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Dr. Daniel Kienzler

Group leader:
Prof. Dr. Jonathan P. Home

TIQI group
ETH Zürich
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Abstract

Quantum information processing in arrays of micro-fabricated Penning traps appears to be a
promising alternative to the more commonly used Paul traps. In this thesis, part of the experi-
mental work on the laser setup for this future experiment is described. First, the narrow-linewidth
stabilization of two Raman lasers with respect to each other in an optical phase-locked loop was
modeled, implemented and optimized. The maximum achieved loop bandwidths were found to
be about 2.1 MHz with fiber-optical connections, and up to 2.7 MHz with a free space setup
used to test the influence of signal propagation delay. The HWHM of the beat note between
both locked lasers was around 9 Hz, indicating high phase stability. As second part of this thesis,
two sum-frequency generation stages between 1050 nm and 1550 nm were set up and optimized.
The measured efficiencies agree well with previously achieved results. Finally, the beat note
between frequency-converted light from the locked lasers was observed at 626 nm, showing the
effect of the sum-frequency generation stages and a not optimized laboratory environment on
phase-stability.
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Chapter 1

Introduction

Quantum computation promises a significant speedup for tasks such as integer factorization [1],
search algorithms [2] and quantum simulation [3, 4], possibly impacting the fields of cryptography,
chemistry and nanotechnology. Arguably the two most prominent platforms for implementation
of quantum computation are superconducting circuits [5] and trapped ions [6]. In trapped ions,
a quasi two-level system in the ion’s internal states is used as qubit, which is coupled via a
coherent laser field to the ion’s motion, acting as harmonic oscillator. Information can then be
exchanged between multiple ions via their mutual Coulomb interaction [6, 7]. This allows the
implementation of a universal gate set required for quantum computation with high fidelities
[8, 9]. Imperfect operations however reveal the need for error correcting schemes, such as Shor’s
9-qubit code [10] or surface codes [11], which require an increased number of qubits. Quantum
simulation with a chain of over 50 ions [12], as well as stabilization of qubit states with repeated
readout and feedback [13] has been demonstrated. As an alternative to quantum error correction
with multiple physical qubits, a logical qubit can also be encoded in the continuous variables of
an harmonic oscillator, such as the ion’s motion [14, 15]. Still, the main challenge in trapped-ion
quantum computation is its scalability, together with being able to address single ions individually
[16].

To trap ions, Earnshaw’s theorem [17] has to be taken into account, which states that a
charged particle cannot be held in stable equilibrium by only static electric fields. In the com-
monly employed Paul traps [18], additional oscillating electric fields create a harmonic pseudopo-
tential which confines the ion. However, if the average ion position does not exactly coincide
with the minimum of this pseudopotential, these radio frequency (RF) fields also cause the ion to
move at their exact frequency, which is called micromotion. This poses experimental difficulties
like second-order Doppler shifts and changing spectral line shapes [19]. Also due to this single
optimal ion position along the radial direction, scaling up the number of qubits is in practice lim-
ited to linear chains of ions, except if traps with segmented electrodes are used. Then, shuttling
of ions between different zones on a surface trap chip [20] would facilitate targeted interactions
between only pairs of ions [21]. Another issue with trapped ions for quantum computing is the
so-called anomalous heating rate, which so far lacks a detailed explanation [22, 23].

Penning traps are an alternative to Paul traps, where a strong magnetic field instead of RF
fields provides radial confinement [24]. With this, a quantum simulator with more than 200 ions
has been demonstrated [25], but there, the ions form a crystal with fixed lattice type which also
rotates continuously. The idea of the experiment, to which the work described in this thesis
contributes, is to create arrays of microscopic Penning traps [26]. This is achieved by arranging
the electrodes in such way that they generate static electric quadrupoles in a plane above the
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trap surface. Together with the Lorentz forces due to the magnetic field, this provides stable
ion confinement. One application of this layout is to perform quantum simulations of spin-spin
interactions in variable lattices. The Penning trap approach may have several advantages over
using a Paul trap architecture, the first being higher ion densities for similar trapping parameters
[27]. Due to the lack of RF fields, ions in Penning traps also do not exhibit micromotion, which
is a source of the aforementioned experimental difficulties in Paul traps [19]. The presence of
only static electric fields may also allow to gain some insight into the physical mechanism behind
anomalous heating, by conducting heating rate measurements at varying distance of the ion to
the trap surface without the need for a specialised trap geometry [23].

To achieve higher trap frequencies, the initial plan is to trap 9Be+ instead of 40Ca+ ions. All
of its relevant atomic transitions are around 313 nm, so 4 different colors at this wavelength are
needed for stimulated Raman transitions, repumping and cooling/detection. Due to the demand
for high power in the Raman beams, the UV light is generated via sum-frequency generation
of 1050 nm and 1550 nm light, followed by cavity-enhanced second-harmonic generation of the
resulting 626 nm light [28, 29]. Since the Zeeman splitting of the qubit states due to the strong
magnetic field of the Penning trap is too large to be bridged by acousto-optic modulators [30], a
different scheme to derive two phase-stable Raman beams has to be devised. One possibility for
this is to use two separate laser sources and stabilize their phases with respect to each other. In
the first part of this thesis, phase-stabilization of the two seed lasers for the Raman beamlines
was implemented in a heterodyne optical phase-locked loop [31]. In the second part of this thesis,
two of the sum-frequency generation beamlines were set up and optimized, and one of them was
characterized.

This thesis is outlined as follows:

• Chapter 2 introduces the Beryllium level structure and the corresponding laser setup.
This also serves as more detailed motivation for the work performed in this thesis.

• Chapter 3 introduces classical control theory as means to describe the optical phase-locked
loop in an abstract way.

• Chapter 4 then describes the phase-locking in detail, identifying its limitations and how
to exhaust the system’s possibilities. The experimental setup and its results are presented
and possible adverse effects of the phase-locked loop in a trapped ion quantum information
processing experiment are pointed out.

• Chapter 5 describes the theory behind the sum-frequency generation beamlines, as well
as the experimental work that has been performed and the results which were obtained.

• Chapter 6 then concludes the thesis and provides an outlook over the immediate and
further work.
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Chapter 2

Background material

2.1 The Beryllium ion in a strong magnetic field

The ion that is planned to be used in this experiment is 9Be+. Due to its low mass, higher trap
frequencies compared with other ion species can be achieved, which allows for easier sideband
resolution, facilitating ion cooling. 9Be+ ions are produced from the neutral species by photo-
ionization with a laser beam at 235 nm. The neutral Beryllium atoms are emitted from an atomic
oven close to the trapping site, so that once they are ionized, the electromagnetic interactions
with the trap electrodes and the strong magnetic field of the Penning trap allows them to be
captured.

The level structure of 9Be+ in a magnetic field of ∼3 T as adapted from Biercuk et al. [32]
is shown in figure 2.1. The levels of interest are in the manifolds of the 2S1/2 ground state
and the 2P3/2 second excited state, which are separated by 313 nm. Since 9Be has a nuclear
spin of I = 3/2, the states are split into multiple hyperfine levels with different total angular
momentum quantum numbers F = I+J . The hyperfine levels of the excited state are not drawn.
The different hyperfine levels are further divided up into Zeeman sublevels due to the external
magnetic field. For low magnetic fields, (F,mF ) are good quantum numbers. Then, the ground
state hyperfine levels F = 1 and F = 2 give rise to 3 and 5 Zeeman sublevels, respectively, which is
indicated by dashed lines. However since the planned magnetic field of ∼3 T is much higher than
what is usually used in trapped-ion experiments with Paul traps [33], and (F,mF ) are only good
quantum numbers for weak magnetic fields, the level structure is better described by (mI ,mJ).
This means the hyperfine splitting is treated as perturbation to the Zeeman splitting, which
together yields two sets of four Zeeman sublevels for the ground state, which are separated by
∼100 GHz. This is drawn schematically in figure 2.1. The qubit transition as indicated in red is
between the |↑〉 = |mI = 3/2,mJ = 1/2〉 and |↓〉 = |mI = 3/2,mJ = −1/2〉 states, corresponding
to an electron-spin-flip. This transition is advantageous to the nuclear-spin-flip transitions where
∆mI = ±1, since the electron flip couples much stronger to electric fields and thus its transition
can be driven faster [32]. At magnetic fields of 4.5 T, the qubit transition frequency varies with
28 GHz/T [32], so also for ∼3 T, care has to be taken to minimize magnetic field fluctuations in
order to increase qubit coherence times [33].

One could employ microwave fields to drive the qubit transition, however this would make it
difficult to address single ions individually. Also, the long wavelength of microwave fields implies
a low photon momentum, which makes it unfeasible to couple to the ion’s motion. Instead, it is
planned to use stimulated Raman transitions, indicated with green arrows, via a virtual sublevel
in the 2P3/2 manifold. The position of this sublevel is determined by the detuning of the Raman
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Repumping
Cooling/Detection
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~100 GHz

(+3/2,-1/2) = ↓

Figure 2.1: Level scheme of 9Be+ in a magnetic field of ∼3 T. The qubit transition is indicated
in red.

beams. Here the virtual level is drawn with lower energy than the Zeeman sublevels, but in
principle it can be located in between any one of them.

In order to initially turn a mixture between the qubit states into a pure state, a repumping
beam from the lower qubit state |↓〉 to the mJ = 1/2 manifold of the excited state is used. Since
the excited state is short-lived, it will eventually decay into the upper qubit state |↑〉, as indicated
by a blue dashed arrow.

For Doppler cooling of the ion, and similar for detection of the qubit state, a closed cycling
transition is needed. This is a transition where when the ion is excited, it can only decay into
a single ground state level. Then, driving a laser on this transition leads to a constant cycle
of absorption and spontaneous emission at this wavelength. The qubit state can be detected
if one of the qubit levels is part of said closed cycling transition. Alternatively, deterministic
pumping from one of the qubit states to the detection transition can also be employed. In our
case, the closed cycling transition is between the states |↑〉 =

∣∣2S1/2,mI = 3/2,mJ = 1/2
〉

and∣∣2P3/2,mI = 3/2,mJ = 3/2
〉
, indicated by yellow arrows.

Together, four colors of laser light around 313 nm are needed: two Raman beams, the re-
pumping beam and the beam for cooling and detection. Usually in trapped ion experiments
with 9Be+, the two Raman beams are obtained from a single source, where the second beam is
shifted in frequency using acousto-optic modulators (AOMs) [30]. However, the qubit splitting of
∼100 GHz in this experiment is too large to be feasibly bridged by AOMs, which is why separate
sources have to be employed. The generation of these four beams is discussed in the following
section.

9



2.2 Laser setup

As introduced in the previous section, four colors of laser light at 313 nm are necessary in order
to perform quantum information processing experiments with 9Be+. Especially, in order to avoid
scattering photons during the Raman transitions, these beams should be far-detuned from any
excited state. However, the effective Rabi frequency of stimulated Raman transitions scales with
g1g2
∆ , where g1 and g2 are the coupling strengths of the initial and final levels to the virtual

sublevel, which scale with electric field amplitude, and ∆ is the detuning of the virtual sublevel
to the next excited state. This means to still achieve a high effective Rabi frequency, the laser
fields driving the Raman transition have to be strong, which shows the need for strong laser
sources. Since there are no suitable laser sources at 313 nm, nonlinear optical processes have to
be employed to generate light at this wavelength. One approach is to generate light at 626 nm
and obtain 313 nm by second-harmonic generation (SHG). However, there are no high power
laser sources at 626 nm. To obtain lower power, one can use a diode laser which would produce
635 nm light and cool it down such that its wavelength shifts to 626 nm. With this approach,
5-7 mW of UV light can be obtained with 130 mW at 626 nm [34]. Another possibility is to
use the fact that 313 nm is the fifth harmonic of 1565 nm, which is in the infrared C-band, and
accessible with Erbium-doped fiber amplifiers. With this approach, 100 mW of 313 nm light can
be obtained with 15 W of 1565 nm input power [35].

The setup which is planned for this experiment is based on an even different approach: 313 nm
is still obtained by SHG of 626 nm light, but instead of using a cooled diode laser, it is generated
by sum-frequency generation of 1050 nm and 1550 nm light [28], which are both readily available
by Ytterbium and Erbium-doped fiber amplifiers. This approach has also been implemented in
the TIQI group before [29], showing the capability of generating several Watts of 313 nm power.
A scheme of generating four colors of 313 nm light from five seed lasers at 1050 or 1550 nm is
shown in figure 2.2. The 626 nm beams for repumping and cooling/detection will be frequency-
locked to reference cavities using the Pound-Drever-Hall (PDH) locking scheme [36]. The need
for the heterodyne optical-phase-locked loop (OPLL) between both Raman 1550 nm seed lasers
is discussed in the following subsection. The red ellipses indicate the parts of the experiment
which were set up for this thesis.

2.2.1 Phase stability requirement

As mentioned in section 2.1, the large qubit splitting of ∼100 GHz due to the strong magnetic
field requires two separate laser sources for the Raman beams, different from the setups of Wilson
et al. and Lo et al. [28, 29]. However, in order to drive stimulated Raman transitions coherently,
both Raman beams have to be phase-stable with respect to each other, which is why for low-
magnetic field experiments, it is advantageous to use a single source [30]. Different to transitions
driven by only one laser beam where absolute frequency stability is required, both Raman beams
only have to be stable with respect to each other. Absolute frequency fluctuations are negligible
as long as they are much smaller than the detuning of the virtual sublevel, via which the transition
is driven, from the next excited state [37]. Applying this to the scheme presented in figure 2.2
means that the frequency fluctuations of the 1050 nm seed laser for the Raman beamlines can
be neglected, and only the two involved 1550 nm lasers have to be stabilized with respect to
each other. This is implemented with a heterodyne OPLL, which will be explained in detail in
chapter 4. Some extensions and alternatives to an OPLL are introduced in subsection 2.3.2.
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Raman 2
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Figure 2.2: Overview scheme of the planned laser setup for the Penning experiment. Sum-
frequency generation (SFG) of infrared photons at 1050 nm and 1550 nm creates red light at
626 nm, which is subsequently frequency-doubled in a cavity-enhanced second-harmonic genera-
tion (SHG) step to yield the desired 313 nm beams. The ∼100 GHz splitting of the qubit is not
feasible to achieve with one laser source and acousto-optical modulators. Instead, we use two
separate sources for the Raman beams, stabilized with respect to each other in an optical phase-
locked loop (OPLL). Further necessary Pound-Drever-Hall (PDH) locking schemes are omitted
for simplicity. The red ellipses indicate the work done for this thesis. The OPLL is described in
detail in chapter 4, the two SFG stages in chapter 5.

2.3 Achieving phase stability of lasers at ∼100 GHz fre-
quency splitting

To achieve frequency locking of both Raman lasers, different schemes can be employed, some of
which are introduced in subsection 2.3.2. However, all of these require the laser frequencies to
be much closer together than ∼100 GHz. As solution, sideband generation can be used to create
stable spectral features which can act as reference for another laser to be locked to [38], possibly
bridging the gap between both Raman frequencies. This sideband generation is explained first,
followed by a short introduction to different frequency-locking schemes.

2.3.1 Sideband generation for phase-locking

Modulating the phase of an oscillating electrical field produces sidebands, which can be seen
from the following identity:

eiωt+iβ sin (Ωt) = J0(β)eiωt +

∞∑
k=1

Jk(β)ei(ω+kΩ)t +

∞∑
k=1

(−1)kJk(β)ei(ω−kΩ)t, (2.1)

which is a variant of the Jacobi-Anger expansion [39]. Here, ω would be the frequency of the
laser field, β and Ω the phase modulation amplitude and frequency, and Jk(β) the k-th Bessel
function of the first kind. We see that phase modulation with the frequency Ω creates sidebands
at frequencies ω ± kΩ, whose amplitudes scale with Jk(β). The zeroth, first and second order
Bessel functions are plotted in figure 2.3, giving the normalized amplitude of the respective
sidebands. By choosing β accordingly, the amplitudes of the first or second order sidebands can
be maximized. For β = 1.841, the first sideband is maximal and contains about 34% of the total
power. For β = 3.054, the second sideband is maximal and contains about 24% of the total
power.
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Figure 2.3: k-th order Bessel functions of the first kind Jk(β) for k = 0, 1, 2. The function values
give the amplitude of the k-th phase modulation sideband for modulation amplitude β.

