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Abstract

Master’s Thesis

Single-ion addressing using crossed acousto-optic deflectors

by Hendrik TIMME

This thesis presents the characterization of a single-ion addressing setup for trapped 40Ca+ ions.
Quantum computers have the potential to provide exponential speedup for certain problems, and
error correction is crucial to achieving this. Bosonic codes are a promising class of error-correcting
codes that can be implemented in trapped ions. To scale up the system to several ions and reach
the break-even point in error correction, individual addressing of ions and high Rabi frequencies are
essential. In this work, we characterize a single-ion addressing setup using crossed acousto-optic
deflectors. We also determine the spot size, operational crosstalk, and beam-pointing error. Our
measurements show a horizontal beam waist of less than 2 µm and operational crosstalk of less than
10−3 for ions that are 5 µm apart. We develop a model describing fluctuations in the beam position
to show that the beam deviates by 13 nm. We also adapt an algorithm to determine the aberrations
using an ion to image the laser beam. Our results show that it is a viable system to do fast single-ion
addressing with the potential to be used in bosonic encodings in trapped ions.
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1 Introduction

Richard Feynman and Yuri Manin introduced the concept of utilizing quantum mechanics for com-
putation [1], [2]. Due to its potential advantages in factoring integers [3], unstructured search [4], and
simulating quantum mechanical systems researchers have since dedicated much effort to building a
quantum computer. Various architectures for encoding quantum information, referred to as qubits,
are being pursued, including superconducting circuits, trapped ions, cold neutral atoms, NV centers,
and quantum dots. However, the challenge of dealing with intrinsically noisy qubits persists and re-
mains a major obstacle in realizing a fault-tolerant quantum computer. The no-cloning theorem rules
out the most naive method of encoding information, by copying bits of information, fundamentally
impossible [5].

To address this issue, several error-correcting codes have been proposed, with the simplest ones
being the three-qubit bitflip and phase-flip codes. Shor proposed a design that combines both codes
to correct arbitrary single qubit errors [6]. Another approach to utilizing ancillary qubits is surface
codes, defined on a 2D lattice of qubits.

Fundamentally different are bosonic codes. Instead of using 2-level systems as ancillary qubits, they
use a larger (theoretically infinite, in practice truncated) Hilbert space to encode information. One
example of a bosonic code is the GKP-code [7]. Using trapped ions as an architecture the ion’s
motional mode is used to encode information [8]. Although encoding information in GKP states,
error-correcting it [9], and performing arbitrary gates have been experimentally demonstrated, two
significant challenges must still be overcome: the break-even point for fault-tolerant encoding and
the demonstration of two-qubit gates for GKP states. Following on from the work [10] it has been
shown that we can do state-dependent forces necessary for implementing GKP codes at high Rabi
frequencies.

In this thesis, we present the work towards a single-ion addressing setup. By focusing the laser
beam driving the qubit transition tightly we can tackle both problems at the same time: A small spot
size means that the electric field amplitude, which is proportional to the Rabi frequency, will be high.
It also allows individual addressing of ions which is a necessary ingredient to perform a two-qubit
gate.

We will start the thesis in Chapter 2 by presenting the necessary theoretical frameworks to under-
stand the individual addressing of ions. We will show how a Calcium ion can be used as a qubit. We
then derive the interaction between ions and light focusing on aspects important for understanding
the addressing of the optical transition used as a qubit. We describe a Gaussian beam and how it
propagates. We then show how light and acoustic waves interact in a crystal to understand the com-
ponent used to steer the beam, an acousto-optic deflector.

Chapter 3 will present the work done in aligning and characterizing the experimental setup. We
will start by describing the experimental setup and the design choices while building it. We rely
heavily on Ralph Berner’s work [11] who designed and build the addressing setup. We then show
measurements of the polarization depending on the radio frequency applied to the acousto-optic
deflectors and measure the beam waist of the focused beam to evaluate whether it can be used to
address ions individually.

Chapter 4 will present the work done in situ. We will briefly present the experimental setup and
then describe the procedure on how to address ions. We show how we can image the laser beam
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and then use the same technique to calculate a ratio between frequencies applied to the steering
AODs deflectors and the distance that will move the focused spot in the trap. We also show how the
imaging technique could be used to characterize aberrations in the system. We develop a model to
measure the beam-pointing error and use it to get an upper bound on the movement of the beam.
Finally, we measure the crosstalk between individually addressed ions.
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2 Theory

We will start with a description of the level scheme of 40Ca+ Calcium, and the necessary lasers to
address the relevant transitions. We then describe the optical readout. We describe a two-level sys-
tem interacting with an oscillating electric field, going into detail to describe the Rabi frequencies for
quadrupole-allowed transitions. We then give a short introduction to Gaussian beams and acousto-
optic effects.

2.1 Calcium ion as a qubit

FIGURE 2.1: Level scheme for 40Ca+ at 4.8 G cal-
culated using the spectrum obtained, see figure 4.6.
Zeeman splitting is given in ω

2π . Calculated using ta-
ble 3.2 in [12].

The addressing system will focus the laser beam
driving the optical qubit transition of a Calcium
40Ca+ ion. An energy level scheme with rele-
vant transition and lasers that we use to drive
transitions in the ion can be seen in figure 2.1.
A 40Ca+ ion is singly charged with a single va-
lence electron. We use spectroscopic notation
n2S+1LJ to denote the energy levels where n
is the principal quantum number, S the spin
angular momentum, L the orbital angular mo-
mentum, J the total angular momentum and mJ

its projection onto the quantization axis. In a
Calcium ion, it is possible to choose Zeeman-
sublevels as a qubit system or choose an opti-
cal transition. Here we will use an optical tran-
sition. Because the D5/2 ↔ S1/2 transition is
dipole forbidden, the electron will couple to the
gradient of the electric field as a quadrupole
transition. This makes the coupling by a factor
(ka0)

2) weaker. It has a lifetime of τ ∼ 1.15s and
thus a linewidth of Γ ≈ 2π × 138mHz [13]. This
makes it a good candidate for the qubit states
|0⟩ and |1⟩. Transitions are allowed for ∆L = 2
and ∆mL = 0,±1,±2 depending on the angle
of the polarization and the magnetic field, see
2.3.1.

To read out the electronic state of the ion, we use the P1/2 ↔ S1/2 transition which will produce
fluorescence while driving the laser only when the qubit is in the |0⟩ state. Whenever we drive the
P1/2 ↔ S1/2 transition the state might also decay into the D3/2 manifold. During the readout we
also strongly drive the P1/2 ↔ D3/2 transition with a repumper that pumps the P1/2 ↔ D3/2 with
a wavelength of 866nm. In the same way, we might want to drive the P3/2 ↔ D5/2 so that the state
will decay into the S1/2. See figure 4.5 for a typical experimental sequence using all lasers depicted.

2.2 Thresholding and quantum projection noise

Here we follow the discussion in [14]. After collecting the fluorescence, we use histogram threshold-
ing to determine the population in each of the qubit states. See [15] for a reference going into detail.
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We measure the ion in states |1⟩ and |0⟩, as bright and dark states, respectively. During the detection
time τ, we measure a histogram H(n) of photon counts. For one ion, we will find the sum of two
Poissonian distributions for the state being bright or dark H(n) = S(n) + D(n), where

D(n) =
µn

De−µD

n!
(2.1)

S(n) =
µn

Be−µB

n!
. (2.2)

Here, µD and µB are the mean numbers of photons for the dark and bright states. The best threshold
to distinguish the two distributions is [15]:

nthresh =
µB − µD

ln (µB/µD)
(2.3)

We conclude that the final state is |1⟩ if the number of photon counts at the photomultiplier tube is
larger than nthresh , and |0⟩ if it is smaller.

We then repeat the experiment N times. The thresholding technique allows us to convert photon
counts to populations p(0) = pD and p(1) = pS which are probabilities that the qubit is in state |0⟩
or |1⟩. If after N experiments n trials returned the result |0⟩, we estimate the probability P(0) = n

N .
The uncertainty is the quantum projection noise [16]:

σP(0) =

√

P(0)(1 − P(0))
N

. (2.4)

This underestimates the uncertainty in two cases when p(0) ≈ 0 or p(0) ≈ 1. We can solve this by
applying Laplace’s succession rule and imposing a minimum uncertainty of [17]

σp(0) = max

{
√

p(0)(1 − p(0))
N

,
1

N + 2

}

. (2.5)

We will use this uncertainty for any measurement involving thresholding in chapter 4.

It is also possible to detect the states of more than one ion using thresholding of photon count dis-
tributions. For two ions, we fit the detection histogram with three Poisson peaks with means µDD,
µDB, µBB and then find two thresholds that distinguish the three distributions. We then obtain the
probabilities p00), p(01 + 10), and p(11), where p(01 + 10) is the sum of the populations of |01⟩ and
|10⟩. Although this works for two ion experiments, it is not possible to scale this approach to a larger
number of ions because the variance of a Poisson distribution with mean n is

√
n. For N ions, the

variances
√

N × µB for N bright ions will be larger than the distance between the peaks of the dis-
tribution, making readout impossible. Even for the case of two ion experiments, the larger variances
are already a leading source of error for readout [14].

2.3 Ion-light interaction

We want to describe the interaction of a trapped ion driven by a coherent light source. We will follow
the treatment in [18]. The Hamiltonian describing the ion interacting with a coherent light source is

H = Ha + Hm + Hint (2.6)

where Ha describes the internal states, Hm describes the motion of the atom, and Hint is the interac-
tion between the ion and the electromagnetic field.

We start by looking at the atomic part Ha. We want to restrict the Hamiltonian to a two-level. We
will assume that |g⟩ and |e⟩ are the relevant parts of the two-level quantum system with other parts
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far off-resonance from the addressing light. For a two-level system, we find

He =
h̄ω0

2
(|e⟩ ⟨e| − |g⟩ ⟨g|) = h̄ω0

2
σz (2.7)

where σz = |e⟩ ⟨e| − |g⟩ ⟨g|. Because the ions are trapped in a linear Paul trap their motion is de-
scribed by a harmonic oscillator

Hm =

(

a†a +
1
2

)

h̄ωm, (2.8)

where ωm is the frequency of the oscillator motion and a† and a are the creation and annihilation
operators. We will consider only one motional mode, the others will behave analogously.

