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Abstract

The ongoing miniaturization of technology drives the development of methods for quantum
information processing. The long-term goal is a machine performing calculations based on the
laws of quantum mechanics. Currently the limiting factor is reliable multi-qubit gate operation.
Single and two-qubit gates using trapped ions reach the highest fidelities to date, close to
the threshold required for fault tolerant computation. Thus the focus is gradually shifting
from increasing fidelity to scaling up the number of qubits available for quantum information
processing tasks.

This master’s thesis contributes to the solution of both issues. An optical system theoretically
capable of focusing both 397 and 401 nm light to a spot size below 1.3 µm was designed and
a prototype set up. Using 397 nm light, trapped 40Ca+ ions in a chain will be addressed
individually for either qubit Raman-transitions or individual read-out. Using 401 nm will enable
individual AC-Stark shifting of trapped ions, away from their qubit transition. During this
project, the imaging system used in the lab was confirmed to be near diffraction limited and
high quality imaging of ions was achieved.

In a second project, a laser diode at 397 nm was optically injection locked to emit 130mW of
optical power around 377.6114 THz with 500 KHz linewidth. Amplitude modulation of the seed
light in a range of 3 MHz around the carrier was not significantly suppressed by the injected
diode. This stands in contrast to what previous results in the infrared regime suggested. A seed
light power threshold required for clean diode injection was observed, limiting the locking time
of the injected diode to 20 ns. The injection locked light of the diode could be separated spatially
from its free running output, promising applications in the scaling of ion trap experiments.
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General Introduction

The Trapped Ion Quantum Information (TIQI) laboratory at ETH Zürich is pursuing precision
control over trapped ions in order to understand the loss of coherence in quantum systems. Si-
multaneously, new trap designs, methods of quantum information processing as well as quantum
state generation and manipulation are developed. One of the ion species found in the TIQI lab
is 40Ca+. Optical wavelengths are used for the experiments and this work will deal in particular
with blue laser light at 397 nm. This master’s thesis is developing two systems improving the
control of trapped ions and related experiments.

The first project involved frequency stabilization of a laser diode at 397 nm by optically
injection locking it to a laser with 500 KHz linewidth. The second project aimed at optical
addressing of a single ion in a trapped ion chain. An already installed imaging system was
upgraded in order to use it as a addressing system able to focus laser light of 397 and 401 nm
down to 1 µm spot size.

As both projects have only the wavelength of the involved laser light as common ground,
this thesis is separated into two parts. The first part describes optical injection locking and two
follow-up projects investigating its dynamic processes. The second part describes the develop-
ment and installing of a lens system capable of focusing light on a single trapped ion.
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Part I

Optical Injection Locking of a 397
nm Laser Diode

Huygens original drawing from 1665 showing two synchronized pendulum clocks on a common support. Credit:
[3]
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Chapter 1

Introduction

“If one synchronized swimmer drowns, do the rest drown too?”
George Carlin

A constant concern in atomic physics experiments is laser power. At the moment, the TIQI
lab has limited power at 397 nm wavelength and different setups have to share it amongst
each other. Especially non-resonant processes rely on sufficient laser power. The TIQI lab
plans for example to use the two 4S1/2 Zeeman states of 40Ca+ as qubits [1], coupled by a
Raman transition. The higher the laser power, the faster the transition will be driven thereby
minimizing decoherence. The first part of this master’s thesis is concerned with setting up an
optically injection locked 397 nm laser diode, as the first of potentially several high power laser
sources in the lab at this wavelength.

The freely emitting laser diode produced a maximal optical power of 140 mW at 150 mA
drive current. In most cases, modern quantum mechanical experiments require lasers of spectral
purity, which is difficult to achieve at such high powers. There is however a way to force the
high power laser to oscillate exactly at the frequency dictated by a very well controlled low
power laser. Already in 1665 Christiaan Huygens noticed, that two pendulums of different
clocks hung up on the same wall, fell invariably in synchrony. After hanging them on different
walls, no synchrony was observed. He explained the synchronization of the clocks with vibrations
transmitted through the wall from clock to clock. In modern language, one of the two oscillators
was locked by injection to the other. Injection locking can happen in virtually any type of
coupled oscillator system such as radio frequency controlled clocks, cardiac pacemakers or even
the 24h day-night rhythm of human beings. A laser can be viewed as a radiatively fed-back high
frequency oscillator, and in this case one talks about optical injection locking. A nice overview
of the development of this field can be found in [2]. A very good book on injection locking and
oscillator synchrony in general is “Synchronization - A Universal Concept in Nonlinear Sciences”
by Pikovsky, Rosenblum and Kurths [3].

On a fundamental level, injection locking means that a system oscillating at angular fre-
quency ω1 close to the resonance frequency ω2 of a second system, can force the second system
to oscillate at ω1 and suppress all oscillation at ω2. Since the signal originally oscillating at ω2

is totally controlled by the locking signal, we call it the “master” and the injected oscillator the
“slave”. In the TIQI lab, a laser is locked to precisely ω1 = 2π · 377.6114 THz (corresponding to
793.9179 nm). After frequency doubling it, we use it as the master laser, to force the slave high
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power laser diode to emit precisely at the master-frequency.
Having a precisely controlled high power laser source benefits the TIQI lab in two ways. The

first is of practical nature. Setting up a high power 397 nm source at the location where it is
needed, no longer requires transmitting lots of power through optical fibers. We noticed the
slow degradation of the spatial mode profile of high intensity beams output from fibers, which
we suspect is due to dirty fiber tips. One possibility is that the high intensity at the fiber tip
acts as a dipole trap for dust and oil particles in the air. The second benefit is the high power
requirement for electromagnetically induced transparency (EIT) cooling. EIT cooling is based
on an off resonant two photon process, which is greatly improved by higher laser power [4].

Apart from optically injecting a laser diode, this master’s thesis investigated dynamical
processes in the diode as well. The first project investigated the ability of the diode to filter out
frequency componenets in the master light. In the TIQI lab, unwanted frequency components
in the 397 nm laser hurt the ion trapping experiments [6]. We thus investigated the possibility
of filtering out theses frequencies via injection locking. Spectral filtering of the slave output has
been achieved previously [7], and the filtering of master light by optical injection locking was
investigated in the infra-red domain [2]. The present master’s thesis combines both experiments
in the UV region. The second project, was to spatially separate injected from non-injected
light using a diffraction grating and measure the frequency settling time of the injected slave
diode. Usually laser light is first frequency stabilized and switched before hitting the ions. In
my experiment, the switching of the stabilization mechanism itself was investigated, potentially
helping to further increase the scalability of ion trapping experiments.

The outline of this part of the thesis is as follows. Chapter 2, introduces the theory of injection
locking, in order to understand the time dependent behavior of injection locking. Chapter 3
explains how we were able to characterize the quality of our injection, and finally Chapter 4
presents the results of the filtering and switching experiments.
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Chapter 2

Optical Injection Locking Theory

2.1 Qualitative Description

This section, gives a qualitative derivation how a high power laser can be forced into synchrony
with a low power laser. An intuitive argument is given, why for example a red laser cannot
be injection locked by a blue laser, that is to say, a range of frequencies is given around the
frequency of the strong laser, for which injection locking is possible.

In order to synchronize two oscillators, information has to be exchanged in one way or
another. For lasers, the easiest way is simply to shine an external laser beam of intensity Iinj
oscillating at ωinj directly into a laser cavity, running freely with stable intensity output Ifree
at frequency ωfree. The laser cavity is composed of two mirrors as can be seen in Figure 2.1.1
a), where we assume for simplicity that mirror 1 has reflection R1 = 1 (corresponding to 100%
reflection), and mirror 2 has reflectivity R. The three involved time dependent fields are the
injected field Einj(t), the circulating field Ẽcav(t) reflected by the mirrors and the outcoupled
field E(t) which will all be described further in Section 2.2. Between the two cavity mirrors
is placed a material, amplifying some of the modes of Ẽcav(t). Which modes are amplified, is
specified by the gain function of the material sketched in Figure 2.1.1 b). This function can be
complex, and in the high gain limit expressed as (see [8])

g(ω) ≈ 1−R
1−G+ iGT (ω − ωfree)

(2.1.1)

where T is the time for one round trip in the cavity, G the total round-trip gain magnitude and
ωfree the resonance frequency. For G ≈ 1, eq. (2.1.1) is simplified further to

|g(ω)|2 ≈ (1−R)2/T 2

(ω − ωfree)2
≡ γ2out

(ω − ωfree)2
(2.1.2)

with external cavity loss rate γout = (1 − R)/T = ω/Q and Q the quality factor of the laser
cavity. The intensity Iout = |Eout|2 of the output field is then

Ioutput = Isignal|g(ω)|2. (2.1.3)

The free running laser cavity in its equilibrium state has an output intensity of Ifree. As
a crude condition on when the injected signal intensity starts to influence the laser cavity (see
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Figure 2.1.1: a) Sketch of the laser cavity with the injected field Einj(t), the circulating field
Ẽcav(t) and the outcoupled field E(t). b) Gain profile of a free running (dashed) or injected
(solid) laser.

Figure 2.1.1), the amplified Iinj and the free running signal intensity are equated:

Ifree ≈ Iinj|g(ωinj)|2 = Iinj
γ2out

(ωinj − ωfree)2
. (2.1.4)

Solving (2.1.4) for the frequency difference, gives

ωR ≡ |ωinj − ωfree| ≈ γout

√
Iinj

Ifree
=
ωfree

Q

√
Iinj

Ifree
. (2.1.5)

This can be taken as rough boundary for the detuning between master and slave laser. Already
from this short derivation, one sees, that the injection depends on the square root of the ratio
of the two laser powers (intensity is power over illuminated area) and the decay rate of the laser
cavity (or its quality factor). But since time dependents of injection locking are investigated too
in Section 4.2, a better understanding of the dynamics underlying injection locking is developed
in the following section. Laser oscillator equations leading to the Adler equation will enable the
discussion of the sudden turn on of the injecting master laser.

2.2 Adler Equation

2.2.1 Basic Laser Oscillator Equations
The Adler equation is presented here from the point of view of laser physics. In 1946 Adler
derived an equation describing the phase locking mechanism of electronic LC oscillator circuits
[11], and it was later found that his equation could equally well describe the locking of laser
oscillators [12].

Following [8] the injected electric field amplitude from Section 2.1 can be written as

Einj(t) = Einj(t)e
i(ωinjt+φinj(t)) (2.2.1)
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with Einj the injected field amplitude and φinj(t) keeping track of additional phase variations if
needed. The injected field intensity is simply Iinj(t) = |Einj(t)|2. The field Einj(t) inside the
cavity is given by

Ecav(t) = Ecav(t)ei(ωinjt+φ(t)) (2.2.2)
where φ(t) introduces the appropriate phase variation if it freely oscillates not at ωinj but at a
different ωfree. In the simplest case φ(t) = (ωfree − ωinj) t − φinj(t). The complete derivation of
the following laser-oscillator-equations is beyond the scope of this work and can be found in [8].
The amplitude and phase equations of the output field E(t) with amplitude E(t) yield

dE(t)

dt
+
γcav − γgrow

2
E(t) = γoutEinj(t) cos(φ(t)− φinj(t)) (2.2.3)

dφ(t)

dt
+ ωinj − ωfree = −γout

Einj(t)

E(t)
sin(φ(t)− φinj(t)) (2.2.4)

where γcav stands for the cavity loss rate and γgrow for the growth rate.