Such phase modulation of a laser field can be achieved with electro-optical modulators
(EOMs). Then, β is determined by the applied voltage, which is usually referenced with the
voltage Vπ for which β = π. State-of-the-art fiber optical EOMs at 1550 nm can modulate with
frequencies of up to 40 GHz [40], so that a sideband which bridges the gap between both qubit
frequencies should be possible to create. Note that due to the SHG step, the frequency between
carrier and sideband is effectively doubled, so that at 1550 nm the difference between both Ra-
man beams has to be ∼50 GHz. Depending on the exact magnetic field, the qubit transition
frequency might be higher or lower, determining whether the first or second sideband has to be
used.

2.3.2 Locking schemes

As mentioned before, an absolute frequency lock can be achieved with different schemes such as
the PDH lock [36], which uses a stable cavity as reference. This could also be employed for the
two 1550 nm seed lasers of the Raman beamlines, however since only relative frequency stability
is needed, simpler schemes are also sufficient and might still yield higher performances. In these,
light from one laser, called master laser, is used as a reference and the second laser, called slave
laser, is controlled in such way that its frequency follows that of the master laser. In the following,
several of such locking schemes, which achieve relative frequency stability, are briefly introduced.
Some of them might have to be considered as alternatives in case the performance of the OPLL
implemented for this thesis is not sufficient.

2.3.2.1 OPLL schemes

In a heterodyne optical phase-locked loop (OPLL) [31, 41], light from both lasers is overlapped
on a photodiode, and its beat note in the RF regime is compared to a phase-stable reference
signal. Applying feedback to the slave laser then controls its frequency such that the beat note
is locked to the reference, and thus both lasers assume a stable frequency difference. Here, also
the beat note created from a sideband of the master laser with the slave laser can be used to
lock. Due to its relative simplicity in implementation, the heterodyne OPLL scheme was chosen
to be set up as first option for the frequency stabilization of the two Raman seed lasers. This
was done in the first part of this thesis, which is why chapters 3 and 4 are devoted to describing
feedback loops in general, and the heterodyne OPLL specifically.

An extension to the OPLL scheme is the sub-carrier optical phase-locked loop technique (SC-
OPLL) [41]. There, the feedback is applied to a component which generated sidebands also for
the slave laser, which can allow for faster frequency tuning than in a normal OPLL.
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For even higher performance, OPLL schemes with dual-loop configuration can be employed
[42]. There, the beat note between master and slave laser is monitored on two photodiodes, so
that an additional feedback path to an external phase-modulator also yields faster feedback than
in a normal OPLL.

2.3.2.2 OIL schemes

One alternative to an OPLL is optical injection locking (OIL) [38, 43], in which light from the
master laser is injected into the cavity of the slave laser. If both frequencies are close enough
to each other, the slave laser oscillates at the frequency of the master laser and is thus locked
to it. This requires an optical isolator which prevents light of the slave laser from entering the
master laser. Also, there is then no frequency difference between both lasers, which is not what
is needed for the two Raman beams in our setup. However, this can be overcome by modulating
part of the output from the master laser like described in subsection 2.3.1, to obtain a comb of
frequencies with spacing controlled by a phase-stable RF source. Then filtering the output light
to select only one of these sidebands allows to achieve frequency differences between master and
slave laser of ∼100 GHz [38].

A downside to OIL is that the master laser can drift away from the locking range of the slave
laser, for example due to different temperature fluctuations of both laser cavities. This detuning
increases the phase error of the locked lasers and can eventually make the lock unstable. To
overcome this issue, optical injection locking can be combined with an OPLL to form an optical
injection phase-locked loop (OIPLL) [43]. The operational principle is similar to that of OIL,
but in addition the laser outputs are treated in the same way as in an OPLL. The feedback that
acts on the slave laser then ensures that it follows the possible frequency drifts of the master
laser.

If one has a powerful enough master laser, splitting off a part of its output for sideband
generation and subsequent filtering might already yield enough optical power to drive the laser
amplifiers sketched in figure 2.2 directly. This would make the additional slave laser and thus the
extra locking schemes obsolete, but has the big disadvantage that the sideband filtering limits
the tuning range of the master laser frequency, which is why this possibility has not been looked
into further.

Now that the various possibilities of locking one Raman laser onto the other have been
sketched, the OPLL will be described in more detail. The groundwork for this is laid in the
following chapter, which introduces classical control theory as a means to describe a feedback
loop in an abstract way.
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Chapter 3

Classical control theory

In this work, the goal was to optimize the OPLL as much as possible in terms of phase-stability
and loop bandwidth. In order to do this, a detailed understanding of the system is essential.
To characterize the control loop in an abstract way, we describe it with classical control theory,
which also reveals the limits to what performance is possible for a given system. In classical
control theory, it is generally assumed that the systems under consideration are linear and time-
invariant, which we expect to be true for the scope of this work. Similarly, it is sufficient that
we discuss only single-input single-output systems here.

3.1 The transfer function

We treat any system as a black box, which is fully characterized by the relation between its
input x(t) and output y(t). Instead of relating time-domain signal like x(t) and y(t), one can
equivalently analyze the system’s response in frequency domain. The function which relates
input and output in frequency domain is called the transfer function. More general than the
Fourier transform is the Laplace transformation, so one takes the Laplace transform L of the
input and output functions x(t) and y(t). In the following, we will denote Laplace transforms
of a function with the capital letter corresponding to its lower case letter in time domain. The
Laplace transform of a function g(t) is defined as

G(s) ≡ L{g(t)} (s) =

∫ ∞
0

g(t)e−stdt, (3.1)

where s = σ + iω with the frequency ω. If σ is larger zero, it attenuates the function with time.
This allows the integration of functions which would not be integrable otherwise. The relation
between input and output signals defines the transfer function:

F (s) =
Y (s)

X(s)
=
L{y(t)} (s)

L{x(t)} (s)
. (3.2)

The transfer function can be written in terms of its zeros zn and poles pm, the roots of its
nominator and denominator, respectively:

F (s) = K

∏N
n=1(s− zn)∏M
m=1(s− pm)

. (3.3)
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Figure 3.1: Bode plot showing the magnitude and phase for first and second order high- and low-
pass filters with cutoff frequency fc indicated by the dashed line. A slope of n order of magnitude
in gain per frequency decade corresponds to a phase of nπ2 , according to Bode’s relations (3.6)

For many typical systems, the theoretical description in terms of zeros and poles is exact, whereas
others can be approximated with this form using the function’s Padé approximant [44]. The
number and values of the poles and zeros can reveal much about the basic behaviour of the
system, which will become important for the frequency modulation response of a semiconductor
laser, see subsection 4.2.1.

Since transfer functions in general are complex-valued, it is instructive to consider both its
magnitude, also called gain, and its phase. For all our applications, there is no need to add
an additional attenuating factor to the time-domain functions for them to be integrable. So we
set σ = 0 so that s = iω. Then, the Laplace transform reduces to the Fourier transform and
the magnitude and phase can be visualized as functions of frequency. Usually, the behaviour is
captured best on a double logarithmic scale in a so-called Bode plot. Figure 3.1 shows a Bode
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plot of the transfer functions of first and second order low- and high-pass filters, defined by

F
(LP)
k,fc

(iω) = K

(
1

1 + iω
2πfc

)k
(3.4)

F
(HP)
k,fc

(iω) = K

(
iω

1 + iω
2πfc

)k
, (3.5)

with k being the order of the filter and fc its respective cutoff frequency. A low-pass filter has
constant gain at low frequencies, and falling gain at frequencies higher than its cutoff frequency.
For a high-pass filter, the situation is reversed: the gain rises up to the cutoff frequency, after
which it stays constant. The order of the filter is equivalent to the respective number of first-
order filters acting in series, i.e. its transfer functions being multiplied. For a higher-order filter,
the slope of the rising or falling gain is steeper.

Bode plots like figure 3.1 are especially useful because they visualize Bode’s relations, [45]
which relate the magnitude and phase of the transfer function:

d log |F (iω)|
d logω

= n ⇐⇒ argF (iω) = n
π

2
. (3.6)

They state that if the slope of the magnitude on a double logarithmic scale n is constant, the
phase assumes a fixed value at the corresponding multiple of π

2 . This gives an intuition that a
rising gain results in a positive phase, called phase lead, and a falling gain is accompanied by a
negative phase, called phase lag. Depending on the steepness of the slope, the phase lead/lag
is larger or smaller. This means that for a second order filter, the phase lead/lag assumes
value twice as large as for a first-order filter. Another observation is that although the gain
changes around the cutoff-frequency, indicated by dashed lines, the phase change starts around
a frequency decade earlier. At the cutoff frequency, the phase lead/lag has already assumed half
its maximal/minimal value. In an experiment this means that even if a low-pass component has
a high enough cutoff frequency so that the influence by its gain drop-off is negligible, the phase
lag may still be noticeable.

Another thing to note is that Bode’s relations should rather be regarded as inequality than
as equality. [46] They give the minimum phase lag that a physical system can achieve, which is
called the minimum-phase response. As we will see later again, other systems, for example ones
that include signal delay, exhibit greater phase lag than predicted by Bode’s relations. These
are then termed non-minimum phase systems.

3.2 General feedback loop

We use the formalism of transfer functions to describe a general feedback loop in terms of control
theory, which is shown schematically in figure 4.2. In the following, the respective arguments
(t) and (s) of time-domain or Laplace transformed variables are omitted for better clarity. From
an error signal e, the controller C produces a control signal u, which controls the plant P , i.e.
the process to be controlled. Since this is often implemented with an electronic filter, C is also
called control or loop filter. The process output together with a disturbance d yields the signal
y. This is fed back and together with measurement noise n and the setpoint r it forms the error
signal. In our case, disturbances could be temperature fluctuations or vibrations induced by
other influences. Measurement noise would enter through devices like photodiodes, for example.
C and P together form the open loop transfer function L. To describe all components which
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Figure 3.2: General scheme of a feedback loop. From an error signal e, the controller C produces
a control signal u, which controls the plant P . The plant is the process to be controlled. The
process output together with a disturbance d yields the signal y. This is fed back and together
with measurement noise n and the setpoint r it forms the error signal. C and P together form
the open loop transfer function L.

make up the loop, let us first consider the scheme without the feedback path. In this case, the
signal y is connected to the setpoint r only via the controller C and the plant P and one can
define the open loop transfer function

TF (open)
yr = CP =: L. (3.7)

The plant represents the process which should be controlled. In our experiment, this is the laser
head and any signal propagation delay, which will be treated in more detail in chapter 4.

Now let us include the feedback path and propagate the signal y back:

Y = D + LE

= D + L(R−N − Y ). (3.8)

Solving for Y yields

Y =
1

1 + L
D +

L

1 + L
R− L

1 + L
N. (3.9)

This gives us expressions for the effect of a disturbance d, the setpoint r or measurement noise
n onto the signal y. Correspondingly, one can define the transfer functions

TF yd =
1

1 + L
=: S (3.10)

TF (closed)
yr =

L

1 + L
(3.11)

TF yn = − L

1 + L
=: −T. (3.12)

Analogous to L, TF (closed)
yr is the closed loop transfer function, i.e. the relation between signal

and setpoint when the feedback loop is closed. Similarly, one can compute transfer functions to
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Figure 3.3: (a) Sensitivity function S(s) and (b) complementary sensitivity function T (s) as
defined in equations (3.10) and (3.12), for a low-pass open loop transfer function. The corre-
sponding L(s) is plotted in figure 3.4 and defined in equation (3.13). The arrows indicate where
the magnitude is > 1, i.e. where disturbances and measurement noise are amplified to form servo
bumps.

any other variable of interest, for example the error signal e, if one wants to examine how they
are influenced by the other process variables.

In equations (3.10) and (3.12), we have also defined the sensitivity function S(s) and the
complementary sensitivity function T (s). They are measures of the loop’s sensitivity to distur-
bances or measurement noise, and its ability to attenuate either one of them. Figures 3.3a and
3.3b show how S and T look like for an example system where the control filter C is a first-order
low-pass with cutoff frequency f1, and the plant transfer function P is a second order low-pass
with cutoff frequency f2. Then, the open loop transfer function L is given by

Lexample(iω) = F
(LP)
1,f1

(iω)F
(LP)
2,f2

(iω) (3.13)

= K
1(

1 + iω
2πf1

)(
1 + iω

2πf2

)2 .

L is plotted in figure 3.4 and will be discussed in more detail in section 3.3.
Ideally, one would like to reduce both S and T as far as possible, to attenuate both mea-

surement noise as well as disturbance influences in the signal. However, there exists a trade-off
between both, since for making L large, T becomes large, and for making L small, S becomes
large. Moreover, S cannot be made arbitrarily small at all frequencies, which follows from Bode’s
sensitivity integral [45]: ∫ ∞

0

log |S(iω)|dω = π
∑
m

pm, (3.14)

where pm are the right half-plane poles of L, i.e. where Re {s} ≥ 0. The poles are defined in
the decomposition of L as in equation (3.3). This relation holds if sL(s)→ 0 for s→∞, which
is true since all processes eventually exhibit low-pass behaviour at higher frequencies [45]. From
Bode’s sensitivity integral, and a similar, more complicated version for T [45], follows that there
exist frequencies, for which |S| or |T | > 1. This means that at these frequencies, disturbances or

18



100 102 104 106 108

10-5

100

M
ag

ni
tu

de
 |L

|

100 102 104 106 108

Frequency /2  / Hz

-

- /2

0

/2

P
ha

se
 

 L
f
1

f
2

f
1

f
2

Figure 3.4: Open loop transfer function L(s) for an example system with low-pass behaviour. The
exact form of L(s) is defined in equation (3.13), and f1 and f2 mark the two cutoff frequencies.
The dashed line indicates the gain crossover frequency ωgc/2π as defined in equation (3.15), the
dotted line marks the phase crossover frequency ωpc/2π as defined in equation (3.16). gm and
ϕm are the gain and phase margins, respectively.

noise are amplified instead of attenuated. In fact, this accumulation of spectral noise can become
visible as a peak in the spectrum of the signal y. These bumps are called servo bumps [47] since
they are caused by the servomechanism, i.e. the error-correcting feedback mechanism itself. As
we will see in section 3.3, the servo bumps occur at a frequency which is indicative of the loop
bandwidth, which is a performance measure of the feedback loop. Note that the frequency and
gain of the servo bumps is strongly dependent on how the loop filter is shaped. Thus, one of
the main uses of the loop filter is to influence the position and shape of the servo bumps. The
loop filter and its optimal settings in this experiment are discussed in detail in section 4.3. As
unwanted features in the signal spectrum, the servo bumps can play an important role in the
experiment, and one must be aware of them. In section 4.5, the role of servo bumps in this
experiment is examined.
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3.3 Loop stability and phase reversal

Since S and T are completely determined by the open loop transfer function, lets look at some
characteristic features of L, from which we can also draw conclusions about the stability of the
loop. We use the same example system as in section 3.2, whose open loop transfer function is
given by equation (3.13). Figure 3.4 shows L, plotted for example values of K = 103, f1 = 1 kHz
and f2 = 1 MHz.

For a working loop, we want the error signal feedback to be amplified up to as high frequencies
as possible, because then the negative feedback leads to correction of the error. To characterize
the loop performance in this regard one defines the gain crossover frequency ωgc, the smallest ω
for which

|L(iωgc)| = 1 = 0 dB. (3.15)

Above this frequency, amplification turns into attenuation and errors are not corrected efficiently
anymore. One thus also speaks of the loop bandwidth, and we will later see that this is the
frequency where servo bumps occur.