To find the interaction Hamiltonian we can go to the dipole approximation, the case for the quadrupole-
allowed transitions is also covered in this way by considering the corresponding Rabi frequency for
quadrupole transitions. The dipole interacts with the electric field along z

E = E0 x̂ cos (ωLt − kz) , (2.9)

where E0 is the electric field amplitude and ωL the frequency of the light. The Hamiltonian describing
the interaction in the dipole approximation is then

Hint =
h̄Ω

2
(σ+ + σ−)

(

ei(ωLt−kz) + e−i(ωLt−kz)
)

(2.10)

where we have expressed x̂ · D as

x̂ · D ≡ ⟨e| x̂ · D| |g⟩ (|e⟩ ⟨g|+ | |g⟩ ⟨e|) (2.11)

= Ω (σ+ + σ−) (2.12)

with σ+ = |e⟩ ⟨g| and σ− = |g⟩ ⟨e| and the Rabi frequency Ω = − E0
h̄ ⟨e|x̂ · D|g⟩.

2.3.1 Rabi frequency

The Rabi frequency describes the frequency of the oscillations between the ground and excited states.
The matrix elements can be expressed as a function of the decay rate. See [12] for the full derivation.
For the dipole transition, they are

ΩDP =
eE0

h̄

(

3 (2je + 1) ΓDP
eḡ

4cαk3

)1/2 ∣
∣

∣

∣

∣

∑
m

(

je 1 jg
−me m mg

)

c
(m) · ϵ

∣

∣

∣

∣

∣

(2.13)

For a quadrupole-allowed transition, we can follow the same derivation with the Rabi frequency:

ΩQP =
eE0

h̄

(

15 (2je + 1) Γ
QP
eḡ

4cαk3

)1/2 ∣
∣

∣

∣

∣

∑
m

(

je 2 jg
−me m mg

)

∑
i,j

c
(m)
ij κiϵj

∣

∣

∣

∣

∣

. (2.14)

where the j and m components are angular-momentum quantum numbers, Γ
DP/QP
eḡ the decay rate,

and

α =
e2

4πϵ0h̄c
(2.15)

the fine structure constant. The final term gives the selection rule based on the Wigner 3-j symbols,
representing a number.

Following Appendix A.1 in [19] we can simplify the expression. Relating the Wigner 3-j symbols
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m ±1/2 ±1/2 ±1/2 ±1/2 ±1/2

m′ ±5/2 ±3/2 ±1/2 ∓1/2 ∓3/2

Λ (m, m′) 1
√

4/5
√

3/5
√

2/5
√

1/5

TABLE 2.1: Relevant specific Clebsch-Gordan coefficients, taken from Appendix A.1
in [19].

to the Clebsch-Gordan coefficients and using their properties we find

Ω =
eE0

2h̄

√

15Γ
QP
eḡ

cαk3 Λ
(

m, m′) g(∆m)(ϕ, γ) (2.16)

with g(∆m)(ϕ, γ) being a geometrical factor and Λ (m, m′) given in table 2.1. The geometrical fac-
tors are dependent on the angle between the magnetic field and the laser beam ϕ and between the
magnetic field and the polarization γ. They are:

g(0) =
1
2
| cos γ sin(2ϕ)|

g(±1) =
1√
6
| cos γ cos(2ϕ) + i sin γ cos ϕ|

g(±2) =
1√
6

∣

∣

∣

∣

1
2

cos γ sin(2ϕ) + i sin γ sin ϕ

∣

∣

∣

∣

.

(2.17)

We can maximize the Rabi frequency by addressing the S{1/2,1/2} ↔ D{5/2,5/2} transition and

choosing ϕ = γ = π
2 , so that Λ (m, m′) = 1 and g(∆m)(ϕ, γ) = 1√

6
. The maximal Rabi frequency on

the S{1/2} ↔ D{5/2} we can reach given an electric field E is then

Ω =
eE

h̄

√

5λ3Γ
QP
eḡ

64π3cα0
(2.18)

2.3.2 Solving the Schrödinger equation

We now go to the interaction picture by a unitary operation. We define U = e−iH0t/h̄ with H0 =
He + Hm and can transform the interacting part of the Hamiltonian using

H̃int = U†Hint U (2.19)

We find for the transformed Hamiltonian H̃int

H̃int =
h̄Ω

2

(

σ+eiω0t + σ−e−iω0t
) (

eiωLteiHmt/h̄e−ikze−iHmt/h̄ + e−iωLteiHmt/h̄eikze−iHmt/h̄
)

. (2.20)

We can simplify the expression further by the rotating-wave approximation. It is a good approxima-
tion for an atom that is weakly coupled to the electric field Ω ≪ ω0 with a laser frequency that is
tuned near resonance |ωL − ω0| ≪ ω0. The terms oscillating fast can then be averaged over and we
find

H̃int =
h̄Ω0

2

(

σ+e−iδteiη(ã†+ã) + σ−eiδte−iη(ã†+ã)
)

, (2.21)

where δ = ωL − ω0 is the detuning of the laser and ã = aeiωzt is the annihilation operator in the
interaction picture.

η = k
√

h̄/2mωz is the Lamb-Dicke parameter, which occurs after rewriting the electric field in terms
of creation and annihilation operators. It determines the coupling strength between the atomic and
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motional states of the ion. Going into the interaction picture we can write the state vector as

|ψint ⟩ =
∞

∑
n=0

Cn(t) |g, n⟩+ Dn(t) |e, n⟩ , (2.22)

where Cn(t) and Dn(t) are the time-dependent coefficients of the ground- and excited states and |n⟩
denotes the motional mode. We can then write the Schödinger equation as

[

Dn′(t)
Cn(t)

]

= Mn′ ,n

[

Dn′(0)
Cn(0)

]

, (2.23)

and solve it analytically

Mn′ ,n =





e−
i∆t
2

{

cos
(

Ω̃t
2

)

+ i ∆

Ω̃
sin
(

Ω̃t
2

)}

−i
Ωn′ ,n

Ω̃
ei(|n′−n| π

2 − ∆t
2 ) sin

(

Ω̃t
2

)

−i
Ωn′ ,n

Ω̃
e−i(|n′−n| π

2 − ∆t
2 ) sin

(

Ω̃t
2

)

e
i∆t
2

{

cos
(

Ω̃t
2

)

− i ∆

Ω̃
sin
(

Ω̃t
2

)}

,



 (2.24)

where ∆ = ωL − ω0 − lωz is the detuning from the lth sideband meaning l = n′ − n. Ωn′ ,n =

Ω0

∣

∣

∣

〈

n′
∣

∣

∣
eiη(a+a†)

∣

∣

∣
n
〉∣

∣

∣
is the Rabi frequency of the lth sideband. By detuning the laser resonantly

with the respective sideband we can couple to the motional states of the ion. Ω̃ =
√

Ω2
n′ ,n + ∆2

denotes the Rabi frequency detuned to the transition of a particular sideband.

2.3.3 Lamb-Dicke regime

We can now go to the Lamb-Dicke Regime which is valid when the size of the wave function of the
ion is small compared to the wavelength of the light. Then terms higher order in η are small and we
expand the Hamiltonian in first order

H̃int ≈ h̄Ω0

2

(

σ+e−iδt
[

1 + iη
(

ã† + ã
)]

+ H.c.
)

, (2.25)

where H.c. denotes a second term which is the hermitian conjugate of the first term in the brackets.
The Rabi frequencies of the carrier, red- and blue sideband in the first order are then

Ωcarrier =

(

1 − η2
(

n +
1
2

))

Ω0,

Ωrsb =
√

n η Ω0,

Ωbsb =
√

n + 1 η Ω0,

(2.26)

We can see that for a small Lamb-Dicke parameter, we need large Ω0 to drive fast sideband tran-
sitions. We can achieve that by focusing the addressing beam tightly, see section 2.5 because Ω0 is
proportional to the electric field.

2.3.4 Non-resonant addressing

If we address any transition off-resonantly the states will be shifted by the AC-Stark effect. We write
the Hamiltonian as

H̃Stark =
h̄δ

2
σz +

h̄Ω0

2
(σ+ + σ−) , (2.27)
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where δ = ωL − ω0 is the detuning. By going into the frame rotating with the frequency of light we
can eliminate the time dependence. We then find the eigenvalues of the system

EStark = ±

√

h̄2Ω2
0

4
+

h̄2δ2

4

≈ ±
[

h̄δ

2
+

h̄Ω2
0

4δ

]

for δ ≫ Ω0.

(2.28)

If δ ≫ Ω0 the light shifts the dressed states additionally by
Ω2

0
2δ [18]. When we drive the carrier tran-

sition on resonance the energy levels will split by ±Ω0
2 . This is called the Autler-Townes effect [20].

This shift must be taken into account whenever we want to drive any transition. Because it is depen-
dent on Ω0 this effect is generally larger for a dipole than for a quadrupole-allowed transition and
larger for the carrier than for sideband transitions. In our case we will reach Rabi frequencies Ω0
larger than 10MHz on the carrier, so the effect is also significant for sideband transitions.

Pe(t) =
Ω2

0

Ω2
0 + ∆2

sin2





√

Ω2
0 + ∆2

2
t



 . (2.29)

If the detuning is zero we record Rabi oscillations on the Carrier

pg(t) = cos2(Ω0t/2) (2.30)

=
1
2
+

1
2

cos(Ω0t) (2.31)

2.4 Laser cooling

Laser cooling has first been experimentally observed in 1978 [21]. Fundamentally laser cooling relies
on momentum exchange between the ion and photons. Most experiments performed on ions in this
thesis have utilized two laser cooling techniques, Doppler cooling, and EIT cooling. An ion at rest,
continuously driven by a laser beam, experiences the radiation pressure force

F(δ) = Γh̄k
Ω2

Γ2 + 2Ω2 + 4δ2 . (2.32)

An ion moving at velocity v experiences the laser frequency detuned as δD = −k · v. For δ < 0 the
ion scatter more photons towards the direction of the laser and is thus losing momentum along this
direction. On the other hand, the ion is also heating up due to random absorption and emission. This
gives us a theoretical limit for the temperature of the ion at which the effects cancel out:

Tmin =
h̄Γ

2kB
(2.33)

After Doppler cooling the ion, we can further reduce its temperature by applying EIT cooling. We
use a three-level Λ-system and drive one transition strongly with a σ+/−-polarized, detuned beam
to dress the atom such the AC-Stark shift is equal to the ion’s frequency. The polarization depends
on the state we want to prepare the qubit in so that we can use the same σ-polarized beam for both
EIT cooling and state preparation. This way we can increase the absorption on the red sideband. We
can thus theoretically find a cooling limit of

n̄ =

(

Γ

4δr

)2

, (2.34)

where δr is the detuning of the laser dressing the atom. See [22] and [23] for a full treatment of
EIT cooling and [24] for treatment of Doppler cooling. To cool to the ground state of the oscillator
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motion it is possible to drive the red sideband transition to exchange momentum between the ion
and light while driving the red sideband. This technique, called sideband cooling, was not used for
experiments presented in this thesis.