2.2.2 The Steady-State Solution
With equations (2.2.3) and (2.2.4) at hand, the steady-state behavior of an injected laser os-
cillator can be found. For weak steady state injected laser fields Einj(t) � E(t) holds. For
simplicity, φinj(t) = φ(0) is kept constant, so phase noise of the master is neglected. The am-
plitude equation is not particularly insightful. The cavity output amplitude will almost stay
constant E(t) ≈ ESS and γgrow is saturated down to γcav. The resulting steady-state equation

γcav − γgrow

2
= γout

Einj

E
cos(φ(t)− φ(0)) (2.2.5)

is therefore always satisfied with both sides approximately zero.
The phase equation (2.2.4) is much more insightful. In the steady-state, it reduces to

ωinj − ωfree + γout
Einj

E
sin(φ(t)− φ(0)) = 0 (2.2.6)

where we identify γout
Einj
E with ωR from (2.1.5) as the field amplitude is the square root of the

intensity. Solving for φ(t) simply yields

φ(t) = arcsin

(
ωfree − ωinj

ωR

)
+ φ(0) (2.2.7)

which gives the steady state phase difference between the initial phase of the free running
oscillator and the injected signal phase. This phase depends on the locking range and, as will
be see in Section 2.3, governs the transient behavior of injection locking. Before starting this
discussion, note that (2.2.6) leads to exactly the same locking range we already encountered.
The fact that sin(x) is bounded by -1 and 1 immediately gives

− γout
Einj

E
= −ωR ≤ ωfree − ωinj ≤ +ωR = γout

Einj

E
(2.2.8)

which for the total allowed frequency range ∆ω = 2ωR is the same result we derived earlier. To
summarize, a laser oscillating with frequency ωfree can be locked to another laser at frequency
ωinj, if |ωfree − ωinj| . ωR. Frequencies ωinj and ωfree are said to be close to each other, if both
satisfy this relation.
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2.3 Time Dependent Injection

2.3.1 Solving the Adler Equation
With an equation describing the time dependence of the slave signal phase, the sudden turn on
of the master signal can be investigated. Here, the focus is on the case, where the slave laser
is stable and a perturbing injecting signal is suddenly applied as a square wave. This process
is called pulsed injection1. Detailed analysis of static as well as dynamic processes in optical
injection locking of semiconductor laser diodes has been performed in e.g. [13, 14], but in-depth
analysis is beyond the scope of the present work. To give the basic concepts, below is given an
intuitive way of tackling time dependent injection locking, based on the Adler equation.

It will later be seen that the fast frequency change of the slave laser by switching the master
laser can be checked with a diffraction grating, which separates the free running slave light
spatially from the injected master light. The goal of this section is therefore to derive an
equation, for the instantaneous frequency of the slave.

First of all, remember that two oscillators with a constant phase relation have the same
frequency. This means the settling time t∞ of the phase difference between the slave and the
master has to be found. In a coordinate system rotating at ωinj and if the master has a constant
phase φ(0), the instantaneous phase difference between master and slave is

φ(t) = ωosc(t)t− φ(0)

with ωosc(t) being the instantaneous frequency of the slave and no longer its free running ωfree.
The value where this phase difference settles will be denoted as

φ(t∞) ≈ φ(∞) ≡ φ∞. (2.3.1)

Second, the time derivative of the phase of an oscillator is simply its instantaneous angular
frequency. Since the initial frequency of the slave is its free running frequency,

ωosc(t) = ωfree +
dφ(t)

dt
(2.3.2)

holds at every time step. If ωinj is well inside the locking range (2.1.5), we will also have
lim
t�∞

ωosc(t) = ωinj. Adler’s equation

dφ(t)

dt
= (ωfree − ωinj)− ωR sin(φ(t)− φ(0)) (2.3.3)

describes the instantaneous phase difference between master and slave, not the frequency. So an
analytical solution for the phase has to be found, and its time derivative taken. The analytical
solution is given by (see Appendix A)

tan

(
φ(t)− φ(0)

2

)
=

ωL

ωfree − ωinj
− ωR

ωfree − ωinj
tanh

(
ωR(t− t0)

2

)
(2.3.4)

with ωL =
√
ω2

R − (ωfree − ωinj)2, the geometric mean between ωfree−ωinj +ωR and ωfree−ωinj−
ωR. As can be seen from Figure 2.3.1, the important feature of this complicated expression is
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Figure 2.3.1: Simulated transient phase locking for different ωfree inside the locking range. The
initial phase difference φ(0) was fixed at π/6, all other parameters are kept fixed at experimental
values given in table 2.3.1.

the fact that it settles for all ωfree inside the locking range. Adler’s equation (2.2.4) has two
steady state solutions given by

φ∞ = arcsin

(
ωfree − ωinj

ωR

)
(2.3.5)

φunstable
∞ = π − arcsin

(
ωfree − ωinj

ωR

)
(2.3.6)

where only φ∞ is reached smoothly by φ(t). In contrast, φunstable
∞ is only attained, if φ(0) has had

this value from the beginning. Realistic oscillators are subject to phase noise, so φ(t) 6= φunstable
∞

after a short period of time after which φ(t) will smoothly settle on φ∞. This behavior is very
well described by the diagram in Figure 2.3.2 (see [8, 9]). The stable and unstable solutions are
immediately spotted and in addition the locking range as well as the effect of different initial
detuning ωfree − ωinj is easily read off .

One question remains: How long does the frequency locking actually take?

2.3.2 Time Dependence
To understand the transient frequency evolution qualitatively, the transient phase response given
by eq. (2.3.4) is first linearized for the case |φ∞ − φ(0)| � π. So the special case of a small
initial phase lag with respect to the settling phase is treated. For simplicity, the starting point
of the injecting signal is defined at t0 = 0 . Taylor expansion results in

tan

(
φ(t)

2

)
= φ∞ +

(
tan

(
φ(0)

2

)
− φ∞

)
e−ωRt. (2.3.7)

1For the opposite case, where the master laser is continuous wave and the slave laser gain is suddenly turned
up, instead of being locked, the slave frequency is merely pulled to the master frequency (see [8, 9, 10]). This is
sometimes erroneously called pulsed injection as well, but in reality should be called pulsed seeding.
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Figure 2.3.2: Diagram of Adler’s equation 2.3.3. The stable steady state solution is φ∞ (black),
the unstable one is π − φ∞ (red). The arrows indicate in which direction the phase φ(t) will
evolve. Twice the locking range corresponds to the amplitude (orange line). A phase offset shifts
the sine wave horizontally, whereas a different detuning ωfree − ωinj shifts it vertically. For a
detuning larger than the locking range, no steady state solution is found.

If |ωfree − ωinj| � ωR and φ(0), φ∞ � 1 holds, eq. (2.3.7) can be simplified further to

φ(t) ≈ 2φ∞ + (φ(0)− 2φ∞) e−ωRt (2.3.8)

with the obvious locking time scale

tlock ≈
1

ωR
. (2.3.9)

For optical frequencies, ωR lies in the THz regime, so locking should happen extremely fast (in
the range of picoseconds).

Calculating the locking time more precisely, requires an expression for the instantaneous
frequency. Following [9] and using eq. (2.3.2) and eq. (2.3.3) one gets

ωosc(t) = ωfree −
ω2

R
(ωfree − ωinj)

sech2 (ωRt/2)

1 +
(
ωL−ωRtanh(ωRt/2)

ωfree−ωinj

)2 . (2.3.10)

The locking time tlock is then defined as the time it takes for the slave frequency to settle within
0.1% of the final value ωinj (to which it always converges), and obtained by simply solving

0.001ωinj = ωosc(t). (2.3.11)

Equation (2.3.10) might suggest, that two parameters are important: the initial detuning ∆ω0

and initial phase difference φ(0) between the free running slave and the master laser. Further
analysis shows that for special φ(0), the initial detuning plays indeed a role (via the locking
range). But in general (see below) the parameter limiting tlock is really the initial phase difference
between free running slave oscillator and master laser.
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Parameter Value
ωfree 4.748 103 THz
ωinj 4.745 103 THz
Ifree 70 mW
Iinj 50 µW
Q 30

⇒ ωR = 4.23THz

Table 2.3.1: Example parameters for the free running diode and the injected signal. The quality
factor of the laser diode oscillator was estimated to be Q > 30, from the range of ωfree for which
injection was achieved.

The center slave frequency, thus ∆ω0 = ω0 − ωfree, can easily be tuned via the operating
temperature of the diode. In the following, the values from Table 2.3.1 are used for the involved
parameters. These values are considered realistic for our experimental setup and are not nor-
malized, to get a feeling for orders of magnitude. The locking range ωR and the quality factor
Q are only estimated, and Section 4.2 explains how their respective values were found. For
simplicity, a specific slave frequency was chosen, although the output of the free running laser
diode is typically not single mode.

Figure 2.3.3 a) shows the simulated transient frequency lock for various slave frequencies
around ωfree. The initial phase difference ∆φ = φ(0) − φ∞ was kept constant at ∆φ = φ∞ =
arcsin((ωfree − ωinj)/ωR). As ωfree is tuned through the locking range, φ∞ undergoes a phase
shift by π, so the total amount of phase the slave has to catch up until it locks varies significantly.
From Table 2.3.1 it can be seen that ωinj was chosen smaller than ωfree, which explains why
negative initial detunings ∆ω0 lock faster than positive.

In Figure 2.3.3 b) the initial detuning ∆ω0 is kept fixed, and φ(0) is varied (effectively the
initial phase lag ∆φ). For values close to φ∞, the locking is exponential, and for φ(0) = φ∞ we
even get instantaneous locking2. It is easily seen, which φ(0) lies close to the unstable stationary
phase φunstable

∞ (see eq. (2.3.6) and Figure 2.3.2). The locking behavior for these initial values is
very different to the ones close to the stable point. At first ω(t) even diverges from ωinj before
coming back and settling. Figure 2.3.2 explains this peculiar behavior. For φ(0) > φunstable

∞ the
time derivative of φ(t) is positive and runs off to the stable solution 2π + φ∞ (as indicated by
arrows). The instantaneous frequency given by (2.3.2) is defined for phase values φ ∈ [−π, π], so
as soon as φ leaves this interval on one side, coming back on the other side with a flipped sign,
the change in frequency gets reversed. The important consequence is that the locking time is
increased, as the slave catches up a larger phase difference before settling.

After this detailed discussion of transient injection locking, a real-world injected laser diode
can be analyzed.

2This locking is really instantaneous! The physical reason is that the oscillator circuit has phase “memory”
but lacks it for the frequency. The frequency can thus be changed instantaneously, whereas the phase changes
smoothly (see [3, 9]).

11



a)a)a)a)a)a)a)

0 1 2 3 4

-3

-2

-1

0

1

t [ps]

Δ
ω
(t
)
[T
H
z]

b)b)b)b)b)b)b)

0 1 2 3 4

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

t [ps]

Δ
ω
(t
)
[T
H
z]

Figure 2.3.3: Simulated frequency response of the slave for a suddenly turned on master signal.
The y-axis shows ∆ω(t) = ωinj − ωosc(t). In a) the initial phase difference is always φ∞. In b)
the initial slave frequency is fixed at ωfree and the phase is varied. All other parameters are kept
fixed, at values given in Table 2.3.1. Note the instantaneous frequency jump in every case from
ω0 − ωfree → ∆ω(0). In b), for φ(0) = φ∞ frequency locking happens instantaneously.
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Chapter 3

Characterization of the Optical
Injection Setup

The following chapter describes how a blue semiconductor laser diode1 was injection locked to
a 396.96 nm master laser. Optical output power vs. current of the laser diode is found in
Appendix B. It is sometimes possible, that a laser diode is only partially locked to the injected
light. The quality of the injection was therefore checked in two different ways and we came to
the conclusion that almost full injection locking was realized. The complete sketch of the setup
(including experiments from Chapter 4) can be found in Appendix C. For clarity, only small
block diagram sketches are used in the following, as the detailed description of the setup is not
of much interest for the discussion.

3.1 Setting up an Optical Spectrum Analyzer

To check if the laser diode was injected, an optical spectrum analyzer (OSA) was built in the
form of a half-confocal Fabry-Perot cavity (see [15] for the advantages of such a configuration).
After finding a compromise between free spectral range (FSR) and linewidth (see Table 3.1.1
for the final values) the spacing between the mirrors was fixed by a 74.3 mm Invar©-tube2,
which had a piezo stack glued onto one side. The flat mirror was glued onto this piezo stack,
and the curved mirror directly onto the tube. The Invar©-tube inhibited relative motion of
the mirrors, thus stabilized the transmission frequency. By placing the OSA on a custom-made
holder underlaid with neoprene I was able to reduce vibrations of the cavity and could stabilize
the transmission intensity. A linewidth around 20 MHz could be achieved by incoupling the
master light, which was known to have a linewidth of 500 KHz. The linewidth was expected
to be around 3.3 MHz, based on the specified reflectivities of 0.996 and 0.993 of both mirrors.
The transmission line broadening was probably due to intra cavity absorption by dust (leading
to estimated round trip losses of at least 3%). This OSA was not supposed to be a high-finesse
cavity so the broadened linewidth was not investigated further. It served well as a tool signaling
injection.