According to Bode’s relations (3.6), the emerging low-pass behaviour at higher frequencies is
accompanied by a phase lag. If multiple components act together, its slopes stack and produce
a phase lag which exceeds that of a standard first-order low-pass filter. This poses a problem for
the feedback loop, since for phases close to −π, positive feedback turns into negative feedback.
This means for disturbances at this frequency, the feedback loop pushes the signal away from
its setpoint instead of correcting for the error that the disturbance introduced. Thus, one also
defines the phase crossover frequency ωpc, the smallest ω for which

argL(iωpc) = −π. (3.16)

One also speaks of this as the frequency of phase reversal.
If the gain at the phase crossover frequency is > 1, then the positive feedback is amplified and

the loop becomes unstable. Thus, one criterion for a stable loop is the Bode stability criterion,
which requires that the gain at ωpc is smaller than unity, i.e. positive feedback is attenuated:

|L(iωpc)|
!
< 0 dB. (3.17)

In order to quantify how far the loop is from this critical point of instability, one defines the gain
and phase margins gm and ϕm [48]:

10 log10(gm) = 0 dB− 10 log10 |L(iωpc)|

gm =
1

|L(iωpc)|
(3.18)

ϕm = π + argL(iωgc). (3.19)

In figure 3.4, gm and ϕm are indicated with bold red lines. As we will see later in section 4.2, the
frequency of phase reversal is the limiting factor to the performance of the feedback loop. Thus,
an effort is made to shape the loop in a way which maximizes this frequency ωgc.

From the definitions of S, T , ωgc and ϕm (equations (3.10), (3.12), (3.15) and (3.19)), the
following relation can be derived [48]:

|S(iωgc)| = |T (iωgc)| = 1

2 sin (ϕm/2)
. (3.20)

It relates the phase margin to the amplification or attenuation of disturbances and measurement
noise, i.e. the magnitude of S and T , at the gain crossover frequency. Now if the phase margin is
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small enough so that the denominator becomes smaller than unity, we know that amplification
occurs. This is the case for sin (ϕm/2) < 1

2 , so that

ϕm <
π

3
⇐⇒ |S(iωgc)| = |T (iωgc)| > 1. (3.21)

This relation not only reveals that the amplification of disturbances and noise occurs at the same
frequency, but also that this happens at the gain crossover frequency, i.e. the limit of the loop
bandwidth. From this we conclude that we can use the features of servo bumps as indicators of
the loop bandwidth.

From equation (3.20), we also observe the stability criterion that the phase margin must be
larger than zero. Otherwise, the denominator of the right-hand side would become zero which
corresponds to infinite amplification of disturbances and measurement noise. In contrast, a loop
with phase margin that is almost zero, but not quite, can still be stable, it just leads to very
pronounced servo bumps. We use the tunable overall gain to operate in this regime and so
determine the maximum achievable loop bandwidth for the given filter configuration. Note that
equation (3.20) does not specify at which frequency S and T take on their maximum gain values.
However, by operating with very little phase margin, we still know that there will be strong
amplification at ωgc, visible as servo bump. Now if the servo bump is very pointed, this means
that its maximum is not too far off from ωgc.

The maximum absolute value of S, MS = max |S(iω)|, is related to the gain and phase margin
by the following inequalities [49]:

gm ≥
MS

MS + 1
(3.22)

ϕm ≥ 2 arcsin
1

2MS
, (3.23)

where equation (3.23) follows from equation (3.20). The inequalities allow to infer the minimum
phase and gain margin the loop must have in order to avoid amplification of disturbances over a
certain level.
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Chapter 4

Phase-locking of Raman lasers

As discussed in subsection 2.2.1, it is necessary to stabilize the phase of one of the Raman IR seed
lasers with respect to the other. This can be achieved with a heterodyne optical phase-locked
loop.

4.1 Heterodyne optical phase-locked loop

A phase-locked loop is a control mechanism which affects the input signal with the aim to
minimize the difference between input phase and a setpoint phase. In an optical phase-locked
loop (OPLL), the signal to be controlled is the phase of an oscillating electromagnetic field of a
highly coherent light source, like a laser. Then the setpoint is given by a laser field as well, which
is at a similar frequency. This “master laser” sets the frequency and phase to which the “slave
laser” shall be locked. The total phase difference of the electric fields is detected by interference
on a photodiode. To avoid noise on the photodiode, the lasers are locked to slightly different
frequencies, where the difference frequency is set by a phase-stable RF source. From this, one
obtains an error signal as described in chapter 3, which is amplified and shaped in a control filter.
The output of the filter is connected to the laser to apply negative feedback and to correct for
the detected error.

In the following subsection, the propagation of signals through the loop is described in more
detail, from which it becomes clear how the two laser phases are compared to each other. Sub-
section 4.1.2 then discusses the way in which feedback is applied to the slave laser.

4.1.1 Signal propagation through the loop

Figure 4.1 is a scheme of a general heterodyne OPLL as implemented in this project. Two
fields EM and ES from a master and slave laser, respectively, oscillate at average frequencies
ωM and ωS with phases φM and φS. To the slave laser, a noise term is added, which accounts
for imperfections in photodetection and other noise sources. For the master laser, the noise is
already included in φM. The laser fields are overlapped on a photodiode, at which they have the
following form:

EM = Re
{
EMeiωMt+iφM

}
(4.1)

ES = Re
{
ESeiωSt+i(φS+φn)

}
, (4.2)
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Figure 4.1: Scheme of a heterodyne optical phase-locked loop (OPLL). See text for detailed
description. Blue/black lines represent optical or electrical connections, respectively.

written in terms of complex wave functions with amplitudes EM and ES. The output current of
the photodiode is proportional to the optical power P , which in turn is the optical intensity I
integrated over the detector area: P =

∫
APD

IdA. Proper alignment of the laser beams ensures
that the angle between wavefronts and detector is small enough so that the optical phase does
not vary over the detector area. The optical intensity I is the modulus squared of the incident
electric field(s):

I =
∣∣∣EMeiωMt+iφM + ESeiωSt+i(φS+φn)

∣∣∣2 (4.3)

= |EM|2 + |ES|2 + 2 |EM| |ES| cos [δωt+ φM − φS − φn] ,

with the difference frequency δω = ωM − ωS, which is sometimes also called intermediate fre-
quency. If it is non-zero, i.e. the fields on the photodiode now have different frequencies, one
speaks of heterodyne detection. In analogy to acoustics, one can also speak of a beat note
between the two laser fields. The third term represents this interference between both electric
fields. Its contrast would be reduced if the optical phases were not constant across the detector
area. The mean photocurrent īPD(t) at the output of the photodiode is thus given by:

īPD(t) =
ηe

~ω̄
P (t) (4.4)

= īM + īS + 2
√
īMīScos [δωt+ φM − φS − φn] , (4.5)

where η is the detector quantum efficiency, īM and īS the photocurrents created by the master
and slave laser individually, and ω̄ = ωS+ωM

2 [50]. Note that, as here, the photodiode is often
formally depicted as frequency mixer. However, the optical intensity is defined as twice the
average of the squared wave function over a time much longer than an optical cycle. This means
that the photocurrent only contains a frequency component oscillating at the difference and not
the sum frequency. For the OPLL, the difference frequency is the relevant one.

For a better loop performance, it is advantageous to reduce optical and electrical noise as
much as possible. Many electrical components in the laboratory work with frequencies below
1 MHz, leading to noise pickup in that frequency range. Also, there is pink noise which scales
inversely with frequency. Influence of both can thus be reduced by operating at higher frequencies
wherever possible, for example on the photodiode. For the OPLL, this is achieved by introducing
an additional radio frequency (RF) offset between the laser frequencies. This means the frequency
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of one laser is separated from the other by the RF offset frequency, i.e. δω ≈ ωRF. Then, in an
additional step, the photocurrent is mixed with the offset signal at ωRF, which gives the error
signal current:

ierror(t) ∝ cos
[
ωRFt+ π

2

]
cos [δωt+ φM − φS − φn] (4.6)

=
1

2
sin [(δω − ωRF)t+ φM − φS − φn]− 1

2
sin [(δω + ωRF)t+ φM − φS − φn] ,

where we assume that any phase fluctuations of the RF source are negligible. Using an
additional RF offset also has the advantage that one can control the optical phase of the slave
laser by adjusting the electronic phase of the RF source. From both frequency components
δω ± ωRF, the difference frequency is the one of interest, which will yield the error signal in
the end. Slow components like the loop filter will eliminate the sum frequency component,
but for convenience one already here considers only the difference frequency component. This
can be justified because we assume all components to respond linearly. The same argument
holds for other higher frequency components, like ones resulting from other sidebands created
by the EOM as described in subsection 2.3.1. In our case actually, the photodiode would have
attenuated such frequency components already since its cutoff frequency is much lower than the
sideband splitting.

As mentioned before, the difference frequency and the RF frequency are similar: δω ≈ ωRF.
The difference component thus oscillates almost at direct current (DC). If also the optical phases
do not deviate very much from each other, then the argument of the sine is << 1 and we can
make the small angle approximation:

ierror(t) ∝ sin [(δω − ωRF)t+ φM − φS − φn] (4.7)

≈ (δω − ωRF)t+ φM − φS − φn.

We thus obtain an error signal current, which is proportional to the difference between master
and slave laser frequencies, offset by the RF frequency.

This error signal current is fed into a control filter corresponding to C in chapter 3, which
can be of varying complexity. The device used in the experimental setup is described in section
4.3. Here we include only a simple proportional filter so that the output current is given by
Gierror(t) where the constant G is called main gain. A simple filter like this is sufficient for a
working feedback loop as we will show in subsection 4.1.2. Still, the loop performance can be
improved by shaping the loop filter in more complicated ways, which is described in section 4.3.

So far, all propagating currents have been treated as real quantities. However, a more complex
loop filter, as well as signal propagation delay and low-pass behaviour of other components,
introduces a frequency-dependent phase shift, which we describe with transfer functions like in
chapter 3. It is not essential for the basic understanding of a phase-locked loop, but will introduce
limitations to the performance of the loop, which will be discussed in section 4.2.

Due to the finite speed of signal propagation in electrical cables or optical fibers, delay
is accumulated over the whole signal path. The distributed delay can be treated as a single
’localized’ component, which is why it is included in the scheme. However for this section, we
ignore it and assume the input current modulation of the slave laser to be imod(t) = Gierror(t).

In order to complete the phase-locked loop, one has to link input current to the frequency of
the slave laser field, which will be discussed in the following subsection.

4.1.2 Semiconductor laser as current-controlled oscillator

There are different paths that can be used to apply feedback to the laser frequency. Since we want
to compensate for errors as fast as possible, the feedback path should also exhibit a fast response.
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In general, controlling the laser field frequency can be achieved by modulating the output field
with an electro-optic or acousto-optic phase shifter, which would be driven by a voltage-controlled
oscillator (VCO). However, this would introduce additional external components in the beam
path and their respective losses. Alternatively, one can apply a voltage to the piezo-controlled
mirrors which form the laser cavity and tune the resonance frequency in this way. In fact,
we use this as one feedback path, but it has the disadvantage of exhibiting slower response
times than external phase shifters. Although loop bandwidths of the order of 100 kHz have been
demonstrated, the typical bandwidth achieved with piezoelectric mirrors is of the order of 10 kHz
[51]. With its large tuning range, it is suitable to counteract slow drifts in the laser frequency,
but there is still the need to compensate for faster fluctuations. A semiconductor laser (SCL)
like a diode laser has the advantage of offering a third option, which is directly modulating the
current that pumps the gain medium and thus influences the frequency of maximal gain. The
SCL then acts as current-controlled oscillator, the optical equivalent to a VCO. This scheme
does not require outside components after the laser. Also, as we will see in subsection 4.2.1, the
response of the laser current modulation is faster than the modulation bandwidth of a few KHz
of the piezo-controlled mirrors. This allows one to compensate for errors with higher frequency
components.

Following [52], it is shown how the output frequency of a slave SCL can be locked by feed-
ing an error signal like in equation (4.7) into its current modulation port. For simplification,
we are neglecting any additional noise φn for this treatment. So far, no time dependence of
laser frequencies and phases has been denoted. The purpose of the OPLL is to compensate for
fluctuations in these quantities, so we define the instantaneous frequency of the slave laser field
as

ωS(t) = 〈ωS〉+ ∆ωS(t), (4.8)

with ∆ωS(t) = d
dtφS(t) and 〈∆ωS(t)〉 = 0. What was formerly denoted as ωS is now the mean

frequency 〈ωS〉, and all fluctuations are absorbed in the time-dependent phase φS(t).
The frequency change of a SCL can also be influenced by its input current. For this, we are

taking only into account the electrical response of the laser diode, not the thermal response. In
subsection 4.2.1, the implications of both responses acting together will be discussed in more
detail. For frequencies well below the electrical modulation resonance of the SCL, i.e. the cutoff
of the electrical response, the ∆ωS(t) is given by the following:

∆ωS(t) = a
d

dt
∆iS(t) + b∆iS(t), (4.9)

where ∆iS(t) = iS(t)− iS,th is the excess of the total current in the slave laser gain medium iS(t)
over its threshold value iS,th. a and b are constants depending on the gain medium and the laser
cavity. Note that ∆iS(t) is not equal to imod(t), but iDC + imod(t) = iS(t) = iS,th + ∆iS(t).

As seen in subsection 4.1.1, the error signal current is given by

ierror(t) ≈ K [(〈δω〉 − ωRF)t+ φM(t)− φS(t)] , (4.10)

where is K is some proportionality constant. We treat ωRF as a constant because we assume
that the phase fluctuations of the RF source are much smaller than that of the semiconductor
laser. If this were not the case, it would not make sense to use the RF source as setpoint for the
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OPLL. Taking the derivative with respect to time on both sides yields

d

dt
ierror(t) = K

[
(〈δω〉 − ωRF) +

dφM(t)

dt
− dφS(t)

dt

]
(4.11)

1

K

d

dt
ierror(t) = (〈δω〉 − ωRF) +

dφM(t)

dt
− a d

dt
∆iS(t)− b∆iS(t) (4.12)

1

K

d

dt
∆ierror(t) = (〈δω〉 − ωRF) +

dφM(t)

dt
− aG d

dt
∆ierror(t)− bG∆ierror(t), (4.13)

where in the first step, d
dtφS(t) = ∆ωS(t) was replaced with equation (4.9), and in the second

step ∆ierror(t) = ∆iS(t)
G = ierror(t)+ 1

G (iDC−iS,th) was introduced. This differential equation now
links the phase of the master laser φM(t) to a current change ∆ierror(t) in the loop, depending
on the loop filter and the difference between beat note frequency δω and the RF offset ωRF.

In the steady state, all derivatives are zero, which leads to

〈δω〉 − ωRF = bG∆i(SS)
error. (4.14)

Similarly, equation (4.9) gives

∆ω
(SS)
S = bG∆i(SS)

error. (4.15)

From this follows ∆ω
(SS)
S = 〈δω〉 − ωRF and thus the instantaneous frequency of the slave laser

in the steady state is equal to

ω
(SS)
S = 〈ωS〉+ ∆ω

(SS)
S = 〈ωM〉 − ωRF, (4.16)

which is what we wanted to achieve with the phase-locked loop. In this simplified treatment,
the slave laser frequency is not fluctuating anymore, but remains fixed at a value equal to
the frequency of the master laser, offset by the RF frequency. In reality, noise introduced by
components in the loop reduces the accuracy with which the slave laser is held at the lock
frequency. Also, signal propagation delay and response times of all elements in the loop limit the
speed with which the loop compensates phase fluctuations. Most notably, the thermal response
of the laser diode, the optical and electrical path length, and the cutoff frequency of the loop filter
electronics add up to form a loop which can typically compensate fluctuations with frequency
components of up to a few MHz. Connecting this to the laser linewidth means that only lasers
with smaller linewidth can have all their optical power locked to the master laser frequency.

