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Abstract

To allow for more flexibility in shaping DC potentials in ion traps, we discuss the development of an
amplifier board compatible with the commercially available 32-channel arbitrary waveform generator
card Fastino for DC electrode control. We outline criteria for operational amplifiers as main building
block for low-noise active filters. Using the outlined criteria we proceed to design a versatile active filter
topology for the chosen operational amplifier. A first design will allow users to generate output voltage
amplitudes of 70V. This amounts to an increase by a factor of seven compared to using the Fastino alone.
We discuss how to adapt the design to fit different experimental specifications and propose improvements
to the existing design. Furthermore, we analyze Bayesian schemes for single qubit state detection. The
commonly used adaptive maximum likelihood method exhibits a significantly higher average dark state
readout time compared to the average bright state readout time. By conditionally applying π-pulses and
therefore changing qubit state, we aim to equalize both average detection times. We analyze two methods
to determine when to apply a π-pulse. We use hidden Markov models to simulate state readout and
benchmark the two methods against the adaptive maximum likelihood method. Under ideal conditions,
we achieve a significant speed-up of average dark state detection times, rendering average detection times
nearly independent of the prepared state.
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Chapter 1

Introduction

Quantum information processing and quantum computation are active fields of research. After having
proven to offer potential computational advantages over classical computer hardware for problems such
as solving the discrete logarithm problem and factoring large integers using Shor’s algorithm [1] or per-
forming unstructured search as in Grover’s algorithm [2], efforts to build a universal quantum computer
have been undertaken. Instead of relying on classical bits for performing calculations, quantum com-
puters make use of qubits [3]. There are many different physical realizations of qubits. Trapped ions
are one of the most developed and promising candidates for achieving a system which is able to perform
universal quantum computation. Trapping ions require a static potential as well as a rotating quadrupole
potential. Ion traps feature electrodes to which voltages are applied for generating the aforementioned
potentials [4]. While many different types of ion traps exist, we will focus on linear traps where the
ions are trapped in a chain forming a 1D crystal. Having trapped ions, lasers are used to manipulate
motional and internal electronic states of ions in order to perform computations. Independent of the
physical realization, qubits need to satisfy certain qualities to be viable as a quantum computing plat-
form. These criteria have been famously summarized by DiVincenzo [5]. One criterion is the ability to
perform quantum gates. In the setting of trapped ions, this means using lasers to address specific ions
individually. One approach for individual addressing is to use waveguide arrays. Ion-ion distance in a
linear chain is not constant, increasing towards the ends of the chain. This effect is exacerbated if we
load an increasing number of ions into the same trap. Waveguide arrays however work best for fixed and
equidistant ion spacings. To combat the uneven distribution of ions, one can apply a anharmonic static
potential which aims to cancel the mutual Coulomb repulsion between the ions while also being able
to set the distance [6]. In order to achieve higher curvatures for anharmonic potentials as the uniform
distance potential, it is advantageous to be able to apply high DC voltages to the electrodes generat-
ing the static potential. High DC voltages can also be used for micromotion compensation using shim
electrodes which can be integrated into the trap geometry. Micromotion is the undesirable motional
excitation of ions by the rotating quadrupole potential. Another criterion is the ability to reliably read
out qubits after having performed a quantum algorithm. In addition, as physical qubits suffer from noise
which make computations error-prone, quantum error correction schemes have been developed. In the
stabilizer framework, we will repeatedly read out ancilla qubits which store correlations between qubits
used for the actual computation. Depending on the result of the ancilla readout, real-time feedback is
applied to the qubits involved in computation. It is therefore crucial that ancilla readout is not only
reliable but also fast. These two factors are only examples of many challenges which need to be resolved.
The growing field of quantum engineering specializes in finding solutions to such hurdles. In this thesis
we will tackle both problems outlined above. We will first upgrade an existing system for DC voltage
generation in order to able to apply higher DC electrode voltages. At the same time we will need to take
care of the noise performance of the whole signal path. Noise on the DC electrodes potentially leads
to unwanted motional excitations of trapped ions introducing errors. Secondly, we will explore different
readout methods in order to speed up state discrimination. We will test the described algorithms in a
simulation environment for a first performance assessment.
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Low-Noise DC Amplifier Design for

Trapped Ion Setups
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Chapter 2

Concepts

In this chapter we introduce operational amplifiers as fundamental building blocks for analog signal
processing. We will explore active filters and explore some design methodologies. For this chapter we
assume that the reader is familiar with the concept of frequency domain analysis as we only briefly
introduce this topic. For an introduction to frequency domain analysis of linear time-invariant systems
and related control topics we refer to chapter 1 and 2 of [7].

2.1 Active Filters

2.1.1 Operational Amplifiers

Operational amplifiers (op-amp) are an ubiquitous resource in analog signal processing. The op-amp is
a three terminal device in its most idealized description. It features two inputs, an inverting input V−
and a non-inverting input V+. The output is the difference between the two inputs amplified by a factor
A:

Vout = A (V+ − V−) (2.1)

Ideally, the gain factor A is infinite. Therefore, the output will only be finite, if both inputs are exactly
at the same potential. As infinite gain is not physical we need to take into account, that an op-amp
is powered by two power rails, namely the positive supply voltage Vsupp, + and the negative Vsupp, −
respectively. This will limit the output voltage as Vout ∈ [Vsupp, −, Vsupp, +]. The commonly used circuit
symbol featuring all terminals is shown in Fig. 2.1.

Figure 2.1: Circuit symbol of an operational amplifier. (1) Non-inverting input V+. (2) Inverting input
V−. (3) Output of the operational amplifier Vout (4) Positive supply voltage Vsupp, +. (5) Negative supply
voltage Vsupp, −

3



This behaviour my not seem useful yet. However, if we apply negative feedback 1 it can be shown
that the output will settle to a value such that the voltage difference between the two input terminals
is essentially zero. This fact is also known as the virtual ground assumption. To further simplify circuit
analysis, one also assumes that no current flows into either of the two input terminals.

In section 3.1 we will explore more realistic models and limitations of non-ideal op-amps.

2.1.2 Second Order Transfer Function

Second transfer functions are an important building block in analog signal processing. The order refers
to the number of poles the frequency response exhibits. Compared to first order transfer functions,
second order transfer functions can exhibit complex-conjugate pole pairs instead of purely real poles.
Simply put, a pole leads to a phase shift of -90° and a roll-off of the amplitude by 20dB per decade for
frequencies above the cutoff frequency. The placement of the poles in the complex plane will influence
how sharp the cutoff is, if we see resonances in the response, and how quickly the phase response will
reach the dictated phase shift. We will only consider low-pass transfer functions for this thesis. The
second order low-pass transfer function is given by:

HLP (s) =
kω2

0

s2 + ω0

Q
s+ ω2

0

(2.2)

where k is the DC gain of the filter, ω0 the natural frequency, and Q the quality factor. Sometimes, the
quality factor is replaced by the damping factor ζ. We can easily convert between the two parameters
using the following relation:

Q =
1

2ζ
(2.3)

Fig. 2.2 shows the frequency response of second order transfer functions varying the quality factor
Q. For values of Q > 1√

2
we observe a resonance peak at the natural frequency. Also, the phase will

drop over a shorter frequency span. If Q = 1√
2
the resulting filter is a second order Butterworth filter.

Butterworth filters have a maximally flat amplitude response. For Q < 1√
2
the response will be under-

damped. We lack a sharp cutoff and the phase drop is dragged out over a large frequency range. This
is generally undesirable.

1Less abstractly, this statement just means that the voltage at the inverting input is dependant on the output voltage.

4



0
20
40
60
80

re
la

tiv
e 

m
ag

ni
tu

de
 [d

B] Magnitude
Q = 4.00
Q = 0.71
Q = 0.25

10 2 10 1 100 101 102

Frequency [ / 0]

0

45

90

135

180

Ph
as

e 
[°

]

Phase
Q = 4.00
Q = 0.71
Q = 0.25

2nd order transfer function

Figure 2.2: Bode plots for different values of the quality factor Q with normalized frequency axis and
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2
we

observe a slow transition from constant gain to a rolloff of -40dB/dec.

2.1.3 Sallen-Key Low-pass Filter

A popular implementation of arbitrary second order active filters is the Sallen-Key topology [8]. Initially
designed to reduce requirements on passive components for low-frequency low-pass filters, it is still widely
used in analog signal processing. One of the one of the advantages of the topology is the need for only
one op-amp or active device.