1Nichia NDU4316E
2American Elements
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Parameter length FSR linewidth Pout/Pin

Value 80.3 mm 1.8 GHz 20 MHz 0.01

Table 3.1.1: Parameters of the custom built optical spectrum analyzer.

Master

Slave FI OSA

λ/2

Figure 3.2.1: Sketch of the basic laser injection locking setup. The Faraday isolator (FI) protects
the slave from optical feedback. The waveplate matches the master polarization with the isolator
side port polarizing beam splitter.

3.2 Points of Clean Injection

Optical injection locking of a semiconductor laser diode is not only sensitive to the injected
power, but also to the temperature of the diode and the current applied to it3. This is easily
understood, by remembering that an important part of a laser is its lossy cavity. Changing
the applied current or the temperature will obviously change the supported cavity modes. Any
injected light will only be resonant if the operating conditions allow it to excite a mode in the
cavity. If these conditions are not met within a range determined by the gain function, the
cavity finesse and the injected power (see Section 2.1), additional modes (possibly not injected,
but originating from the free running diode) will be excited, and one no longer talks about a
clean injection [6, 7].

The basic setup for optical injection locking is presented in Figure 3.2.1. The injected light
leaving the slave diode was incoupled into the OSA, such that only the ground modes (TEM00)
were transmitted (see Figure 3.2.2). Unlike the slave diode the master laser was single-mode,
therefore the points of clean injection were easily found by optimizing the current applied to the
diode until the OSA signal was also single mode.

A systematic high precision temperature-current scan over all clean injection points was not
performed, due to expected drifts in the diode temperature (see [6]). Points of clean injection
spaced by 10 − 13 mA and 1 − 2 mA wide were found for all temperatures between 15 and 25
°C and operating currents between lasing threshold (33 mA) and damage threshold (145 mA)
agreeing with [7]. This was expected, since for this range of parameters the largest achievable
difference between slave and master wavelength was only around 0.7 nm (see Section 4.2) and
the master frequency was inside the locking range around the slave.

3Controlled by Thorlabs LDC 200C and Thorlabs TED 200C respectively

14



Figure 3.2.2: Typical clean injection signal on the oscilloscope when scanning the length of the
OSA. The blue triangular line shows the piezo voltage ramp, the yellow line shows transmission
peaks of the injection locked light.

3.3 Spectral Purity of the Injected Light

As mentioned before, the transmission linewidth of the OSA was higher than that of the injected
master light, so as a precautionary measure the frequency of the slave output was compared to
the frequency of the master light in a beat note experiment (see Figure 3.3.1).

Before hitting the slave laser diode, the master laser was sent through an acousto optic
modulator4 (AOM) in a double pass setup. The AOM was operated at 80 MHz, thus shifting
the master frequency by 160 MHz. A small portion of the master light was picked off before
hitting the AOM and sent on one input port of a beam splitter. The injected slave light was sent
onto the second input port of the beam splitter thereby superposed with the original master light.
The polarization of master and slave light was matched using a λ/2 waveplate. At this point,
the interfering light ideally consisted of only the master light and the slave light, injected by
the 160 MHz shifted master light. Both signals created an amplitude modulated (AM) intensity
signal, which was detected with a fast photodiode5 (fast PD). The beat note was observed on
a spectrum analyzer at 160 MHz as expected (see Figure 3.3.2). A Lorentzian fit yields a full
width at half maximum (FWHM) of 30 Hz, limited by the resolution of the spectrum analyzer.
Clean injection points were visible from 50-145 mA at 25°C (thus optical powers of 4-130 mW
at 396.96 nm). Frequency stabilized light was successfully created for powers up to 130 mW and
will be of use in our laboratory.

Besides from checking the frequency stability of the slave light, the beat note experiment
had two other uses. One appealing feature was the easy and precise determination of points

4IntraAction Corp. ASD-802B8.397
5Thorlabs PDA10A-EC
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Figure 3.3.1: Sketch of the beat note experiment. The spectrum analyzer decomposed the AM
signal from the fast PD into its frequency components (sketched in blue).
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Figure 3.3.2: Beat note of the master and the 160 MHz shifted injection locked slave. The solid
line is a Lorentzian fit of FWHM 30 Hz, limited by the resolution of the spectrum analyzer.
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of clean injection (basically agreeing to the points found by optimizing the OSA signal). For a
fixed temperature, the correct current resulted in minimal width and maximal peak height of
the beat note. A clean injection using a frequencystabilized master should have a sharp peak,
as the phases noise from the slave gets suppressed maximally for frequencies around the master
frequency (for detailed explanation see [10], for a beautiful spectrum see [16]). The second
application was to apply AM on the master light and determine how the slave output would
depend on these additional frequency components. This follow-up project will be discussed in
the next chapter.
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Chapter 4

Filtering and Switching Behavior of
an Injected Laser Diode

4.1 The Laser Diode as a Frequency Filter

Active frequency control of a laser using a feed back loop often trades noise between two fre-
quency regions. This general behavior of shifting noise in one region to another, can essentially
be characterized by a conservation law [17]. One example in the TIQI lab is the locked 729 nm
laser addressing the qubit transition. Its linewidth is narrowed down at the expense of creating
frequency noise (called “servo-bumps” in the following, see [6]) at a spacing of roughly 1 MHz
to its center frequency . If we were only interested in the central frequency, called the carrier,
this would not influence the experiments. In our case however the ions in the trap can not only
be excited at their carrier qubit transition-frequency, but also at frequencies ω0 ± ωtrap called
blue and red sideband transitions. These sidebands originate from the trapping fields being
operated at the trap frequency ωtrap, in our case ωtrap ≈ 1 MHz. The experiments are thus
affected by servo-bumps coinciding with the sidebands. Hence, every time one of the sideband
transitions is driven, the carrier transition is excited as well which can lead to unwanted qubit
flips, thus reducing the fidelity of quantum operations (see Section 7.2). The idea was now,
to check if an injected diode could filter out frequency components in the master light, maybe
filter out even the servo-bump frequencies. The reasoning behind this, is that the spectral gain
profile of the injected laser diode is shifted and narrowed down. As can be seen in Figure 4.1.1
modes where the gain is below threshold might then not be amplified enough to lase, thus being
completely suppressed. These frequencies were introduced by sending the master light through
an AOM and amplitude modulating the RF drive of the AOM with frequencies in a region
ωMOD/2π = 400 − 3000 KHz.
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Figure 4.1.1: a) Schematic gain spectrum for the free running slave. b) Schematic gain spectrum
for the injected slave. The strongest mode is taken to be the center frequency of the injected
slave light. The lasing modes are show as Lorentzians (seven in a) and only three in b)).

4.1.1 Calibration
Using the same AOM double pass setup as in Section 3.3, the beat frequency at 160 MHz was
modulated. A mixer1, combined the signal from an RF source2 with a sine output by a wave
form generator3 (WFG) . Changing the offset of the WFG signal, tuned the modulation index

AMOD =
1st sideband power amplitude

carrier power amplitude
· 100 (4.1.1)

of the RF drive between 20 and 80%.
As the diffraction efficiency of the AOM varies for different drive frequencies, calibration of

the modulation index BMOD produced by the AOM in the master light was required. For this,
the unmodulated master light was beated against the master light after the AOM. Figure 4.1.2
a) shows the optical power recorded by the fast PD. The carrier beat note at 160 MHz, as well
as the red and blue sidebands spaced from the carrier by ±ωMOD/2π = ±400 KHz are visible,
together with higher order sidebands. These higher order sidebands on the fast PD are due to
the AM RF signal driving the AOM, which already contains them. The AM master spectrum
was then recorded for different ωMOD and the relative amplitude of the carrier and the first
sideband was measured. The results are shown in Figure 4.1.2 b). Figure 4.1.2 c) depicts the
dependence of the AM signal driving the AOM on ωMOD. As we can see, the mixer behaves
very linearly over the whole modulation frequency range. The modulation index BMOD of the
master light is 35% lower than AMOD and decreases faster as is depicted in Figure 4.1.2 d) (for
AMOD = 25 % the data was very noisy). This indicates that the AOM slightly suppresses out
higher ωMOD. The effect was taken into account when analyzing the slave light.

4.1.2 Modulated Injection
The AM master light passing through the AOM was used to inject the laser diode. Figure 4.1.3
shows the basic working principle of the experiment. Furthermore, one can schematically see

1Mini-Circuits ZLW-3+
2HP 8640B-Signal Generator
3Gw Instek SG-1013
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Figure 4.1.2: a) Spectrum of the AM master light around ωinj/2π. b) 2D scan of spectra like
a) for different ωMOD in steps of 200 KHz. BSB and RSB denote the blue and red sideband
at (ωinj ± ωMOD)/2π respectively. Both 2nd and 3rd sidebands are also visible. c) Deduced
values of AMOD from taking the maximum value of carrier and first sidebands for the spectra
like the one shown in a), as a function of ωMOD for varying modulation strength. d) Modulation
index BMOD of the master light after the AOM as a function of ωMOD for different AMOD. Also
shown are linear fits (the lowest point in c) is an outlier and was not taken into account for
fitting). Note the steeper slope of BMOD compared to AMOD, indicating that RF signal AM
is attenuated when converting it to optical AM with an AOM. For clarity, error bars are only
shown for AMOD = 42 %. They increase with ωMOD and decreasing AMOD.
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Figure 4.1.3: Sketch of the modulation experiment. Signals from the RF source and the wave
form generator applied to the mixer, and the resulting AM signal fed to the AOM are sketched
in red. The spectrum analyzer decomposes the AM signal from the fast PD to its frequency
components sketched in blue.
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Figure 4.1.4: a) Dependence of slave modulation index BMOD on AM frequency ωMOD for various
modulation indices AMOD of the AM RF signal. b) Same as a) but for various ratios of master
and slave intensities.

the modulated RF signal applied to the AOM (red), as well as the signal obtained from the
spectrum analyzer (blue). The outcoupled light from the slave diode was beated against the
original, unmodulated master light. The AM frequency was varied from 400-3000 KHz, the
fraction Iinj/Ifree of the carrier frequencies from -41 to -31 dB and the modulation index AMOD
of the electric AM RF signal driving the AOM between 25 and 88 %. Surprisingly, BMOD of
the master light was not altered significantly by the slave diode. Figures 4.1.4 a) and b) show
the dependence of the modulation index BMOD of the slave light on ωMOD for varying AMOD
and Iinj respectively. Reference [2] discusses how the master AM translates to the slave AM in
an infrared laser diode. Its main result for our purposes is shown in Appendix D. According
to it, low ratios of Iinj/Ifree can lead to -130 dB master AM suppression by the slave. For
our parameter range, suppressions as high as 60 dB corresponding to a factor of 106 should be
possible. Comparing to Figure 4.1.2, we only see a suppression of several percent.

There is however a region of modulation frequencies, where the master AM is amplified.
The calculations presented in [2] were not performed, but the absence of suppression in our
experiment might suggest that modulation frequencies were probed, for which the suppression
is extremely low. The error bars in our data indicate that the data is not very good, but still,
significant filtering (noise reduction of for example an order of magnitude) should have been
detected. At the present point of investigation, it can at least be stated, that frequency-noise
filtering by optical injection of a blue laser diode is not easily achieved. Filtering might happen
at much higher modulation frequencies, where the AM response of the AOM becomes significant.