4.2 Performance limitations

In order to discuss the limitations of the feedback loop, we draw on classical control theory,
which was introduced in chapter 3. This means we look at the relations between input and
output signals in the frequency domain, so that a system’s response is quantified by its transfer
function. Examining the transfer functions of the OPLL components thus allows to identify the
limitations each one introduces.

Figure 4.2 is a scheme of an OPLL in terms of control theory, similar to figure 3.2 in chapter 3.
Here however, the plant is specified in more detail. It consists of the laser head and signal prop-
agation delay, with transfer function Θ. In this form, any systematic nonlinearity of additional
components like the photodiode is neglected. Note that its noise still enters through n. In the
laser head, in addition to the frequency modulation response H, the conversion from frequency
to phase with an integration term I has to be taken into account. So together, the plant transfer
function is P = HIΘ. Each of these three terms contributes to limiting the performance of the
OPLL and they will be discussed separately in the following subsections. Subsection 4.2.4 is
then focusing on how their respective influences can be compensated for.
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Figure 4.2: Scheme of the OPLL in terms of control theory. Similar to figure 3.2, the output of the
plant P together with a disturbance d yields the output signal y. This is measured, introducing
measurement noise n, and is compared to the setpoint r, creating an error signal e which the
control filter turns into a suitable control signal u. In an OPLL the plant is formed by the laser
head and delay Θ, neglecting any frequency-dependent behaviour from other sources like the
photodiode. The laser head formally consists of its frequency modulation response H and an
integration term I. H, I and Θ are discussed in subsections 4.2.1, 4.2.2 and 4.2.3, respectively.

4.2.1 Diode laser frequency modulation response

The frequency modulation response of a SCL is composed of two parts. Modulating the current
that runs through the laser diode changes the carrier density in the gain medium. This in turn
has an effect on its refractive index, which influences the wavelength of maximum gain. It can
be modeled using small-signal rate equations [53] and we will call this pathway the electrical
response of the SCL. On the other hand, the injection current and stimulated emission also act
as a heat source, which via thermal expansion also change the resonance frequency of the laser.
We call this pathway the thermal response of the laser diode.

The first quantitative description of the thermal response was given in [54], and phenomeno-
logically describes it as a modified low-pass filter (LPF):

H
(LPF)
th (iν) ∝ 1

1 +
√
iν
, (4.17)

where ν = f
fc

is the normalized modulation frequency and fc is the cutoff frequency of the low-
pass filter. A more physical description is based on treating the gain medium as a single layer
and the injection current as a heat source at its center. Then, modeling the one-dimensional
heat flow and connecting it to the frequency via the thermal expansion and refractive index
coefficients, the transfer function is of the form [55]

H
(heatflow)
th (iν) ∝

tanh
(√
iν
)

+ tanh
(√

iν
2

)
√
iν

. (4.18)

It is not very clear which of both transfer functions represents experimental results the best:
Correc et al. [56] find that the transfer function based on the physical heat flow model fits their
results better, whereas Satyan [42] discards it since the empirically found modified low-pass filter
fits best.
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For the electrical response, the only limiting factor is the stimulated lifetime of the carrier
electrons, which allows for modulation frequencies of up to > 20 GHz [52]. For frequencies below
10 MHz however, the thermal response is the dominant one, with cutoff frequencies ranging from
around 50 kHz [54–56] to 1.8 MHz [42]. This means in the regime of modulation frequencies up
to a few MHz, the electrical response can be considered constant: Hel = Kel.

Together, the transfer function for the frequency modulation response of the diode laser is
given by

H(iν) = Kel −KthHth(iν). (4.19)

Here, the exact form of the thermal response is not crucial. The important point to note is that
both contributions enter with a different sign. This means that in the crossover region, where
the thermal response drops off, they cancel each other out and a diminished response is observed
as a dip in magnitude between 0.1 to 10 MHz [42, 56]. After the thermal response has dropped
off, the gain as well as the phase due to the electrical response stays constant. Still, the different
sign between both terms causes the overall phase of H to be −π, contrary to what would be
expected from Bode’s relations (cf. chapter 3). This means that H exhibits a non-minimum
phase response. More specifically, H forms a non-minimum phase zero, or right-half plane zero.
This feature is a general issue for control mechanisms, because it can cause an initial undershoot
in the system response, i.e. the response initially goes into the wrong direction [45, 57].

Overall, the frequency modulation response of the SCL shows a phase reversal and as discussed
earlier, this will limit the performance of a feedback loop which is based on this pathway.

4.2.2 Feedback onto frequency instead of phase

Following the small signal analysis in subsection 4.1.1, the quantities considered as signals for
the OPLL are the phases of the oscillating electrical fields. However, as has been discussed
in subsection 4.1.2, modulation of the current that runs through the laser diode acts on the
frequency at which the laser oscillates. So in order to obtain the output signal of the laser
head in terms of phase again, the frequency has to be converted to total phase by the integral
φ =

∫
ω(t)dt+ φ0.

This means that in addition to the frequency modulation response H, the laser head transfer
function is formed by an integral term I. The Laplace transform of the integration operation is
a division by s, which gives I = 1

s . The gain of this transfer function on a double-logarithmic
scale has a slope of −1. Thus it follows from Bode’s relations (3.6) that the phase assumes a
constant value at −π2 . Just from the fact that the feedback in the loop acts on frequency and
not phase, half of the phase margin until the point of phase reversal is already not available
anymore. Hence, a feedback path directly onto phase would greatly benefit the OPLL.

4.2.3 Signal delay

Already in the beginning of fiber-optic communication development, which also brought up
OPLLs, it was realized that the loop performance is decreased if the signal propagation delay
is non-negligible [58]. As mentioned earlier, the distributed delay over the whole loop can be
treated as a single component with the transfer function

Θ(s) = e−sTd , (4.20)

where Tr is the signal delay when it goes through the loop once. If, like in our case, σ = 1,
|Θ| = 1 for all frequencies, thus it does not have a direct influence on the amplification of noise
or the attenuation of disturbances. However, it introduces a significant phase lag for higher
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Figure 4.3: Bode plot of Θ, the transfer function for signal propagation delay, for different values
of Td. Significant phase lag in the few MHz regime occurs already at tens of ns delay.

frequencies, and this can vastly limit the loop bandwidth. As mentioned in chapter 3, this is a
non-minimum phase response, exceeding the phase lag predicted by Bode’s relations. For a loop
composed by simple components, one can calculate limits for the maximum value attained by
the product of delay and loop bandwidth [58]. This is not pursued here due to our uncertainty
of exact transfer functions, like the laser frequency modulation response (cf. subsection 4.2.1),
or cutoff frequencies.

Figure 4.3 is a Bode plot of Θ for various time delays Td. Already a time delay of 100 ns leads
to a phase lag of π4 for frequencies of a few MHz, 1 ms delay leads to the same lag already for a few
100 kHz. For low phase lag in the few MHz regime, one should rather keep the delay below 10 ns,
which corresponds to 3 m of free space light propagation, or around 2 m of signal propagation
through cables and optical fibers. With connections between every component contributing to
the delay, a normal setup in the laboratory quickly arrives at these values. [31] gives an overview
of recent work where this limitation is tackled by the use of integrated optics. In our setup,
an effort is made to keep the electrical connections as short as feasible, and custom made fiber
splitters and combiners are employed.
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4.2.4 Compensation

The main problem which limits the loop bandwidth is the increasing phase lag of the plant at
higher frequencies. As mentioned in section 3.3, this eventually leads to a phase reversal which
turns positive into negative feedback, thus limiting the maximum frequency at which errors can
be corrected. Accordingly, one can compensate for this issue by introducing phase lead at higher
frequency, which can be achieved by employing a suitable control filter C. From Bode’s relations
(3.6) follows that a gain with positive slope leads to phase lead. However, a positive slope means
that the controller has to provide increasingly large gain, which becomes challenging at higher
frequencies due to the controllers innate low-pass behaviour. Therefore, it is useful to limit the
phase lead to a smaller frequency region where it is required. Still, this frequency region should
not be too small in order to keep robustness. Also, more phase lead than with a simple first-
order filter can be obtained by cascading multiple components, leading to a steeper slope in gain.
Ultimately, the highest crossover frequency is limited by the achievable gain at high frequencies.

For this work, we did not measure the frequency modulation response of the employed diode
laser, but the previous works [42, 54–56] give an understanding of the phase reversal and how
one can compensate for it. We need phase lead at frequencies close to the crossover, and we want
to minimize the additional phase lag introduced by signal propagation delays.

4.3 Toptica Fast Analog Linewidth Control (FALC)

Phase lead close to the phase crossover frequency can be introduced by appropriately shaping
the employed control filter, which corresponds to C in figure 4.2. The control filter we use in this
setup is the Toptica mFALC 110. To understand the Fast Analog Linewidth Control (FALC), it
is useful to first introduce what a PID controller is, since the basic concepts of both filters are
similar.

A PID controller is a filter with three stages, for which the gain can be controlled individually.
The P term has no frequency dependence and gives a control signal proportional to the error
signal. The I term outputs a signal proportional to the integral of the error signal with respect to
time. This is needed so that the output signal arrives at the setpoint in a finite time. However,
a too strong I term will accumulate to a large control signal if the output signal deviates from
the setpoint a lot. This causes it too overshoot the setpoint and eventually settle after a number
of oscillations. The D term produces a control signal proportional to the derivative of the error
signal with respect to time, which aims to anticipate the signal corrections and thus prevent
overshoot. The output control signal u(t) of a PID controller for a given input error signal e(t)
is thus given by

u(t) = Kpe(t) +Ki

∫ t′

0

dt′e(t′) +Kd
d

dt
e(t), (4.21)

and its transfer function C is

C(s) = Kp +Ki
1

s
+Kds. (4.22)

The proportional term has a gain constant with frequency, and thus provides neither phase
lead, nor phase lag. The gain of the integrator term has a slope of −1 on a double-logarithmic
scale, i.e. −10 dB per frequency decade, which is accompanied by a phase lag of −π2 and thus
leads to phase lag. The derivative term has a gain slope of 1 and gives a phase lead of π

2 .
In practice, the behaviour of a PID controller will exhibit some frequency dependence in its
response, and different components might be suitable for different applications. In the FALC,
the PID stages are implemented in a way that they only act in specific frequency ranges. This
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is obtained by a transfer function with one zero and one pole:

F (s) = K̃
p+ s

z + s
= K

1 + i ffz
1 + i ffp

. (4.23)

A filter in which the stages take this form which yields phase lead or lag only over the frequency
range between fz and fp is called a lead-lag compensator.

Figure 4.4 is a Bode plot of equation (4.23) for different combinations of zero and pole corner
frequencies fz and fp. The respective fz are marked with crosses, the fp with open circles. One
can distinguish two general cases.

If fz < fp (blue and red curves), the gain rises with a slope of up to 10 dB per decade between
both frequencies. Over this range, the phase is positive and the stage acts as a differentiator.
Note that although the maximum phase of around π

2 is only achieved if the slope is constant
over a large range. For an only shortly rising gain (red curve), the phase stays far below this
maximum value. On the other hand, the phase starts to increase already long before the corner
frequency. In fact, for the blue curve the phase almost reached the value π

4 at the f = fp.
If fz > fp (yellow and purple curves), the gain decreases with a slope of down to −10 dB per

decade between both frequencies. This means the stage acts as an integrator and the phase is
negative with a minimal value of around −π2 , if the frequency range is large enough. Similarly
to before, now the purple curve does not reach this value by far. And again, the decrease in gain
slope is heralded by the change in phase.

For both cases applies that at fz, the second derivative of the gain with respect to frequency
is negative, whereas at fp, it is positive. Note also that for the same value of initial gain, a
broader frequency range where the stage acts as differentiator (integrator) results in a higher
(lower) final gain at high frequencies when compared to a smaller frequency range. Thus, as
mentioned in subsection 4.2.4, a phase lead over a broad frequency range must be earned by
providing large gain values at high frequencies.

The FALC is composed of four such stages in series: three integral terms and one derivative
term. For each, the operating frequency range can be shifted by choosing different settings, which
then also fix its width. Figure 4.5 is a Bode plot of the FALC transfer function calculated using
four stages like in equation (4.23). The zero and pole corner frequencies were chosen according
to a typical example setting in the FALC manual. There, the very fist stage, the extra slow
limited integrator (XSLI), was left off (setting 6). The corner frequencies of the second stage,
the slow limited integrator (SLI), were fSLI

z = 30 kHz and fSLI
p = 500 Hz (setting 4). The

corner frequencies of the third stage, the fast limited integrator (FLI), were fFLI
z = 800 kHz

and fFLI
p = 65 kHz. The corner frequencies of the fourth stage, the fast limited differentiator

(FLD), were fFLD
z = 4.2 MHz and fFLD

p = 22.5 MHz. The last value was not provided, but
was interpolated based on the spacing of the other corner frequency settings. Comparing with
the FALC transfer function network analysis provided in the manual [59], the shapes of both
magnitude and phase agree well. For the phase, also the absolute values match well, whereas for
the magnitude they do not agree. The first reason for that is that the manual does not provide
an absolute setting for the overall gain. Also, the overall slope of the integrator section seems
to be steeper in the measured values. This is interesting since with Bode’s relations magnitude
and phase are tightly connected and the absolute values of the phase agree rather well. Probably
the actual implementation of the filter stages is not exactly described by equation (4.23), but
filters with steeper slopes are employed. Another point of disagreement is in the behaviour at
very high frequencies. Above around 10 MHz, the overall low-pass behaviour of the FALC due
to its limited bandwidth manifests itself in reduced gain and quickly dropping phase, which is
not captured here.
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Figure 4.4: Bode plot of equation (4.23) for different values of K, fz and fp. The respective
fz are marked with crosses, the fp with open circles. K determines the gain at zero frequency.
If fz < fp, the stage acts as differentiator between these frequencies and leads to phase lead, if
fz > fp, it acts as integrator and leads to phase lag.
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Figure 4.5: Bode plot of overall transfer function of FALC, based on stages like equation (4.23),
with example corner frequencies according to the FALC manual. The corner frequencies of each
stage are given in the text. The absolute gain values are not to scale, but the general shape agrees
with the measured network analysis provided in the FALC manual. Only at very high frequencies
close to 100 MHz, the FALC exhibits stronger low-pass behaviour, which is not captured here.
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Figure 4.6: Fiber optical setup for the heterodyne optical phase-locked loop between the two
1550 nm Raman seed lasers. Blue connections denote optical fibers, black connections represent
electrical cables. The optical fiber length from laser head to photodiode is around 3.6 m, which
limits the loop performance. Additional optical and electrical attenuators were included to
prevent damaging or saturation of subsequent components, but are omitted for clarity. The
dashes components indicate where the EOM for sideband generation would enter in the future.

In the transfer function, one can nicely identify the effect of the FLD, which is to provide
a phase lead at higher frequencies. By shifting its frequency range, one can optimize it to lie
around the phase reversal of the open loop transfer function L, in order to increase the loop
bandwidth a little bit more. In addition, the FALC offers a setting for extra FLD gain, which
was also used in this work.

The circuit described so far was one section of the FALC, which is used for fast feedback to
modulate the injection current of the slave SCL. The other section of the FALC is called the
unlimited integrator (ULI) and is used for slower feedback. It is connected to the piezo voltage-
controlled cavity mirror of the slave laser, which, although slow, provides a larger frequency
tuning range than the injection current. This is used to compensate for long-term drifts and to
keep the slave laser frequency within the hold-in range of the fast feedback loop.

