ33 ´ Γ12
2

Ωc

Ωp

´

∆p

γ12
` ∆

γ13

¯

ρ22

γ13 ` 1
γ23

´

Ωp

2

¯2
` 1

γ12

`Ωc

2

˘2
` ∆2

γ13

. (156)

Finally, by defining the positive quantities

Γ “ γ13 `
Ω2

p

4γ23
`

Ω2
c

4γ12
`

∆2

γ13
, α “

ˆ

∆c

γ23
`

∆
γ13

˙

, β “

ˆ

∆p

γ12
`

∆
γ13

˙

, (157)

we end up with two equations linking ρ22 and ρ33
$
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’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ˆ

1 ` Γ23
2γ23

´

2
Ωc

¯2
pγ2

23 ` ∆2
cq `

´

Ωp

Ωc

¯2 ´
Γ23
2γ13

´ Γ23
2Γ α

2
¯

˙

ρ33 “
´

1 ` Γ12
2γ13

´ Γ12
2Γ αβ

¯

ρ22
ˆ

2 `

´

2
Ωp

¯2 ´
Γ12
2γ12

`

γ2
12 ` ∆2

p

˘

` Γ12
2γ13

`Ωc

2

˘2
´ Γ12

2Γ β
2 `Ωc

2

˘2
¯

˙

ρ22 “

1 ´

´

1 ´ Γ23
2γ13

` Γ23
2Γ αβ

¯

ρ33

.

(158)
Using the saturation parameters (33) for both beams

sp “
Ω2

p

2
2γ12

Γ12

1
∆2

p ` γ2
12

and sc “
Ω2

c

2
2γ23

Γ23

1
∆2

c ` γ2
23
, (159)

we obtain the condensed expressions
$

&

%

´

1 ` 2
sc

`
Ω2

p

Ω2
c

´

Γ23
2γ13

´ Γ23
2Γ α

2
¯¯

ρ33 “

´

1 ` Γ12
2γ13

´ Γ12
2Γ αβ

¯

ρ22

1 ´

´

1 ´ Γ23
2γ13

` Γ23
2Γ αβ

¯

ρ33 “

´

2 ` 2
sp

`
Ω2

c

Ω2
p

´

Γ12
2γ13

´ Γ12
2Γ β

2
¯¯

ρ22
. (160)
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A sanity check is to consider that there is no control field, so as ρ33 “ 0
and Ωc “ 0, the equation p160.2q gives us the same population of the excited
state (36) as in the case of a two-level system.

Eventually, we get the final expression for ρ22

$

’

&

’

%

ρ33
ρ22

“
1`

Γ12
2γ13

´
Γ12
2Γ αβ

1` 2
sc

`
Ω2

p

Ω2
c

´

Γ23
2γ13

´
Γ23
2Γ α2

¯

1
ρ22

“ 2 ` 2
sp

`
Ω2

c

Ω2
p

´

Γ12
2γ13

´ Γ12
2Γ β

2
¯

`

´

1 ´ Γ23
2γ13

` Γ23
2Γ αβ

¯

ρ33
ρ22

(161)

We can then easily get an expression for the imaginary part of ρ21 using the
equation p153.1q.

As a final check, we can consider the case where the two lasers are on
resonance ∆p “ ∆c “ ∆ “ 0 and where the control Rabi frequency Ωc

dominates all the other rates. The equations (160) are then
$

&

%

ρ33 «

´

1 ` Γ12
2γ13

¯

ρ22

1 ´

´

1 ´ Γ23
2γ13

¯

ρ33 «
Ω2

c

Ω2
p

´

Γ12
2γ13

¯

ρ22
(162)

These equations lead to the expression for the imaginary part of ρ12

Im pρ12q « 2γ13Ωp

Ω2
c

(163)

This is what we expect from the simple solution (152) derived in the previous
subsection of this appendix.