If the slave does not filter out any frequency components at 397 nm, then AM master light
could be amplified by optical injection locking. Quantum operations like the Mølmer-Sørensen
gate would directly benefit, as powerful AM light could be easily produced. The abscence of
AM suppression could prove extremely useful in creating a whole range of sidebands around a
carrier frequency with just one AOM. Considering the size and price of these devices, this could
help scaling up ion trap experiments.
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Figure 4.2.1: Spatial separation of injected and non-injected laser diode light.

4.2 Switching the Injection On and Off

4.2.1 The Setup
As was established in Section 2.3, injecting the slave diode with ωinj inside the locking range
forces the slave output frequency to jump from ωfree to the master frequency ωinj. If ωfree does
not coincide with ωinj, turning on the injection will change the output frequency of the slave (see
Section 2.3.2). The easiest way to discriminate between those two frequencies, is to spatially
separate ωfree and ωinj with a dispersive element such as a diffraction grating (see [7]). The
basic working principle is shown in Figure 4.2.1. To calibrate the free running slave wavelength,
a screen was placed roughly 6 m after the grating4 and the spatial separation between the free
running laser spot and the injection locked spot (at 396.98 nm) recorded for different diode
operation temperatures. The temperature of the diode was varied between 15 and 25 °C. The
maximum temperature was specified by the manufacturer to be 30°C, and going below 15°C
introduces the risk of condensation water in the diode. At 15 °C the separation of the free
running diode spot to the injected spot was 5 mm, opposed to 2 mm at 25 °C. Knowing that the
grating has 1.25 mrad/nm dispersion, the laser diode frequency was estimated to lie in a range
between 396.3 and 396.7 nm. The higher wavelength at 25°C was chosen because the quality of
the injection was better (since the master frequency was deeper inside the locking range). The
optical power output was not sensitive to temperature (see Appendix B) as it varied by less
than 1% over the whole temperature range when keeping the current fixed.

After determining the free running laser wavelength, the injection could be switched in four
4Thorlabs GR25-1205
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different ways:

• tuning the current of the slave to allow injection or not

• tuning the temperature of the slave to allow injection or not

• blocking the master with an optical chopper

• switching the AOM on and off, thus illuminating the laser diode with the master laser or
not.

Since we lacked control and speed over the the first two mechanism, we opted for the chopper
and later the AOM as switching tools.

4.2.2 Slow Switching

The chopper5 switched the master light fairly slowly compared to the AOM, which resulted in
very different rise times of the master and the slave signal. Both signals are shown in Figure 4.2.2
a). The different rise times result from the Gaussian nature of the master laser beam. Equation
(2.1.5) shows that for a fixed detuning ωfree−ωinj and a slave output intensity Ifree that locking
the slave requires a certain master intensity Iinj. As the chopper blade sweeps over the master
beam, more and more power is delivered to the slave, until the locking condition is satisfied
(see Figure 4.2.2 b)). For the present settings (see Table 2.3.1) and a master beam with 1 mm
spot size, Iinj ≈ 40 µW is estimated. Fitting an error function to the data and differentiating
it, roughly reproduced the expected master Gaussian beam. The intensity hitting the slave at
the onset of the slave signal was estimated around 70 % of its total value, in other words 36
µW. Higher chopper frequencies simply resulted in the chopper sweeping faster over the master
laser beam, thus reducing the master rise time as can be seen in Figure 4.2.2 c). The faster
the chopper sweeps over the master beam, the faster the slave is provided with the threshold
master power, so it becomes sooner clean injected. The quicker the slave gets clean injected, the
shorter its rise time will be on the PD (partial injection happens for master power below clean
injection threshold and leads to a small signal on the PD). From Section 2.3 one would expect
rise times in the pico second range, so the master rise time clearly limits the slave rise time.
The non-linear behavior dependence of rise time to chopping frequency is due to the circular
geometry of the chopper. The rise times were measured using the 10-90 % criterion of the fitted
error functions.

4.2.3 Fast Switching
The AOM could switch the master laser much faster then the chopper. Its driving signal was
turned on and off with an RF switch6, controlled by a wave form generator producing TTL
step signals (1 ns rise time). The setup is sketched in Figure 4.2.3 with the different RF signals
indicated in red, and the observed PD signals in blue. The master laser was deflected periodically
and its switching behavior was monitored by a fast PD. The master signal had a rise time of
approximately 50 ns. This can be explained as follows: once the AOM is turned on, the acoustic
RF wave in the AOM-crystal has to travel several mm to and through the laser beam. The

5Thorlabs MC2000-EC
6Mini-Circuits ZASW-2-50DR+
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Figure 4.2.2: a) Trace of the chopped master signal and the slave following the master but with
a much shorter rise time. The solid lines are error-function fits to the data. b) 70 % of the
master Gaussian beam intensity is needed for injecting the slave. The rest is blocked by the
chopper blade. c) Behavior of the master and slave rise time for varying chopping frequency.
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Figure 4.2.3: Schema of the switching setup.
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Figure 4.2.4: All signals involved in the switching experiment on the oscilloscope. The dashed
line shows the TTL signal to the RF-switch, the dotted and solid lines show the optical signals
from master and slave light on PD1 and PD2, respectively. For clarity, they are shifted by +2.5
V and multiplied by a factor 300 and 5 respectively.

speed of sound in the crystal is 5.56 mm/µs so the portion of the master beam deflected into
the first order rises in a finite amount of time. It will illuminate the PD at its full intensity only
after the RF wave has crossed the whole laser beam in the AOM.

The master laser only hit the slave when the AOM was turned on (as indicated in Figure
4.2.1), so the beam was deflected periodically by the grating. An iris blocked the non-injected
light (see Figure 4.2.3), such that only the injected slave light hit PD 2. Residual non-injected
light of the slave caused a noise floor on the PD. After the grating, the total beam path was
around 2 m, in order to reach good extinction of non-injected light.

Figure 4.2.4 shows all three signals involved in the switching experiment: the electric TTL
signal, the switched master laser on PD 1 and the slave light on PD 2. The qualitative behavior
of the signals is the same as in the chopper experiment. Traces were recorded for different slave
output powers and the signals fit with error functions. The result is shown in Figure 4.2.5. Slave
signal rise times around 20 ns are observed, being less than half the master signal rise time.
This agrees well with the slow switching experiment discussed in the previous section, where we
established that the slave needs more than half of the master beam to be locked. As a rule of
thumb, we can state that the slave is locked to the master after at most 50 ns.

The turn on of the injection is limited by the speed of sound in the AOM crystal. From
the theory developed in [9] and presented in Section 2.3, it was already expected that the AOM
limits the locking time, as it can be estimated at roughly

tlock ≈ 4 · 1

ωR
≈ 1 ps

27



master

slave

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

optical power [mW]

ri
se

ti
m
e
[n
s
]

Figure 4.2.5: Rise times of the optical signal of the slave diode for different output powers. The
shaded area is the uncertainty of the rise time of the master laser.

which is much faster than even the rise time of the TTL square pulse (≈ 1 ns). If the locking
time was not limited by the master, the locking time should increase for higher slave output
powers as the locking range would decrease. No such trend is observable. Experiment and theory
thus agree very well. Comparing with e.g. [9] one clearly sees the effect of the extremely high
locking ranges at optical frequencies. Consequentially, if we would consider injection locking
in electrical LC-circuits, more care would be required, since rise times on the order of tens of
nanoseconds are expected due to the much narrower locking range. Section 2.3.2 also discussed,
that the initial phase difference between the injected light and the free running laser diode can
have a large effect on the locking time. Namely, if

φ(0) = π − φ∞ = φunstable
∞

we would get the longest rise time. If the relative diode and the master light phase could be
controlled, long slave rise times not limited by the master turn-on might actually be observed
directly. Shortening the rise time of the master light might be possible by focusing the beam
tightly as it goes through the AOM, but a locking time on the order of pico seconds is out of
reach for now.

The theoretical framework presented in this thesis has a minor flaw because the locking range
ωR depends on the quality factor Q of the laser diode cavity. This parameter can be measured,
but we simply estimated it to get a feeling for the involved orders of magnitude. Recently
a way to calculate the locking range without knowing anything about the quality factor of
the injected oscillator has been developed [19] for LC-circuits. In essence this approach treats
injection locking very generally as perturbation problem. The oscillator can be characterized
by a perturbation projection vector (PPV) which describes the phase sensitivity of the state
space elements of the oscillator (like the positions or electric fields). Knowing this PPV, one
can average over the usually very fast phase variation of the injected signal, keeping only the
much slower phase difference ∆φ(t) between oscillator and injected signal. One ends up with a
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differential equation for ∆φ(t) of which the Adler equation is a special case. We did not apply
this analysis yet, but plan to apply it to laser diodes and perform it in the future.
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Chapter 5

Conclusion and Outlook

The main result of this project was the successful injection of a high power 397 nm semiconductor
laser diode, which relieved partially the power shortage at this wavelength in our lab. We were
able to characterize the quality of our injection with an optical spectrum analyzer built as part
of this project and by recording the beat note between the master and injected slave light.

Two follow-up projects investigated possible applications of the injection-setup. First, optical
filtering properties of the injected laser diode were investigated with the aim to suppress noise of
the master light in a range of 3 MHz around the carrier. The initial goal was to suppress servo-
bump noise in the master laser introduced by our frequency control mechanisms. We simulated
these frequency components by amplitude modulating the master light. No filtering could be
observed. This is in direct contradiction to previous work [2] so further investigations should be
performed. This work investigated laser diodes in a different parameter regime than ours. The
slave wavenlength was 1550 nm and the master had no detuning. The difference in suppression
might be related to the low quality factor of our laser diode cavity (as the photon reservoir of the
slave is small, the AM in the master might dominate). The quality of our data can be improved
and further measurements are necessary to confirm the discrepancy. Additionally, simulations
of the frequency response of the slave diode should be performed based on [2]. The absence of
filtering might still be beneficial, in that several frequency components in the master light might
be amplified by optical injection locking, thus reducing the number of AOM’s required for the
creation of multiple frequency sidebands. Some quantum operations like the Mølmer-Sørensen
gate could greatly benefit from amplified modulated seed light.

In the second follow-up project, we spatially separated injected from non-injected slave light
using a ruled reflective diffraction grating. Theory and experiment agreed very well, as the
settling time of the slave diode frequency was found to be limited by the turn on time of the
AOM switching the master laser. The setup required a relatively big path length of 2 m after the
grating, so we can view it as a proof-of-principle experiment. Improvements of the experimental
setup could further increase data quality and reliability. Significantly higher signal-to-noise
should be obtainable by optimizing the injection incoupling into the laser diode with custom
optics, and coupling the light after the grating into a fiber for better extinction (we used an iris
for simplicity). Stronger dispersion from a grating with higher groove density reduces the path
length needed to separate injected from non-injected light. And finally, it would be preferable
to have a bigger separation in wavelength between the free running laser diode and the injecting
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light. This would then impose higher injection power which should not be a problem. If we
manage, to put this system in a box of e.g. 20 cm side length, this technique could contribute
to the scalability of systems requiring injection locked light. As a specific example, one could
think of trapped ions on a chip, illuminated by laser diodes of different wavelengths. A fiber
carrying all the needed wavelengths could inject the diodes, and the injected light would hit the
ions, whereas non-injected light would simply miss the ions.
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Part II

Towards Optical Addressing of a
Single Ion

Artist’s conception of single ion addrressing in the TIQI segmented 3D trap.
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Chapter 6

Introduction

„ ... we never experiment with just one electron or atom or (small) molecule.
In thought-experiments we sometimes assume that we do;

this invariably entails ridiculous consequences.“
Erwin Schrödinger

In the 3D trap of the TIQI lab, ions are typically spaced around 3.5 µm. At the moment,
individual ions in a chain cannot be addressed optically. Most experiments performed in the
TIQI group so far use a single-ion. The main project of the second part of this master’s thesis
is to optically address single 40Ca+ ions in our trap configuration. In other words, we built an
optical system capable of focusing a 401 nm laser beam well below 2 µm spot size diameter.
Single-ion addressing has been achieved in the past [21] with dedicated, highly specialized optical
systems. This project was challenging because existing optics had to be upgraded in order to
achieve this tight focusing. The upgrade consisted of a three lens telescope placed in front of
our already installed optics.