R1 R2

R3

R4

C1

C2 V_out

V_in

Figure 2.3: The Sallen-Key low-pass filter with gain. With the right choice of passive components, the
design parameters A, Q, and ω0 can be realized.
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The parameters introduced in Eq. 2.2 can be expressed in terms of component values as:

k = 1 +
R3

R4
(2.4)

ω0 =

√
1

R1R2C1C2
(2.5)

Q =
ω0

1
R1C1

+ 1
R2C1

+ 1−k
R2C2

(2.6)

If we set the design parameters, we are left with an under-determined system of equations. If not
differently specified, we are left with three components to choose freely. In the case of k, only the ratio
R3

R4
is of importance. Therefore, one resistor value can be fixed and the other can be chosen accordingly.

For Q & ω0 we are able to freely choose two components. For a reason much more clearer later, we are
interested in fixing both capacitors C1 & C2. Rewriting 2.5 & 2.6 we can define the system of equations:







P := R1R2 =
1

ω2
0C1C2

S := AR1 +BR2 = Qω0

(2.7)

with A = C2 + (1− k)C1 and B = C2. We observe that P , S, and B are always strictly positive real
quantities while A ∈ R. If A = 0, we obtain immediately the following unique solution:

R2 =
S

B

R1 =
PB

S

(2.8)

For the case that A ̸= 0 two solution candidates can be found:

R1 =
S ∓D

2A

R2 =
S ±D

2B

(2.9)

where D2 = S2 − 4ABP . As R1, R2 ∈ R
+, we can discard solutions where D2 < 0.

While analytical solutions to the design equations might exist, finding components with the found
values is usually impossible. Only specific values of resistance and capacitance are manufactured in
large quantities 2. Resistors with precision tolerance below 1% with respect to the nominal value are
readily available. With high precision comes also the fine granularity of values. There are different
design strategies to which components one initially fixes and determines the remaining. With modern
computing power it is also possible to go through all variations. Inspired by the design note [9], an
optimized brute-force algorithm can be run to find the best set of purchasable components.

The runtime of this optimized brute-force algorithm is O(|Ravail|
2+ |Cavail|

2). This result motivates
why we wanted to fix the capacitance values in the first place. There are less combinations to go through
and the discretization error for resistors is lower. How well a set of components performs is encompassed
in the cost function fcost. An intuitive cost function is to sum the squared error of our design parameters
Q and ω0:

fcost (x = (kbest, R1, R2, C1, C2)) =

(
Qdesired −Q(x)

Qdesired

)2

+

(
ω0,desired − ω0(x)

ω0,desired

)2

(2.10)

Many more complex functions can be implemented. Another improvement is to not only calculate the
analytical deviation from the design parameters but also to simulate the corresponding circuit to assess
the performance.

2The specific values are the EX. Each decade is divided into X values logarithmically. The available series are the E12,

E24, E48 & E96.
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Algorithm 1 Optimal Component Selection algorithm

Output: Optimal components for Sallen-Key low-pass filter

R1,best, R2,best, R3,best, R4,best ← 0
C1,best, C2,best ← 0
kbest ←∞
Costbest ←∞
for R3, R4 ∈ Ravail do

ki = 1 + R3

R4

if ∥kdesired − ki∥ ≤ ∥kdesired − kbest∥ then
(R3,best, R4,best)← (R3, R4)

end if
end for
for C1, C2 ∈ Cavail do

calculate R1,analytical, R2,analytical

pick R1, R2 ∈ Ravail

Costi = fcost(kbest, R1, R2, C1, C2)
if Costi ≤ Costbest then

(R1,best, R2,best, C1,best, C2,best)← (R1, R2, C1, C2)
end if

end for

7



Chapter 3

Amplifier Board Design

3.1 Operational Amplifier Selection & Criteria

3.1.1 Criteria

• Maximum supply voltage: The maximum supply voltage limits the output range of the amplifier
circuit. As we aim for higher DC electrode voltages, we want an output range as large as possible.
The type of potential wells that we would like to create in the experimental setup require voltages
in the order of ±70V. Therefore, we opt for a rail-to-rail operational amplifier design that matches
these requirements.

• Gain-bandwidth product: The open-loop transfer function of an operational amplifier is usually
designed to exhibit a single dominant pole [10]:

A(s) =
Vout

Vin,+ − Vin,−
=

ADC

1 + s
ωa

(3.1)

where ADC is the open-loop DC gain and ωa is the dominant single pole. We can then define the
gain-bandwidth product as:

GBW = ADCωa (3.2)

An ideal op-amp has an infinite open-loop gain and bandwidth. The pole will limit the frequency
regime where these assumptions are valid. When using negative feedback to limit the gain of the
circuit G≪ ADC it can be shown that (App. 11.1):

Gωc ≤ GBW (3.3)

where ωc is the crossover frequency of the negative feedback circuit. A high gain-bandwidth product
is desirable.

• Input referred voltage noise: The input referred noise voltage is defined as the applied noise
voltage needed at the input of an amplifier circuit to produce the noise present at the output. This
allows us to regard the amplifier circuit as noise-free while adding a voltage noise source at the
input. This figure of merit makes it easier to compare noise contributions from previous signal
sources with the noise added by the circuit itself. In many applications (including trapped-ion
experiments) it is vital to reduce noise as much as possible. For our case we aim to keep the input
referred noise low compared to the output referred noise of the signal source to be amplified. In
our case we can assume the output noise of the signal source to be close to 50 nV√

Hz
[11].

• Maximum output current: The maximum output current could limit the resistive load which
can be driven by the amplifier circuit. An ideal op-amp has no output current limit. As we do not
intend to drive low resistive loads with the active filter this figure is of lesser importance.

• Offset voltage: The offset voltage is another non-ideality of real operational amplifiers. This
effect can be modelled as an additional voltage source at the input terminal which will add to the
input signal. This figure can vary with time and operating temperature. It and the corresponding
temperature variation should be as low as possible.

8



• Input bias current: The input bias current is defined as the amount of current which typically
flows into either the positive or negative input terminal of an operational amplifier. In the ideal
case this current is zero and the amplifier has infinite input resistance.

• Maximum slew rate: The maximum slew rate defines the rate at which the output of an amplifier
can change. It is usually given in V

µs
. This non-linearity can impose limits to the bandwidth as the

output might not be able to track a signal over its whole output range. Therefore, it should be as
high as possible.

• Area per channel: The package size will potentially limit the number of channels which will fit
onto the printed circuit board (PCB). Optimally, a set of 32 channels can be placed on a standard
Eurocard sized PCB (160mm × 100mm). However, it is clear that the layout is also determined
by the pin layout of each component. So the total area might not be well approximated by the
package of the amplifier alone. We note that there might be several available packages for the same
amplifier. If this is the case, we will use the smallest area as lower estimate.

• Price per channel: This pure economic consideration can become relevant if many channels are
needed.

• Retail availability: The best part has not only good specifications but is also purchasable. As
of the time of this venture a general electronics shortage is plaguing designers.

3.1.2 Comparison

For this project three different amplifiers have been compared: ADHV4702-1 [12] from Analog Devices,
LTC6091 [13] from Linear Technology, and PA443 [14] designed by Apex Microtechnology. We will
continue to compare the options against the criteria laid out in subsection 3.1.1

Operational amplifier ADHV4702-1 LTC6091 PA443

Maximum supply voltage
range [V]

220 140 350

Gain-bandwidth product
[MHz]

10 12 10

Input noise density [ nV√
Hz

] 8 (at 10kHz) 11 (at 10kHz)
figure not avail-
able

Maximum output current
(continuous) [mA]

20 50 60

Offset voltage (typ/max)
[mV]

(0.15/1) (0.33/1.25) (50/200)

Input bias current at
optimal conditions
(typ/max) [pA]

(0.3/2) (3/50)
figure not avail-
able

Maximum slew rate [ V
µs ]

24 (74 without
protection circuit)

21 32

# channel per package 1 2 1

Area per channel [mm2] 49 12 >125

Price per channel
(approximately) [CHF]

20 7 17

Availability not available
periodically avail-
able

not available

9



Specification Value

DC gain 7.8 (17.8 dB)

Bandwidth [Hz] 50 kHz - 100 kHz

Low-pass order > 2

Desired low-pass type
Butterworth (maximally flat
passband)

Maximum overshoot step
response [%]

< 5

Table 3.1: Design specification for a general purpose amplifier used in trapped-ion experiments.

Component Value Component Value

R1 [kΩ] 12 C1 [pF] 22

R2 [kΩ] 2 C2 [pF] 120

R3 [kΩ] 100 CF [pF] 22 - 24

R4 [kΩ] 14.7 Cout [pF] 1000

Rout [kΩ] 1 - -

Table 3.2: Resulting values for the passive components.

Going by the most important criteria, the ADHV4702-1 would be the most fitting option. Unfortu-
nately, this part is practically unobtainable in the near future. At the time of writing this thesis, the
expected time of availability is in 2023. The PA443 may have a great output range and voltage swing,
but it is generally too noisy. The best compromise is then the LTC6091 which is available to purchase
and is not ruled out by any of the criteria. This op-amp was also successfully used in [15] for ion shuttling
experiments.