A final remark is that to be even more precise, we can replace in the final
expressions (161) of the excited states populations ρ22 and ρ33 the term Γ23
by Γ23 ` Γ13.33 Thus, the equation p153.2q is the same as (149.2). The only
remaining approximation to solve the optical Bloch equations (149) in the
steady state regime is

ΩpIm pρ12q “ Γ12ρ22 ` Γ13ρ33
loomoon

neglected

. (164)

Taking this last remark into account, we plot the expression of Im pρ21q

in Figure 37, where the transition linewidths Γ12 and Γ23 are those of the
neutral calcium atom level that we consider in this work. The parameter Γ13
is chosen arbitrarily to be quite high compared to the estimate we made in
subsection 3.1.2 Neutral calcium atoms to test our approximation (164).
The other parameters are typical parameters that we use in the experiments.

33Though, be careful not to change it in the definition of γ23
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(a) Analytical expression of Im pρ21q (b) Relative error of the analytical solution

Figure 37: (a) Analytical expression of Im pρ21q and (b) its relative error
compare to the exact one, for Rabi frequencies pΩp,Ωcq “ p13.6, 37.4q MHz,
transition linewidth pΓ12,Γ23,Γ13q “ p34.5, 2.5, 0.35q MHz and laser linewidth
γp “ γc “ 1 MHz

We see in Figure 37 (b) that for different values of the detuning of the control
laser ∆c, the relative error with respect to the exact solution is less than 1
percent. Moreover, it is maximal near the two-photon resonance when the
population of level |3y is maximal, which is consistent with the approximation
(164). Note that the relative error appears to be proportional to the ratio of
the dipole decay rates, either the 41P1 Ø 41S0 transition or the 41D2 Ø 41P1
transition, and the quadrupole decay rate for the 41D2 Ø 41S0 transition.
This intuition is confirmed because when we consider the typical value of Γ13
of a few tens of hertz estimated in (107), we take Γ13 “ 35 Hz, and keeping
all the parameters as in Figure 37, we get the same pattern for the relative
error as on Figure 37 (b) but roughly multiplied by a factor 10´4 so that the
maximum relative error is around 10´6.

101



References
[1] Andrew J. Daley, Immanuel Bloch, Christian Kokail, Stuart Flannigan,

Natalie Pearson, Matthias Troyer, and Peter Zoller. Practical quantum
advantage in quantum simulation. Nature, 607:667–676, July 2022.

[2] I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation.
Rev. Mod. Phys., 86:153–185, Mar 2014.

[3] Antoine Browaeys and Thierry Lahaye. Many-body physics with indi-
vidually controlled rydberg atoms. Nature Physics, 16(2):132–142, jan
2020.

[4] Kai-Niklas Schymik, Bruno Ximenez, Etienne Bloch, Davide Dreon,
Adrien Signoles, Florence Nogrette, Daniel Barredo, Antoine Browaeys,
and Thierry Lahaye. In situ equalization of single-atom loading in large-
scale optical tweezer arrays. Physical Review A, 106(2), aug 2022.

[5] Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T. Wang,
Sepehr Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara,
Hannes Pichler, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin.
A quantum processor based on coherent transport of entangled atom ar-
rays. Nature, 604(7906):451–456, apr 2022.

[6] Andrea Muni, Léa Lachaud, Angelo Couto, Michel Poirier,
Raul Celistrino Teixeira, Jean-Michel Raimond, Michel Brune, and
Sébastien Gleyzes. Optical coherent manipulation of alkaline-earth cir-
cular rydberg states. Nature Physics, 18(5):502–505, mar 2022.

[7] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard.
Trapping of neutral sodium atoms with radiation pressure. Phys. Rev.
Lett., 59:2631–2634, Dec 1987.

[8] Harold J. Metcalf and Peter van der Straten. Optical Traps for Neutral
Atoms, pages 149–164. Springer New York, New York, NY, 1999.

[9] T. E. Mehlstäubler, K. Moldenhauer, M. Riedmann, N. Rehbein,
J. Friebe, E. M. Rasel, and W. Ertmer. Observation of sub-doppler
temperatures in bosonic magnesium. Phys. Rev. A, 77:021402, Feb 2008.