2.5 Gaussian beam

While plane waves can describe light with wavefront normals pointing in the direction of travel z,
their energy is spread out. To describe a laser beam, a better description is made by a wavefront
with small angles with respect to the z-direction. A Gaussian beam is such a solution to the paraxial
Helmholtz equation. For many lasers, it is a good description of the intensity distribution of the light.
The equations characterizing the Gaussian beam are the following. They describe the transverse
electromagnetic (TEM) mode. A good overview can be found on the Wikipedia page about the
Gaussian beam [25], in chapter 3 of [26] or any other optics book.

Ẽ(r, z) = E0
w0

w(z)
exp

( −r2

w(z)2

)

exp
(

−i

(

kz + k
r2

2R(z)
− ψ(z)

))

(2.35)

with
ψ(z) = arctan

z

zR
(2.36)

the Guoy Phase,

R(z) = y

[

1 +
z2

R

z2

]

(2.37)

the radius of curvature of the beam’s wavefronts at z and

zR =
πω2

0n

λ
(2.38)

the Rayleigh range. It describes the distance away from the focal plane at which the waist is increased
by a factor of

√
2.

Its intensity is given by the square of the electric field

I(r, z) =
|E(r, z)|2

2η
= I0

(

w0

w(z)

)2

exp
( −2r2

w(z)2

)

. (2.39)

We can see that the intensity is highest at the focus plane. The beam width can be derived from the
Helmholtz equation. It is

w(z) = w0

√

1 +
(

z

zR

)2

. (2.40)

It is minimized at the focal plane, where it is

w0 =

√

λz0

π
(2.41)

λ being the wavelength of the light. A Gaussian beam that is collimated, with Rayleigh range z0 →
∞, will be focused by a thin lens. The waist of the outgoing beam w′

0 is

w′
0 =

λ f

πw0
, (2.42)

where f is the focal length of the lens. For a given lens we can thus decrease the waist size of the
focused beam by increasing the waist of the incoming beam.
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2.6 Acousto-optics

FIGURE 2.2: Scheme of Bragg diffraction: Incident
light diffracts on an optical plane wave with wave-
length Λ when its angle of incidence θ satisfies the

Bragg condition. Figure taken from [26]

AODs are acousto-optic devices, which diffract
light on sound waves in a crystal. Bril-
louin first predicted this in 1922 [27]. Their
operation is characterized by Bragg scat-
tering which was experimentally discovered
in 1932 [28]. The energy and momen-
tum of the photons of the incoming laser
beam and the phonons of the sound waves
produced by the radio frequency signal in
the crystal determine the scattering process
[29].

A piezo-electric transducer is bonded to a crys-
tal. In the device, we will use it, is TeO2. By
applying radio frequency to it, the piezo ele-
ment will generate an acoustic wave that travels
through the crystal. We will give a short deriva-
tion following chapter 20 in [26]:

We model the light as an optical plane wave at frequency ν and wavelength λo = co/ν. When
propagating through a medium its wavelength is modified by the refractive index λ = λo/n. The
corresponding wavenumber is k = nω/co, and the wavevector k lies in the x − z plane. This means
it has an angle of θ with the z axis, as shown in figure 2.2. Since the acoustic frequency f is usu-
ally in the megahertz regime and the optical frequency ν in the terahertz regime, we can use the
adiabatic approach to describe the light-sound interaction. Assuming that the crystal is rectangular,
the acoustic waves created by the piezo element will change the refractive index n in a static cosine
pattern:

n(x, t) = n − ∆n0 cos (Ωst − qx) , (2.43)

where ∆n0 is the amplitude of the perturbation, Ω the frequency and q the wave number. We can
then calculate the reflectance by assuming it is approximately constant in a thin layer of the crystal
(compared to the wavelength of the acoustic wave) and integrating it over slices of the crystal. The
resulting reflectance r has two contributions r = r+ + r− with

r± = ±ir0 sinc
[

(2k sin(θ)∓ q)
L

2π

]

e±iΩst, (2.44)

where L is the overall length of the crystal and r± being plus- and minus first-order diffraction. At

2k sin θ = ±q (2.45)

the Bragg condition is met and we maximize the diffraction efficiency. For large crystals the peak
around the maxima is narrow. That means it is useful to have the option to optimize the angle of the
light between the incoming light and the acousto-optic device, which informed the design process
of the addressing setup. We can define the Bragg angle θB = sin−1 q/2k and rewrite the Bragg
condition:

sin θB =
λ

2Λ
, (2.46)

where Λ is the wavelength of the acoustic wave. We can also see that when the Bragg condition
is met that the light will acquire an additional phase. Written using wavevectors we can write the
Bragg condition also as conservation of momentum:

kr = k + q, (2.47)

where kr is the wavevector of the reflected light wave. That means the frequency of light will be
shifted by the frequency of the soundwave. Depending on the sign of the shift we call the interaction
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plus or minus first-order diffraction.

While until now, we have assumed that the crystal is isotropic, meaning that the sound wave travels
longitudinally, the actual crystal in the AOD is anisotropic. That means that the polarization of the
light will not stay constant so the refractive indexes will be different for the incoming and outgoing
beams. That means the acoustic wave will travel in a shear mode [30]. This will increase both the
acoustic as well as the optical bandwidth.

Two commonly used devices using this effect are acousto-optic modulators (AOMs) and acousto-
optic deflectors (AODs). The difference between an acousto-optic modulator and a deflector lies in
the choice of crystal and the speed of sound in it. While for the AOD we use, the material-acoustic
mode-velocity is 650 m

s [31] a comparable AOM has a material-acoustic mode-velocity of 4200 m
s [32].

Thus AOMs have a faster rise time, while AODs have a wider diffraction angle, making AOMs well-
designed to modulate the frequency of light and shape pulses, while AODs are better at deflecting
light over a wider angle for the individual addressing of atoms over a larger area or use as an optical
tweezer.
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3 Characterization of addressing setup

3.1 Overview over the single-ion addressing setup

In this section, we will describe the optical setup. It was designed for the following goals:

• a small spot size (smaller than 3 µm beam-waist) to minimize crosstalk and allow single-ion
addressing. Given enough input power, this also allows driving of fast Rabi oscillations even
on motional sidebands.

• beam spot must be controllable along horizontal direction without changing in frequency and
intensity, the addressing range must be large compared to the spot size

• possibility to produce two spots at the same time.

• allows for imaging of the ions along the same axis as the incoming qubit laser.

FIGURE 3.1: Schematic drawing of the setup for characterizing the addressing setup. The light coming from
the test laser goes through two wave plates. These change the polarization such that the following acousto-
optic deflectors are maximally efficient. The setup and characteristics of the AODs are explained in section 3.3.
After being diffracted by the AODs all but one diffraction order is blocked. Directly after, the telescope system
magnifies the beam. It is described in 3.2. The second set of wave plates allows the change of polarization after
the AODs to address the chosen qubit transition. The final objective focuses the light onto the camera. Later on,
we will replace the last mirror with a dichroic mirror and shine the beam on the ions instead of the camera see

section 4.1.

Ralf Berner and Stephan Welte designed the telescope system for the addressing light before my
arrival. Their work can be found in the internship report by Ralf Berner [11]. Figure 3.1 shows a
scheme of the telescope system and figure 3.2 shows a CAD rendering.

3.2 Telescope system

To produce a small spot we use an objective with a high numerical aperture (NA). To minimize the
spot size in the focal plane, the telescopes magnify the beam to be as large as possible before the
objective. One limiting factor is the amount of clipping of the Gaussian beam on the aperture of the
objective. The more we clip the more we see an Airy distribution of the intensity around the focus.
Hector Cruz showed that for a ratio of the aperture radius a to the beam waist of ω0

a
ω0

> 2.3 the
intensity ripples of the fundamental Hermite-Gaussian are < 1% [33]. We will aim for a ratio in this
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regime. Another constraint is the addressing range, which is dependent on the angle of the beam at
the objective.

In our setup, we use an inverse Galilean telescope behind an inverse Keplerian telescope. This

FIGURE 3.2: Render of the two AODs on the top of the 6-axis stage and the telescope setup.
On the left, we see the two AODS on a stage that can be translated along all three dimensions
and rotated around the axes in red. On the cage system, we see an iris to block all diffraction
orders that are not used, followed by the Keplerian and Galileian telescope. At the end of
the telescope, a mirror reflects the beam toward the ion trap. Designed and rendered by Ralf

Berner.

choice was made with the following constraints in mind:
We assume that we will use a collimator that produces a beam with a waist size of ca. 8mm. For
a given telescope the relationship between magnification power MP and focal lengths f as well as
incoming and outgoing angles α is given by:

1
MP

=
f1

f2
=

αout

αin
(3.1)

The outgoing angle of the telescope corresponds also to the incoming angle at the objective. This
means that the outgoing angle influences the addressing range. To produce a small enough spot size
we need a telescope with a magnification power MP of

MP = 15, (3.2)

see [11]. We want to benefit from the wide field of view of a Keplerian telescope while also shorten-
ing the system by using a Galileian telescope for the major part of the magnification. In principle, it
would be possible to use a 4f system to produce a magnification of MP = 15. If we consider using
a lens with focal length f1 = 100mm we can see that the total setup would be longer than 2m and
would have to be folded using mirrors. By using a double telescope setup we can fit both telescopes
in one cage system. This aids in aligning the telescopes as well as finding a spot on the optical table
near the vacuum chamber.