In modeling the behavior of our optical system, Gaussian beam propagation was chosen (pre-
sented in Chapter 8). This approach was favored over ray-tracing (relying on Snell’s Theorem)
for two simple reasons. First of all, single trapped-ion addressing is done with a laser in its
fundamental (i.e. Gaussian) mode, of which the Gaussian beam is a very good approximation.
The second reason concerns the tight focusing of the laser beam. In ray optics, the focus is a
single point where the intensity is not well defined. Gaussian beams allow for an estimate of the
light intensity at the focus since even at this position (also called the waist location) the spot
size is never zero. Knowing the intensity of the laser beam at the target ion is important because
most atomic physics parameters (Rabi oscillations, transition rates, state dependent forces, ...)
depend on it. It is worth noting though that ray-tracing is still a very good approximation to the
Gaussian beam and served as the basis to all simulations. The outline of this part of the thesis
is as follows. First we will introduce the basic notation and parameters of a Gaussian beam in
order to identify the important figures of merit of such a beam, and the constraints imposed
by our system. Chapter 9 describes how we came up with a system theoretically capable of
focusing a 397 nm laser beam on a single-ion. We end with Chapter 10 describing the testing
of the actual prototype.
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Chapter 7

The Calcium Ion

In the TIQI group at ETH Zürich, 40Ca+ ion experiments are performed in different traps
[22, 23, 4]. As we are a group with emphasis on quantum information, we work with so called
qubits (the analog of classical bits in a digital system). The next two sections, will briefly review
the concept of qubit and the structure of the energy levels of the 40Ca+ ion in order to discuss
the transitions addressed by our lasers in the lab. The chapter ends with a short reminder of
the AC-Stark shift.

7.1 Introduction to the Quantum Bit

The concept of “bits” has proven to be extremely fruitful in modern computation. A bit is
just a small unit, information can be decomposed into. By doing so, an analog signal with an
infinite amount of states, is converted into a digital signal composed by a string of bits. Modern
computation, communication and data storage are all based on digital signal treatment and use
the language of bits 0 and 1. In real-world devices, these bits can be implemented in various
physical systems. The 1 could correspond to some current flowing, a voltage above threshold,
light polarization or even the handedness of DNA. The 0 would then be the complementary
state. If for example computers are to be miniaturized further, non-classical physics is at some
point required to describe the system (as it is already the case for some parts like the transistor)
and most importantly, the bits will start to behave non-classically. Quantum mechanics allows
a very special phenomenon: a quantum system can be in a superposition of two configurations
a the same time. So quantum mechanics allows the bit to be in a superposition of 0 and 1. In
order to avoid confusion with the classical case, we write our quantum-bits as |↓〉 and |↑〉 instead
of 0 and 1 and name them qubits. The equal superposition of 0 and 1 for example would then
be written as

|+〉 =
1√
2
|↓〉+

1√
2
|↑〉 (7.1.1)

where the factor 1/
√

2 is linked to the probabilistic nature of quantum mechanics. This ex-
pression is an example for a wave-function describing the probability distribution of the two
qubits. If the system is measured, a superposition is never seen but only one possible qubit
state: |↓〉 or |↑〉 corresponding to the bit value: 0 or 1. Which result is recorded, is probabilistic
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and defined by the square of the coefficients in the wave-function of the quantum system. Since
we will measure either |↓〉 or |↑〉, the squares of their respective coefficients have to add up to
unity. In eq. (7.1.1), we have 1

2 + 1
2 = 1, meaning that both outcomes are equally probable.

The wave-function has many other properties, which are described in text books such as [24].
A general one qubit wave-function is written like

|ψ〉 = α |↑〉+ β |↓〉 ≡
(
α
β

)
(7.1.2)

with α, β ∈ C and |α|2 + |β|2 = 1. The second equality in eq. (7.1.2) relates the qubit
superposition to a two dimensional complex vector. One can think of qubits as vectors lying on
a complex unit circle, spanning an abstract state space. In this case, the basis vectors of this

space are chosen as the orthogonal vectors |↓〉 =

(
0
1

)
and |↑〉 =

(
1
0

)
but, linear algebra

establishes that any two linearly independent vectors can be used equally well. For example

|ψ〉 =
α+ β√

2
|+〉+

α− β√
2
|−〉 =

(
α
β

)
where |±〉 = 1√

2
|↓〉± 1√

2
|↑〉, is an equally valid representation of |ψ〉. As soon as two orthogonal

vectors are chosen as a basis and all wave-functions formulated with respect to them, we call
these vectors the computational basis. Classical bits would restrict the state space to two

orthogonal states, such as
(

0
1

)
and

(
1
0

)
, whereas qubits allow a continuum of states. This

is the fundamental reason why quantum algorithms can outperform classical algorithms by so
much1.

The coefficients of the wave-function |ψ〉 are related to the probability of measurement out-
come |φ〉 = φ1 |↑〉+ φ2 |↓〉 as

P (|φ〉) = | |φ〉∗ · |ψ〉 |2 ≡ | 〈φ| ψ〉 |2 = |( φ∗1 φ∗2 ) ·
(
α
β

)
|2 = |φ∗1α+ φ∗2β|2.

Intuitively speaking, one calculates the amount of |φ〉 in |ψ〉, both expressed in the basis
{|↓〉 , |↑〉}.

The question is now, how to implement a qubit in the real world. Many ideas such as
polarized photons [26], electron spins [27] or even small currents [28] have been realized. In our
case, we choose the electronic energy levels of an ion.

7.2 The Quantum Bit in 40Ca+

7.2.1 Atomic Levels for Trapped 40Ca+ Physics
Atomic energy levels are very well suited to serve as qubits for two reasons.

1. The computational basis {|↓〉 , |↑〉} can be realized by very long lived atomic states.

2. Manipulation of the qubit is easily achieved by lasers.
1Entanglement helps in many cases, but is not the sufficient criterion for speed-up [25].
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The 40Ca+ ion has long-lived electron states which can be addressed at optical frequencies.
Compared to microwaves, optical frequencies lead to very high electric field gradients which make
the ions couple much more strongly to the applied laser fields. The availability of commercial
laser sources is convenient. Further advantages of optical qubits are listed in [29]. The levels
involved in our experiments are the 42S1/2, the two 4P levels as well as the two 3D levels (see
for example [30] for the spectroscopic notation) depicted in Figure 7.2.1. These Zeeman levels
are split by applying a magnetic field of 119.45 Gauss. For now, the qubit transition is the 729
nm 4S1/2 → 3D5/2 transition, but future plans prefer the two qubit states |↓〉 and |↑〉 defined as

the states
∣∣∣S 1

2
, mJ = − 1

2

〉
and

∣∣∣S 1
2
, mJ = 1

2

〉
²respectively.

For these qubits, manipulation is achieved by a stimulated Raman transition (see [1, 29]).
As this is a two photon process, it requires addressing powers of several mW, but with a decay
time of ≈ 106 years the |↑〉 state can be considered stable [1]. The read-out of the qubit state
is performed by first applying a pulse resonant to the |↑〉 → 3D5/2 transition, shelving any |↑〉
population in the metastable D5/2 level. The fluorescence at 397 nm is then recorded. If the
qubit is in state |↓〉, the transition 2S1/2 → 2P1/2 can be driven strongly and since the lifetime of
the 2P1/2 level is only 7.7 ns, the electron will relax and be re-excited very quickly, thus emitting
many photons. Not all of these will be emitted into the solid angle the imaging system objective
covers, but as soon as we see more photons than a fixed threshold value during a detection time
around 200 µs, we know that the qubit was in state |↓〉. On the contrary, the upper qubit state
|↑〉 will not scatter any photons and stay dark. Roughly one in ten times, the electron in the
2P1/2 decays into the 2D3/2 state, where it is no longer sensitive to 397 nm light and turns dark.
It would then falsely be concluded, that the qubit was in state |↑〉. In order to avoid this effect
a laser called the re-pumper is needed. Its sole job is to excite the transition 2D3/2 → 2P1/2,
thus re-pumping the lost electron into the detection cycling transition.

Using this detection scheme with a 397 nm pulse of several hundred µs, almost 100% detection
efficiency can be achieved [29].

7.3 The AC-Stark Shift

As we saw in the last section, at least four lasers are need to manipulate qubit states and reliably
perform read-out. All these lasers have to be resonant to their respective transition in the ion.
If a laser is non-resonant to a transition, the involved energy levels get shifted. Analogously
to the Stark effect induced by a static electric field, the shifting of the transition frequency by
an oscillating electric field is called AC-Stark effect. An excellent treatment of interactions of
quantum systems with radiation can be found in [33]. Deriving an expression for the AC-Stark
shift would be beyond the scope of this work, so the well known result for far detuned radiation
is simply stated as

∆E = ~
|ΩR|2

4∆
(7.3.1)

where ΩR is the Rabi frequency of the transition of interest and ∆ the detuning between radiation
field and the transition angular frequency. The Rabi frequency can be calculated for a dipole-
allowed transition using

ΩR =

√
3λ3ΓP

2~cπ3w2
0

(−1)J
′+J+J>−mJ

(
J ′ k J
m′J q mJ

)
(7.3.2)
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397 nm

t = 7.7 ns

729 nm

t = 1.045 s

866 nm

t = 94.3 ns

Virtual level

Splitting: 

133.65 MHz

Splitting: 

200.67 MHz

111.31 MHz

223.00 MHz

B = 119.45 Gauss

40Ca+ Energy Level Splittings

334.7 MHz

t > 106

Figure 7.2.1: Basic level structure of the 40Ca+ ion used for our ion trapping experiments. The
green states are the computational basis states. The qubit Raman transition passes through
a virtual level detuned far enough from the P level to avoid actually transferring the qubit to
there. Note, the 3D state lying in between the 4S and 4P states.
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Parameter Symbol Explanation
λ transition wavelength [m]
Γ transition spontaneous decay rate [Hz]
P laser power [W]
c speed of light [ms ]
w0 1/e2 laser beam waist [m](

J ′ k J
m′J q mJ

)
Wigner 3-j symbol

J ′ & J total angular momentum of lower & upper state
J> the larger of of J & J ′

mJ′ & mJ projection of J ′ & J
k & q photon angular momentum & photon polarization

Table 7.3.1: Parameters needed to calculate the Rabi frequency.

derived in [34]. Table 7.3.1 explains the different parameters used in 7.3.2.
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Chapter 8

Gaussian Beams

A quick review of the basic features of a Gaussian beam will provide tools to analyze and
simulate optical systems. In most cases a laser beam emerges from a laser cavity. It starts
from, or converges to a minimal waist location, called the focus, and diverges from this focus
(perfect collimation is impossible for Gaussian beams as we will see). The intensity profile on
every cross section along the propagation direction of the beam (say the ẑ axis) is a Gaussian
with varying width. Wider intensity distribution leads to a bigger spot size. Tracing straight
rays is a decent approximation to the Gaussian beam in the far field, but in the near field, close
to the focus, the ray picture leads to erroneous results. Here, the behavior of the ion at the
focus is of interest so a short introduction to Gaussian beam propagation is given. The goal of
the following discussion is to give the reader an intuitive, physical understanding of the involved
quantities. The detailed derivations can be found for example in [8].

8.1 Characterizing a Gaussian Beam

A laser cavity usually consists of at least two mirrors from which at least one is curved. The
exiting light field E(x, y, z) (more precisely the phasor amplitude of its electromagnetic field)
varies rapidly along its propagation axis ẑ on the scale of its wavelength and varies slowly in
the x-y direction as the light propagates. Separating out the fast oscillations, the field can be
written as E(x, y, z) = u(x, y, z)e−ikz with k = 2π/λ being the wavenumber corresponding to
the wavelength λ of interest. The paraxial wave equation for u(x, y, z) then reads (see [8])

∂2u(x, y, z)

∂x2
+
∂2u(x, y, z)

∂y2
− 2ik

∂u(x, y, z)

∂z
= 0 (8.1.1)

and gives solutions of the type

u(x, y, z) =

√
2

π

1

w(z)
exp

[
−x

2 + y2

w2(z)

]
exp

[
−ikz − ik x

2 + y2

2R(z)
+ iψ(z)

]
(8.1.2)

with
ψ(z) = arctan(z

λ

πw2
0

),
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w(z) = w0

√
1 +

(
λ

πw2
0

z

)2

,

and

R(z) = z +

(
πw2

0

λ

)2/
z

further described below1. Equation (8.1.2) has a real amplitude part and an imaginary phase
part.