3.2 Circuit Topology & Performance

The basis of the final topology is a Sallen-Key low-pass filter with gain. To further reduce noise introduced
by the circuit, additional noise-suppressing measures have been integrated. The first is adding a single
pole RC filter directly at the output of the op-amp. The crossover frequency has been chosen to be
1 MHz. Secondly, a high-frequency feedback path to the inverting input has been added. The final
topology is depicted in Fig. 3.1 These additions lead to a reduction of bandwidth. The maximal
achievable bandwidth however is also limited by the slew rate of the op-amp to about 100 kHz over the
full output range. We note that the design equations for the pure Sallen-Key topology do longer apply.
Parameters of the components need to be tuned by hand for useful results. Using the chosen topology,
we can choose the passive components to realize the desired filter. The design parameters are listed in
Tab. 3.1 and the found values for passive components are summarized in Tab. 3.2.

We proceed by presenting simulation results which have been generated using the LTSpice VXII
simulator by Analog Devices. 1

The transfer function of the resulting filter is shown in Fig. 3.2. The cutoff frequency is roughly at
70 kHz. The magnitude response drops sharply by about 60dB over one decade. This corresponds to
a third order low-pass filter. Starting from 8 MHz onward we see a leveling off followed by a less steep
roll-off. This is due to introduced zeros which originate from the op-amp itself. We can use passive
filtering to increase the roll-off in this frequency region if necessary. The next crucial figure of merit is

1https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
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R3

R4
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C_out

CF

C1

C2 V_out
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Figure 3.1: The final topology, combining the additional noise-reducing filters to the Sallen-Key with
gain topology.

Figure 3.2: Frequency response of the resulting active filter. Continuous line depicts the magnitude of
the response. The dotted line mark the phase shift.
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Figure 3.3: Noise spectral density in nV√
Hz

(RMS) of the resulting active filter. The green line corresponds

to the noise density present at the output while the blue line gives the value of the input referred noise.

Figure 3.4: Step from -2V to +2V at the input leading to a step at the output from -15.6V to +15.6V.
The step at the input occurs at t = 40µs

the noise spectral density of the amplifier. The goal is to introduce as little additional input referred
noise into the pass-band as possible. Noise contributions from frequencies above the cutoff frequency will
be filtered by the circuit itself. Additionally, there are further passive filters in the signal path to the
trap electrodes. Passive filters will not be considered in this chapter as the implementation is specific to
the setup in which they are integrated.

Lastly, we can analyse the step response of the amplifier. Two key characteristics are the overshoot
(or undershoot) and settling time. The settling time depends on the allowed error band of the output
voltage. Common values are in the range between 1% and 5% error. For this simulation we used a step
from -2V to +2V at the input. The response overshoots to 16.54V by about 3%. The response does not
display ringing after the initial overshoot. The settling time for 2% error is 12µs.

3.2.1 Alternative Topologies

By not populating some components or using jumpers to bridge a signal we can also use different
topologies with the same PCB layout. Not populating Cout and CF and using a 0Ω jumper for Rout

results in the standard Sallen-Key topology as in Fig. 2.3. A next possibility is to jump both R1 and R2

and not populating C1 and C2. This leaves a non-inverting topology with additional noise suppression
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filters.

R_out

C_out

CF

V_out
V_in

R1R2

Figure 3.5: Non-inverting amplifier with additional noise suppression filters. This topology is taken
directly from the data sheet of the LTC6091 [13]. Note that also the naming convention for the resistors
has been adopted accordingly.

3.3 Passive Component Selection

In this section we briefly discuss some key considerations when choosing packages for passive components
and proceeding to buying a specific model. The package will determine the footprint on the PCB. Most
modern circuit boards use surface mount devices (SMD) instead of through-hole components. Smaller
packages are easier to place and route, while also achieving a higher component density. However, there
are values that might not exist for a given package. This is especially true for capacitors where there
is a limit to the maximum achievable capacitance. It is therefore advisable to go with the smallest
package which still offers the flexibility to slightly alter values. When looking for suitable components
there are additional factors which one needs to take into account. We start our discussion with resistors.
Resistors are usually more package-agnostic when it comes to values and tolerances. However, smaller
packages also have a lower power rating. The maximum power dissipated by a resistor can be estimated
from the schematic or simulated. Low tolerance resistors (±0.1%) are widely available. When choosing
capacitors, there are more things to consider. SMD capacitors are usually multi-layer ceramic capacitors
(MLCC). The used dielectric determines the temperature coefficient and DC bias derating. Derating
describes how the effective capacitance changes with applied DC voltages. Ideally, there would be no
dependence on applied voltage. The temperature coefficient describes the change of capacitance for
a given temperature change with respect to a control temperature. For many dielectrics the effective
capacitance decreases with applied bias. Furthermore, the voltage rating is also affected by the dielectric.
Ideally, the maximum applied voltage should be well below the rating. For this design, the main goal
was to only reach half of the voltage rating during operation. Fortunately, the C0G (NP0) dielectric
is temperature stable, experiences little voltage derating, and is frequently rated for hundreds of volts.
Using all considerations, the package size 0805 (imperial, 2012 metric) has been chosen for all passive
filter components 2. The tolerances have been chosen to be 0.1% and 5% for resistors and capacitors
respectively. Low tolerances are needed if the design is susceptible to component variations. The added
benefit is that this also reduces channel variability.

2Excluded are decoupling capacitors which need to be placed as close as possible to the supply pins of the op-amp. This

necessitates the usage of a smaller package.
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Figure 3.6: Image of the amplifier prototype board. 4 channels have been fully populated. It is noted
that the solder side also features components.

3.4 Prototype Board

It is vital to determine how the physical layout of the PCB and the chosen components affect the
performance of the design. In order to be able to assess the design, a prototype board has been designed
first. Most importantly, the input and output of the amplifier circuit should be easy to interface.
Otherwise, the layout should be as final as possible such that it can be carried over to the full design. An
image of the prototype board can be seen in Fig. 3.6. Inputs (left-hand side) and outputs (right-hand
side) are interfaced using SMA connectors. Power is supplied with pin headers. Four channels have been
fully populated mainly for two reasons. Firstly, we can infer channel variability. Secondly, we also need
to investigate potential cross-talk between the channels due to coupling between the channel traces on
the PCB or coupling between the two channels on one amplifier package.

3.5 Design Verification

In this section we replicate the simulations shown in 3.2 using the prototype board. The frequency and
step response has been measured using the Digilent Analog Discovery 2 kit3. The board was powered
using a switched bench-top power supply unit (PSU). The positive and negative supply voltage was set
to +30V and -30V respectively. The results for all four channels are shown in Fig. 3.7. In addition
to the simulated design, the transfer function of a third order Butterworth filter with the same cutoff
frequency as the simulated design is plotted for comparison. We can see that the measured magnitude
response qualitatively agrees with the simulation. The effects of the layout seem to be beneficial in this
case. The overall filter is less over-damped and has a slightly higher roll-off then expected. The channel
variability is insignificant. The roll-off however is lower compared to a third order Butterworth filter.

3Digilent Analog Discovery 2 sale page
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Figure 3.7: Magnitude response of four channels on the prototype board. Added for reference are the
simulated result as well as the magnitude response of a 3rd order Butterworth filter.

This results also translates to the step response. The response for an input step from -2V to +2V and
the calculated slew rate are depicted in the right panels of Fig. 3.8. Qualitatively, the response is more
aggressive: It exhibits a higher slew rate as well as overshoot. This also negatively affects the settling
time. The overshoot increases to approximately 6.8%. If we consider the usage case of this amplifier
board this is less of an issue. There will most certainly be additional filter stages which can be used to
counter higher overshoots if necessary. We observe that the overshoot is not independent of the step size.
The left side panels of Fig. 3.8 show an input step from -0.1V to +0.1V with all other parameters left
unchanged. We see that the measurement series follows the simulation more closely. Next we investigate
the potential cross-talks between channels. For this figure we do not have any simulation results nor
does the data sheet of the LTC6091 provide any information about cross-talk between the two channels
housed inside one single package. Most likely, the cross-talk will then be a result of the signal routing on
the PCB. This measurement was performed in the same fashion as the frequency and step responses with
the only difference that the measured output channel was mismatched with respect to the input channel.
There are two types of neighboring traces. Firstly, there are channels where the input line is routed in
parallel to an output line over a longer distance. Secondly, there are channels where the corresponding
output traces are routed in parallel over longer distances. The two types are indicated in Fig. 3.9. For
the following measurements the supply voltage has been increased to ±40V and the input amplitude has
been set to 5V which is the highest possible for the signal generator of the Analog Discovery 2. The
maximal output amplitude is therefore approximately 39V. As we do not expect strong coupling between
channels we want to apply large signals to the amps to increase the signal-to-noise ratio. The oscilloscope
inputs of the kit are only rated for ±25V signals. In order to not damage the device, it is crucial to
never correctly match input-output channels for this specific setup. The measured responses for both
neighbor cases are shown in Fig. 3.10. The most significant cross-talk can be observed for output-output
neighbors which peaks at -56dB in the frequency range around 100kHz. Input-output pairs exhibit the
same response qualitatively but with reduced peak. We see a second increase in the magnitude for
frequencies above 8 MHz. Judging by the noise apparent in the measurements for gains below -70dB
these values only suggest that cross-talk is a non-issue. The only effective way to combat cross-talk
induced by trace-to-trace coupling is to maximally increase the spacing between traces. Measurements
indicate that most importantly, the output signal traces need to be spaced as far apart as possible.