A dichroic mirror makes the imaging and addressing along the same path possible, see figure 4.1
for a scheme of the whole setup. The imaged light of the Calcium ions at 397 nm will go through the
mirror to the imaging system. The mirror reflects the addressing light of the 729 nm laser coming
from the other side. Using an additional mirror the telescope system is then parallel to the imaging
system of the measurement beam. The description of the overall setup will happen in section 4.1.
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3.3 Acousto-optical deflectors

FIGURE 3.3: CAD-model of the AODs on the mount.
Design and render by Ralf Berner.

To control the position of the beam along the
trap axis we use acousto-optic deflectors. We
use the model DTSXZ-400-730-020 by AA opto-
electronics.

The model DTSXZ-400-730-020 is a combi-
nation of two AODs that are aligned with
an angle 90◦ with respect to each other.
To align it with respect to the laser beam
we mount it on a TSD-605C translation ta-
ble by Opto Sigma. This way we can
translate the AODs along all three dimen-
sions. It has travel distances of ±6.5 mm
in x- and y- and ±5 mm in z-direction. It
has a load capacity of 15kg. This al-
lows us to mount additional elements on
top of it to also align the angle of the
AODS.

To do that we mount a rotation table for both
the x- and y- directions. We choose model RS
(KSP-406MR) and model KSP-656M-M6 RT by
Opto Sigma for the x- and y-direction respec-
tively. This gives us the ability to rotate the
AODs to align the beam such that we maximize
the output power by maximizing the diffraction efficiency. Additionally, we mount a Goniometer
stage, model GOHT-40A40BMS. This will let us align the horizontal axis along which we plan to
diffract the beam with the trap axis.

The acousto-optic deflectors are positioned in a 45◦ and −45◦ angle with respect to the vertical plane
along the beam path. The idea is to use the first diffraction order of the first AOD and the minus
first diffraction order of the second AOD. By applying the same radio frequency to both AODs, the
frequency shifts on the light cancel out [34]. If we want to go along the horizontal direction we can
apply the same radio frequency to both AODs. This way we can deflect the beam along the trap axis
without changing the frequency of the light. A scheme of the diffraction orders is shown in figure 3.5.

The acousto-optic deflectors get supplied with radio frequency. In the first part of this thesis, the
signal was generated by an AD9959 board by analog devices. Later on, we switched to DDS chan-
nels that are part of the main experimental control system. An introduction to DDS channels can be
found in [35]. In short, the steps to generate a signal are:

1. A reference clock provides a signal. According to the tuning register the phase accumulator
accumulates phase.

2. Corresponding to the phase the amplitude is retrieved from a look-up table, that is saved on
the DDS board

3. A Digital to Analog Converter (DAC) applies the amplitude to an analog signal.

4. The generated signal is filtered to smooth the waveform.

https://web.archive.org/web/20220518153852/http://www.aaoptoelectronic.com/wp-content/uploads/2018/08/DTSxx-ed1-18.pdf
https://web.archive.org/web/20230320145928/https://jp.optosigma.com/html/en/page_pdf/TSD-605.pdf
https://web.archive.org/web/20221208073719/https://www.analog.com/en/products/ad9959.html
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Central Drive Frequency 110MHz
AO Bandwidth 38 MHz
Active Aperture 7.5 mm

Laser Beam Diameter 500µm < D < 6mm
Max RF Power 2W

Material TeO2

TABLE 3.1: Excerpt of the test sheet supplied by AA opto-electronic for AOD DTSXZ-
400-730-020 [31].

FIGURE 3.5: Scheme of the diffraction pattern created by two crossed AODs. Shown
are the positive diffraction orders of the first AOD and the negative orders of the sec-
ond AOD. We use the first diffraction order of the first AOD and the minus first diffrac-

tion order of the second AOD so that the frequency shifts cancel.

FIGURE 3.4: Rise time measurement of the AOD.
There is a delay of ca. 8 µs and the rise time is ca. 4
µs. The voltage at the diode is background corrected.

MMt. performed by Ralf Berner. [11]

Table 3.1 summarizes the most important points
of the AOD data sheet. They have measured
efficiency for the first and minus first order of
> 58% at an applied RF power of 1 W which we
have confirmed. The maximally allowed radio
frequency power is 2 W. That means we would
like to apply radio frequency between 1 and 2 W
to the AODs. In both cases, we need to amplify
the signal to achieve RF power in this regime.
As a pre-amplifier, we use model ZX60-33LNR-
S+ by Mini-Circuits which we supply with 5V.
As an amplifier, we use model ZHL-2-8-S+ also
by Mini-Circuits, which we supply with 24V. To
achieve the desired RF power, we use a series of
attenuators before the pre-amplifiers. By using
18dB attenuators we can achieve RF power of
30 − 31dBm as needed.

It is also possible to produce two or more spots at the same time by applying several tones si-
multaneously. All frequency components arrive at the AODs so that the light diffracts in different
directions. This way it is possible to produce a beam that addresses several ions at the same time.

3.4 Aligning the telescope setup

Before beginning to characterize the beam size after the objective we have to align the telescope sys-
tem: The beam has to go through the AODs such that the efficiency is as high as possible. To reduce

https://web.archive.org/web/20220510014858/https://www.minicircuits.com/WebStore/dashboard.html?model=ZX60-33LNR-S%2B
https://web.archive.org/web/20220510014858/https://www.minicircuits.com/WebStore/dashboard.html?model=ZX60-33LNR-S%2B
https://web.archive.org/web/20230123154707/https://www.minicircuits.com/WebStore/dashboard.html?model=ZHL-2-8-S%2B
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FIGURE 3.6: Razor blade measurement. The scattered points correspond to measured
data, while the curve corresponds to the fitted error function. The fitted waist is given

in the legend.

aberrations the beam should also propagate centrally through the telescopes. We used anodized alu-
minum alignment targets by Thorlabs (SCPA 1, and CPA 1) to align the beam along the axis of the
optical system. By looking at the beam shape at different points we can avoid clipping that might
happen in the mirrors after the telescope.

The goal of the telescope system is to produce a Gaussian beam that is nearly collimated. To that
end, we have to exactly set the positions of the telescope lenses with respect to each other. Then we
do two measurements of the beam size, spaced apart as far as possible. The beam waist of the mea-
surements should match as closely as possible. By moving the position of the telescope lenses and
repeating the measurement we can interpolate the perfect position. This was done behind the first
telescope using a Thorlabs beam profiler BC106-VIS. After the second telescope, the beam diameter
was too large to use the Thorlabs beam profiler. To measure it, we employed the razor edge method.
The method works the following way:

We mount a razor edge on a stage that is translatable in the vertical direction. On top of it, we
place a square sheet of black aluminum foil to block the beam. We then place it in the beam path, so
that we can move it vertically through the beam. Behind the razor edge, we focus the beam with a
lens onto a photodiode at which we read out the voltage. We then move the razor blade through the
beam, recording the position of the blade and voltage at the photodiode at each step. The resulting
voltage at the diode is proportional to the integral of the intensity of the beam. This is called the error
function

I(z) =
2√
π

∫ z

0
e
−
[√

2(z−z0)
σ

]2

dz + I0. (3.3)

We can fit this function to our data, by comparing it with equation 2.39. See figure 3.6 for such a
measurement, including fit. To ensure that the beam is nearly collimated, we take two measurements:
One right after the telescope and one as far away as possible. In this case, they were 80cm apart.
Then we change the distance of the telescope lenses with respect to each other and repeat these two
measurements. By linearly fitting the fitted radii for either distance of the telescope lens, we can infer
the best distance between the telescope lenses, so that the beam is as collimated as possible. This way
we collimate the beam approximately up to the precision of the razor edge measurements which is
about 0.1µm.
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3.5 Polarization dependence of the addressing beam using AODs

FIGURE 3.7: Poincare sphere as referenced by Thorlabs
[36]

To address two ions separately we would
like for the intensity and frequency of the
light to be constant as we move the laser
from one ion to the other. But the atom-
light coupling is also dependent on the po-
larization. To characterize this we measure
the effect of different radio frequencies on
the polarization of the light. Ideally, the
polarization should be independent of the
frequency so that the polarization is stable
for different positions on the focal plane.
In our setup, we have incoming light to
the AODs going through a quarter- and a
half waveplate to maximize the efficiency
of the AODs. Afterward, we want to be
able to control the polarization to be opti-
mal for addressing the ion, so we have an-
other set of wave plates in between the two
telescopes. In a previous measurement, we
saw a slight dependence on the applied
radio frequency. However, the measure-
ment was conducted behind the second set
of wave plates. One hypothesis that we
would like to rule out, is that by applying

different radio frequencies to the AODs the light gets deflected and travels at different positions
through the wave plates. Because the wave plates are not homogeneous they might change the po-
larization differently depending on the path the light takes. To rule this out, we took measurements
directly after the AODs and after the wave plates and compared them. They are denoted (A) and (B)
in figure 3.8. To measure the polarization of the light we used a PAX1000IR1 polarimeter by Thor-

FIGURE 3.8: Part of the single addressing setup with positions A and B showing the positions of the two polar-
ization measurements

labs. We can read out the normalized Stokes vector which represents the coordinates on the Poincare
sphere see figure 3.7. Now we can vary the applied RF power and measure the polarization. For
each measurement, we use the alignment tool of Thorlabs polarimeter software to position the po-
larimeter optimally.

The results can be seen in figure 3.9. To better compare the data we do a basis change on the vectors
measured directly after the AODs so that the vectors align at the center frequency of 110 MHz. In that
way, we can better compare the effect of the wave plates. As can be seen, the change in polarization
cannot be explained by the beam traveling through different positions at the wave plates.

Using equation 2.17 we can also quantify the effect on the Rabi frequency. Using the calibration
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between the applied radio frequency and the distance along the trap axis in m found in section 4.2
we can give an upper bound on the deviation in the Rabi frequency for different positions at the trap.
We can calculate the angle of the polarization using

2ψ = arctan
s2

s1
. (3.4)

Using equation 2.17 we find that the Rabi frequency deviates less than 0.01% in a distance of 24µm
around the position at the center frequency of 110MHz. In later applications, we might be interested
in addressing two ions at different positions in the trap. This effect will probably not be the leading
cause of error in the addressing of the different ions. Still, it is possible to calibrate the intensity of
the light or the π-time of the qubit gate to cancel this effect. It is also a contribution that could lead
to different crosstalk between the two ions which will be characterized in section 4.6.

FIGURE 3.9: Polarization dependence on the RF frequency applied to the AODs. Plot-
ted are the normalized Stokes vectors. The left column shows values measured at po-
sition A, and the right side values at position B. To better compare both measurements,
we changed the basis for the stokes vector on the left side so that the polarization at

the center frequency of 110 MHz match.