4.4 Experimental realization and results

4.4.1 First fiber-optical setup

The employed laser heads as well as the laser amplifiers for the Raman setup are based on fiber-
optical inputs and outputs. Thus for the long term, all optical components of the OPLL should
be fiber-based as well and it was first set up like this. Figure 4.6 is a scheme of the actual setup
to implement the heterodyne OPLL. For initial testing, the objective was to lock both lasers
to the same frequency, without the additional EOM to create sidebands. Of both Toptica DL
Pro seed lasers, the main portion of the power is fed into the Keopsys laser amplifiers. Only
10 % each is split off using a fiber tap and then combined with a balanced fiber coupler. Both
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outputs of the coupler are led onto fast fiber-coupled photodiodes (Thorlabs FPD610-FC-NIR,
DC - 600 MHz). Optical attenuators (not shown) were added in order to keep the incident
power in a range where the photodiodes do not show saturation behaviour. The output of one
photodiode is used for out-of-loop monitoring of the beat note signal on a spectrum analyzer
(RIGOL DSA815), whereas the photocurrent of the other one is fed into the the Toptica mFALC
110. The RF offset signal is generated by an Aim-TTi TGR1 040 RF signal generator, the initial
frequency of 50 MHz was later increased to 150 MHz. An oscilloscope (Tektronix TBS1000B)
can be used to monitor either the error signal, or the injection current modulation which is fed
back into one of the seed lasers. The injection current was attenuated slightly in order to prevent
any possible damage of the laser diode.

The light travels around 4 meters through the fiber splitters and combiners, since fibers
with standard lengths were used. The electrical path length was reduced to about 0.3 meters.
For reference, 4 meters of fibers corresponds to 20 ns time delay. If all components in the
loop exhibited perfectly linear response, so phase lag resulted only from this time delay and
of course the integration term, the frequency of phase reversal would be at 12 MHz. However
experimentally, with these parameters and an RF offset frequency of 50 MHz, the servo bumps
were observed at around 1.8 MHz. The optimal FALC settings to achieve this value were FLD
setting 5 and all integrator stages left off, also the input gain was left minimal. In general, higher
main gain pushed the servo bumps further out until at some point the loop becomes unstable.
The estimates of the loop bandwidth are given for high main gain values where the servo bumps
appear pronounced. The loop bandwidth could be increased to around 2.1 MHz by switching
the FLD gain to maximal. A test with 6 meters additional cable length lead to a decrease in
loop bandwidth to about 1.5 MHz, indicating that the phase margin at these frequencies is small
enough for delay to become noticeable. This suggests that a decrease in signal path length might
increase the loop bandwidth. In hindsight, the fact that the phase margin at lower frequencies
is too small to allow for additional phase lag is supported by another observation: Switching on
any of the integrator stages drastically reduced the loop bandwidth or even made the whole loop
unstable.

4.4.2 Free space test setup

In order to test the possible improvement with a shortened optical path length, a layout where
the beam propagates in free space instead of through optical fibers was set up. For this, a 50:50
beam splitter replaced the fiber coupler. The free space path length could thus be reduced to
about 40 cm, adding to the 35 cm of the fiber photodiode. This lead to a loop performing with a
bandwidth of about 2.5 MHz, achieved with similar settings as in the fiber-based setup. However,
increasing the RF offset frequency to 150 MHz further enhanced the loop bandwidth to around
2.7 MHz. This might me due to a lower contribution of pink noise, or another component in the
laboratory produces disturbance at this frequency. Further increasing the RF offset to 300 MHz
did not yield an additional improvement.

Figure 4.7 shows the beat note between both lasers in the locked state for low and high gain
values. In both cases, the central peak is very sharp, which indicates the phase-stability of one
laser with respect to the other. For low gain, the servo bumps are flat and broad, while for high
gain they become stronger and more pronounced. Also, the distance of the servo bump to the
center peak increases, i.e. the loop bandwidth increases. For comparison to the unlocked case,
figure 4.9 shows the beat note between seed lasers when both are free-running. The linewidth is
specified to be at least 10 kHz. In addition, the frequency of the beat note is free to drift.

The central peak is shown in more detail in figure 4.8. Although the resolution is limited by
the resolution bandwidth (RBW) of the electrical spectrum analyzer, one can estimate the half
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(a) Low gain (b) High gain

Figure 4.7: Beat note between both seed lasers when one is locked to the other via the free space
test setup. a) Main gain set to a low value, the servo bumps are flat and broad. b) Main gain
set to a high value, which increases the one-sided loop bandwidth to about 2.7 MHz. Also, the
servo bumps become much more pronounced. The central peak is shown in more detail in figure
4.8.

width at half max to be about 8 Hz. The small bump 50 Hz above the main signal might be
caused by the alternating current of the mains electricity. The peak is not exactly at 150 MHz as
set by the RF source, but about 60 Hz below. This might be due to inaccuracy of the electrical
spectrum analyzer or of the RF source, since neither of them is synchronized to a reference clock.

4.5 Influence of servo bumps in the experiment

We have seen in chapter 3 that the feedback mechanism of the phase-locked loop creates unwanted
spectral features near the loop bandwidth due to the amplification of disturbances and noise.
From the results of the previous section we know that for our system, the loop bandwidth is a
few MHz. However, typical motional frequencies of trapped ions are in the same range, which
can cause problems in the experiment. To discuss how these problems arise, the interaction of
the ion’s internal state with its motional state via an external electrical field is briefly introduced.
For a more detailed discussion, the reader is referred to Haroche and Raimond [60] or Wineland
et al. [30].

4.5.1 Coupling of ion internal and motional state

For trapped ion quantum information processing, the internal state of a single trapped ion is
simplified to a 2-level structure acting as qubit with the Hamiltonian

Ĥa =
~ωa

2
σz, (4.24)

where ωa/2π is the frequency of the atomic transition under consideration, and σz is the Pauli
spin matrix. The ion’s motion along one of the trap axes, which we set to be the z axis, is treated
as mode of an harmonic oscillator, for which the Hamiltonian is given by

Ĥm = ~ωzâ†â, (4.25)

where ωz/2π is the frequency of the oscillator mode, also called motional frequency or trap
frequency. â† and â are the respective creation and annihilation operators. The interaction
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Figure 4.8: Close-up spectrum of the central peak of the locked beat note for low gain, the
shape stays similar for high gain. The half width at half maximum (HWHM) is about 8 Hz, the
resolution is limited the by the resolution bandwidth (RBW) of the electrical spectrum analyzer.

Figure 4.9: Beat note between both free-running seed lasers. The linewidth of each laser is
specified to be above 10 kHz.
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between both the qubit state and the harmonic oscillator can be mediated by an external electric
field. For a monochromatic laser field in the coherent state |α〉, the interaction Hamiltonian in
the dipole approximation is then given by

Ĥ1 = −i~Ω0

2
eik·R̂e−i(ωLt+φ)σ+ + h.c. (4.26)

Here, Ω0 = − 2dE0

~ is the vacuum Rabi frequency with d = q 〈e|r̂|g〉 being the transition dipole
element of the qubit, and E0 the electric field vector amplitude. k is the wave vector of the laser

field and k · R̂ = η(â+ â†) where we have defined the Lamb-Dicke parameter η = k
√

~
2mωz

cos θ

with m being the mass of the ion and θ the angle between k and the trap axis. ωL/2π and φ are
the frequency and phase of the laser field and σ+ is the qubit raising operator.

Usually in trapped ion experiments, the condition η � 1 is fulfilled and the interaction is said
to be in the Lamb-Dicke regime. Then, the first exponent in equation (4.26) can be expanded
in a power series. Keeping only the terms up to first order and going to the interaction picture
with respect to Ĥ0 = Ĥa + Ĥm yields

ĤI = −i~Ω0

2
e−i(ωLt+φ)σ+eiωat

(
1 + iηâe−iωzt + iηâ†eiωzt

)
+ h.c. (4.27)

Now we can do the rotating wave approximation and neglect off-resonant terms. Depending
on the laser frequency, three major cases can be distinguished:

• For ωL = ωa:

ĤI,carrier = −i~Ω0

2

(
σ+e−iφ − σ−eiφ

)
. (4.28)

This corresponds to a carrier transition, so on the Bloch sphere, the evolution under this
Hamiltonian corresponds to a rotation around an axis with azimuthal angle φ by the angle
Ω0t. The motion of the ion is not affected.

• For ωL = ωa − ωz:
ĤI,RSB =

~Ω0η

2

(
âσ+e−iφ + â†σ−eiφ

)
. (4.29)

RSB stands for red-sideband, which comes from the fact that the laser is red-detuned with
respect to the atomic transition. Due to the lower frequency of the laser field, the energy
difference between a photon of the laser field and the qubit excited state is made up for by
one quantum of the ion’s motion. This means if one photon of the laser field is absorbed,
also one motional quantum has to be removed in order to excite the qubit. Similarly,
when the qubit emits one photon into the laser field, also one quantum is added to the ion
motion. This means the number of excitations in the qubit and the motion is conserved.
For a laser phase of φ = 0, this Hamiltonian equals the Jaynes-Cummings Hamiltonian
of cavity quantum electrodynamics [60]. The effective Rabi frequency of this process is
reduced to Ω0η.

• For ωL = ωa + ωz:

ĤI,BSB =
~Ω0η

2

(
â†σ+e−iφ + âσ−eiφ

)
. (4.30)

Similarly, this is the blue-sideband Hamiltonian. Now for each absorbed photon, one
motional quantum is added instead of removed. For each emitted photon, one motional
quantum is also removed. In reference to the red-sideband Hamiltonian, ĤI,BSB is also
called the anti-Jaynes-Cummings Hamiltonian.
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For stimulated Raman transitions, the corresponding Hamiltonians are very similar and are
obtained by the substitutions ωL → δω = ω1 − ω2, k→ ∆k = k1 − k2 and φ→ φ1 − φ2 [30].

The red- and blue-sideband Hamiltonians are important in quantum information processing
with trapped ions, since they are a means to transfer information from one qubit to another
via the ions’ collective motion. So in order to create entangled states between multiple qubits,
sideband transitions have to be involved [6, 7]. In the following it is discussed how servo bumps
can cause errors in an experiment involving sideband transitions.

4.5.2 Error during sideband transitions

Coming back to the phase-locked lasers, imagine that the frequency distance between the central
peak of the locked laser and the servo bump is similar to the motional frequency of the ion ωz.
Then, the servo bumps appear as features in the laser spectrum which may be resonant with
a transition that is different from the one which is driven by the central peak. For example,
if ωL = ωa, then the servo bumps are located at the frequencies ωa ± ωz. This means that
they would drive the red- and blue-sideband transitions unwantedly, and thus introduce errors
to the experiment. This case is not of main concern, since in addition to the reduced power in
the servo bumps compared to the central peak, the rate of sideband transitions is reduced by
a factor of η � 1 compared to the carrier transition. However, the case becomes worse when
ωL = ωa ± ωz, which is the case when we want to drive a sideband transition. Then, one of the
servo bumps would be located at ωa, and would drive the carrier transition with an increased rate
over the sideband transition. This situation can become an issue in every experiment involving
sideband transitions, and so should be avoided. A simplified mathematical treatment of the
error probability in this case was prepared in the group [61], and is presented in the following
subsubsection. Subsubsection 4.5.2.2 then presents the results of the error estimation based on
the beat note spectra obtained in this work.

4.5.2.1 Carrier transition probability

This theoretical treatment of the error introduced by a servo bump during a sideband transition
follows an internal document by J. Home [61].

The potential error which we consider here occurs during a sideband transition, which is
described by either equation (4.29) or (4.30). The servo bump, however, is at a frequency
which corresponds to the carrier transition. Due to the reduced optical power in the servo bump
compared to the central peak, we introduce a new Hamiltonian similar to the carrier Hamiltonian,
but with a rate reduced by a factor ε(t):

Ĥ
(servo bump)
carrier = ~ε(t)Ω0 (σ+ + σ−) , (4.31)

where the laser phase has been set to φ = −π2 for simplicity. Note that this Hamiltonian is
now in the Schrödinger picture and ε(t) carries the time-dependence of the electric field. From
perturbation theory, the transition amplitude from an initial state |ψi〉 to a final state |ψf 〉, both
being eigenstates of the bare atomic Hamiltonian Ha, is given by:

Sfi = δfi +
1

i~

∫ tf

ti

dt′Vfie
i
~ (Ef−Ei)t′ , (4.32)

where δfi is the Dirac delta function, Ei/f are the eigenenergies of
∣∣ψi/f〉 and Vfi = 〈ψf |V |ψi〉

is the corresponding transition matrix element of the interaction part of the Hamiltonian [62].

In our case, V = Ĥ
(servo bump)
carrier , |ψi〉 = |0〉 and |ψf 〉 = |1〉. We also set ti = 0 and tf = Tπ, which
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is the effective pulse time for the sideband transition which is driven by the main peak. Then,
the transition probability after time Tπ is

Pfi(Tπ) = |Sfi|2 (4.33)

=

∣∣∣∣∣−i
∫ Tπ

0

dt′ε(t′)Ω0 〈1|(σ+ + σ−)|0〉 eiωat
′

∣∣∣∣∣
2

, (4.34)

with ωa = E1−E0

~ . Expanding the magnitude squared, using σ+ = |1〉〈0| and σ− = |0〉〈1|, and
assuming Ω0 and ε(t) are real yields

Pfi(Tπ) = Ω2
0

∫ Tπ

0

dt′ε(t′)e−iωat
′
∫ Tπ

0

dt′′ε(t′′)eiωat
′′

(4.35)

= Ω2
0

∫ Tπ

0

dt′
∫ Tπ

0

dτε(t′)ε(t′ − τ)e−iωaτ , (4.36)

where τ = t′ − t′′ was introduced in the second line. Assuming that ε(t) is a stationary process
and using the autocorrelation function for times T much larger than the correlation time τc of
ε(t)

〈ε(t)ε(t+ τ)〉 =
1

T

∫ T

0

dtε(t)ε(t+ τ), (4.37)

the transition probability can be written as

Pfi(Tπ) = Ω2
0Tπ

∫ Tπ

0

dτ 〈ε(t)ε(t+ τ)〉 e−iωaτ . (4.38)

Here, we can recognize the finite Fourier transform of the autocorrelation function at the fre-
quency ωa. The Wiener-Khinchin theorem relates this Fourier transform to the power spectral
density of ε(t), Sε(ω) [50]:

Sε(ω) =

∫ ∞
−∞

dτ 〈ε(t)ε(t+ τ)〉 e−iωτ . (4.39)

Since Tπ � τc, the limits of integration in equation (4.38) can formally be extended to infinity
and we write

Pfi(Tπ) = Ω2
0TπSε(ωa), (4.40)

giving us an expression for the transition probability of the carrier transition dependent on the
power spectral density of the servo bump.

To obtain an analytic expression for the power spectral density of the servo bump, we can
assume the autocorrelation function to have a specific form. Here we take it to feature an
exponential decay with τ :

〈ε(t)ε(t+ τ)〉 = ε20e−ΓSB|τ |e−iωSBτ , (4.41)

where ΓSB is the decay constant, and ωSB/2π is the frequency of the servo bump. Fourier
transformation of this autocorrelation function according to equation (4.39) yields the power
spectral density of the servo bump:

Sε(ω) = ε20
2ΓSB

δ2 + Γ2
SB

, (4.42)
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where δ = ω−ωSB is the detuning from the servo bump. This form of the power spectral density
is a Lorentzian with half width at half maximum (HWHM) of ΓSB. Inserting into equation (4.40)
yields:

Pfi(Tπ) = Ω2
0Tπε

2
0

2ΓSB

δ2
a + Γ2

SB

, (4.43)

where δa = ωa − ωSB.
In this result, we can relate Ω0 to the time Tπ it takes for the π-pulse on the sideband

transition. The evolution e−
i
~~ηΩ0(σ+a+σ−a

†)T under for example the red sideband Hamiltonian
for the time T corresponds to a rotation ei

θ
2σx in the qubit subspace, so the angle θ

2 corresponds
to ηΩ0T . In our case where θ = π it then follows that Ω0 = π

2ηTπ
and we finally obtain

Pfi(Tπ) =

(
πε0
2η

)2
1

Tπ

2ΓSB

δ2
a + Γ2

SB

. (4.44)

This result allows to estimate the probability of a carrier transition induced by a servo bump,
viewed as error during a sideband transition. From a servo bump spectrum, normalized to the
power in the main peak, the parameters ε0, ωSB and ΓSB can be obtained. η and Tπ are dependent
on the experimental settings for which the error shall be estimated. In the following, such an
estimation is presented for typical parameters.