Characterising the noise performance needs to be handled with more care. If switched power supplies
are used for providing the op-amp supply voltage, switching noise is able to bleed through and appear
at the output. It is therefore crucial to use a non-switching, linear power supply, especially when it is
integrated into a experimental setup. Another possibility is to use batteries as power source. For the
following measurement series, the prototype board was powered using two +9V batteries in series per
supply leading to a positive (negative) supply voltage of (-)18V. To minimize potential EMI pickup the
board was also placed into a metallic box. Measurements were taken using the Stanford Research SR760
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Figure 3.8: Top: Step response of the amplifier channel for 0.2V input step (left) and 4V step (right).
Bottom: Calculated slew rate. We note that the slew rate has been determined numerically using the
time series signal and sparsely sampling it. The samples have been interpolated using cubic splines.

Figure 3.9: The inputs enter an amplifier block in the top left and outputs leave in the bottom right.
Amplifier blocks have white borders. Orange overlay: Depiction of the input-output pair with potential
cross-talk. The output signal trace of the top left amplifier is routed next to an input signal trace of the
bottom right. Blue overlay: depiction of the output-output pair. Both output signal traces are routed
in parallel.
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Figure 3.10: Magnitude of cross-talk between neighboring amplifier channels.
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Figure 3.11: Output noise spectral density measurement for three of the four populated amplifier
channels. We see similar densities among all channels. While mostly in agreement with the simulation,
we observe an increase in output noise in the frequency region close to cutoff.

spectrum analyzer. The noise floor is typically around 7 nV√
Hz

which is two magnitudes below the expected

noise level at the output of the amplifier circuit. The noise floor was verified in the frequency range 100Hz
to 100kHz by measuring at the noise spectral density of the ground potential at the PCB. This is done to
also include the cables used to interface the analyzer. This gives a better picture of the noise floor than
simply terminating the analyzer input with 50Ω. Fig. 3.11 shows the noise spectral density for channel 1
to 3. Again, we observe that the simulation and measurement mostly agree. However, we see an increase
in noise density in the cutoff frequency region. The easiest way to reduce this peak is to increase CF .
This will in turn decrease the bandwidth. This leads to no suggested changes to the layout.

3.6 Full Amplifier Board

After the specifications have been assessed and verified, we can carry over the layout of the prototype
board to the full 32 channel board. We proceed by summarizing the changes and improvements.

• Power connectors: The pins have been replaced by screw terminals.

• Signal inputs: Instead of using SMA connectors, we use a 2 by 13 pin header. The connectors
are placed on the solder side of the PCB.

• Signal outputs: All 32 outputs can be interfaced with a SCSI-III 68 position connector. Addi-
tionally, mounting holes for a front panel has been added for installation in an 19” rack unit.

• Trace spacing: All signal traces have been spaced as far apart as possible. Spacing between
output traces have been prioritized.

• Improved decoupling: More decoupling capacitors have been placed. Firstly, more bulk capac-
itance is available close to the screw terminals. Moreover, one LMCC per group of four amplifiers
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Figure 3.12: Full amplifier board prototype. Only 24 of the 32 possible channels have been populated. As
only 22 channels are needed for setups which can make use of this version, we reduce power consumption
and the associated heat generation by omitting the eight unused channels.

have been added to the design. The capacitance is chosen to be between the bulk capacitance and
the closest decoupling capacitors.

• Safety & protection: The prototype board lacks pull-down resistors for the power rails. This
can be dangerous as the bulk capacitors only discharge slowly - potentially shocking a user when
handling the board even if the power supply is disconnected. To protect the amplifier from damage,
diodes have been added to the power rails. This prevents attaching power with the wrong polarity.
Even for ±30V supplies, the op-amps are left permanently damaged if polarity is reversed. 4

An image of an assembled full board can be seen in Fig. 3.12.

3.7 Power Supplies & Rail Regulation

Next, we discuss how to power the amplifiers when installed into an experimental setup. Theoretically,
we should be able to support up to 50 mA to all 32 channels simultaneously to make full use of the
LTC6091’s capability. This would necessitate a power supply which can provide up to 1.6A at ±70V.
If we consider the use case at hand, this estimate is most likely too high. If we use the amplifier board
purely for DC voltage generation, the current demand decreases significantly. Even if ion transport
experiments are considered, transient current draw spikes are alleviated with the available decoupling
capacitance. As a final argument we also note that it is unlikely that all channels operate at their
maximum output current rating. Using all these considerations, we aim for a 1A at 75V linear power
supply for each power rail. Options are limited and an Acopian A75MT100M-230 Gold Box was chosen.
The same brand also offers higher output current models if needed. Higher output current models come
in a larger case and it needs to be made sure that the supply can be integrated into the setup on a
case by case basis. We are not using the output of the power supplies as power rail. We will further
add line regulation to the design. Using three-terminal regulators, we step down (up) the voltage from
(-)75V to (-)70V. We make use of the LM317 for positive rail regulation and the LM337 for negative
rail regulation. We note that different manufacturers (such as Texas Instruments and onSemi) produce
the regulators under the same base model name. The manufacturer does not matter and one can order

4These values have been experimentally verified, if not on purpose.
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Figure 3.13: Image of the regulator board. As with the amplifier board, power connectors are screw
terminals. Otherwise, the board is mostly a heat sink for the three-terminal regulators.

the regulators according to availability. The only restriction is to use the package TO220 such that the
regulators can be soldered to the PCB. To achieve the best results, these regulators would need to be
placed on the same PCB as the op-amps. Due to thermal considerations we decided against trying to fit
everything onto one board. The power which needs to be dissipated by the op-amps is already enough
to heat the whole PCB considerably. The regulators where in turn moved to a separate PCB. An image
can be seen in Fig. 3.13. Heating has two negative effects. Firstly, it increases thermal noise due to
resistors. Secondly, it limits the maximum output current of the three-terminal regulators.

Due to the large heat sink, the regulator board could also be used in scenarios with output currents
up to 1.5A at the some dropout voltage. Both boards need to be installed close to each other and the
wiring between both boards should be kept as short as possible.
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Chapter 4

Full System Testing

In this chapter we will discuss how the amplifier board is integrated into the experimental setup. We
describe all the connections for the signal path as well as for the power distribution. We will present
preliminary results from usage in a different but similar setup.

4.1 Overview Signal Path

4.1.1 Fastino DAC board

Up to this point we have not discussed where the inputs to the amplifier board are generated from. For
this we use the digital-to-analog converter (DAC) board Fastino which is part of the Sinara hardware
ecosystem [11]. An image of the board is showen in Fig. 4.1. The Sinara ecosystem focuses on developing
hardware used by quantum science laboratories. The Fastino features 32 DAC channels with a 3 Msamples

s
update rate (simultaneous on all channels). The featured DAC has a resolution of 16bits while the output
range of the output stage is ±10V. The outputs of the channels can be interfaced using either 2 by 13
pin headers or by a SCSI-III connector. Each pin header holds a sub-group of eight channels whereas
the SCSI-III connector features all 32 outputs in a single connector. The samples are transferred using a
serial interface. The Kasli board is a card also part of the Sinara ecosystem able to transfer sample data
received from a control computer to the Fastino. The control system developed by the group in which
this thesis was written in has been adapted such that it can be used with the Fastino.