The real part appears in the intensity as

I(r, z) = |E(x, y, z)|2 =
2P

πw2(z)
e−2(r/w(z))2 (8.1.3)

where x2 + y2 = r2 (since the problem is radially symmetric) and the normalization P =´ ´
|E(x, y, z)|2dA was chosen as the total power contained in a beam at position z, which stays

constant of course. One can clearly see, that w(z) takes the role of the “width” of this Gaussian
intensity distribution. Not surprisingly, the radius of a Gaussian beam at a position z0 is then
usually defined as the distance r = w(z) for which the intensity has dropped by 1/e2 (see Figure
8.1.1). For a detailed derivation of the form of w(z) see [8], so

w(z) = w0

√
1 +

(
λ

πw2
0

z

)2

(8.1.4)

is simply defined, with w0 being the beam radius at the focus (for simplicity usually z = 0), also
called the waist of the beam. Note that I(r, z) decays like a Gaussian in the radial direction
(and like a Lorentzian in the z-propagation direction). This is what gives the Gaussian beam
its name.

Next is analyzed the imaginary part of eq. (8.1.2). The first two terms show the close
relation of a Gaussian beam to a spherical wave. In the paraxial approximation, the ampli-
tude of a spherical wave propagating along ẑ at distance R from the origin is proportional to
1
R exp(−ikz) exp(−ikr2/2R). The similarity to the Gaussian beam is striking and R(z) is de-
fined as the radius of curvature of the wavefront on the propagation axis. Closer analysis reveals
that it can be written as

R(z) = z +

(
πw2

0

λ

)2
z

. (8.1.5)

The ψ(z) term is more complicated since it takes into account the non-linear nature of the
Gaussian beam solution. It describes the phase shift of π, the on-axis wavefront acquires during
free propagation from −∞ through the focus to +∞. It is known as the Gouy phase shift and
given by

ψ(z) = arctan(z
λ

πw2
0

). (8.1.6)

1It should be mentioned for completeness, that this is not the only type of solution. For spherical and
rectangular boundary conditions, the general solution depends on Laguerre and Hermite polynomials respectively.
For both cases, the lowest order solution is of Gaussian beam type similar to eq. (8.1.2).
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Figure 8.1.1: a) Sketch of two Gaussian beams with different waists. The dashed lines indicate
the curvature of the wavefronts and the Rayleigh ranges are indicated. b) 3D sketch of a
Gaussian beam with the beam radius indicated as thick orange line.

It might be surprising, but all three parameters depend only on the waist w0 and the wavelength
λ. An auxiliary parameter which has a direct physical interpretation (see Figure 8.1.1) is the
Rayleigh range

zR =
πw2

0

λ
. (8.1.7)

It indicates the propagation distance at which the beam radius has increased to
√

2w0. The
divergence

θ = lim
z→∞

w(z)

z
=

λ

πw0
=

w0

π2zR
(8.1.8)

is another useful characteristic of a Gaussian beam as it describes the angle between the beam
radius and the propagation axis in the far field limit. As one can see, keeping the wavelength
fixed leaves the waist as the only degree of freedom, so eq. (8.1.8) shows that a large waist
results in smaller divergence, but a Gaussian beam can never really be collimated. On the other
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hand, a very tight waist like 1 µm produces a very short Rayleigh range of around 8 µm which
means that the beam diverges extremely fast. High numerical aperture (NA) lenses are then
needed. The NA is defined as n sin θ, where n is the refractive index of the medium and θ the
half-maximal angle of the cone of light the optical element can accept.

As a last useful quantity the spot size of the beam should be compared to the clear aperture
of any optics it passes trough. Since in theory the transversal extent of the beam is infinite (but
exponentially decaying), clipping will always take place. The question is, how big an aperture
has to be, in order to keep this clipping below a reasonable level, say 1%. According to eq.
(8.1.3), the fractional power transmitted through an aperture of radius a is

P

P0
=

1

P0

ˆ a

0

I(r, z0)dr =
2

πw2

ˆ a

0

2πre−2r
2/w2

dr = 1− e−2a
2/w2

. (8.1.9)

By setting a = 1
2πw one can define the “99% criterion” where the aperture diameter should

be π times the spot radius on the aperture in order to transmit 99% of the beam intensity.
Additionally, a conservative constraint for aperture diameters reduces edge diffraction effects,
which might cause problems in a string of ions.

8.2 Focusing Gaussian Beams

The most important problem of this part of the thesis is Gaussian beam focusing. Following [8],
this is tackled in the far field. The Rayleigh range can be taken as the transitional region from
near to “medium” field. After several Rayleigh ranges, the far field approximation holds. As
mentioned before, the Rayleigh length scale for tightly focused beams can lie in the µm range,
but our focusing optics are tens of mm away from the ions (see [31] for detailed numbers), so
we can safely work in the far field approximation. Consider the case of a diverging beam. In
the far field, the relationship between beam propagation distance and beam radius is linear:

w(z) = w0

√
1 +

(
λ
πw2

0
z
)2
≈ λ

π
z
w0

for z � w0. (8.2.1)

If the focusing lens has a focal length f (set z = f in eq. (8.2.1)) and diameter a = πw/2
(i.e. applying the 99% criterion on this lens) and using the 1/e2 spot size of our focused beam,
then simple algebra leads to a minimal spot size

w0 ≈
fλ

πa
. (8.2.2)

The far field Gaussian beam treatment has a small, but potentially important difference to
ray tracing. One has to be aware of the simple geometrical fact that the waist of a Gaussian
beam will not coincide with the geometrical focus. This difference between waist and focus
location is given by

∆f =
z2R
f

=
( w0

π2θ

)2 1

f
(8.2.3)

so the waist will always lie closer to a focusing lens than the geometric focus (see Figure 8.2.1).
Is it immediately seen, that this effect is more pronounced for large Gaussian beams. This
issue is worth noting, since our in-vacuum objectives were designed by Sill Optics, using ray
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Θ

Δf

Figure 8.2.1: Location of the Gaussian waist with respect to the geometrical focus. The diver-
gence of the beam is θ.

tracing, whereas our final simulations concerning the single-ion addressing used Gaussian beam
propagation in order to estimate the light intensity at the focus.

The depth of focus is crucial for a realistic optical setup. It can simply be defined as twice
the Rayleigh range and indicates on which length scale the beam intensity dropped by half of
its original value. If the geometrical focus lies within the depth of focus of the focusing optics,
no noticeable difference between the two models is expected.

The next section describes how these analytically approximated features of the Gaussian
beam compare to the numerically simulated values and which of them might be problematic to
achieve.
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Chapter 9

Simulating the Single-Ion
Addressing Lens System

9.1 The Imaging System

Before discussing the simulation, the pre-installed optics are introduced as a starting point. Sill
Optics designed an optical system, which was installed by Dr. Hsiang-Yu Lo [31], to collect
fluorescence light emitted by 40Ca+ and 9Be+ ions at 397 and 313 nm respectively. A cross
section through the 3D model is shown in Figure 9.1.1. An in-vacuum objective nearly collimates
light at both wavelengths from the same point in the focal plane. Both wavelengths are then
split by a dichroic mirror. The beams are focused on CCD cameras with the help of two out-
of-vacuum telescopes. The beam path of beryllium will not be of interest in this work, only
the path of calcium, since only these ions will be addressed. From now on the objective and
telescope will be referred to as the imaging system. Figure 9.1.1 shows the three-lens-cage system
(green), as it was installed during this thesis, hopefully enabling single-ion addressing together
with the pre-installed imaging system. The addressing light was sent through this new lens
system and a 50/50 beam splitter1 deflected it into the optical axis of the imaging system. The
translation stage beneath the dichroic mirror (yellow) was redesigned. The next two sections
describe the process of simulating the optical system for single-ion addressing in order to decide
on parameters for the three-lens system. Section 10.1 explains how the imaging system was
upgraded to become an addressing system.

9.2 Constraints to the Simulation

The focusing ability of the imaging system is characterized using the analytic expressions from
Chapter 8. As can be seen below, the wavelengths chosen were either 397 or 401 nm light.
Applying the 99% criterion from eq. (8.1.9), the objective has an effective diameter of 18
mm, so the minimal attainable waist at its focal distance (30.9 mm) is 1.3 µm. Changing the
wavelength from 397 to 401 nm increases the waist only by 1%, so for simplicity the following

1Thorlabs BSF20-A
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Figure 9.1.1: Cut through the imaging system with the single-ion addressing cage system added.
The ion trap with the in-vacuum imaging system is to the left, and not shown. The beam path
of the single-ion addressing beam is shown in white. The out-of-vacuum telescopes are fixed to
the box containing the dichroic mirror.
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Quantity Expression Value
diffraction limited beam waist w0 1.3 µm

wavelength λ 397 nm
Rayleigh range zR = πw2

0/λ 13 µm
radius of curvature R = z + z2R/z ∞ (at the focus)
Gouy phase shift ψ = arctan(z/zR) 0 rad (at the focus)

divergence θ = w0

π2zR
0.01 rad

99% criterion a = 1
2πwObj 20 mm

achievable spot size w = fλ/πa 0.2 µm
depth of focus δF = 2zR 26 µm

ray vs. Gaussian beam focus location ∆f = z2R/f 0.5 nm

Table 9.2.1: The Gaussian beam parameters constrained by our imaging system. Propagation
distance of the beam, waist at the objective and focal length are given by z, wObj and f
respectively. The other quantities are defined in Section 8. The achievable spot size is well
below the diffraction limit, indicating that a diffraction limited spot should be achievable using
the imaging system.

analysis is given only of 397 nm light. The Rayleigh range is then 3.7 µm leading to a very
small depth of focus around 7.5 µm. The error in focal position of the ray picture is merely 0.5
nm, which is completely negligible for the achievable degree of precision. It is thus safe to work
in the ray picture for the macroscopic beam path through the imaging system, as long as the
beam waist after the objective is correctly calculated in the Gaussian picture. This estimation
suggests, that the present imaging system is almost diffraction limited (see Section 10) and
opens the possibility to achieve a waist of 1.3 µm. The small depth of focus due to the strong
focusing is a physical problem one has to live with.

Table 9.2.1 summarizes the beam parameters. At the focus, the Gouy phase and the radius
of curvature are 0 and ∞ respectively. The theoretically achievable waist after the objective is
smaller than the waist allowed by the diffraction limit and will thus not be reached.

These conservative estimates matched our goals, so nothing fundamental was expected to
hinder addressing a single trapped ion. In the following the main constraints to the simulation
are discussed. The experienced reader might know that many task-specific problems arise during
these kinds of projects, but it is not necessary to describe all of them in detail here. The point
is to give an overview of the main difficulties of this work, as it was about upgrading a working
system and not designing it from scratch.

9.2.1 Finding the Right Wavelength
In a first step, the addressing wavelength had to be chosen. For direct single-ion qubit transition
addressing, the wavelength of both Raman beams had to be chosen. There is also another
solution to address single ions. At the present stage, we can drive the qubit transition directly
using a 729 nm laser [21] which illuminates all ions simultaneously. The idea would be to
individually AC-Stark shift the resonance of a single-ion away from the qubit transition using a
tightly focussed laser beam. We thus “switch on” single-ions by shining another, tightly focused
laser beam on them (see Section 7.2). Light which is red detuned from a transition “pushes” the

46



energy levels together, blue detuned light “pulls” them apart. This form of single ion addressing
will be used as long as the qubit transition still lies at 729 nm.