4.5.2.2 Estimation based on beat note spectra

In this work, the power spectral density of the servo bumps can be inferred from the beat note
spectra recorded with an electrical spectrum analyzer (cf. section 4.4). In the following, the
procedure and results of the estimation based on these spectra is described.

First of all, one should note the ambiguity of using the term power in this context, since both
electrical and optical power could be referred to. It is important to differentiate the two: the
voltage of the measured signal of the spectrum analyzer is originating from the photodiode and
is thus proportional to optical power. However, the voltage as an electrical signal also generates

a power, the electrical power which scales as P = V 2

R , with V being the voltage and R the
resistance. In this subsubsection, the term power refers to the electrical power, unless stated
otherwise. Also the symbol P is reserved for electrical power, whereas V is used for the voltage
representing the optical power.

The data which was recorded in units of Volts was converted to dBm according to

P (dBm) = 10 log10

 V 2

R
10−3 W

 , (4.45)

where R = 50 Ω is the resistance of the spectrum analyzer and W stands for the unit Watt.
Then, the recorded data was subjected to some corrections and conversions:

• The internal attenuation of the spectrum analyzer reduced the recorded amplitude com-
pared to the actual signal. Thus the corresponding number of decibels was added to
P (dBm).

• 10 log10 of the resolution bandwidth (RBW) of the spectrum analyzer was subtracted from

the power in dBm in order to obtain the electrical power spectral density in dBm PSD (dBm).

• Due to the ratio of equivalent noise bandwidth to the −3 dB RBW, a constant of
10 log10(1.056) = 0.24 dB was subtracted [63].
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Finally, the power spectral density in dBm was converted back to volts using

VSD =
√
R× 10−3 W × 10PSD(dBm)/10, (4.46)

where VSD stands for voltage spectral density.
Now we need to find how the voltage spectral density relates to the optical power spectral

density of the servo bump. As mentioned before, the voltage is proportional to the optical power,
which in turn is just the optical intensity integrated over the detector area. From the interference
equation (equation (4.3) in section 4.1), it becomes clear that the intensity of the component at
the beat note frequency scales with the electric field amplitudes of both lasers |EMES|. Also, the
effective Rabi frequency of the Raman transition scales as follows: Ωeff ∝ ΩMΩS

∆ , where ΩM/S ∝∣∣EM/S

∣∣. This means that the voltage from the photodiode is proportional to the effective Rabi
frequency. To obtain the ratio ε0 of Rabi frequencies from the main peak and the servo bump,
one thus has to compare the integrated voltage spectral densities at those frequencies. This can
be accomplished by fitting the servo bump with a Lorentzian and obtaining the area analytically.
However, this fit would not yield the correct width ΓSB to use in equation (4.44), since there the
optical power spectral density of the servo bump was considered, which is proportional to the
square of the electric field of the servo bump. Thus, we fit the voltage spectral density at the
servo bump as obtained from equation (4.46) with the square root of a Lorentzian√

A
2Γ

δ2 + Γ2
(4.47)

to obtain the fitted parameters ASB, ΓSB and ωSB. Similar fitting of the central peak of the
beat note yields AC, ΓC and ωC, where C stands for central. The area under a Lorentzian curve
A 2Γ
δ2+Γ2 is 2A, so the normalization factor of the optical power in the servo bump ε0 is obtained

by ε0 =
√
ASB/AC.

Figures 4.10a and 4.10b show the beat note spectra at the servo bump and at the central
peak, for a medium loop filter gain setting. The servo bump spectrum was obtained by averaging
over 100 single sweeps. The yellow lines indicate the fits according to equation (4.47). Neither
the servo bump, nor the central peak match their fitted profile well, but the fit allows to extract
the order of magnitude of the parameters ε20 and ΓSB to perform an error estimation according
to the theory introduced in subsubsection 4.5.2.1.

Figure 4.11 shows the error probability due to carrier excitation by the servo bump during a
sideband transition, plotted versus detuning δa of the carrier transition from the servo bump. The
probability was calculated according to equation (4.44), with parameters ε20 and ΓSB obtained
from the fits in figures 4.10a and 4.10b. η = 0.1 and Tπ = 30 µs were chosen to represent typical
experimental conditions. A maximum error probability of 82% indicates that a servo bump
directly at the carrier transition during a sideband transition is not tolerable in an experiment.
Detuning of the servo bump 2 MHz away from the carrier transition improves the error probability
down to the few percent level. However, as the servo bump does not match the Lorentzian profile
well, the dropoff should be treated with special care.

For a Lamb-Dicke parameter of η = 0.2, the error probability is reduced to one quarter of
the value for η = 0.1. The error is also reduced by a less pronounced servo bump, which is the
result of a lower main gain of the loop filter. Fitting of such low gain spectra yields reduced error
probabilities of 14% and 4% for η = 0.1 and 0.2, respectively. An overview over the resulting
error probabilities for these different gain settings and η values is given in table 4.1. Only η = 0.2
together with far detuning of the servo bump from the carrier frequency yields error probabilities
in the range below 10−2. Because in our case, the trap frequency ωz was not fixed yet, the loop
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Figure 4.10: Fits of the voltage spectral density of the servo bump (a) and the central peak (b)
according to equation (4.47). The beat note spectrum of the servo bump was obtained by 100
times averaging. The main gain setting of the FALC was at a medium value. From the obtained
fitting parameters, the error probability during a sideband transition is calculated using equation
(4.44) and is plotted in figure 4.11 for some typical experimental parameters.
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Figure 4.11: Error probability during a sideband transition as calculated with equation (4.44),
plotted as function of detuning δa of the carrier frequency from the servo bump. The parameters
ε20 and ΓSB were obtained from fits to the spectra presented in figures 4.10a and 4.10b. η = 0.1
and Tπ = 30 µs were chosen as typical experimental parameters.

η 0.1 0.2
main gain medium low medium low

Pfi @ δa = 0 MHz 0.82 0.14 0.21 0.04
Pfi @ δa = 2 MHz 0.02 0.12 0.006 0.03

Table 4.1: Error probabilities Pfi according to equation (4.44) for different η and control filter
main gain settings. Tπ = 30 µs; ε0 and ΓSB were obtained by fits of the beat note spectra (cf.
figures 4.10a and 4.10b).
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bandwidth was increased as much as possible in order to create the greatest leeway in influencing
the position and amplitude of the servo bumps, away from the motional frequency of the ion.

All in all, the error probabilities due to a servo bump at or near the carrier transition frequency
can be high enough to be relevant for almost all quantum information processing experiments.
Especially the tuning of loop filter main gain allows for a certain adaption of the position and
power in the servo bumps. Depending on the specific experimental implementation with its
combination of trap frequency and Lamb-Dicke parameter, the resulting achievable error proba-
bilities may be sufficient for high-fidelity sideband transitions. If they are not, additions to the
OPLL scheme like an additional external phase-shifter (cf. subsubsection 2.3.2.1) or even differ-
ent approaches like optical injection locking (cf. subsubsection 2.3.2.2) may need to be employed
as alternatives to the work in this thesis.
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Chapter 5

Sum-frequency generation in
periodically-poled LiNbO3

As second part of this work, two beamlines of 626 nm sum-frequency generation (SFG) were set
up. In the overview over the laser setup for the Penning experiment (cf. figure 2.2 in chapter 2),
the two respective stages are marked. The first one is part of the beamline for the cooling and
detection beam, the second is part of one of the Raman beamlines. In the following, the theory
behind sum-frequency generation (SFG) and its conversion efficiency is touched upon (section
5.1). Section 5.2 then describes how the SFG setup was planned and set up. In section 5.3, the
resulting performance of one SFG stage is presented. Seeding both SFG stages from phase-locked
lasers, the beat note is observed at 626 nm, which is described in section 5.4.

5.1 Nonlinear optics

In a homogeneous, isotropic, non-magnetic dielectric medium, the wave equation derived from
Maxwell’s equations takes the form [50]

∇2E − 1

c20

∂2E
∂t2

= µ0
∂2P
∂t2

, (5.1)

with the electric field E, the vacuum speed of light c0, the vacuum permeability µ0 and the
polarization density P . Vector quantities are in bold print. For linear media, P and E are then
related by P = ε0χE, where ε0 is the vacuum permittivity and χ is the electric susceptibility.
A nonlinear medium is defined as one where the relation between P and E does not take this
simple form, but exhibits nonlinearity. It can then be written in general form as P = Ψ (E).

Even with focused laser beams, these externally applied electrical fields are usually weak
compared to their interatomic counterparts, so one can expand Ψ (E) to

P = ε0χE + ε0χ
(2)E2 + ε0χ

(3)E3 + ..., (5.2)

where the nonlinear optical coefficients χ(2) (often denoted as d) and χ(3) describe the second-
and third-order nonlinear effects. Note that P and E here aren’t vector quantities anymore, but
the individual vector components which can be treated separately since the medium is assumed
to be isotropic, i.e. P is always parallel to E.
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5.1.1 Second-order nonlinear optics

If a material is non-centrosymmetric, χ(2) is non-zero and second-order nonlinear processes
such as sum-frequency generation can occur. For an incident electric field of the form E(t) =
Re
{
E1eiω1t + E2eiω2t

}
, the nonlinear part of the polarization density for the second-order non-

linearity is given by

P(2)
NL = ε0χ

(2)E2 (5.3)

=
ε0χ

(2)

2
E2

1 + E2
2 (5.4)

+
ε0χ

(2)

2

(
cos [2ω1t] + E2

2cos [2ω2t]
)

(5.5)

+ ε0χ
(2)E1E2cos [(ω1 + ω2)t] (5.6)

+ ε0χ
(2)E1E2cos [(ω1 − ω2)t] . (5.7)

Equation (5.4) describes the effect of optical rectification, equation (5.5) yields second-
harmonic generation, and the terms (5.6) and (5.7) describe sum- and difference-frequency gen-
eration, respectively. Here we concern ourselves with the former, which describes the creation of
one photon at the sum frequency from two photons at angular frequencies ω1 and ω2:

ω1 + ω2 = ω3, (5.8)

obeying energy conservation. However, not all photons of the starting frequencies are converted,
and also the other mentioned terms act as competitive processes. Which of these dominates, is
greatly determined by the phase-matching condition:

k1 + k2 = k3, (5.9)

where |ki| = 2π
λi

are the wave vectors of the corresponding electric fields at wavelengths λi. If this
condition is fulfilled, it ensures that photons created at different times in different locations of
the nonlinear medium are in-phase. This means they add up constructively to give a macroscopic
electric field amplitude at this frequency. For processes for which the phase-matching condition
is not fulfilled, the newly created microscopic electrical fields at different locations are in random
phase relation to each other and thus cancel each other out.

For optimal beam overlap, the wave vectors are collinear. In order to fulfil the phase-matching
condition, the refractive index of the nonlinear medium then has to take the same value for all
three optical frequencies involved. However, this is in general not possible due to dispersion.
Thus one defines the wave vector mismatch, or phase mismatch

∆k′ = k3 − (k1 + k2), (5.10)

now written in scalar form since the wave vectors are assumed to be collinear. Usually, ∆k′

is written without the prime, but we include it here to differentiate it from its counterpart in
quasi-phase-matching. From the phase mismatch, the coherence length is defined as

Lc =
π

∆k′
, (5.11)

i.e. the length in the crystal over which a photon at ω3 has assumed a phase difference of π
compared to a newly created photon at the final location. This means photons created at a
distance Lc apart cancel each other out by destructive interference.
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5.1.2 Quasi-phase-matching

As an alternative to birefringent phase-matching, which is very wavelength-sensitive, one method
to overcome the issue of wave vector mismatch is to use quasi-phase-matching [64]. In this exper-
iment, we employ periodically-poled Lithium niobate (PPLN) to achieve quasi-phase-matching.
As its name suggests, the crystal exhibits a sequence of regions along the optical axis which vary
periodically in their direction of the permanent electric dipole moment. If the direction of the
electric dipole moment is swapped, χ(2) changes its sign, or equivalently the phase of P is shifted
by π. Now if the poling period is matched to be an integer multiple of the coherence length Lc,
what would have been destructive interference is turned into constructive interference, thus cor-
recting the phase-mismatch. This allows for buildup of optical power over a longer distance, even
if the phase-matching condition is not perfectly matched. We thus adjust the phase-matching
condition to account for quasi-phase-matching and write

∆k = k3 − (k1 + k2)−Km. (5.12)

Here, we introduced the grating wave vector of the mth-harmonic

Km =
2πm

Λ
, (5.13)

where Λ is the poling period of the crystal. Thus the effect of periodic poling is to shift the
actual wave vector mismatch ∆k′ by an amount Km to yield an effective or total wave vector
mismatch of ∆k, which then determines the conversion efficiency. The dependency of the output
power at the sum frequency ω3 on the effective wave vector mismatch and the crystal length L
is given by the following factor [64]:

Pω3
∝ sinc2

(
∆kL

2

)
, (5.14)

where sinc(x) = sin(x)
x . This factor can be tuned by the temperature of the crystal, which

influences both ∆k and L:
∂

∂T
(∆kL) = L

∂∆k′

∂T
+ α∆k′L, (5.15)

where α = 1
L
∂L
∂T is the coefficient of linear thermal expansion for the crystal material [64]. The

change of temperature influences the crystal length and poling period due to thermal expansion,
but also the refractive index might vary slightly which affects the wave vector mismatch. PPLN
crystals are typically operated in an oven at temperatures above 100 °C in order to prevent
damage from photorefractive effects. Using the temperature control then also allows to precisely
adjust the product ∆kL in order to maximize the output power for the given set of wavelengths.

5.1.3 Conversion efficiency

We describe the conversion efficiency of the SFG process in terms of output power per input
power product per crystal length:

ΓSFG =
Pω3

Pω1
Pω2

L
. (5.16)

Boyd and Kleinman [65] theoretically describe the shape that the incoming electrical fields
should have in order to maximize the conversion efficiency in second-harmonic generation or
sum-frequency generation. For maximal overlap, both input beams should be collinear perfect
Gaussian beams, and the focus of both should coincide and be centered in the crystal along the
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optical axis. Instead of the minimum possible value, the optimal waist size is given in relation to
the crystal length L and the wavelength in the crystal. More specifically, they derive an optimal
value for the focusing parameter

ξ =
L

2zR
. (5.17)

Here, zR is the Rayleigh range of a Gaussian beam with waist radius W0, given by

zR =
πW 2

0

λ
. (5.18)

For the case of no double refraction, Boyd and Kleinman find that ξ
(BK)
optim = 2.84.

The process of interest for us is ω1050 + ω1550 = ω626. For this however, Lo et al. [29] find an

optimal waist radius which corresponds to a lower focusing parameter, namely ξ
(Lo)
optim = 1.3. They

ascribe this to possible imperfections in mode overlap, caused by absorption-induced heating. In
comparison to other publications using the same crystal for this process [28, 66], their result
boasts the highest conversion efficiency, which indicates that the theoretical prediction by Boyd
and Kleinman should rather be used as guideline with room for empirical corrections. As will
be described in subsection 5.2.2, we indeed aimed for the focusing parameter found by Lo et
al. instead of the one by Boyd and Kleinman.