Figure 4.1: Image of the Fastino DAC card taken from [11].
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4.1.2 Board Interconnect

All DC voltages will be generated by the Fastino. Ribbon cables connect the output of the Fastino with
the input of the amplifier boards. We have made sure that the pin layout is compatible between the two
boards. The output of the amplifier boards (SCSI-III connector) is also compatible with the outputs of
the Fastino. One important difference is that we have introduced a permutation of channels. This means
that the channel-to-pin mapping at the Fastino SCSI-III connector is not the same as the mapping of
the connector of the amplifier boards. This can be corrected in software. For the re-mapping we refer to
the schematics. Up to this point, there is no use for the SCSI-III output of the Fastino. In principal, one
might use the un-amplified signal for monitoring. If not all 32 channel are used for trapping voltages,
it is also possible to use them for remote control. In this setup, we only make use of 22 channels for
trapping. Four of the remaining channels are used to externally control a piezo driver amplifier. A small
custom PCB has been designed to breakout 8 channels from an SCSI-III connector to 8 separate SMA
connectors.
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Figure 4.2: Block diagram of the overall system for cavity piezo driver and DC electrode voltage control
including the amplifier board.

Following the amplifiers, there is an additional stage of passive filtering. The specific implementation
will differ for each setup. The following shall only serve as an example and can be adapted to meet
requirements. Generally, these passive filters are placed physically close the trap. Their main objective
is to further reduce noise and filter any electromagnetic interference picked up by the connecting cables.
For this implementation, the filter board also changes the interface from the SCSI-III connector to two
separate DSUB-15 connectors matching the DC feedthrough of the vacuum chamber in which the ion
trap will be placed. An enclosure will hold the 100mm by 100mm PCB as is shown in Fig. 4.3.
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Figure 4.3: Passive filter board fitted into an enclosure.

4.2 Overview Power Distribution

In this section we discuss how to interconnect all components for power distribution to the amplifier
boards. We make use of the two identical power supplies by connecting them in series. The positive
output of the negative rail supply will therefore be at the same potential as the negative output of the
positive rail. This potential will further be the main ground for all components involved in generating
the DC electrode voltages. We note that both the negative and positive output of the power supplies
have additional sense inputs. As the name suggests, this input is used to feedback the output voltage
for active regulation by the PSU. The Acopian models are shipped with a bracket connecting output
and sense line directly. Removing this bracket, one can also use a wire and connect sense and output
at the load. With this modification, the voltage drop across the connecting wire can be compensated
by the power supply. To avoid oscillations from over-regulation, the power and sense wire need to be
twisted to avoid creating a loop which can act as an inductance picking up magnetic fields. To avoid
potential damage to the Acopian models, the sense lines must be connected using one of the two methods
mentioned earlier. The regulator board will then create the amplifier board power rails. It is advised to
use as short wires as possible to interconnect amplifier and regulator board. Otherwise, the performance
of the three-terminal regulators will deteriorate. This necessitates that the two boards are placed in
neighboring slots if installed into a 19” rack unit. A diagrammatic overview of the power distribution is
shown in Fig. 4.4.

4.3 Preliminary Results

The whole system consisting of regulator and amplifier board and power supplies has been put into a
different setup in the same group where this thesis was written in. The testing capabilities do not change
as the two setups are very similar. For example, the used ion trap is identical. This allows for testing of
the whole DC signal path as well as the power distribution to the amplifier boards. However, at the time
of writing, experiments which rely on low noise DC trap voltages have not been possible yet. Powering
the board with the chosen power supplies in tandem with the regulator board is working. We can also
connect the Fastino outputs using ribbon cables to apply an input to the amplifier board. Following
the signal path, we confirm that the connectivity from the passive filters up to the trap electrodes is
as intended. As a first proof of concept attempts of trapping ions using the amplified signal has been
successful. In Fig. 4.5 we show an image of a trapped calcium ion using an EMCCD camera.

Up to this point, quantitative statements concerning PCB heating and power dissipation of the
amplifier boards have not been disclosed. This is owed to the fact that the ability to dissipate heat to
the ambient is highly dependant on the PCB layout. Data sheets may provide estimates, but in the
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Figure 4.4: Block diagram of the power distribution to the amplifier boards. The outputs and their
corresponding sense lines must be twisted to avoid oscillations. This is omitted in the diagram to not
impede readability.

Figure 4.5: Image of an trapped ion using an EMCCD camera. The amplifier board has been used to
apply the DC electrode voltages.
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(a) Infrared image of the top side of the ampli-
fier PCB. The spot is aimed at the package of an
LTC6091.

(b) Back side of the amplifier PCB. The spot is
aimed at the solder mask to assess passive compo-
nent heating. The hottest spots are exposed metal
pads.

Figure 4.6: Thermal imaging of the amplifier board when used for trapping ions. This does not include
shuttling experiments as they will lead to transient heating responses.

case of the LTC6091 they are of limited use1. To close this gap, a thermal camera has been used to
determine key temperatures of the amplifier board during operation. In Fig. 4.6a we take a temperature
reading directly from the amplifier package. The package temperature is about 90°C. The temperature of
interest however is the junction temperature of the internal MOSFETs which should not exceed 150°C.
To approximate the junction temperature we can use the thermal resistance θJC = 15 °C

W from junction
to case as specified in [13]. If we disregard transients, the average power dissipation is well below 2W.
We therefore still have an adequate safety margin before the amplifiers would perform an autonomous
thermal shutdown. Next, we also measure the average PCB temperature as seen in Fig. 4.6b. Hot spots
of the PCB reach about 80°C at the surface. This indicates that the power dissipation from the amplifier
case to the PCB is effective. The PCB area will further increase dissipation to the ambient air. We
conclude our discussion on thermals with two remarks. Firstly, we note that the front of the rack unit
has not been fully closed to make measurements possible. It is to be expected that the temperature will
increase when fully closed as there is less air flow over the amplifier PCB combined with a decreased
temperature differential between ambient air inside the enclosure and the amplifier PCB. Perforating
the bottom and top lids of rack enclosures is recommended to maximize air flow. Applying this measure
should allow for operating the board without any active cooling or heat sink. Secondly, it has not been
assessed yet how closing the front will affect the temperatures of the power supplies and regulator board.
The main side effect would be a decreased supply current. This needs to be evaluated on case by case
basis as the enclosure has a significant impact.

4.4 Possible Improvements

Future iterations of the amplifier board can be improved in many ways. We follow by providing a list
of possible changes for the next iteration. We begin the list with the most pressing functional and
quality-of-life improvements and end on minor details nevertheless deserving attention.

• Power Connectors: Screw terminals are less than ideal to work with. Primarily, it is not
guaranteed that wires make good contact after installing the card into the rack unit. Adding
to that is the fact that removing the amplifier card is a hassle as it is connected directly to the
regulator board. The situation with the regulator board is even worse as it is also connected to
the Acopian power supplies. In the future 15 position DIN41612 type H connectors could be used
to solve the problems. Both the amplifier and regulator cards will then slot into an receptacle and
no hard to reach screws need to be loosened to remove the card.

1Linear Technology only provides estimates for 2-layer PCBs with only one amplifier package populated. This is quite

different from placing up to 16 on a 4-layer PCB.
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• Power Rail Indication LED: The amplifier board does not have any indication that the power
rails are present. Adding LEDs visible at the front panel are an easy addition. Previously custom
made panels can be updated by drilling additional holes.

• Ribbon cable connectors: The 2 by 13 ribbon cable connectors on the bottom are flipped by
180 degrees. This necessitates an 180° twist/torsion of the ribbon cable which in turn increases
the minimal length of the cable. Either the headers are placed on the top or are left at the
bottom and rotated by 180°. Leaving them on the bottom side would still allow for the shortest
possible connection and the correct orientation will also cancel out the permutation of the channels
introduced to make the design easier to route.

• Thermal shutdown indication: Each channel of the LTC6091 feature an over-temperature flag
output. This would in turn inform users of the thermal limitation of the board. The remaining
consideration is how to display this signal to the user. Either, this signal is lead to physical pins for
each channel individually and/or all signals are logically OR-ed and the resulting signal is used to
drive a status LED integrated into the front panel. One could also group banks of eight channels
together (those belonging to one ribbon cable) instead of all 32 channels

• SCSI-III connector voltage rating: We note that the used connector for the amplifier outputs
has a voltage rating of only 30V 2. The board is still safe to use. The absolute maximum applicable
voltage difference between two adjacent pin positions is approximately 400V. At this point the
dielectric insulator starts to break down.

• Output stage disable: It is possible to turn off the output stage of the LTC6091. The main
use case for this functionality are either the self-controlled thermal shutdown using the over-
temperature flag or multiplexing applications. We note that it is possible to disconnect the am-
plifiers without immediately loosing the trapped ions. The is possible due to the fact that the
electrodes loose charge through two possible mechanisms. Firstly, there is a connection to ground
through the negative feedback path. If one is able to increase the two resistors setting the DC gain
by an order of magnitude without changing the ratio, the capacitor discharge should be minimal
during one experimental shot. The second way to loose charge are leakage currents either from the
trap electrodes themselves or through the capacitors present in the passive filters which are left
connected. It could be evaluated if turning off the output stage would lead to a significant noise
reduction. The trap would then need to be periodically recharged which could be controlled using
the output stage enable. This possibility has not been explored as in the current layout, the output
enable is tied to the over-temperature flag, making the output disable hard to trigger externally.