This procedure has one drawback. Since we discern our qubit state by the number of collected
397 nm fluorescence photons, parasitic scattering from this transition would give misleading
results. A red detuned AC-Stark wavelength of 401 nm promised the smallest scattering rate
(calculations performed by Dr. Hsiang-Yu Lo) and at the same time high enough Raman
transition rates. The intuitive reason is the following: A blue detuned Stark-laser would bring
the ion into a virtual state between 2P1/2 and 2P3/2 (see Figure 7.2.1). Both of these levels
would contribute to unwanted parasitic scattering. On the other hand, if the Stark-laser is red
detuned, only the 2P1/2 level will contribute significantly to the scattering. A 401 nm laser2
with more than enough power is readily available to us, as opposed to shorter wavelengths
which might allow for higher Raman transition rates. Shining a strong 401 nm beam on the
397 nm transition also shifts the |↓〉 qubit ground state away from resonance with the 397 nm
fluorescence transition.

9.2.2 Funding
After finding an appropriate wavelength, simulations focused primarily on upgrading the imaging
system with a single custom-made lens. After having found several possible designs, lens making
companies either told us that such designs were impossible to manufacture (the lens would for
example have to be too thin to polish) or would cost CHF 9000 upwards. We thus had to turn
our focus to commercially available lenses (mainly from Thorlabs).

9.2.3 Staying Flexible
A third constraint was the ability of the upgrading system to focus two wavelengths. As main
objective the 401 nm Raman beams and the AC-Stark shifting beam should be focused. But for
testing purposes the setup should also be able to focus 397 nm light, for which we could easily
test single ion fluorescence. We decided to opt for a cage system, in which all lenses were fixed
except for one, which can be adjusted in position depending on the wavelength.

9.2.4 Physical Parameters of the Imaging System
Last but not least, the physical properties of the imaging system have to be taken into account.
The most important constraint regarding the physical dimensions was that the final lens could
not be too close to the imaging system telescope. As mentioned before and shown in Figure
9.1.1, a beam splitter brings the addressing beam on the optical axis of the imaging system.
This dichroic is placed in a box and needs space. In the beam path this corresponds to at
least 220 mm. Other dimensional constraints also had to be taken into account but were more
easily met. The location focal point of the addressing beam had to stay inside the depth of
focus of the imaging system objective (roughly ± 7.5 µm with respect to the image plane of the
objective), the 99% criterion of eq. (8.1.9) should be fulfilled at every surface (mostly to avoid
diffraction), the incoupled beam must have a realistic radius and of course, the added lenses
must have realistic spacings (cage systems up to 400 mm can be considered stable).

2Toptica DL Pro
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These constraints were challenging to meet all at once. On the other hand, they reduced the
parameter space considerably. The next section explains how the simulations led to a potentially
satisfactory design, using the powerful optimization algorithms of ZEMAX.

9.3 Performing the Numerical Simulation

The numerical simulation of the Gaussian beam propagation was performed in the optical design
program ZEMAX. The Physical Optics Propagation package calculated the beam propagation
coherently over the whole length of the optical system. With this package, aberrations like
coma could also be simulated. This was not possible quantitatively using the standard Paraxial
Gaussian Beam package in ZEMAX (it only gave qualitative results as the ray-tracing spot
diagram was not precise enough).

As mentioned above, at the beginning of the simulations single custom lenses were investi-
gated. These custom lenses led to decent results, so the beam path was reproduced approxi-
mately with two or three commercially available lenses in a black box model. Simple ray ABCD
matrix multiplication was used to find a combination of lenses that create a path similar to a
well focused one originating from a custom lens. We chose among the A-coated 1” N-BK7 and
Fused Silica lenses offered by Thorlabs. Promising combinations were then implemented into
ZEMAX and their relative locations were optimized with the built-in optimization algorithm.
Since the parameter space was huge, it took some trial and error to get to reasonable setups.

The hardest constraint to meet was the flexibility constraint. Setups that looked promis-
ing for one wavelength failed for another. The spot size could not be small enough for both
wavelengths, or it required unrealistic spacings between the lenses. The setups were extremely
sensitive to all parameters because the aimed spot size was so small. Tiny changes could easily
lead to beam waists 5 or 10 times the desired 1.3 µm waist.

Even when the design process took a lot of iterations, three basic principles served as a guide
line:

• The beam dimensions did not change much passing through the out of vacuum optics
(roughly by 10 mm over a length of 1 m), so the paraxial approximation holds. This in
turn means that lens effects (like spherical aberration) should not play a major role. This
rules out the necessity of for e.g. achromatic doublets or aspheric lenses and reduces the
amount of lenses worth considering.

• The beam size has to stay well below all aperture dimensions in its path (99 % criterion).
This constrained most of the setups and goes hand in hand with the previous point.

• Telescopes make the setup flexible for different wavelengths as the beam size and the angles
can be tuned finely by moving lenses. This insight came later during the simulations, but
revealed itself to be crucial.

Meeting the 99% criterion, led us to the final setup presented in Figure 9.3.1. The ingoing laser
light exits a collimator3 of a single-mode fiber4, is contracted by a first Galilean type telescope
(plano-convex and plano-concave lens with focal distances 125 mm and -100 mm respectively),

3Thorlabs TC12FC-405
4Schäfter+Kirchhoff PMC-401Si
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Figure 9.3.1: a) Sketch of the complete single-ion addressing lens system. b) Zoom on the three
lens system developed in this project. The black numbers describe the setup for 397 nm light
and the gray numbers the setup for 401 nm light. The distance to the imaging system telescope
is 260 mm for both wavelengths. Note the big difference in focal length between the 397 nm
and the 401 nm setup.
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Figure 9.3.2: Cage system for the single-ion addressing three-lens system. The focal distances
of the lenses are indicated. The rods are 401 mm long. Working distance is 106.5 mm for a lens
diameter of 1 inch.

focused by a third lens5 (plano-convex with focal distance 175 mm) and left expanding again
until hitting the telescope of the imaging system. Finally, the objective focuses the light down
to a waist around 1.3 µm. The focal length of this three-lens-telescope is 106.5 mm and has an
F/# of 4.2. In theory, this system is extremely promising due to several reasons:

1. The addressing beam originates directly from a fiber with its corresponding collimator.

2. The system has a stable focal minimum, meaning that even if the spacing between two
lenses is off by several mm, the third lens can always be adjusted to find a spot size around
1µm.

3. Going from 397 to 401 nm simply requires changing the distance between the first two
lenses

4. The total cost of the three lenses is less than CHF 100.

These four points make it the ideal prototype to examine the possibility of single-ion addressing
with our pre-installed imaging system. Of course, this setup has some drawbacks:

1. The collimator might introduce aberrations.

2. The first lens is placed 250 to 300 mm in front of the third lens, and together with the
fiber holder pushes the length of the cage system to its stability limit.

Hoping that these two drawbacks were not unsurmountable difficulties, the three lenses were
fixed in a cage system6. Figure 9.3.2 shows the cage system together with the box containing the

5Thorlabs LA1986-A, LC1120-A and LA1229-A
6Radiant Dyes

50



50/50 beam splitter. The box from the imaging system was redesigned in order to accommodate
the beam splitter and support the cage system with four stabilizing pin holder. One of the two
mirrors coupling the beam onto the optical axis of the imaging system could be controlled
precisely with piezos on each rotation axis.
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Chapter 10

Experimental Setup and Test

10.1 Aligning the Imaging System for Reverse Operation

As the name suggests, the imaging system collects light from inside the ion trap and images the
ion on a camera or a photon counter outside. In the simulated single-ion addressing, light is
sent through three lenses in front of the imaging system, and then through the whole imaging
system into the ion trap. This means, that the imaging system is used in both directions: for
imaging and addressing ions. Prior to my work on the system, the images of the ions showed
considerable coma. Figure 10.1.1 shows trapped ions with a tail, resembling the one of a comet.
Coma, or comatic aberration, originates from light rays hitting lenses (or any optical element)
at an angle. A circular image gets a comet-like tail (see Figure 10.1.1 a)). Light propagating
through the system in the reverse direction will be focused to an equally comatic spot, with
the comet-tail pointing in the opposite direction. Depending on the severity of the coma, a
lot of light might be transferred to the tail. Single-ion addressing with coma in the system is
not ideal, as neighboring ions could be illuminated too much by the distorted laser spot. One
appealing feature of the design discussed in the previous section was that it used the whole
imaging system, so it forced us to first correct the coma before we could proceed to addressing
single-ions.

Based on the separation between the ions in Figure 10.1.1 being roughly 3.5 µm the amount of
coma present in the system could be estimated. Using Physical Optics in ZEMAX the presented
shape was approximated and the closest result is shown in Figure 10.1.1 b). We could estimate a
tilt of roughly 1.75 degree in the objective and no significant displacement of either the objective
or the telescope. Already a slight tilt in the telescope led to a much more sickle-shaped form of
the coma, so it was concluded that the main contribution to coma came from the tilted objective.

With this information at hand the translation stages beneath the 313/397 nm dichroic (see
Figure 10.1.2) was redesigned. After installing an additional goniometer1 for vertical tilting and
a rotation stage2, the coma could almost entirely be corrected. A string of ions can be see in
Figure 10.1.3 a). An Airy pattern and a Gaussian fit to the data is shown in Figure 10.1.3
b). Both are nearly indistinguishable and have almost the same relative errors. Also shown are

1Owis GO90
2Thorlabs PR01/M
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Figure 10.1.1: a) Trapped ions exhibiting comatic aberration. b) Simulation of the imaging
system coma using ZEMAX. The separation between the ions in a), estimated around 5 µm,
served as a rough scale and led to approximate the tilt of the objective between 1° and 2°.

53



Figure 10.1.2: The upgraded translation stage. The adapter plates shown in yellow had to be
manufactured by the workshop.
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Figure 10.1.3: a) Four trapped 40Ca+ ions after coma correction. The second ion from the right
is the sharpest and brightest due to residual coma in the imaging system. b) Airy as well as
Gaussian fit to a single trapped ion. The diffraction limited Airy and gauss function are also
shown.
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the Airy pattern and its Gaussian approximate for the diffraction limited case. The Rayleigh
criterion states that two spots can be resolved, if the peak of one Airy pattern coincides with the
first zero of the other (see [37]). For an aperture of diameter d the minimal angular separation
of the two spots is then given by Abbe’s criterion as

sin θ ≈ 1.22
λ

d
(10.1.1)

where λ is the wavelength of the imaging light. If f is the focal length of the imaging system
and x the minimal distance between the two spots we can also formulate 10.1.1 with the help
of the f-number F/# = f

d of the imaging system as

x ≈ 1.22λF/# = 1.22 · 397 nm 1.1 = 0.53 µm (10.1.2)

in our case (see [31]). Approximating the Airy function with a Gaussian of the same height,
yields for its standard deviation

σ ≈ 0.42λF/# = 0.18 µm. (10.1.3)

The imaging system has a magnification of 40 and the CCD camera3 used to monitor the ions
has a pixel size of 7.4 µm. The diffraction-limited spot should then be about 6 pixels wide
opposed to the recorded spot which was roughly 10 pixel wide. The imaging system is therefore
near diffraction limited. The small discrepancy might be explained either by a slight defocus
or the coma being reduced, but not entirely corrected now manifesting itself in a complicate
pattern broadening the spot.

10.2 Addressing a Single Ion

Having aligned the imaging system very well, the addressing beam was sent through to the trap.
In order align the beam, it was reflected on a trap-electrode and imaged on the calcium CCD
camera. The objective was moved away from the ions and focused on the trap electrodes. The
objective was then moved back, bringing the addressing beam roughly to the location of the
ions. The CCD camera was then replaced by a photo multiplier tube (PMT), monitoring the
fluorescence of the ions. The ideal case would have been to shine 15 mW with a beam waist of
1.3 µm on the ions. From eq. (7.3.2) an AC-Stark shift up to 800 MHz can be achieved in this
case. Ion fluorescence would then completely be inhibited.