3.6 Imaging of the beam using the picamera v2

The next step was to measure the beam waist of the focused laser beam after the objective to vali-
date the choice of the telescope setup. To characterize the beam waist of the focused laser beam we
planned to use a picamera v2. The main reason is that its pixel size is 1.12 µm × 1.12 µm. Because
we expect beam waists in the single micrometer regime, it is not possible to use cameras with larger
pixel sizes without using another magnification setup to image the beam. To prepare the camera we
removed the lens and the infrared filter with a set of pliers and a knife. Then we built a mount for
the camera which we secured to a stage that we can adjust in the x− y− and z−direction, see figure
A.2. We then positioned it in the beam path, see figure 4.2.
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(A) Images were taken with the MPlanApo N 50x objective and FMVU-03MTM firefly camera, the title denotes the distance
to the focal plane, with the unit vector pointing along the beam direction.

(B) Images were taken with the picamera v2, the title denotes the distance to the focal plane, with the unit vector pointing
along the beam direction.

FIGURE 3.11: Comparison of pictures taken with extra imaging objectives vs just a bare sensor. The images are
plotted in greyscale with the color denoting the brightness. The images around the focus are overexposed. The

scale is also not the same.

Before using the camera to image the laser beam we had to design a setup to reduce the intensity
of the laser beam. We used a combination of neutral density filters to reduce the intensity by a
constant amount. To also adjust the intensity between different measurement points to account for
different intensity amplitudes around the focus plane we included a polarized beam splitter with a
wave plate. By changing the angle of the wave plate we could adjust the intensity as needed. To con-
trol the camera we use the python package picamera [37]. Then we would adjust the settings as can
be seen in listing A.1 in Appendix A and took a series of 100 pictures to average over any fluctuation
and reduce the noise. Appendix A also describes the steps taken to calibrate the camera.

FIGURE 3.10: Picamera v2 [38].

Before my arrival, Ralf Berner had already taken photos of the fo-
cused beam and noticed rings of intensity appearing in the Gaus-
sian distribution. Back then he used an Olympus MPlanApo N 50x
objective to image onto a Point Grey, FMVU-03MTM firefly camera
because the pixel size was not big enough to image the beam di-
rectly. To investigate, whether the beam itself showed this intensity
pattern we compared a series of images around the focus made with
the raspberry pi camera and the Olympus MPlanApo N 50x objec-
tive, and a firefly camera. The result can be seen in figure 3.11a and
3.11b. We can see that the appearance of the rings is not an artifact of
the imaging camera but a property of the focused laser beam. They
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suggest that we are close to the diffraction limit with the rings indi-
cating an airy pattern that we would expect to see for a beam larger than the imaging objective. This
intensity pattern was already observed in the thesis of Sylvain de Léséleuc, see figure 2.12 in [39].
They did not make a conclusive state, of whether the imaging system might introduce additional
aberrations. We can now say that the effect is also observable with no additional imaging optics.

3.7 Characterization of the spot size

To find the spot size at the focus, we want to fit the function 2.40. To do that we will measure the beam
width at several points along the propagation path of the beam. Assuming a perfectly Gaussian mode
with no aberrations we would not need to sample very closely around the focus plane and would be
able to use a camera with a larger pixel size. As can be seen from earlier measurements in [11] this
does not match the actual beam waist around the focal plane very well. We took a series of pictures
while moving the camera along the beam propagation. At each point, we would vary the intensity
of the laser beam to get an optimal picture and take 100 pictures to average over, as described above.
Then we would average over the pictures, and fit a 2-dimensional Gaussian, as can be seen in figure
3.12. Although this process worked well for many pictures, in some cases the aberrations were so
strong, that a Gaussian fit does not seem like a good approximation anymore, an example can be seen
in figure 3.13. A more thorough investigation of possible aberrations was carried out in section 4.4.
In figure 3.15a and 3.15b the fitting of the spot size of the beam along the vertical and horizontal axis

FIGURE 3.12: An example of a Gaussian fit near
the focus.

FIGURE 3.13: An example of a Gaussian fit, in
the presence of rings.

FIGURE 3.14: Figures 3.12 and 3.13 show the fitting that was done on the images taken. In the top left the
brightness of an averaged picture is shown. In the top right, we can see the fitted 2D-Gaussian distribution. The

plots in the lower column show a slice along the x and y direction of a 1D-Gaussian distribution.

can be seen, respectively. In general, the fit does not seem perfect. The error bars of the position arise
because the stage was labeled only every 10 µm so we assumed an error of ±2.5 µm. The measured
beam sizes are

wx = 2.4 ± 1.7 µm (3.5)

and
wy = 1.7 ± 0.9 µm (3.6)

As can be seen, the error bars are quite large compared to the spot size. Because the beam shape
is not Gaussian, we observe that equation 2.40 is not an exact description of the actual beamwidth
and will underestimate the beam width at the focus. The more points larger away from the focus
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(A) Measuring beam waist along the vertical direction.

(B) Measuring beam waist along the horizontal direction.

FIGURE 3.15: The points correspond to the fitted waists of the beam. The error bars
denote the uncertainty in the distance to the focal plane. The red plot is the fitted beam
waist using equation 2.40 with error bars. The background in white is used to show the
Rayleigh range of the beam. The title denotes the fitted beam waist w0, the Rayleigh
range zR, the beam quality factor M2, and the wavelength λ of the laser beam that we

used.
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are taken into consideration the more this formula will underestimate the actual spot size. Still, this
measurement shows that it should be possible to address a single ion. At this point during my thesis
the ion trap was also prepared in the vacuum chamber and we moved the single-ion addressing
setup so that we can direct the light into the trap. The following measurements in chapter 4 were
made by addressing ions. We reimaged the Gaussian beam using ions, see section 4.3.



23

4 Single-ion addressing

4.1 The ion trapping setup

FIGURE 4.1: Picture of the ion trap mounted onto a PCB
with DC filter and attached to a CF100 vacuum flange.

This chapter will describe experiments
that were performed on the main setup.
At the heart of the setup sits the 3d
Paul trap. An image of the trap is
shown in figure 4.1. Next to the trap
is an oven filled with Calcium pow-
der with its opening pointing toward
the trap. By applying a voltage to
the oven the Calcium heats up and flies
into the trap. There we ionize it in
a 2−level process, see section 2.1, and
trap them in the Paul trap. We ap-
ply radio frequency to trap the ions and
tune the DC-Voltages so that the ions
sit at the minimum of the oscillating
electric field generated by the radio fre-
quency, to minimize the micro-motion of
the ion. The Paul trap is surrounded
by a baked-out vacuum chamber that is
continuously being pumped by an ion
pump.

Figure 4.2 shows a sketch with the essen-
tial components of the experimental setup.
Because the light coming from the single-
ion addressing setup has a wave vector
perpendicular to the trap axis, we also uti-
lize another beam, going horizontally into
the trap. This way we can also measure the
axial motion of the ions spectroscopically. We also used this beam to observe the first quantum jumps.
This way we already calibrated the frequency of the addressing light on one of the qubit transitions
before aligning the setup. We then also managed to observe quantum jumps using the light going
through the AODs. Initially, the trap was not in the focus plane of the single-ion addressing beam.
Because of the small Rayleigh range of the tightly focused spot, the laser beam was quite large com-
pared to its size at the focus and it was not difficult to also see quantum jumps using the single-ion
addressing setup. To bring the focus plane of the beam in line with the trap axis we applied a short
pulse of light while reading out the ion repeatedly, and aimed to minimize the population ps by ad-
justing the distance of the focusing objective to the ion trap. After each adjustment of this distance,
we would beam walk using the mirror at the end of the telescope and the dichroic mirror to move
the peak of the intensity distribution of the laser beam on the ion and align it centrally through the
objective.

Once the focus plane was close to the position of the ion, we also utilized the AODs to continu-
ously scan horizontally or vertically, depending on the direction of the beam walk. This way we
would know in which direction to adjust the position of the objective. Switching between adjusting
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FIGURE 4.2: Schematic drawing of the experimental setup. For a detailed description
of the tapered amplifiers setup, see [10]. Created by Stephan Welte.
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FIGURE 4.3: Scheme of the double pass setup. The light
is coming from the boosTA, see figure 4.2 and goes to-
wards a single-pass fiber AOM and then to the single-

ion addressing setup.

FIGURE 4.4: Rabi oscillations measured with maximal power at the peak of the inten-
sity. The light is not resonant with the Stark-shifted transition. The measurement does
not start with pulses shorter than 1.4µs, because this was not implemented in the con-
trol system at the time. The shaded area denotes the uncertainty according to equation

2.5.

the position of the objective along the laser beam and beam walking using the mirror we could max-
imize the Rabi frequency of the qubit transition. The Rabi flops after aligning the single-addressing
setup can be seen in figure 4.4. They are recorded before we implemented a full set of calibration
measurements. EIT cooling was also not yet implemented. When fitting it with equation 2.29 with
an exponential decay modeling the thermal distribution the Rabi frequency we observe is

Ω0 = 29.9 ± 0.3 MHz. (4.1)

We did not repeat measurements of these high Rabi frequencies because we subsequently split the
addressing light between the single-addressing setup and an additional diagonal beamline, see fig-
ure4.2.

4.2 Individual addressing of ions

In an experiment, we usually perform a series of cooling steps, followed by the specific laser sequence
for the experiment, followed by the readout. In this thesis, the main experiments were performed
with the generic experimental sequence shown in figure 4.5. Depending on the experiment we might
change the frequency of the light or position of the laser beam by changing the frequencies applied
to the AODs at different steps. First, we cool the ions using Doppler cooling. Then, we further re-
duce the temperature of the ion using EIT cooling, see section 2.4. We then initialize the state in the
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S{1/2,1/2} level by applying σ+ polarized light. The 854nm beam is turned on during state prepara-
tion in case we also sideband cool the ion beforehand. We did not utilize sideband cooling for any
measurements presented in this thesis. Afterward, we drive the S{1/2,1/2} ↔ D{5/2,5/2} transition
and read out the qubit state.