• Heat sink: Upcoming use cases may impose a greater thermal load onto the amplifiers. Mounting
holes for a custom heat sink are already available on the PCB. As some of the passive components
have a higher height clearance, a custom heat sink must be designed and manufactured. Flat heat
sink would only make contact with passive components. One could also try to bridge the gap
between a flat heat sink and the LTC6091 package by using thick thermal pads.

2This type of connector was designed for digital signal transmission, not trapped ion experiments. We want to highlight
that it is also possible that vendors and/or manufacturers simply do not bother achieving high voltage ratings if they are
not part of the typical application.

25



Chapter 5

Conclusion & Outlook

During this part of the thesis, we documented the development of a low noise amplifier design for use
in trapped ion quantum experiments. We introduced the basics of analog signal processing and active
filters. We proceeded with a discussion of component criteria and a final selection. We verified the
performance using a prototype board. As its layout allows for different circuit topologies to be realized,
the prototype can be used as a development platform for different active filters. We documented how
the amplifier board and its surrounding hardware can be integrated into an experimental setup. We
started the process of verifying the designs suitability for trapped-ion quantum information experiments
by trapping calcium ions. We concluded this part by giving a comprehensive list of possible improvements
to the current design. However, the development and performance assessment is by no means complete.
We provide next steps which would advance the design:

• Motional coherence measurements: Being able to trap ions is only the first step to assess
suitability of the amplifier board. A practical test for the noise performance are motional coherence
measurements. Determining the heating rates will enable future developers to compare the design
against other solutions.

• Reliability testing: At the end of writing this thesis, the amplifier board setup has been running
for about a month without incident. To ensure that we are past the early failures 1, it is key to
ensure correct operation of the hardware setup.

• Implementing improvements: Functional and quality-of-life improvements should be imple-
mented before deploying the system in other setups.

• Designing different active filters: The amplifier layout allows for different circuit topologies to
be realized. Using the prototype board one can design filters with different parameters for the to
cutoff frequency, output voltage swing, et cetera.

1Early failures and their rate are also gruesomely referred to as (product) infant mortality.
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Chapter 6

Concepts

In this chapter we introduce the concept of Markov chains, hidden Markov models, and qubit state
readout in trapped-ion quantum information processing. We assume that the reader has a solid under-
standing of probability theory. Sections 6.1 & 6.2 are a highly condensed summery of the lecture notes
[16]1 by Hans-Andrea Loeliger while section 6.3 is a summary of chapter 3 in [17]. We suggest to first
read the corresponding chapter before returning to the aforementioned sections.

6.1 Hidden Markov Models

Before introducing the concept of a hidden Markov model, we first define under which conditions random
variables form a Markov chain. LetX0...n, n ≥ 2 be random variables. We say that these random variables
form a Markov chain if for any i ∈ 1, . . . , n− 1, the joint probability distribution conditioned on Xi has
the following property:

p(x0, . . . , xi−1, xi+1, . . . , xn |Xi = xi) = p(x1, . . . , xi−1 |Xi = xi)p(xi+1, . . . , xn |Xi = xi) (6.1)

Knowing the outcome of the random variable Xi will split the joint probability distribution into two
independent factors. The split occurs at the observed random variable. A common notation to indicate
that random variables form a Markov chain is as follows:

X1 ↔ · · · ↔ Xn (6.2)

This allows us to write the joint probability distribution as:

p(x1...n) = p(x1)p(x2 | x1) . . . p(xn | xn−1) (6.3)

We can think of Markov chains as a system being in a starting internal state X0 = x0. When simulating
the system, we transition non-deterministically from the state x0 to a state X1 = x1. The Markov
property ensures that the transition probabilities only depend on the current state, independent of the
full state history. We can extend this model to the case where it is not possible to identify or measure
the internal state directly. In a hidden Markov model, we are able to make observations yi which either
depend on the internal state transition p (yi−1 | xi, xi−1) or even simpler only on the state during which
the measurement was taken p (yi−1 | xi−1). This allows us to write the joint probability distribution of
internal states x0...n and observations y1...n as:

p (x0...n, y0...n−1) = p(x0)

n∏

i=1

p (xi | xi−1) p (yi−1 | xi−1) (6.4)

There are many questions which one can answer about this structured model. In our case, we are most
interested in the initial state x0 or the current state xi for reasons which will become clear. Explicitly,
we want to estimate the state at any given time index i conditioned on fixed observations y0...n−1:

x̂i = argmax
xi

∑

xk ̸=xi

p (x0...n, y0...n−1)

p (y0...n−1)
∝
∑

xk ̸=xi

p (x0...n, y0...n−1) (6.5)

1Specifically chapter 8
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. . .

X0 X1 Xn−2 Xn−1 Xn

y0 yn−2 yn−1

p(x0)

p(y0|x0)×

p(x1|x0)

p(yn−2|xn−2)×

p(xn−1|xn−2)

p(yn−1|xn−1)×

p(xn|xn−1)

fixed observations

observation likelihood

transition probability

prior

Figure 6.1: Factor graph of Eq. 6.4. The factors which are represented by a box are indicated above.
The box corresponding to the prior probability p(x0) (furthest to the right) is a half box. The edge
corresponding to Xn is an half edge. We indicate the fixed observations with smaller filled boxes.

We note that the sums over xk in Eq. 6.5 are a shorthand notation for marginalizing over all random
variables excluding the variable we want to maximize. Without making use of the structure of hidden
Markov models, the marginalization is usually computationally infeasible. We proceed to explore a
general method to answer this and related questions efficiently.

6.2 Factor Graphs and Belief-Propagation

6.2.1 Factor Graphs

Factor graphs are a graphical representation of the constituent factors of a global function. We will
make use of Forney factor graphs for our analysis. Each factor (which is a function in its own right)
is represented as a box. Each variable is represented using a unique edge. If the edges are chosen to
be directional, the direction of the edge has no influence on the global function. It is however useful
for unambiguous notation later on. If a factor depends on a hidden variable, the corresponding edge
connects to the box of the factor. This would lead to a strict limitation of the structure of a given global
function as a variable could only appear in two factors. There is an easy way to overcome this limitation
using the notion of equality constraints. We refer to [16] for a complete and more rigorous introduction
to factor graphs. Boxes which only have one edge connected are called leaf boxes. Edges which only
connect to one box are referred to as half edges. If we have fixed observations y0...n−1 we indicate this by
adding a small filled box to the edges Y0...n−1. As an example we can look at the factor graph of the joint
probability function of a hidden Markov model as in Eq. 6.4. The corresponding factor graph is shown
in Fig. 6.1. We note that this is not the most refined factor graph of Eq. 6.4 as all but one box contain
two factors instead of one. This is a different, non-standard method to overcome the limit of variables
ability to appear in at most two factors. We proceed with the concept of closing boxes. We can group
neighboring boxes together to create one larger box. Edges (and the corresponding variable) which are
fully enclosed by the larger box are therefore not variables of this generated factor anymore. Moreover,
the global function must no longer depend on enclosed variables. We can perform the elimination of fully
enclosed variables in two ways. Firstly, we can close boxes by summing (or integrating) over all possible
values of the enclosed variables. If we apply this to joint probability distributions, we effectively take
the marginal distribution. Secondly, we can think of taking the maximum marginal over the enclosed
variables. We will only make use of the first case and do not further comment on max marginals. 2

6.2.2 Belief Propagation

We continue with our discussion on factor graphs by considering the belief propagation algorithm. Belief
propagation is also referred to as message passing. A message µXi

out of a box is a function which only
depends on the variable xi. Edges which connect two boxes therefore have two possible messages, one
leaving each box. We can now use the directed edges introduced earlier to indicate the message along the
edge as µ⃗Xi

(xi) while the message in the opposite direction is denoted as ⃗µXi
(xi). We define a message

out of a box representing a factor with m variables incoming g(xi1 , . . . , xim) on the edge of variable Xi1

recursively by the following rule:

2The non-standard factor graph in Fig. 6.1 is obtained by closing boxes in the standard factor graph of 6.4.
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µout(xi1) =
∑

xi2
...xim



g(xi1 , . . . , xim)

xim∏

x=xi2

µX,incoming(x)



 (6.6)

We define messages of half boxes as the factor itself. Messages entering a box along half edges are the
neutral message. The neutral message is simply µneutral(x) = 1 ∀ x. Fixed observations are plugged into
the connected factors. By the recursive definition, we need to start with leaf nodes and half edges.