5.2 SFG setup

From the optimum focusing parameter, we know the waist radii W0 of the Gaussian beams that
we want to achieve in the middle of the crystal. In order to plan how to focus the beam in
this way, the beams coming from the amplifier outcoupler first had to be characterized, which
is described in subsection 5.2.1. Then the beam propagation through a pair of lenses, which we
call telescope, can be simulated (subsection 5.2.2) and the beamline can be set up accordingly
(subsection 5.2.3).

5.2.1 Beam profile measurements

Before all beam measurements, the amplifiers were left running for at least 30 minutes at the
final power setting in order to warm up and stabilize the output power and beam shape. The
amplifiers for 1050 nm (Keopsys CYFA-PB) were set by current, while the 1550 nm amplifiers
(Keopsys CEFA-C-PB) allowed setting the output power directly. The minimum output power
of the amplifiers is greater than 0.5 W, so for all alignment and measurement purposes, the
majority of the power was split off and dumped using a half-wave plate (HWP) and polarizing
beam splitter (PBS). The resulting beam carried down to about 1 % of the initial power.

A beam profiler (Thorlabs BC106N-VIS/M) was available for 1050 nm, which allowed simple
measurements of the waist sizes of those lasers. For 1550 nm, other methods had to be employed,
which make use of the fact that the transverse intensity profile of a Gaussian beam is of Gaussian
shape, as the name suggests:

I(x, y, z) = I0
W 2

0

W 2(z)
exp

[
−2((x− x0)2 + (y − y0)2)

W 2(z)

]
, (5.19)

where I0 is a constant, z is the coordinate along the optical axis, x0 and y0 are the coordinates
of maximum intensity in the transverse plane and W0 is the waist radius at the focus [50]. The
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Figure 5.1: Yellow: Trigger. Blue: Oscilloscope trace of the photodiode signal of a laser beam
which is being chopped with a chopper wheel. From the falling edge, the width of the beam in
chopping direction can be inferred by fitting equation (5.21).

waist radius at a position z is given by

W (z) = W0

√
1 +

(
z − z0

zR

)2

, (5.20)

where z0 is the position of the focus along the optical axis. Note that the Rayleigh range, which
we denote here as zR, is in the literature sometimes called z0. The waist radius is the radial
distance from the beam center at which the intensity has dropped to 1

e2 of its maximum value. To
estimate it, one can block part of the beam along one of the transverse directions by a knife-edge,
whose position is given by (x, z). Then, the measured power is the integral over the remaining
non-obstructed area of the beam:

P (x, z) =

√
2

π
I0

W 2
0

W 2(z)

∫ ∞
x

dx′ exp

[
−2(x′ − x0)2

W 2(z)

]
=

2

π
I0W

2
0 erfc

[
−
√

2(x− x0)

W (z)

]
, (5.21)

where erfc is the complementary error function. Taking data at various positions x for fixed z
allows the extraction of the waist radius W (z) at position z by fitting equation (5.21).

As first attempt, this procedure was performed with a knife-edge mounted on a translation
stage. However, the taken data was not suitable for analysis because the measured beam power
exhibited significant fluctuations during the data-taking. This was because small relative fluc-
tuations in transmission through the PBS resulted in large absolute fluctuations for the weak
output beam.
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As an alternative, a chopper wheel was placed in the beam path and the photodiode signal
was observed on an oscilloscope. Figure 5.1 shows the oscilloscope trace of one of the 1550 nm
beams (blue), as well as the trigger signal from the chopper wheel controller (yellow). The
falling edges of the trace take the form of the error function like in equation (5.21), except for
the fact that the trace is a function of time and not position. Thus, one has to convert the time
axis into an axis describing the position of the chopping edge. This can be achieved using its
linear velocity vedge. However, the velocity of the chopping edge is not easily measured directly.
Instead, the chopping frequency fchop is held constant by the controller, for which we chose the
value of 364 Hz. Dividing by the number of chopping blades nblades yields the rotation frequency
of a single blade frot =

fchop

nblades
. Since the angular velocity is ωrot = 2πfrot, the linear velocity can

be calculated using the radius of the center of the beam from the center of the chopper wheel R:

vedge = ωrotR. (5.22)

The measurement of this radius was the main source of error, with an inaccuracy of ±1 mm.
The position of the chopping edge as function of time is thus given by

x− x0 = 2π
fchop

nblades
R(t− t0). (5.23)

t0 is now the time when the chopping edge passes the center of the beam, corresponding to the
point of steepest slope of the oscilloscope trace. Inserting equation (5.23) into equation (5.21)
now allows to fit the oscilloscope traces and thus obtain W (z). Figure 5.2 shows the data of such
an oscilloscope trace and its fit.

A simpler way to obtain a value for the beam width is to connect it to the 10% to 90% rise
time ∆trise, which can already be pre-calculated and displayed on the oscilloscope. Then, W (z)
is given by [67]

W (z) = 0.7809 ωrotR∆trise. (5.24)

Note that such a measurement gives the waist radius of the Gaussian beam only along one
of the transverse axes. To measure along the other axis, the chopper wheel had to be placed
perpendicular to its initial orientation. A perfect Gaussian beam is cylindrical, but for the laser
beams in our setup, the waist radii measured along the different transverse axes were not always
equal, indicating ellipticity. Another caveat that one should have in mind when performing such
a beam width measurement, is that the axis along which the chopping edge travels through
the beam is generally not one of the major axes of the beam ellipse. If the measurement axes
were tilted with respect to the major axes by 45°, then the results would point to a perfectly
cylindrical shape, even though this is not the case. Thus the measurement with a chopper wheel
can only ever underestimate the ellipticity of the beam. If a beam is elliptical, this also means
that its focii do not have to coincide along the optical axis. For our purposes, the ellipticities of
the beams were small enough that we decided to neglect them.

Once the waist radii for different z are known, one can assess whether the beam is collimated
or diverges. For our purpose, we call a beam collimated if its waist size stays similar over the
length of the optical table. If it changes, we call the beam diverging. This is also indicates by
the Rayleigh length, which is the distance from the focus at which the waist radius has increase
by a factor of

√
2. The 1550 nm beams were found to have similar beam widths for distances

from the fiber outcoupler from 20 to 90 cm, so they are properly collimated. As examples,
W (z) values from 2.4 to 2.9 mm were found for the different amplifiers for different orientations,
corresponding to Rayleigh ranges of several meters.

The waists of the 1050 nm beams however were found to diverge, corresponding to Rayleigh
ranges of only ∼10 cm. Figure 5.3 shows the data taken in the horizontal direction for the
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Figure 5.2: Fit of oscilloscope trace according to equation (5.21) to obtain the beam waist
W (z) = 2.45 ± 0.05 mm. The error bar is determined by the uncertainty of measuring R. The
time axis was converted to position of the chopping edge using equation (5.23).
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Figure 5.3: Measured waist radii of the 1050 nm beam for the Raman beamlines in the horizontal
direction. At each distance z, multiple data points were taken. The error bars are determined
by the inaccuracy in measuring R. The diverging beam was fit according to equation (5.20).
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1050 nm amplifier of the Raman beamline. The data points were fit with equation (5.20), using
equation (5.18) for zR. This yields the waist radius at the focus W0 and the position of the
focus z0. The focii were found to be roughly at the position of the outcoupler, the waist radii at
the focus were 0.31(1) mm for the Raman 1050 nm beam in both directions, and 0.128(3) mm
(0.166(4) mm) for the repumping and cooling/detection 1050 nm beam in horizontal (vertical)
direction. The value in parentheses is one standard deviation. With these values, the Gaussian
beam is fully characterized, and its propagation through an optical system can be simulated,
which is described in the following subsection.

5.2.2 Gaussian beam propagation

A Gaussian beam is fully characterized by its direction of propagation, which we choose to be
along the z-axis, the position of its waist z0 along this optical axis and two more parameters.
These can be any two of its wavelength λ, the Rayleigh range zR, the waist radius at the focus
W0, the waist radius at position z, W (z), or the radius of curvature at position z, R(z), which
can be calculated interchangeably using equations (5.18), (5.20) or

R(z) = z

(
1 +

(
zR

z − z0

)2
)
. (5.25)

Once a Gaussian beam is fully characterized, one can calculate its propagation through a
system of optical components. As mentioned before, we set the z axis to be the optical axis.
In addition, the origin is set to the focus of the Gaussian beam, so x0 = y0 = z0 = 0. If we
know the wavelength λ, then the beam at position z is fully characterized by the complex beam
parameter, or q-parameter:

q = z + izR. (5.26)

By propagation through an optical component which does not change λ, the resulting beam
can be described by an ’output’ q-parameter q′ = z′ + iz′R. It is very important to note that z′

is now referenced to a different origin, which is now the new position of the focus if it has been
changed by the optical component. So the real part of the q-parameter always gives the position
relative to the Gaussian beams’ focus, irrespective of the position in the laboratory coordinate
system at which q describes the beam.

The output q′ is related to the ’input’ q by

q′ =
aq + b

cq + d
. (5.27)

a, b, c and d are constants determined by the optical system which the beam propagates through.
They are the components of the so-called ABCD-matrix M of the respective system:

M =

[
a b
c d

]
, (5.28)

which is usually known from the propagation in terms of ray optics [50]. Here we denote matrices
with an underbar. The ABCD-matrices for some general optical components are the following:

• Propagation over a distance d:

M
(prop)
d =

[
1 d
0 1

]
. (5.29)
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• Propagation through a thin lens with focal length f :

M
(tl)
f =

[
1 0
− 1
f 1

]
, (5.30)

where f > 0 means the lens is convex, whereas it is concave for f < 0.

• Refraction at an interface between materials with refractive indices n1 and n2:

M(refr)
n1,n2

=

[
1 0
0 n1

n2

]
. (5.31)

• Propagation through a larger system of N components is then described by a single matrix
which is the product of the ABCD-matrices of each individual component:

M(1,2...N) = M(N) · · ·M(2)M(1). (5.32)

Accordingly, the propagation through a telescope like the one used in this experiment, i.e.
two thin lenses separated by air, is given by

M
(a)
f1,f2,d1,d2,d3

= M
(prop)
d3

M
(tl)
f2

M
(prop)
d2

M
(tl)
f1

M
(prop)
d1

, (5.33)

where d1 is the distance before the first lens (focal length f1), d2 is the distance between the two
lenses, and d3 is the distance after the second lens (focal length f2). For convenience, we call
this system (a).

System (b) is then propagation through the same telescope, but appended with refraction
into a different material, which for us is the PPLN crystal, and propagation over the distance d4

within that material:

M
(b)
f1,f2,d1,d2,d3,d4,n1,n2

= M
(prop)
d4

M(refr)
n1,n2

M
(prop)
d3

M
(tl)
f2

M
(prop)
d2

M
(tl)
f1

M
(prop)
d1

. (5.34)

We can thus simulate which combination of parameters di and fi leads to the desired waits size
in the crystal, optimizing the focusing parameter ξ (cf. section 5.1). Using the same parameters
for system (a), we can find at which distance from the second lens the focus will be in free space,
i.e. before the crystal is put into place. This prediction can then be used to set up the beam
line in this optimal way. Simulating until the free space focus in addition to the focus in the
crystal is necessary because they are not at the exact same location. This means inserting the
crystal into the beam path shifts the focus by a non-negligible amount, which has to be taken
into account when placing the crystal so that the focus is centered along its length. Note that
the waist radius stays the same, irrespective of the medium’s refractive index.

Figure 5.4 shows the propagation of the 1050 nm Raman beam through systems (a) and (b),
simulated with Wolfram Mathematica. The parameters are chosen in order to yield an optimal
focusing parameter in the nonlinear crystal, which for a 4 cm crystal length corresponds to a
waist radius of 47 µm. The beam diverges already from the outcoupler to the first lens. The first
lens has a focal length of f1 = −100 mm, expanding the beam even further. The second lens has
focal length of f2 = 100 mm, focusing the beam to the optimal waist after around 20 cm. With
the crystal placed such that the focus is centered along the crystal length, the focus is located
about 1 cm further away from the second lens than the free-space focus. This particular choice
of lenses was made for several reasons: Focal lengths should be a least 75 mm in order to reduce
aberrations. Also, they should be available as stock items. The increased focal lengths had two
other advantages: The effective focal length of the telescope arrangement was large enough to
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Figure 5.4: Propagation of the Gaussian beam from the outcoupler of the 1050 Raman amplifier
through the two lenses of the telescope. a) Propagation in free space with corresponding output
parameters. b) Propagation through free space into the crystal. The focus in the crystal (see
inset) has the same waist radius as the free space focus, but it is shifted by about 1 cm.

allow a geometrically convenient beam layout, and the sensitivity of the focal spot size to the
distance between telescope lenses was reduced, allowing for easier optimization.

Similar simulations were performed for the other beams involved in the two SFG beamlines.
For the 1550 nm telescopes, lenses with the same focal lengths were chosen, which focus the beam
down to a target waist size of 58 µm after a distance of about 40 cm. Having this estimated
optimal lens placement, in principle the setup can be built accordingly. In practice however,
this was an iterative process of laying out the components such that the focii are in the same
location, measuring the distances between components and recalculating the parameters until
a satisfying layout was found. Especially for the diverging 1050 nm beams, the distance from
outcoupler to the first lens has an influence onto the beam waist even when the distance between
lenses remained fixed.

5.2.3 Set up procedure

In the following, the procedure of setting up one SFG beamline is described in detail. For
reference, figure 5.5 shows the final setup of the Raman SFG beamline.

As mentioned before, setting up was performed with laser beams where the majority of the
power was split off and dumped with a HWP and a PBS, so that the power was reduced for
alignment. Also, the mirrors were set up first whereas the telescopes were put into place later.
The beam path for one of the two beams was set up first. Knowing where the telescope will
be placed then fixes the position of the focus. The second beam path is then set up in order
to allow the second telescope on its 3-axis translation stage (OptoSigma TSD-403) to be placed
in such way that the second focus in the same position as the focus of the first beam. For the
telescopes, enough space is left to be able to correct for small deviations from the simulation
results. With the mirrors in place and the telescope placement planned, the exact distances
between components were measured again and the beam propagation re-simulated. In case a
different placement was necessary, the previous steps were repeated iteratively until both focii
can in principle be set to the same position with the correct spot size. Once every component
except the telescopes was in place, both beams were walked in order to overlap them after a
dichroic mirror. First, this was performed by eye using fluorescence cards. While doing this,
care was taken to keep the beams close to the center of the mirrors. Precise overlapping was
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Figure 5.5: Picture of the experimental setup for one of the Raman SFG stages. Polarizing beam
splitters (PBSs) allow for controlling the power that is sent through the setup, even with fixed
amplifier gain. Telescopes focus the beam to the desired waist size in the non-linear crystal. The
crystal is heated by an oven with small entry and exit slits. Dichroic mirrors are used to overlap
both IR beams, and after the crystal to separate 626 nm light from the unconverted IR light.

performed with a chopper wheel: Using dichroic mirrors, both beams were focused onto separate
photodiodes, whose outputs were monitored on different channels of an oscilloscope. A chopper
wheel in the beam path then produces rising/falling edge signals as in figure 5.1, for both channels.
In these signals, the relative position of the beam centers in the chopping plane corresponds to
relative timing of the rising/falling edge signals. Thus, both beams are overlapped when the
turning points of the rising or falling edges of both channels coincide. Vertical and horizontal
alignment was adjusted in positions close to and far from the beam-combining dichroic mirror
iteratively, until no temporal shift of the rising and falling edges was visible anymore.

When the beams were optimally overlapped, the first telescope was put into its place. Care
was taken to let the beams pass through the lens centers in order to avoid aberrations. This was
optimized by overlapping both beams again, this time using only the telescope’s lens adjustment
screws. The second telescope was then placed in the same way. Also, in each beam path a HWP
was placed to allow for optimization of the electric field polarization at the nonlinear crystal.