In the real setup however, the 50/50 beam splitter allowed too much scattering light to
hit the PMT. The imaging telescope reflected part of the addressing beam back to the beam
splitter (see Figure 10.2.1). Half of this reflection was reflected again, the other half transmitted
directly onto the PMT. Already for an AC-Stark beam power around 1 µW the photon number
fluctuation was bigger than the fluorescence count. Less than half of this power is available
at the ion location (because of the 50/50 beam splitter and the reflection at the telescope).
Therefore even at a minimal waist of 1.3 µm, an AC-Stark shift of only 5 KHz is induced. As
the 397 nm fluorescence transition linewidth is around 20 MHz wide, a drop in fluorescence
counts is almost impossible to detect.

3QSI RS 4.2
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Figure 10.2.1: Single ion addressing beam reflected off the telescope and transmitted by the
50/50 beam splitter (BS) into to photomultiplier tube (PMT).

The 50/50 beam splitter limited the amount of power we were able to use in order to AC-
Stark shift the ions away from their fluorescence transition. A dichroic mirror reflecting 401 nm
and transmitting 397 nm should solve this problem. Even if light is reflected from the telescope,
the dichroic mirror will reflect it away from the PMT, transmitting only the fluorescence light
of the ions. The power of the single ion addressing beam can then be increased.
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Chapter 11

Conclusion and Outlook

In this project a preexisting imaging system for trapped 40Ca+ ions was upgraded for the reverse
usage of single ion addressing. Simulations were performed and a prototype was set up. The
system is designed to shape beams with wavelengths between 397 and 405 nm which are then
focused below 1.3 µm beam waist by the imaging system. Such great flexibility is achieved
by designing an additional three-lens-telescope. For shorter wavelengths the spacing between
lenses gets too low, whereas for longer wavelengths the spacing gets too large to build a stable
mechanical support for the lenses. All three lenses are commercially available, cheap and the
ion addressing beam can be sent directly out of a fiber-collimator through the setup.

In addition, the preexisting imaging system was coma-corrected and confirmed to be near-
diffraction limited. Additional rotation and tilting stages were installed beneath the imaging
system, to enable almost perfect imaging of trapped ions. This correction also had to be made
in order to keep a Gaussian profile of the single ion addressing beam at the location of the ions.

Single ion addressing with this system is yet to be confirmed in the lab. In a first run, single
ions could not be AC-Stark shifted away from their fluorescence transition because a simple
50/50 beam splitter allowed too much scattering light to hit the photo multiplier tube. As a
“hardware-solution” to this problem a dichroic mirror transmitting 397 nm and reflecting 401 nm
might be installed. Reflected light should then be completely suppressed. Two other solutions
use the properties of atomic transitions in 40Ca+ in order to reduce the power of the addressing
beam. The first possibility uses ion shelving. As we mentioned earlier, approximately one in ten
photons decays from the P1/2 state to the D3/2 state. This means that after only roughly ten
photons, the Calcium ion is in a dark state, non-responding to fluorescence. At such low powers
single ion addressing could be probed with very low background. The second possibility makes
use of a very narrow linewidth transition in 40Ca+. Shifting the 729 nm S1/2 → D5/2 transition
could be probed with very little power as the linewidth of thsi transition is just several 100 Hz.
Significant AC-Stark shift could then be observed at very low powers.

Once single ion addressing has been demonstrated by one of these methods, two co-propagating
Raman beams will be focused on a single ion to drive the Zeeman qubit transition in 40Ca+
selectively. Individually addressed single qubit gate manipulation will then be possible in the
TIQI lab.
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Appendix A

Analytical Solution of Adler’s
Equation

Adler’s original analytical solution to his equation

dφ(t)

dt
= (ωfree − ωinj)− ωR sin(φ(t)) (A.0.1)

is very brief and rarely derived in the literature. Adler’s solution is somewhat complicated, and
in the main step, extremely short. This appendix shows a simple way of solving this differential
equation for frequencies |ωfree − ωinj | < ωR inside the locking range.

The main trick is the substitution

sin

(
φ(t)

2

)
= u(t) (A.0.2)

which leads us to sinφ = 2u
u2+1 , cosφ = u2−1

u2+1 and for the differential

dφ

dt
=
dφ

du

du

dt
=

2

u2 + 1

du

dt
. (A.0.3)

We suppress the time dependence for clarity. Plugging eq. (A.0.3) into eq. (A.0.1) yields the
new differential equation for u(t) as

du

dt
= (ωfree − ωinj)

u2 + 1

2
− ωRu (A.0.4)

which after completing the square we can reformulate as

du

dt
=

(√
ωfree − ωinj

2
u− ωR√

2 (ωfree − ωinj)

)2

+
(ωfree − ωinj)2 − ω2

R

2 (ωfree − ωinj)
. (A.0.5)

We substitute y ≡
√

ωfree−ωinj

2 u− ωR√
2(ωfree−ωinj)

. Note that du =
√

2
ωfree−ωinj

dy and we get

dy

dt
=

√
ωfree − ωinj

2
y2 +

√
ωfree − ωinj

2

(ωfree − ωinj)2 − ω2
R

2 (ωfree − ωinj)
(A.0.6)

i



which we identify as a Riccati equation. The solution to Riccati’s differential equation

dy

dt
= ay2 + by + c (A.0.7)

is known to be

y =
−b+

√
−b2 + 4ac

2a
tan

[
1

2

(√
−b2 + 4ac(t− t0)

)]
(A.0.8)

where t0 is to be determined by the initial conditions. Identification of the coefficients and
simplification leads us to

y =

√
(ωfree − ωinj)2 − ω2

R√
2 (ωfree − ωinj)

tan

√ (ωfree − ωinj)2 − ω2
R

4
(t− t0)

 . (A.0.9)

We have to keep in mind that inside the locking range we have (ωfree − ωinj)2 < ω2
R. Thus the

square-root terms are imaginary. Back-substituting u and then φ leads to

tan

(
φ(t)− φ0

2

)
=

ωR
ωfree − ωinj

+
i
√
ω2
R − (ωfree − ωinj)2

ωfree − ωinj
tan

 i
√
ω2
R − (ωfree − ωinj)2

2
(t− t0)


(A.0.10)

and using the identity tan ix = itanhx we arrive at our final result, the well known analytical
solution of Adler’s equation

tan

(
φ(t)− φ0

2

)
= − ωR

ωinj − ωfree
+

ωB
ωinj − ωfree

tanh
[ωB

2
(t− t0)

]
(A.0.11)

where ωB =
√
ω2
R − (ωfree − ωinj)2 as defined in the text.
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Appendix B

Optical Output Power of the Slave
Diode

Figure B.0.1 a) shows the optical output power by the slave diode at 25 °C. The curve looks
extremely similar for temperatures down to 15 °C. The output power dependency of the diode
on temperature is very low, suggesting a high effective temperature. Phenomenologically [38]
the threshold current Ith depends exponentially on the temperature T , so we can write

Ith = I0e
T/T0

for some constant fitting parameters I0 and T0. The latter is called the effective temperature and
gives a rough estimate from which temperature on, the lasing threshold of the diode is signifi-
cantly altered. Taking the logarithm and differentiating both sides with respect to temperature
leads to

d ln Ith
dT

=
1

T0

where T0 is given in Kelvin. Usually the characteristic temperature for a semiconductor laser
diode lies in the range of 50-150 K [38]. Figure B.0.1 b) shows that in our case Teff = 585
K, which indicates an extremely low sensitivity of the optical output power to temperature
variation.
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Figure B.0.1: a) Optical power depending on the current applied to the slave diode at 25 °C.
Also shown is the expression for the linear fit. The threshold current lies around 30 mA. b)
Natural logarithm of the threshold current Ith vs. temperature. The inverse of the slope of the
linear fit gives the effective temperature Teff of the diode.
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Appendix C

Complete Injection Set Up

C.1 Optical Set Up

In this section, the optical paths in the injection setup are described. First is presented the
path of the master laser. The master laser is coupled into a single mode UV fiber (SMF) to get
it to the experimental zone on the optical table. In doing so, around 60 % of the light is lost.
A telescope (F1 & F2) reduced the size of the beam exiting the fiber from 2.1 mm to 1 mm,
for incoupling into the AOM. This step was a precautionary measure because the influence of
switching the acoustic RF wave in the AOM is only well characterized if the beam size does not
exceed 1 mm. The AOM was set up in a double pass configuration (lens F3). The 0th order is
blocked in both paths, resulting in a 80 MHz + 80 MHz = 160 MHz frequency shifted beam. The
master laser is again attenuated by 50 % at this point. The λ/2 plate is used to maximize the
power sent through the Fraday isolator (FI in C.1.1). Here we lose 1 % of the light. A maximal
power of 50 µW was achieved for injection. We have to stress here that this was enough for
injecting the laser diode and no extra effort went into maximizing the available master laser
power. A small portion of the master laser was also picked off (dashed line in C.1.1) and used
to create a beat note with the injected laser light in the modulation experiment. The λ/2 plate
was used to match the polarization of the two beams, otherwise no interference would have been
possible. Both beams were combined using a simple 50/50 beam splitter (BS). The resulting
interfering light was sent onto a fast photodiode (fast PD) to detect the optical intensity beat
note at 160 MHz.

The slave laser path is conceptually much simpler. Leaving the diode, the light goes through
the FI and is picked off twice before hitting the grating. The first pick off leads light to the
modulation experiment, whereas the second pick off (50/50 mirror) takes light to the home
built optical spectrum analyzer (OSA). A λ/2 plate ensured maximal transmission through the
following polarizing beamsplitter (PBS), and a λ/4 plate rotated the polarization of the reflected
light such that it was reflected from the PBS onto a PD. Another PD was placed behind the
OSA to monitor the transmission signal as the length of the OSA was scanned. Comparing
the reflected to the transmitted signal, we were able to estimate the quality of our OSA. The
waist of the slave laser was optimized for maximal incoupling into the OSA with a lens (F4).
After the two pick offs, a λ/2 plate was used to match the polarization of the slave laser to
the grating. A telescope (F5 & F6) expanded the beam to 3 mm diameter for better resolution
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after the grating. The optimal incoming angle for maximum diffraction into the first order was
34°. Switching the RF drive of the AOM on and off (thus switching the injection) resulted in
switching the wavelength of the slave, which was converted into a spatial displacement by the
grating. A fast PD recorded the sharp rise time of this process. Table C.1.1 summarizes the
equipment used for this setup.

lens F1 F2 F3 F4 F5 F6
focal length [mm] 150 75 125 400 -50 150

Table C.1.1: Summary of the focal lengths of the used lenses.
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λ/2
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OSA

λ/2

fast PD

F1 F2

PD

PD

fast PD

F4

F3

F5

F6

Grating

0th

1st

1st
0th

Figure C.1.1: Sketch of the complete injection set up.

C.2 Electric Control of the AOM

This section describes the material used to control the different RF signals applied to the AOM.
The tunable RF source gave out the 80 MHz signal required for the AOM. The waveform
generator was used in two ways. In the modulation experiment of Section 4.1, it could be used
to create an amplitude modulated (AM) signal by mixing its signal with the RF signal (tunable
via the amplitude and the offset of the wave form generator signal). The second use, was to
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control the RF switch by applying TTL square pulses to it. A directional coupler fed all signals
to a spectrum analyzer for monitoring. The RF switch, as well as the RF amplifier needed power
supplies.

RF

mixer RF switch RF amp

AOM

wave form

generator

directional

coupler

Spectrum

Analysator

+5 V

-5 V

24 VTTL

stepsine

wave

Figure C.2.1: Sketch of the electronic control of the AOM. The dashed lines indicate the two
separate uses of the wave form generator.
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Appendix D

AM Suppression by Optical
Injection Locking

Shown is a result from [2], where the residual amplitude modulation (RAM) suppression of
master AM to slave AM is shown.

Figure D.0.1: Residual amplitude modulation (RAM) suppression for an injected 1550 nm laser
diode measured by E. Lau [2]. The horizontal axis denotes the modulation frequency, Rint
stands for the ratio between master and slave intensity Iinj/Ifree. For some frequencies and
Rint, suppression is converted into amplification.
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