[10] R. Paschotta. Laser noise, 2023.01.09.

[11] Antoine Browaeys Alain Aspect, Fabien Bretenaker and Claude Fabre.
Quantum optics 1: Lasers, 2020.

102



[12] M Squared Lasers Ltd. Solstis narrow linewidth, tunable cw ti:sapphire
laser user manual v10.3, 2010.

[13] Jacques Dupont-Roc Claude Cohen-Tannoudji and Gilbert Grynberg.
Lagrangian and Hamiltonian Approach to Electrodynamics, The Stan-
dard Lagrangian and the Coulomb Gauge, chapter 2, pages 79–168. John
Wiley & Sons, Ltd, 1997.

[14] Jacques Dupont-Roc Claude Cohen-Tannoudji and Gilbert Grynberg.
Other Equivalent Formulations of Electrodynamics, chapter 4, pages
253–359. John Wiley & Sons, Ltd, 1997.

[15] Renato Renner. Lecture notes: Quantum information theory, 2019.

[16] Frieder Lindenfelser. Broadband cooling on a forbidden transition in a
novel high-optical-access ion trap, 2017.

[17] Felix Vogt. Creation of cold and dense ensembles of calcium atoms,
2009.

[18] Michael Fleischhauer, Atac Imamoglu, and Jonathan P. Marangos. Elec-
tromagnetically induced transparency: Optics in coherent media. Rev.
Mod. Phys., 77:633–673, Jul 2005.

[19] Hilmar Oberst. Resonance fluorescence of single barium ions, 1999.

[20] Christopher J Foot. Atomic physics. Oxford master series in atomic,
optical, and laser physics. Oxford University Press, Oxford, 2007.

[21] Wolfgang Demtröder. Laser spectroscopy 2: Experimental techniques,
2015.

[22] Franck Laloë Claude Cohen-Tannoudji, Bernard Diu. Chapter xix -
quantization of electromagnetic radiation. In Franck Laloë Claude
Cohen-Tannoudji, Bernard Diu, editor, Quantum Mechanics, Volume
3: Fermions, Bosons, Photons, Correlations, and Entanglement. Wiley,
second edition edition, 2019.

[23] Gillenhaal Beck. Towards background-free readout and cooling in 40ca`

with a multiply-connected quadrupole transition, 2020.

[24] C. Wieman and T. W. Hänsch. Doppler-free laser polarization spec-
troscopy. Phys. Rev. Lett., 36:1170–1173, May 1976.

103



[25] Ran Finkelstein, Samir Bali, Ofer Firstenberg, and Irina Novikova. A
practical guide to electromagnetically induced transparency in atomic
vapor, 2022.

[26] L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S.
Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov,
P. K. Lam, E. Giacobino, and J. Laurat. Experimental investigation of
the transition between autler-townes splitting and electromagnetically-
induced-transparency models. Physical Review A, 87(1), jan 2013.

[27] Jacques Dupont-Roc Claude Cohen-Tannoudji and Gilbert Grynberg.
The Dressed Atom Approach, chapter 6, pages 407–514. John Wiley &
Sons, Ltd, 1998.

[28] Luís E.E. de Araujo, Silvânia A. Carvalho, Luciano S. Cruz, A.A. Soares,
Armando Mirage, Daniel Pereira, and Flavio C. Cruz. Optogalvanic de-
tection of velocity-selective optical pumping in an open, cascade atomic
medium. Optics Communications, 281(4):626–632, 2008.

[29] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University
Press, 2010.

[30] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip 2: A python frame-
work for the dynamics of open quantum systems. Computer Physics
Communications, 184(4):1234–1240, 2013.

[31] K. Brodie and S. Neate. Features and operation of hollow cathode lamps
and deuterium lamps, 2022.12.14.

[32] Laser sensor using the opto-galvanic effect highly stable output, see-
through cathode optimality for laser wavelength calibration and laser
frequency stabilization, 2023.01.09.