6.3 State Readout

In trapped-ion quantum information processing, a prominent technique for qubit readout is state-
dependant fluorescence. This necessitates that a detection laser resonantly couples one of the qubit
states to an excited level through a closed dipole-allowed transition. This allows us to scatter many
photons in a short amount of time. Because of the repeated exciting and decay, these transitions are
also referred to as cycling transitions. The state which exhibits this cycling transition is called the
bright state whereas the other is simply referred to as the dark state. We can use different hardware to
detect the scattered photons. Readout devices include photomultiplier tubes (PMT), avalanche photo
diodes (APD), and electronmultiplier or CMOS charge coupled devices (EMCCD and CMOS cameras
respectively). Cameras allow for imaging multiple ions simultaneously as they provide spatial resolu-
tion. Depending on the internal state of the qubit and the used measurement device we expect different
photon count distributions. In our discussion we will focus on detection using PMTs. For a summary of
photon count distributions of EMCCD and CMOS cameras we refer to [18]. The detection of an emitted
photon is usually a rare event, so under the assumption of constant detection rate and time-independent
detection events, the photon count distribution follows a Poissonian distribution [17]:

p(n | λ) = e−λλ
n

n!
(6.7)

The mean λ of the Poissonian distribution is different for the two qubit states. First, we have the
mean λD = RDtdet for ions in the dark state. RD defines the rate we detect background photons, whereas
tdet defines the time interval during which we count photons. Ideally, RD = 0 as no stray photons would
be detected. Nonetheless, there is the possibility to detect background counts. Sources of background
counts can be scattered photons from trap surfaces, electrical noise during PMT readout and cosmic
rays. Secondly, we have the bright state mean (RB +RD) tdet which includes the photons scattered by
the ion.

6.3.1 Non-Poissonian Statistics

In reality, the photon count distribution is not a pure Poissonian. The main mechanisms driving the
deviation are dark-to-bright and bright-to-dark leakage at random times during the detection interval.
We briefly state the most important phenomena which lead to leakage [17].

1. Lifetime: The exited qubit state may decay spontaneously due to its finite lifetime.

2. Off-resonant pumping: The detection laser can drive unwanted qubit transitions, even if the
laser is detuned.

3. Unclosed detection transition: It is possible that the detection transition is not closed and we
drive different transitions or that unwanted decay paths can occur which interrupt the cycling.

In order to take these effects into account we can adjust the mean of the Poissonian distribution.
Instead of being constant during the entire detection time we allow the photon count rate to be time-
dependent [17].

λeff =

∫ t0+tdet

t0

R(t) dt (6.8)

where R(t) is the state-dependant photon count rate. As the ion state is time-dependant, the photon
count rate implicitly depends on time. If we restrict ourselves to only one type of leakage event, it is
possible to derive parametric analytical solutions [17]. Parameters are then fit using experimental data.
From these we can usually extract rate equations which model the flow between different states. This
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enables us to simulate the ion dynamics using Markov Chain Monte Carlo simulations. Hidden Markov
models have been explored in trapped ion detection to account for multiple possible state transitions
[19]. The same framework has also been applied to superconducting qubit state readout[20]. Transitions
matrices and priors have been learned from unlabeled data. This eliminates the need to determine
analytical models and parameter fitting.

6.3.2 Real-Time State Discrimination

After we have retrieved the photon counts, we need to estimate the state. A common technique which can
be applied in real-time is thresholding. For this method we define a photon count threshold within a fixed
time window. Sequences meeting the threshold or having a higher count are labelled bright. Otherwise,
the qubit is labelled as dark. This decision rule is computationally inexpensive and easily applicable in
real-time. If we are able to perform floating point operations in real-time, we can implement time of
arrival information of the incoming photons, hoping to speed up the detection sequence. To accomplish
this, we sub-divide the whole detection window into an integer number of sub-windows. After each
sub-window we retrieve the photon counts. We also refer to a detection window and PMT readout as a
sub-bin. After each sub-bin we are able to calculate the likelihood of the observation given the ion was
in the bright pB or dark state pD. How the likelihoods are calculated is discussed in depth in section
7.1. Using Bayes’ rule we can calculate error probabilities from the likelihood functions. We define the
probability of erroneously labelling a dark (bright) state as bright (dark) as [17]:

eD =
pB

pB + pD

(

eB =
pD

pB + pD

)

(6.9)

We are able to abort the detection sequence as soon as we satisfy the condition min(eD, eB) < ec
where ec is parameter which needs to be defined in accordance with the desired fidelity of the readout.
Having arrived at that point, we infer that the ion was in the bright (dark) state if pB > pD (pD > pB).
A description using pseudo code is given in Alg. 2.

Algorithm 2 Adaptive Maximum Likelihood estimator

Output: State of the ion

p
(0)
B , p

(0)
D ← 0.5

for m = 1 . . . nbin, max do
Detect sub-bin
Calculate likelihood p

(m)
B , p

(m)
D

Evaluate errors eB , eD
if min (eD, eB) < ec then

if p
(m)
B > p

(m)
D then

return bright
else

return dark
end if
Abort detection

end if
end for

if p
(nbin, max)
B > p

(nbin, max)
D then

return bright
else

return dark
end if

Using this chapter as a starting point for in-depth analysis of the maximum likelihood method and
will explore how we attempt reduce detection time even further in the following chapter.
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Chapter 7

State Discrimination Algorithms

In this chapter, we explore various state discrimination algorithms. We start off by characterizing the
popular maximum likelihood method. We will further discuss its shortcomings with respect to readout
times and propose multiple ways to address them. This will lead to algorithms which take actions on
the qubit in order to speed up the state identification sequence.

7.1 Adaptive Maximum Likelihood

The general idea has bin outlined in section 6.3. We first define the update rule for the likelihood
functions:

p
(m)
D = p

(m−1)
D p(ym−1 | θdark)

p
(m)
B = p

(m−1)
B p(ym−1 | θbright)

(7.1)

We are now able to analyze the behavior of the maximum likelihood method analytically under ideal
conditions. We start off by assuming the following:

1. Photon counts follow a Poisson distribution with either mean λD = RDtbin in the dark state or
λD = (RD +RB) tbin. This corresponds to the situation where no transitions which either result in
dark-to-bright nor bright-to-dark pumping can occur. tbin is the time interval of the sub-window.
It is a whole integer fraction of a total available detection time tdet, max.

2. We set RD = 0 assuming no stray photons.

3. We terminate when the threshold ec >
min(pD,pB)

pD+pB
is met where pD (pB) is the likelihood of the

dark (bright) state.

This will immediately lead to a first key observation:

p
(m)
D ∝

m∏

k=0

p (nk|λD) =

m∏

k=0

δ[nk] (7.2)

where δ[.] is the Kronecker delta function. Furthermore, if an ion is in the dark state, we will always
detect zero photons. We will use this to our advantage.

7.1.1 Bright State Detection

As soon as we detect even a single photon, we will immediately abort the detection sequence as pD = 0.
We define:

psuccess = p (n > 0 | λB) = 1− e−tbinRB (7.3)

We can then easily calculate the probability that we detect the first photon during bin k:

P [ ”first photon at bin k” ] = (1− psuccess)
k−1

psuccess (7.4)
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This follows a geometric distribution and we can easily calculate the average number of bins k̄B and
with it the average detection time tdet, B it takes to detect the first photon:

k̄B =
1

psuccess

tdet, B = tbink̄ =
tbin

psuccess

(7.5)

The average detection time will certainly be at least as long as a bin time. We may investigate when
the bin time tends to zero.

lim
tbin→0

tbin

psuccess
= lim

tbin→0

tbin

1 − e−tbinRB

de l’H
= lim

tbin→0

1

RBe−tbinRB

=
1

RB

(7.6)

We see that we are limited be the photon rate tdet ≥
1

RB
.

7.1.2 Dark State Detection

For RD = 0, we will always receive zero photons independent of the sub-bin time. This leads to the
following observations:

1. The dark state likelihood at sub-bin index i: p
(i)
D = 1 ∀ i

2. For the bright state likelihood we have in contrast p
(i)
B = p(n = 0 | λB)

i

3. Combining both leads to p
(i)
D > p

(i)
B ∀ λB > 0. The estimator will terminate as soon as the bright

state likelihood is small enough.