To measure the spectrum seen in 4.6 we changed the polarization of the addressing beam to be

FIGURE 4.5: Scheme of the experimental sequence. We perform Doppler- and EIT
cooling followed by state preparation. We then drive the qubit transition and read out
the quantum state. Specific detunings and times depend on the specific experiment.

able to drive transition with ∆m = ±1 and ∆m = ±2. At this point, only Doppler cooling was im-
plemented. We then varied the frequency of the addressing beam and measured the population in
the S state pS. We identified the peaks of the possible transitions between the S1/2 ↔ D5/2 manifold.
All other peaks are either sidebands or servo bumps.

4.3 Using ions to image the laser beam with high resolution

During calibration of the laser position, we noticed that it might be useful to scan the AODs inde-
pendently of each other, to move the beam over a 2-dimensional area over the ion. This way we can
find the peak intensity of the laser beam. By scanning the beam in 2 dimensions it is also possible to
image the intensity distribution.

FIGURE 4.7: Using an ion to image a laser beam in high
detail. The radio frequencies we scan over are the ones de-
fined in equation 4.2. The electric field intensity has been
calculated from the populations using equation 4.4 and 4.5

First, we defined new frequencies that take
the input frequencies for the AODs and ro-
tate them by 45◦. This way we can steer
the laser beam horizontally and vertically
over the position of the ion. This way we
can the beams horizontally or vertically so
that by scanning these variables indepen-
dently of each other we can point the laser
beam over a rectangular area without any
distortions. They are

fhor =
faod1 + faod2√

2
(4.2)

fvert =
− faod1 + faod2√

2
, (4.3)

where faod1,2 are the frequencies applied to
the AODs. On any point not on the hori-
zontal axis, frequency shifts by the individ-
ual AODs do not cancel each other out, so
we used the double pass AOM to compen-
sate for the frequency shift. Then we tune
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FIGURE 4.6: Spectrum of the D5/2 ↔ S1/2 transitions, with the specific transitions between the Zeeman levels
identified. The transitions with ∆m = 0 were not addressed, because the laser beam has an angle of 90◦ to the

magnetic field, see equation 2.17. The error bars were calculated using equation 2.5.

the laser frequency to the S{1/2,1/2} ↔ D{5/2,5/2} transition. We then scan the newly defined fre-
quency at each point applying the experimental sequence in figure 4.5 50 times. The pulse time for
which we drive the qubit transition must not exceed the π-time at the peak of the intensity distribu-
tion of the laser beam. This way we get a rectangular map of populations pS of the ion being in the
S-manifold. By calculating the Rabi rate from the population we can thus map the populations to the
electric field amplitude. Given that the Rabi oscillations are described by equation 2.30 we can solve
for the Rabi frequency

Ω = arccos (−2pS + 1) /tpulse. (4.4)

By setting tpulse < tπ we measure populations on the slope of the first Rabi flop. This means the pS

that we measure are monotonic. Knowing the transition we address we can also calculate the electric
field. In our case this is the S{1/2,1/2} ↔ D{5/2,5/2} transition so that the Rabi frequency is given by
equation 2.18 with Γ = 1.38 × 10−7(2π · MHz), so that

E =
h̄Ω

e

√

64π3cα

5λ3Γ
. (4.5)

By squaring the electric field amplitude we find the electric field intensity of the laser beam by driv-
ing Rabi oscillations on an ion. We did not take into account the optical Magnus effect, due to which
the polarization of the light might change in a tightly focused beam in the flanks of the beam in the
focal plane [40], [41]. There have been proposals to use this effect to implement a quantum gate for a
beam waist of w0 ≈ 0.5 µm [42].

One such scan over a rectangular area with populations transformed to electric field intensity can
be seen in figure 4.7. To know the scale in meter that we scan over we use the distance between ions
as a calibration parameter. We load two ions and use the same technique described above to measure
the distance between the two peaks of the intensity distributions which corresponds to the positions
of the ions. It would also be possible to scan the beam only horizontally. Using a two-dimensional
scan it is possible to additionally measure the angle between the horizontal axis of the AODs and the
trap axis and correct for it. As can be seen from figure 4.8 they do not match exactly. We load two
ions and measure the distance between them in frequency applied to the AODs. We then calculate
the distance of the two ions assuming a harmonic potential. By comparing the distances we get a
calibration rate in distance/frequency.
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We assume that two ions are trapped in a Paul trap and are confined along the trap axis by a har-
monic potential. Here, z goes along the trap axis. Then each ion is at position ± z0

2 , respectively, their
distance is z0. There are two forces acting, the force acted by the harmonic potential |FH | and the
Coulomb force |Fq|:

|FH | = kx = ω2
z m

z0

2
(4.6)

with ωz =
√

k
m and

|Fq| =
e2

4πϵ0z2
0

. (4.7)

Then in steady state FH = Fq, so

z3
0 =

2e2

4πϵ0mw2
0

. (4.8)

The scan we used to calibrate the ration can be seen in figure 4.8. We then use the additional axial
beamline to measure the axial sideband. At the time of the measurement it was

w0 = 2π × 766 kHz (4.9)

Using equation 4.8 we find that the distance between the ions is

z0 = 6.695 µm. (4.10)

Fitting two Gaussian distributions on the data shown in figure 4.8 we find that the distance between
the distributions is 2.292MHz in radio frequency applied to the AODs. This means that we find a
calibration between the applied radio frequency and distance at the trap

cal = 2.92
µm

MHz
. (4.11)

We also calculate the angle between the horizontal axis of the AODs and the trap axis which is
2◦ which we correct using the Goniometer We can use the calibration parameter to translate the
bandwidth of the AODs, see table 3.1, into an addressing range and find that it is 110 MHz wide.
We can now measure the beam waist of the addressing beam using the method as described and
compare it with the earlier measurement using the raspberry pi camera. The result can be seen in
figure 4.9. The beam waists according to the 2-dimensional Gaussian fit are

wx = 1.96 ± 0.1 µm (4.12)

and
wy = 2.69 ± 0.2 µm. (4.13)

Although we did cannot say for certain whether we took this image in the focus plane (the error bar
might be up to 5µm either way) the values do agree with the previous measurements. It is interesting
to note that the long axis of the ellipse is now in the vertical direction rather than the horizontal one
like before. We did not manage to align the setup perfectly by reducing all aberrations. We then
decided that it is more useful to have a smaller waist along the horizontal axis than the vertical axis
to reduce the crosstalk. Because of the aberrations, the Gaussian fit underestimates the beam waist
along the horizontal direction. As we can see from figure 4.7, we can take very detailed images of
the beam with higher resolution than any camera could, without using any extra optics to image it.
Using this method our idea was to find out more about the beam shape and possibly characterize the
aberrations of our system.

4.4 Extended Nieboer Zernike theory

We have seen that we can use the measurement displayed in figure 4.7 to essentially picture the
laser beam with a very high resolution. This would not be possible with any camera without using
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FIGURE 4.8: Measurement to calibrate the ratio between laser spatial displacement and
AOD frequency. The radio frequencies we scan over are the ones defined in equation
4.2. We fit the intensity distributions with a 2d-Gaussian and measure the distance
between the peaks. The distances in µm are calculated using the calibration parameter

4.11.

FIGURE 4.9: Measurement of the beam waist using the ion
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additional optics to image the laser beam, because the focus is on the order of micrometers. This
possibility leads us to the idea to use these high-resolution images to find out more about the setup
that we are using and potentially improve both the alignment and overall design. Concretely, we
wanted to use the extended Nieboer-Zernike theory to find out the aberrations in our setup using
intensity measurements taken around the focal plane. First, we will present the overall theory as
developed in [43], [44] and [45]. We will focus on the derivation for a Gaussian beam which was
already mentioned in their work.
Recall equation 2.35, the electric field of a Gaussian beam with a k-vector in the x direction is given
by:

Ẽ(r, z) = E0
w0

w(z)
exp

( −r2

w(z)2

)

exp
(

−i

(

kz + k
r2

2R(z)
− ψ(z)

))

(4.14)

Assuming that the beam is collimated well enough, we assume that the beam waist w0 is constant
and the curvature is negligible. Then we can approximate a Gaussian beam:

Ẽ(r) = E0 exp

(

−r2

w2
0

)

exp (−i (kz0 − ψ(z0))) . (4.15)

It differs from a plane wave only in its intensity distribution and constant phase factor. A general
diffraction in the Fresnel approximation for a perfect lens is given by [26]:

g(r, ϕ) =
i

λz
exp (−ikz) exp

(

−iπ
r2

λ f 2

)

F(
r

λ f
, θ). (4.16)

Here F(r, ϕ) is the Fourier transform of the input function f (ρ, θ), in our case the Gaussian beam. A
general Fourier Transformation in polar coordinates is given by:

F(r, ϕ) =
∫ ∞

0

∫ +π

−π
f (ρ, θ) exp (−irρ(cos(θ − ϕ))dθdρ (4.17)

To investigate the aberrations we assume that the lens is not perfect and describe the imperfections
by a pupil function P(r, θ), that will describe the aberrations. The most general pupil function is
given by:

P(ρ, θ) = A(ρ, θ) exp iΦ(ρ, θ) (4.18)

We now assume that the transmission function A is 0 outside of the lens and that we can describe
general aberrations with real Φ. This will make the retrieval algorithm mathematically simpler and
allows us to find a simple algorithm for the aberration retrieval by solving a linear system of equa-
tions. Now we want to normalize the expression, by setting the coordinates in the image plane to
r̃ = r NA

λ and by normalizing the coordinates in the plane of the lens so that the radius of the lens is
1. By normalizing the whole expression we find the starting expression in [46]:

E(r, ϕ) =
1
π

∫ 1

0

∫ 2π

0
ρ exp

(

iρ2 f
)

P(ρ, θ + ϕ)

exp (2πiρr cos θ) dθdρ

with a defocus parameter that is f = −2πz for plane waves but is

f = −2π
1 −

√

(1 − NA2)z

2λ
+ i

R2

w2 (4.19)

for a Gaussian beam in our approximation with R being the radius of the lens so that the beam waist
at the lens is normalized. Now we can expand the phase aberrations. For the general case

P(ρ, θ) = ∑
n,m

βm
n Zm

n (ρ, θ) (4.20)
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(A) Measured Rabi oscillations converted to intensities, the title denotes the defocus parameter according to equation 4.19.

(B) Simulated intensities calculated from retrieved phase aberrations.