Using the chopper wheel again, the positions of both focii were found by searching for the
fastest rise time of each signal. The previous simulation of the Gaussian beam propagation
ensured that both were positioned close enough to each other to perform adjustments by shifting
the telescopes without the need to re-build the complete beam path. The waist radii were
estimated with the rise time method (cf. equation (5.24)) and the distances between the lenses
in both telescopes were adjusted until the desired waist size was achieved. This also required
slight adjustment of the telescope position with its translation stage, since the distance between
both telescope lenses influences the telescope’s effective focal length.

With both beams overlapped, the focii in the same position and having the desired waist
radii, the crystal oven (Covesion PV40) was put into position. The crystal (Covesion MSFG626-
0.5-40) was put into place, accounting for the shift of focal position by refraction at the crystal
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interface (cf. subsection 5.2.2). After the crystal, two dichroic mirrors which reflect only 626 nm
light were placed in order to separate the light at the sum-frequency from the unconverted IR
light. At first, the crystal oven was kept open, and very low optical power was shone onto the
crystal. Using an IR viewer which is sensitive to 1050 nm light (Electrophysics ElectroViewer
7215) and a 5-axis translation stage (New Focus 9081), the crystal was positioned such that the
focused beams pass through one of the crystal lanes properly. The different lanes of the PPLN
crystal exhibit slightly different poling periods, which then require different crystal temperatures
for quasi-phase-matching (cf. subsection 5.1.2). The oven was now closed, the crystal heated to
this optimum temperature (oven controller Covesion OC2) and the optical power increased for
both beams to about 1 W. When the crystal lane was found properly, some red light was now
visible after the two dichroic mirrors. The red light at 626 nm was measured with a power meter,
which allowed for optimization of the conversion efficiency.

Optimization of the conversion efficiency is described in the following. Since one beam is used
as reference beam, its degrees of freedom were not optimized. Instead, the 5 axes of the crystal
translation stage, the 3 axes of the telescope translation stage of the beam which is not used as
reference, the lens adjustment screws of said telescope and the mirrors in this beam path were
used as one set of degrees of freedom to optimize. This set was optimized alternatingly with the
crystal temperature, whose optimum changes with different alignment. After several rounds of
optimization, the change in output power with further rounds became small enough that this
optimization was stopped. For the cooling/detection beamline, the distance between the lenses
in the non-reference beam, which changes the waist radius at the focus, was also optimized. This
implies changing the distance, multiple rounds of optimization as described before, and finally
comparing with the output power that was obtained with the previous configuration. From this,
we found that the optimum waist size at the focus agrees with the value found by Lo et al. [29].

Now the optical power of the IR beams was increased further. Care was taken to avoid
abrupt changes of input power, to avoid breaking the crystal due to thermally induced stress.
With increased input power, changing the alignment did not improve the conversion efficiency
further. However, the optimum temperature changed, as will be further discussed in section 5.3.

5.3 SFG Results

After set-up and optimization as described in subsection 5.2.3, the cooling/detection SFG stage
was characterized. The output power was measured as a function of input power product and
temperature. The respective results are presented in subsections 5.3.1 and 5.3.2. The Raman
SFG beamline was optimized to similar efficiencies, but was not characterized in detail.

5.3.1 Efficiency

Figure 5.6 shows the 626 nm output power of the cooling/detection SFG stage as function of input
power product P1050 × P1550 as red triangles. For this data, the conversion efficiency calculated
according to equation (5.16) is shown as blue circles. The fact that the efficiency drops with
input power product can be attributed to the effect of absorption-induced heating, which locally
changes the mode in the crystal away from its optimal shape [29, 68]. For this beamline, the aim
was to produce at least 1.5 W 626 nm power with an input power product of 3 W×5 W = 15 W2.
This was achieved, and with the laser amplifiers delivering up to 10 W× 10 W = 100 W2, there
is enough leeway for possibly increased power demand in the future. The efficiencies are similar
to the values found by Lo et al., which range from 3.5 to 3.1 %W−1cm−1 for input powers from
1 to 15 W2. This means that this setup achieves efficiencies as good as the best published result
in literature. However, as will be discussed in subsection 5.3.2, the setup was later re-optimized
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Figure 5.6: Red triangles: 626 nm output power of the cooling/detection SFG stage, as function
of input power product. No realigning was performed after changing the input power, but the
crystal temperature was reoptimized. The found optimum temperatures are plotted in figure
5.7. Blue circles: conversion efficiency calculated according to equation (5.16). The efficiencies
are as good as the values obtained by Lo et. al.
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Figure 5.7: Experimentally found optimum crystal temperatures for the same input powers as
the data in figure 5.6. The outlier at P1050 × P1550 = 2 W2 might be due to insufficient thermal
equilibration during the measurement process.

for improved beam shape, which reduced the conversion efficiency. Also, it should be noted that
the input powers were measured only with limited accuracy. The procedure for this was the
following: With a power sensor in front of the crystal, the HWP before the initial PBS was set to
yield a number of desired powers at the sensor, and the corresponding HWP angles were noted
down. The power sensor was only removed when the incident power was turned low enough to
not induce too much thermally induced stress onto the crystal when subjecting it to the laser
beams abruptly. Then, the HWP was again set to the angles of the respective input powers to
take the measurements.

For every data point, the alignment was not changed. However, the temperature was adjusted,
whose optimum values are plotted in figure 5.7. The dependence of conversion efficiency on crystal
temperature is discussed in the following subsection.

5.3.2 Optimum temperature

Figure 5.7 shows the optimum crystal temperature for the input powers as plotted in figure 5.6.
The overall trend is that the optimum temperature decreases with input power product, which
can be explained by the bulk crystal temperature needing to balance absorption-induced heating
by increased input power. Only the data point at P1050×P1550 = 2 W2 deviates from this trend,
which might be due to a complex interplay of alignment, quasi-phase-matching and absorption-
induced heating. Then again, insufficient thermal equilibration during the measurement process
is a simpler explanation.

So far, the beamline has always been optimized with regards to output power. However, the
alignment which maximizes output power does not necessarily optimize the output beam shape.
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Figure 5.8: Beam profile of the cooling/detection 626 nm output after optimization for output
beam shape.

Tobias Sägesser performed realignment while simultaneously monitoring the beam shape on a
beam profiler. Optimization by eye towards an approximately Gaussian shape yielded a beam
profile as shown in figure 5.8. Whilst doing so, the output power decreased from previously
180 mW at P1050 × P1550 = 1 W2 to 130 mW for the same input power. However, this step is
necessary since the 626 nm light will have to be coupled into an optical fiber for transport to
the 626 → 313 nm doubling cavities, and the loss through inefficient fiber coupling caused by a
non-Gaussian beam shape presumably is higher than the decrease in power by realignment.

For the realigned beam, the dependence of 626 nm output power on crystal temperature
for P1050 × P1550 = 1 W2 input power is plotted in figure 5.9. No realignment was per-
formed in between different data points. The orange curve is a fit according to the model
P626 = A sinc2 (w(T − T0)) +B to represent the factor sinc2

(
∆kL

2

)
(equation (5.14)) introduced

in subsection 5.1.2. The constant B was included to account for spurious SFG conversion even
when quasi-phase-matching predicts zero output power. The reason for this effect might be
imperfect alignment, which relaxes the strict analytical result. We find that the full width at
half maximum (FWHM) of the fitted curve is 1.01 °C. The fit matches the experimental data
well, except for the side lobes on the lower temperature side, which are much weaker and ap-
pear for lower temperatures in the experimental data, which has been observed before [69]. The
reason for this might be a change of alignment with crystal temperature, which does not have
to be a symmetric effect. Another reason is the non-trivial dependency of the argument of the
sinc2 function on temperature: ∂

∂T (∆kL) = L∂∆k′

∂T + α∆k′L (equation (5.15)) [64]. As soon as
∂∆k′

∂T varies over the temperature range of interest, ∆kL
2 is not anymore only linearly dependent

on temperature, and the fit function does not represent the physical model. Also, we did not
measure the exact wavelengths of the input and output beams, from which ∆k′ can be inferred.
Knowing α, ∆k′ and L, the fit result would allow to calculate an estimate for ∂∆k′

∂T .
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Figure 5.9: 626 nm output power of the cooling/detection SFG stage as function of crystal
temperature. No realignment was performed after changing the crystal temperature, the input
power was P1050 × P1550 = 1 W2. The resulting curve roughly agrees with the sinc2 shape
predicted by equation (5.14). The asymmetry might be due to slight misalignment caused by
thermal expansion.
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(a)

FWHM = 1.5 kHz

(b)

Figure 5.10: Beat note central peak between both lasers in the locked state observed at 626 nm.
The span is 10 kHz. (a) Single sweep. (b) Average over 100 sweeps. Whilst taking the measure-
ment, the beat note central peak observed at 1550 nm looked similar to figure 4.8.

5.4 Observing beat note at 626 nm

Using both SFG beamlines that have been set up, the influence of the SFG stages on the beat
note between both Raman seed lasers in the locked state can be observed. Since the two SFG
stages are not the two Raman stages next to each other (cf. figure 2.2), the light of the 1050 nm
Raman seed laser has been split up to be input to both 1050 nm amplifiers. The two locked
1550 nm seed lasers have been connected such that they provide the input for the two 1550 nm
amplifiers which are part of the built SFG stages. Then, the 626 nm light from both SFG stages
was overlapped with a non-polarizing beam splitter and focused onto a photodiode (Thorlabs
PDA10A-EC). The lock was set to a gain in between the values for figures 4.7a and 4.7b, and
the beat note center peak in the locked state at 1550 nm was similar to figure 4.8. While in
this state, the beat note center observed at 626 nm is presented in figure 5.10. Note that the
shown span is 10 kHz. (a) shows the signal for a single sweep, which exhibits many sharp peaks
corresponding to fast fluctuations. (b) shows the same signal, but averaged over 100 sweeps.
There, the sharp peaks average out and the lineshape is more defined. The signal resembles a
Lorentzian peak which is truncated at about half its maximum. Saturation as reason for this
truncation was ruled out, since the single sweep signal includes higher voltage spikes, and also the
reduction of optical power incident to the photodiode did not change the lineshape. The FWHM
of this peak is 1.5 kHz, corresponding to ∼100 times broadening compared to the beat note
at 1550 nm. Various reasons might be the cause for this broadening and the fast fluctuations.
The most prominent is vibrations of the table on which the optical setup is placed because it
is not vibration isolated yet. These vibrations lead to path length fluctuations, which manifest
themselves as phase noise. This specific setup is especially prone to this source of error, since
the two SFG beamlines are located at opposite ends of the optical breadboard. Acoustic noise
from nearby fans might enter through a similar effect. Also the optical fibers connecting the
seed lasers to the amplifiers are close to the amplifier fans. A last note is that the laboratory
where the setup was located during the measurement is not temperature-stabilized. However,
the time-scale of the fast fluctuations seems to fast to be attributed to temperature fluctuations,
since the time for one sweep was only 3 seconds.

This measurement will be repeated with the setup in the final laboratory, where it is on a
vibration isolated table, with less acoustic noise around and in a temperature-stabilized environ-
ment. Also, the relevant measurement would be to test the influence of the two Raman SFG
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stages, which will be located right next to each other instead of being on other ends of the opti-
cal breadboard. If the beat note signal then still exhibits similar fluctuations and broadening, a
scheme for feedback at 626 nm might have to be devised.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

The laser setup for a Penning trap experiment with 9Be+ ions requires two Raman laser beams
separated by ∼100 GHz, which are phase-stable with respect to each other. Deriving both from
the same source is challenging so instead, two separate sources are used and stabilized with
respect to each other. As first part of this work, the frequency stabilization of two seed lasers
for Raman beams was implemented with an optical phase-locked loop. The loop was modeled
in terms of control theory and its limits were identified, leading to optimization by addition
of high-frequency phase lead and minimization of signal propagation delay. The loop is highly
phase-stable with a beat note HWHM of 9 Hz. The maximum loop bandwidths were found to be
about 2.1 MHz with fiber-optical connections, and up to 2.7 MHz with a free space test setup.
Shortened optical fiber components are ordered and are expected to yield an intermediate result.

Since all relevant transitions of the Beryllium ion are at 313 nm and especially the Raman
beams are required to carry high power, the laser setup uses IR equipment from the telecommuni-
cations industry and nonlinear optical processes to generate UV light. Sum-frequency generation
of 1050 nm and 1550 nm light creates a stream of photons at 626 nm, which is subsequently con-
verted to 313 nm by cavity-enhanced second-harmonic generation. As second part of this work,
two beamlines for sum-frequency generation were set up and optimized. One of them was charac-
terized in terms of conversion efficiency depending on input power and crystal temperature. The
efficiencies of 4.4-2.9 %W−1cm−1 were found to be consistent with previously published results
[29]. Finally, the beat note from two phase-locked seed lasers as in the first part of this thesis was
observed at 626 nm after propagation through the two sum-frequency generation beamlines. The
spectrum exhibits vastly increased phase-noise, which is mainly attributed to the uncontrolled
environment of the temporary laboratory.

6.2 Outlook

The next immediate steps after this work will be to set up the two remaining SFG stages in a
similar fashion. Also, a 235 nm laser system for ionization of the neutral Beryllium atoms will be
installed. For the already existing SFG stages, the cavity-enhanced second-harmonic generation
stages yielding 313 nm light can be installed as well. The repumping and cooling/detection beams
will be frequency-stabilized to an absolute reference, such as a cavity via the Pound-Drever-Hall
locking scheme [36]. Locking to a transition of molecular iodine [70] seems unfeasible due to fact
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that the magnetic field has shifted the 9Be+ transition lines away from strong enough iodine
transitions at 626 nm.

As mentioned in section 5.4, the stability of the phase lock for the Raman lasers after SFG
will be measured again in the final laboratory environment. Depending on the outcome, an
additional or alternative locking scheme might be necessary. This could include feedback based
on the beat note detection at 626 nm, having the advantage that phase fluctuations introduced
over the course of the SFG stage would be counteracted. If the feedback is still applied to the seed
laser, the signal propagation delay until detection would greatly increase, leading to a decrease
in loop bandwidth. On the other hand, feedback onto an AOM in the beam path at 626 nm
decreases the delay. EOMs would most likely not be suitable due to their limited power handling
capability. However, an additional component in the beam path would introduce additional loss,
so that loop bandwidth and losses would have to be balanced against each other.

Also, the influence of the servo bumps in the experiment will have to be examined at a later
point. This can be done by changing the main gain of the control filter, which shifts the position
and strength of the servo bumps, while maintaining proper calibration of the power in the central
peak. Then, the state fidelities after quantum operations involving Raman transitions can be
compared and evaluated. If no satisfying gain setting can be found, the loop bandwidth and
thus the frequency from central peak to servo bump can be increased with a double-loop OPLL
configuration as mentioned in subsubsection 2.3.2.1. Maybe even a complete alternative like
optical injection locking might be necessary.

In general, after the full experimental apparatus of the Penning experiment including the
superconducting magnet, cryogenic vacuum chamber, surface trap, Beryllium oven, light delivery,
imaging and control system has been set up, the work on loading the first ions can begin. Once
a single one is reliably and stably trapped, the trap can be characterized in various aspects.
There, one important experiment that stands out is to measure the ion heating rate, not only at
a single position but at varying height above the trap surface. This might give further insight
into the anomalous heating rate [22, 23], since Paul traps inherently do not allow trapping and
thus heating rate measurements without strong RF fields.

The next goal after this is to trap two ions in separate potential wells. Here, the fundamental
difference to Paul trap experiments is that the ions are chained along the radial direction. This
then paves the way for larger 2D arrays of microscopic Penning traps, each trapping single ions.
The ions might be arranged in variable lattices, allowing to study spin-spin interactions with
quantum simulations [26]. However the ultimate vision would be to combine the ability to trap
40Ca+ ions in a 2D array with single-ion addressing via integrated optics [71, 72] to realize
scalable quantum computing.
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