[33] R. L. Cavasso-Filho, A. Mirage, A. Scalabrin, D. Pereira, and F. C.
Cruz. Laser spectroscopy of calcium in hollow-cathode discharges. J.
Opt. Soc. Am. B, 18(12):1922–1927, Dec 2001.

[34] Michael Horbatsch and Marko Horbatsch. Classical versus quantum cal-
culation of radiative electric quadrupole transition rates for hydrogenic
states. Canadian Journal of Physics, 100(10):429–436, oct 2022.

[35] R. Paschotta. Faraday isolators, 2023.02.21.

104



[36] R. Paschotta. Etalons, 2023.02.13.

[37] HighFinesse. Wavelength meter ws6-200 series, 2022.

[38] Martin Adam Sepiol. Master thesis: Frequency stabilization of a 729
nm diode laser to an external high finesse reference cavity, 2012.

[39] IntraAction Corp. Model aom-af1 series acousto-optic modulator / fre-
quency shifter.

[40] Ludwig Erasmus de Clercq. Transport quantum logic gates for trapped
ions, 2015.

[41] M Squared Lasers. Locking the solstis to a reference, 2014.

[42] A. Trautmann, M. J. Mark, P. Ilzhöfer, H. Edri, A. El Arrach, J. G.
Maloberti, C. H. Greene, F. Robicheaux, and F. Ferlaino. Spectroscopy
of rydberg states in erbium using electromagnetically induced trans-
parency. Phys. Rev. Res., 3:033165, Aug 2021.

[43] NIST. Atomic spectra database.

[44] David H. Meyer, Paul D. Kunz, and Neal Solmeyer. Nonlinear polariza-
tion spectroscopy of a rydberg state for laser stabilization. Appl. Opt.,
56(3):B92–B96, Jan 2017.

[45] Daniel Manzano. A short introduction to the lindblad master equation.
AIP Advances, 10(2):025106, feb 2020.

[46] Mitchel Weissbluth. Chapter 1 - angular momentum. In Mitchel Weiss-
bluth, editor, Atoms and Molecules, pages 1–47. Academic Press, 1978.

[47] R. Clark Jones. A new calculus for the treatment of optical systemsi.
description and discussion of the calculus. J. Opt. Soc. Am., 31(7):488–
493, Jul 1941.

[48] Marc D. Levenson and Satoru S. Kano. Chapter 3 - saturation spec-
troscopy. In Marc D. Levenson and Satoru S. Kano, editors, Introduction
to Nonlinear Laser Spectroscopy (Second Edition), pages 78–129. Aca-
demic Press, second edition edition, 1988.

[49] Standford Research Systems. About lock-in amplifiers, 2022.12.14.

[50] R. Paschotta. Acousto-optic modulators, 2022.12.14.

[51] Jia-ming Liu. Acousto-optic devices, page 357–440. Cambridge Univer-
sity Press, 2005.

105



 
 
 

Declaration of originality 
 
The signed declaration of originality is a component of every semester paper, Bachelor’s thesis, 
Master’s thesis and any other degree paper undertaken during the course of studies, including the 
respective electronic versions. 
 

Lecturers may also require a declaration of originality for other written papers compiled for their 
courses. 

__________________________________________________________________________ 
 
I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it 
in my own words. Parts excepted are corrections of form and content by the supervisor. 
 

Title of work (in block letters): 

 

 
 

Authored by (in block letters): 

For papers written by groups the names of all authors are required. 

 
Name(s): First name(s): 

   

   

   

   

   

 
With my signature I confirm that 

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information 
sheet. 

− I have documented all methods, data and processes truthfully. 

− I have not manipulated any data. 

− I have mentioned all persons who were significant facilitators of the work. 

 

I am aware that the work may be screened electronically for plagiarism. 
 
Place, date Signature(s) 

   

   

   

   

   

  
 For papers written by groups the names of all authors are 

required. Their signatures collectively guarantee the entire 
content of the written paper. 

Laser frequency stabilization in a calcium optogalvanic lamp

Pagot Louis

Zürich, 12/03/2023