FIGURE 4.10: Comparison of measured intensities (A) versus simulated intensities us-
ing retrieved aberration coefficients (B).

where β is a complex number and Zm
n = Rm

n (ρ) cos(mθ). In the simpler case we only assume phase
aberrations and can expand the exponent Φ in real coefficients:

Φ(ρ, θ) = ∑
n,m

αm
n Zm

n (ρ, θ) (4.21)

Then we proceed by expanding Eq. 4.19 in orders of Φ and evaluating the integral over θ:

∫ 2π

0
Φ(ρ, θ + ϕ) exp (2πiρr (cos(θ))) dθ

= ∑
n,m

αm
n Rm

n (ρ)
∫ 2π

0
cos(m(θ + ϕ)) exp (2πiρr (cos(θ))) dθ

= 2π ∑
n,m

αm
n imRm

n (ρ)Jm(2πρr) cos(mϕ) (4.22)

The following has been taken from [44] and can be seen in full detail there. Then we can find an
expression for the electric field:

E(r, φ; f ) ≈ 2V0
0 (r, f ) + 2i ∑

n,m
imαm

n Vm
n (r, f ) cos mφ (4.23)

where

Vm
n (r, f ) =

∫ 1

0
ρ exp

(

i f ρ2
)

Rm
n (ρ)Jm(2πrρ)dρ (4.24)

= exp(i f )
∞

∑
l=0

(−i f

πr

)l p

∑
j=0

ul j

Jm+l+2j+1(2πr)

2πr
(4.25)

with coefficients

ul j = (−1)p m + l + 2j + 1
q + l + j + 1

(

m + j + l
l

)(

j + l
l

)(

l
p − j

)

/
(

q + l + j
l

)

, (4.26)

The full derivation can be found in [45] and linked references therein. That means the electric field
intensity is given by

I ≈ 4 |V00|2 + 8 ∑
nm

αnm Re
{

im+1V∗
00Vnm

}

cos mϕ (4.27)

We want to find the aberration coefficients αnm given that we can measure the intensity for different
values of f, that means at different distances to the focus. Our goal is to find an algorithm that extracts
these αs. In the first step, we can do a harmonic analysis for the even part of the angular dependence.
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In the same way, we can find the uneven contributions by using a sine wave in the harmonic analysis.

Ψm(r, f ) =
1

2π

∫ 2π

0
I(r, ϕ, f ) cos mϕdϕ. (4.28)

We then define an inner product:

(Ψ, χ) =
∫ R

0

∫ F

−F
r · Ψ(r, f ) · χ(r, f )∗ dr d f . (4.29)

with
Ψm

n (r, f ) = γm Re
{

im+1V∗
00Vnm

}

, (4.30)

where γm = 4, m = 1, 2, · · · , γ0 = 8. Then by multiplying equation 4.27 by cos mϕ and integrating
over ϕ, we can express the m’th harmonic term of the observed intensity in the form of a sum over
Ψm

n (r, f )’s with coefficients αnm:
∑
n

αnmΨm
n (r, f ) ≈ Ψm(r, f ) (4.31)

This way we can approximate measured Ψm’s on the right by functions involving the Zernike coeffi-
cients on the left. We can solve these linear systems of equations

∑
n

αnm (Ψm
n , Ψm

n′) = (Ψm, Ψm
n′) (4.32)

We then choose the number of n′ parameters to be M. We can then solve this M × M linear system.
The solution is the best linear combination that one can obtain from the experimentally observed
intensity profile using M terms.

In Appendix B we show that the algorithm works while including he modified defocus parame-
ter f to incorporate the Gaussian beam shape into the model, see equation 4.19. We can retrieve small
aberrations with high precision. Applying the same method to actual data, as seen in subfigure
4.10(A) extracts aberrations on the order of 10 which does not agree with the model’s capabilities.
It is meant to retrieve aberrations that are ≪ so that the expansion in Φ works. Although they can
qualitatively capture the beam shape it was not possible to use this method that relies on small phase
aberrations to retrieve aberrations of our setup. It might be possible to use an extended method men-
tioned in [44] to account for not only phase aberrations but also modulations of the amplitude. The
full implementation of other methods was outside the scope of this work.

4.5 Beam-pointing error

To individually address single ions, we designed a tightly focused beam, such that the spot size is
small compared to the ion-ion distance. This also means that any movement of the beam might affect
the beam position compared to the ion. The ion will see different electric field amplitudes which will
lead to different Rabi frequencies. Because the electric field magnitude is approximately Gaussian
in space this will lead to larger fluctuations at the flank of the beam where we would sample over a
larger range of the electric field magnitude, because of a larger slope of the electric field amplitude.
For every experimental data point, we have to do statistics over several experimental shots to get
information about the quantum state. If the beam moves we sample over different Rabi frequencies
at the ion. This will lead to a decaying amplitude of the Rabi oscillations.

To quantify the beam pointing error we will assume a noise model, then calculate a model for the
decay of the Rabi oscillations and compare it to the experiment. We derived the following model
after talking to Alfredo Ricci and taking his work towards [47] into account.

We assume that the beam will fluctuate around a point x0, where the Rabi frequency is Ω0. We
can model the fluctuations by a probability distribution from which we sample. For different shots
of the experiment, the Rabi frequency will be sampled around Ω0. We will assume that the probabil-
ity for each Rabi frequency will follow a normal distribution with mean Ω0 and standard deviation
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σ. We will assume that the Rabi rate will stay constant during one shot. Then, the Rabi frequency of
each shot (n) will be

Ωn = Ω0 + Ωi (4.33)

Here Ωn ∝ N(Ω0, σ2) so that Ωi ∼ N(0, σ2), denoting a normal distribution with mean 0 and stan-
dard deviation σ.

The probability for each Ωi is pi = 1√
2πσ2

e−Ω2
i /2σ2

. The probability c0 of detecting state |0⟩ state

will therefore be

c0 =
∫

Ωi

pn cos2(Ωnt/2)dΩi (4.34)

=
1
2
+

1
2

∫

Ωi

pn cos(Ωnt)dΩi (4.35)

=
1
2
+

1
2

∫

Ωi

pn cos(Ωot + Ωit)dΩi (4.36)

Using the trigonometric identity

cos(A + B) = cos(A) cos(B)− sin(A) sin(B) (4.37)

and identifying that the second integral is an uneven function (because pn is even) we bring the
integral into a form that we can solve:

c0 =
1
2
+

1
2

∫

Ωi

pn cos(Ωot) cos(Ωit)dΩi −
1
2

∫

Ωi

pn sin(Ωot) sin(Ωit)dΩi (4.38)

=
1
2
+

1
2

cos(Ωot)
∫

Ωi

pn cos(Ωi)dΩi −
1
2

sin(Ωot)
∫

Ωi

pn sin(Ωi)dΩi (4.39)

=
1
2
+

1
2

cos(Ωot)
∫

Ωi

pn cos(Ωi)dΩi (4.40)

Inserting pn we calculate the integral:

c0 =
1
2
+

1
2

cos(Ωot)
∫

Ωi

1√
2πσ2

e−Ωi
2/2σ2

cos(Ωit)dΩi (4.41)

=
1
2
+

1
2

e−
1
2 σ2t2

cos(Ωot). (4.42)

In our case the Rabi frequency is dependent on the position, we can then expand it around x0

Ωn(xn) = Ω(x0) +
∂Ω

∂x

∣

∣

∣

∣

x0

xi = Ω0 + Ω′xi (4.43)

where Ω′ is the gradient of the Rabi frequency with respect to position, evaluated at x0. Comparing
with eq. 4.33 we find that Ωi = Ω′xi. Accordingly the standard deviation of xi is σx, such that
σ = Ω′σx. We can thus express the standard deviation of the assumed normal distribution in the
position domain.

c0 =
1
2
+

1
2

e−Ω′2t2σ2
x /2 cos(Ωot) (4.44)

Which can be re-written as

c0 =
1
2
+

1
2

e−δ2t2/2 cos(Ωot), (4.45)

where
δ = Ω′σx (4.46)

is the fitted parameter for each Rabi oscillation. Then by calculating Ω′ for each x, and comparing δ
vs x one can fit the σx parameter. In the experiment, we point the beam along the trap axis. Each
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FIGURE 4.11: Fitting the decay along the Rabi oscillations at the center of the beam.
The error bars are calculated using the quantum projection noise, see equation 2.5

FIGURE 4.12: Characterizing the beam pointing error. The Rabi oscillations have been
measured, as described in section 4.3. The derivative has been numerically calculated.

The shaded areas indicate the measurement error.
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FIGURE 4.13: On the x-axis the distance between
the focus of the addressing beam and the ion is
plotted. For each point, we fit the decay as in fig-
ure 4.11. Then we fit equation 4.46 with an extra
offset, the shaded areas indicate the standard de-

viation of the fit.

FIGURE 4.14: On the x-axis the distance between
the focus of the addressing beam and the ion is
plotted. For each point, we fit the decay as in fig-
ure 4.11. Then we fit equation 4.51 with an extra
offset, the shaded areas indicate the standard de-

viation of the fit.

decay corresponds to a distance between the ion and the focus of the beam. At different distances to
the ion, we cool the ion using both Doppler and EIT cooling and drive Rabi oscillations for a time of
100 µs. Every shot is repeated 100 times. We then fit the decay using equation 4.45. One example at
the peak of the intensity distribution can be seen in figure 4.11.

In figure 4.13 we can see the results of the measurement. We then plot the extracted decay parameter
δ over the position in µm. Assuming that other sources are leading to decay, like intensity fluctu-
ations of the laser or thermal excitation of the ion, we assume an offset to the decay b and fit the
derivative of the Rabi frequency with respect to the position, which we derived numerically, with a
scaling factor σx. The fitted values are

σx = 16.6 ± 3.8 nm (4.47)

b = 0.9 ± 2.1 kHz (4.48)

We can see that there does seem to be a correlation between the derivation of the Rabi frequency and
the decay of the Rabi oscillations, but there also seem to be other contributions to the decay that are
dependent on the Rabi frequency.

This leads us to develop a different model, where we assume that we also have fluctuations in the
Rabi frequency. Thus our model for Ω is

Ωn = Ω̃ + Ωi (4.49)

with Ω̃ also being normally distributed with Ω̃ ∝ N(Ω0, σ2
a ). We then follow the same derivation as

above but find that
σ = Ω′σx + Ωσa. (4.50)

That means that the decay parameter δ in 4.45 is equal to:

δ =
√

Ω′2σ2
x + Ω2σ2

a (4.51)

The result of the fit can be seen in figure 4.14. The fitted parameters are

σx = 12.8 ± 1.6 nm (4.52)

σa = 6.4 ± 0.7 × 10−3 (4.53)
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This approach produces a better model for the decay at the focus of the beam but seems to underes-
timate the decay at the flank of the beam.

Even though both models do not seem to model the decay completely, we can still see the effect
of the beam position relative to the ion. Pointing the laser beam 0.25 µm shifted with respect to the
peak increases the decay up to 50%. This gives us some insight into how well to align the setup in
the lab.

4.6 Characterization of the crosstalk

One of the most important characteristics of a single-ion addressing setup is the magnitude of the
crosstalk. It is a measure of how well we can address ions individually. The system is designed to
address one ion at a time. Still, the other ion will also interact with an electric field because it sits on
the tail of the electric field intensity distribution. It is possible to define the crosstalk in several ways:

One way is to measure the intensity distribution of the electric field of the laser beam and compare
intensities at different possible positions of the ion. The authors in [48] define this as the intensity
crosstalk .

Another way to define crosstalk is by the fidelity of a π-pulse. Assuming we are applying one
π-pulse, we will rotate a qubit in ion one from state |0⟩ to state |1⟩ and vice-versa. While the laser
is turned on, this will also lead to a rotation on the qubit in the second ion, with the Rabi frequency
proportional to the electric field amplitude at the location of the second ion. By measuring the second
qubit in the computational basis we can find the probability of the qubit also changing its state. This
probability is another way to quantify the crosstalk. In other words, it is the fidelity of the identity
operation on qubit 2 dependent on doing a single π-pulse on qubit one. We call this the operational
crosstalk.

We can compute both definitions of the crosstalk from one set of measurements: At the moment
of the thesis we do not have a system to individually detect ions in place. It is possible to detect
the state of more than one ion by use of just a photomultiplier tube, see section 2.2. To measure the
crosstalk it is also possible to only have one ion trapped. This ion will take the place of the second
ion, while the position of the laser beam is pointed at different possible positions of the first ion.
The distance between the ion and the focus of the laser beam denotes the distance two trapped ions
would have. We can then measure the crosstalk as a function of the distance between the laser beam
and the ion. This way we can reduce the errors of readout.

For every distance we take the following measurement: We tune the addressing light to be on reso-
nance with the D5/2-S1/2 transition to account for different stark shifts. We thus measure the popu-
lation transfer for the second ion if we would drive it resonantly. This way we can read out the Rabi
frequency Ω0 as a function of the distance between the laser beam and the ion. This differs from the
case for two ions in which the second ion is non-resonantly driven due to a different Stark shift. Due
to a strong Stark shift, we observed very low population transfer at distances larger than 5 µm from
which we cannot infer the Rabi frequency.

We then cool the ion using Doppler- and EIT-cooling and apply light for our qubit transition D5/2-
S1/2 of increasing length to drive Rabi oscillations. see scheme in figure 4.5. From there we can fit
equation 2.29 and extract the Rabi frequency and the detuning. This is done in case the addressing
frequency is still slightly detuned. From there we can infer the electric field intensity which scales as
Ω ∝ I2 to calculate the crosstalk of the intensity. We can also insert the π-time τπ at the peak of the
distribution into the fitted Rabi oscillations to give us the population transfer that would happen on
a second ion. This gives us the population of the second ion being in the |1⟩ state:

pD(x) = cos2
(

Ω0(x)

2
τπ

)

(4.54)
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with Ω0 and ∆ fitted and ∆ accounted for.

In figures 4.15 and 4.16 the results of the crosstalk measurements can be seen. The calculated prob-

FIGURE 4.15: On the x-axis the distance be-
tween the focus of the addressing beam and
the ion is plotted, on the y-axis the probability
of finding the ion in state |1⟩ after time τπ see

equation 4.54.

FIGURE 4.16: On the x-axis the distance be-
tween the focus of the addressing beam and the
ion is plotted, on the y-axis Ω2 normalized by

the Rabi frequency at the focus.

ability of the qubit changing its state is logarithmically plotted over the position of the laser beam.
The error bars are of the order of 1% compared to the crosstalk and can thus not be seen.
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5 Conclusion and outlook

In this thesis, we progressed from aligning the telescope setup to measuring the crosstalk on ions. We
started the thesis by aligning the telescope. We found that the polarization of the light is dependent
on the applied radio frequency. We quantified this dependence and calculated that its effect on the
Rabi frequency is less than 0.01% over the length of 24 µm along the trap axis.

We set up a raspberry picamera v2 to image the beam with a pixel size of 1.12 µm. We found an
intensity pattern around the focus that we would also expect from being diffraction limited. Next,
we used the mounted camera as a beam profiler. After setting up an optical system to tune the in-
tensity we were able to measure the intensity along the beam propagation around the focal plane of
the beam. The results showed that individual addressing ions should be possible and we moved the
addressing board to further characterize it on actual ions.

We aligned the setup and went from observing quantum jumps to observing Rabi frequencies of Ω =
29.9 ± 0.3 MHz, see figure 4.4. We also repeated the measurement of the beam waist by converting
measured populations to electric field intensity. We find a beam waist of

wx = 1.96 ± 0.1 µm (5.1)

and
wy = 2.69 ± 0.2 µm (5.2)

along the horizontal x- and vertical y- direction, respectively, although a Gaussian fit seems to un-
derestimate the actual beam width. Other single addressing setups have achieved a similar beam
size [49], [50], [51], [52].

We did not manage to fully characterize the aberrations in our system by adapting an existing al-
gorithm to account for a Gaussian beam shape. In our case, we do not expect the aberrations to
hinder the performance of the addressing setup significantly. If this would be the case, building a
setup that includes a spatial light modulator might be advantageous, although this comes at the cost
of lower addressing intensity.

We also measured the beam pointing error by comparing the decay of Rabi oscillations depending on
the position of the beam relative to the ion. By assuming that we sample from a normal distribution
we showed this distribution in position space has a standard variation of

σx = 12.8 ± 1.6 nm. (5.3)

Taking into account that the fit seems to underestimate the decay at the flank of the beam we can give
an upper estimate of 21 nm by using the fit derived from assuming a constant offset, see equation
4.47.

We finally characterized the crosstalk. Defining the crosstalk as the population transfer of the second
qubit while doing a π-pulse on the first qubit we show that it is less than 10−3 for ions that are 5 µm
apart. This means it is feasible to individually address ions.

The intensity crosstalk has been recently measured for a different single-ion addressing setup [48].
They show intensity crosstalk of 10−4 at 4 µm away from the peak compared to 6 · 10−4 in our setup.
They measured the crosstalk using a raspberry picamera v2 while we measured it using Rabi oscil-
lations of the addressed ion.
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In the future, we plan to use this setup to prepare GKP states in the motion of two trapped ions. To
perform logical gates between GKP states encoded in two modes of motion of the two-ion crystal,
individual control of each ion is necessary. This work has brought the capability to address individual
ions to the GKP setup which will be a crucial tool in performing a two-qubit GKP gate.
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A Settings of the camera

Listing A.1 shows the python code included before every capture of the camera to set fixed param-
eters to be able to compare measurements. We would like the camera to not apply any variable
exposure or gain depending on the brightness of the image. This way we can set them manually.

✞ ☎

1 def setcameraparameters (camera ) :
2 ’’’

3 Parameters

4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 camera : call Picamera.camera class

6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 sets parameters for the camera class,

8 so they are consistent between captures.

9 ’’’

10 camera . iso = 500
11 sleep ( 2 ) # wait for the automatic gain control to settle
12

13 # now fix the values

14 camera . shutter_speed = 30000
15 camera . exposure_mode = ’off’
16 camera . awb_mode = ’off’
17 camera . awb_gains = 1 . 4
18 return
✝ ✆

LISTING A.1: Code used in order to fix camera values.

To check whether the camera is saturating we looked at the brightest recorded pixel and increased
the intensity of the laser beam. The result can be seen in figure A.1. Each point represents the average
of 100 photos taken at the specified power. In order to speed up the process on the pi we used the
camera.zoom() and camera.resolution() functions to restrict the area of capture. The images have
been converted to grayscale.

To measure the intensity distributions of the laser beam, we have to convert pixel brightness to elec-
tric field intensity. We would like a linear relationship between the pixel intensity and the intensity
of the beam. To achieve this we always took pictures in the regime where the brightest pixel had a
brightness value of less than 100. We programmed a short script to read out the brightest pixel. We
included a set of waveplates and a polarized beamsplitter in the beam path before the waveplates
before the AOD. Before every measurement, we could then calibrate the waveplates in front of the
polarized beam splitter, so that the camera is not oversaturated.
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FIGURE A.1: Calibration measurement for the picamera v2.

FIGURE A.2: Shown is the scrap piece of aluminum the camera was mounted to so
that it can be screwed to an adjustable stage.
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B Phase retrieval and simulation
using the extended Nieboer-Zernike
theory

To test the phase retrieval algorithm, we simulate data using a pre-determined set of aberration co-
efficients using equation 4.27. We then test the phase retrieval capabilities of the algorithm described
in section 4.4. The simulated intensities can be seen in figures B.1a - B.1d. In table B.1 the chosen
Zernike coefficients versus the retrieved Zernike coefficients are shown. Any parameter not listed is
set to zero.

aberration coefficient used to simulate retrieved coefficient
spherical α20 = 0, α40 = 1 α20 = −4.3 · 10−6, α40 = 1.000

coma α11 = 0, α31 = 1 α20 = −6.7 · 10−4, α40 = 1.006
astigmatism α22 = 1 α22 = 1.001

TABLE B.1: Excerpt of the test sheet supplied by opto-electronic for AOD DTSXZ-400-
730-020.

The results show that the algorithm can retrieve aberrations with a precision of the order of 10−3.
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(A) Simulated intensities with no aberrations.

(B) Simulated intensities with spherical aberrations.

(C) Simulated intensities with coma

(D) Simulated intensities with astigmatism.

FIGURE B.1: Simulated Intensities to test retrieval capabilities. The defocus parameters
chosen are f = {−2π + 2i,−1π + 2i, 2i, 1π + 2i, 2π + 2i}, so that the aberrations are

visible in the simulated intensities.
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