Starting from the termination condition, we can calculate at which sub-bin k the estimator will reach
said condition.

eD =
p
(k)
B

1 + p
(k)
B

< ec

⇔ p
(k)
B = e−ktbinRB <

ec

1− ec

⇔
1

tbinRB

log

(
1− ec

ec

)

< k

⇒ kD =

⌈
1

tbinRB

log

(
1− ec

ec

)⌉

(7.7)

The average detection time can be calculated in the same fashion as in 7.5. Taking again the limit
for sub-bin times approaching zero, we can effectively ignore the ceiling operation and we get a similar
expression as in 7.6 with an additional penalty factor depending on the threshold:

lim
tbin→0

tbin

⌈
1

tbinRB

log

(
1− ec

ec

)⌉

=
1

RB

log

(
1− ec

ec

)

(7.8)

We will finish our analysis by plotting the predicted average detection time. 7.1. For this setup we
have set RD = 25 1

200µs while assuming no background counts and ec = 10−4. We divide a detection
window of 200µs by an increasing number of sub-bins. Fig. 7.1 shows the prediction using the specified
parameters. The main drawback of the adaptive maximum likelihood method is the disparity between
the average readout detection time of dark and bright. We will attempt to equalize the average detection
time in the following.
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Figure 7.1: Prediction of the average detection time given a number of sub-bins. The oscillations in
dark state detection is an artifact of the ceiling operation in Eq. 7.7.

7.2 π-pulse Methods

In order to shorten the average dark state detection time, we can apply a π-pulse to the ion being read
out. If we successfully reached the bright state we would expect to see an increase in photon counts
and may be able to abort the estimation sequence sooner. Previous studies investigated the idea of
using π-pulses during qubit readout [21]. The main difference is that π-pulses were applied between two
consecutive measurements of the same state. The information of the two readouts was used to reject
contradictory results, improving fidelity. In the case proposed here, the π-pulse is conditionally applied
during state readout to shorten the average detection time. To achieve this, we need to determine when
we want to apply a pulse. More formally, if we are given a model of the ion with parameters θ and past
observations y0...n−1, we need a objective J telling us which action a from a set of available actions A we
should perform before the next sub-bin. In the case of trapped ion state discrimination we can identify
these formal definitions:

• Parameters θ: This includes photon count statistics given the state and the physical device used
to measure and any additional dynamics like pumping rates from the dark to the bright state τdb.
We will use this for a convenient abuse of notation: while one usually denotes probability mass
functions as P (x | θ) and probability density functions as p(x | θ) we will now assume that the
distribution and its parameters are all included in θ allowing us to stay oblivious for theoretical
considerations.

• Past observations y0...n−1 ∈ Y: These are simply the photon counts yi during sub-bin index i.
Therefore, we can identify Y = N

• Actions A: For the following state discrimination algorithms we have A = {π, no-π}.

As state discrimination is a stochastic process, we can assume without loss of generality that we want
to optimize for the expectation value of the given objective rather than a specific outcome. Finally, we
are able to formulate the problem in a compact fashion:

â = argmax
a∈A

E [J | θ, yi...n, a] (7.9)

An estimator is therefore fully determined by the objective J . In the special case of only having two
actions, we can look at the difference of the expectations given the action and apply a π-pulse given the
sign:

â =

{

no-π, if E [J | θ, yi...n, a = no-π]− E [J | θ, yi...n, a = π] ≥ 0

π, otherwise
(7.10)
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Eq 7.10 leads to decision boundaries where the difference is equal to zero. If the decision bound-
aries can be pre-calculated when initializing the estimator, we can lower the computational burden of
calculating the expectation values in real-time.

As soon as we start to interfere during detection sequences, we need to modify how we update our
likelihoods. The dark (bright) state likelihoods are referenced to the start of the detection sequence and
are not to be confused with the likelihood of being in the dark (bright) state during a sub-bin. This
can be done by keeping track of the number of π-pulses which have been applied during detection. If we
have applied an odd number of pulses, we are in the flipped state with respect to the starting point. For
an even number, we are back at the initial state. This leads to the following likelihood update rules for
sub-bin index m:

p
(m)
D =

{

p
(m−1)
D p(ym | θdark), state not flipped

p
(m−1)
D p(ym | θbright), state flipped

p
(m)
B =

{

p
(m−1)
B p(ym | θbright), state not flipped

p
(m−1)
B p(ym | θdark), state flipped

(7.11)

We can adapt the maximum adaptive likelihood detection algorithm to incorporate the theory we
discussed.

Algorithm 3 π-pulse Methods estimators

Output: State of the ion

p
(0)
B , p

(0)
D ← 0.5

state← not flipped
for m = 1 . . . nbin, max do

Detect sub-bin
Calculate likelihood p

(m)
B , p

(m)
D

Evaluate errors eB , eD
if min (eD, eB) < ec then

if p
(m)
B > p

(m)
D then

return bright
else

return dark
end if
Abort detection

end if
Evaluate 7.10
Perform action â ∈ A
Update current state according to action

end for

if p
(nbin, max)
B > p

(nbin, max)
D then

return bright
else

return dark
end if

It is crucial to note that up to this point we assumed no leakage mechanisms and a unit π-pulse
fidelity. The influence of these unwanted effects are explored in chapter 9.

7.3 Information Gain Estimator

Proposed by Marinelli [17] we can try to maximize the expected entropy of the future normalized like-
lihoods of the bright or dark state respectively. Intuitively, we want that our actions lead us to a state
where sampling (in this case receiving counts for the next sub-bin) offers the most amount of information.
The objective function is therefore described by:
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J = Hbin

(

p̃
(m+1)
D

)

(7.12)

with the normalized dark state likelihood p̃
(m+1)
D :

p̃
(m+1)
D =

p
(m+1)
D

p
(m+1)
D + p

(m+1)
B

(7.13)

and the binary entropy function:

Hbin(p) = − (p log(p) + (1− p) log(1− p)) (7.14)

As the future observation ym is not known, we take the expectation value over all future possible
outcomes. For the probability of an observation yi we can use the law of total probability as follows:

p(yi) = p(yi | θdark) p(θdark) + p(yi | θbright) p(θbright) (7.15)

If we assume that we have a uniform prior probability we can simplify Eq. 7.15 and just note that
p(yi) ∝ p(yi | θdark) + p(yi | θbright). We need to calculate this expectation value for both actions using
Eq. 7.11 as update rule. Note that the number of π-pulses increases by one for the case when taking
the corresponding action. For this objective function, it is not possible to evaluate the expectation
numerically. We need to truncate the infinite series and are left with an approximation. As we are only

interested in the sign of the difference, we are able to assume that the likelihoods p
(m)
D (and therefore

p
(m)
B ) to be normalized. We can proceed to analyze the difference term 7.10 to find zeros. Firstly,

if p
(m)
D (p

(m)
B ) = 0 directly leads to p

(m+1)
D (p

(m+1)
B ) = 0 ∀ ym. Together with the fact that Hbin(0) =

Hbin(1) = 0 we can conclude that the difference term has zeros for p
(m)
D ∈ 0, 1. Using linearity of

expectation we can write 7.10 for the case of not being in the flipped state as:

E [J | θ, yi...n, a = no-π]− E [J | θ, yi...n, a = π] =

nmax∑

y=1

−p(y) × . . .

. . .

(

p
(m)
D p(y | θdark)

p
(m)
D p(y | θdark) + p

(m)
B p(y | θbright)

log

(

p
(m)
D p(y | θdark)

p
(m)
D p(y | θdark) + p

(m)
B p(y | θbright)

)

+
p
(m)
B p(y | θbright)

p
(m)
D p(y | θdark) + p

(m)
B p(y | θbright)

log

(

p
(m)
B p(y | θbright)

p
(m)
D p(y | θdark) + p

(m)
B p(y | θbright)

)

−
p
(m)
D p(y | θbright)

p
(m)
D p(y | θbright) + p

(m)
B p(y | θdark)

log

(

p
(m)
D p(y | θbright)

p
(m)
D p(y | θbright) + p

(m)
B p(y | θdark)

)

−
p
(m)
B p(y | θdark)

p
(m)
D p(y | θbright) + p

(m)
B p(y | θdark)

log

(

p
(m)
B p(y | θdark)

p
(m)
D p(y | θbright) + p

(m)
B p(y | θdark)

))

(7.16)

We can see that for the case p
(m)
D = 0.5 ⇒ p

(m)
B = 0.5 we have cancellation of the terms for each

individual y which leads to another zero. For the case of being in the flipped state we need to make the
substitution θdark ↔ θbright. This will simply lead to an overall sign change.

7.3.1 Example

We will proceed with an specific example to show that there are potentially more zeros than the trivial
ones discussed up to this point. The conversion from the purely theoretical notation to the actual
parameters are summarized in the table below:
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Figure 7.2: Top: Difference term for individual n = 0, . . . , 9 weighted by p(y = n) as in 7.16. The
contributions for n > 2 are negligible for the overall result. Therefore, they could be truncated as well.
Bottom: Approximation of the expectation. We can see that there are two additional zeros introduced.

Generic notation Specific setup

y0...n−1
Photon counts n using PMT as detec-
tion device

p(y | θbright) Poisson distribution with mean λbright

p(y | θdark) Poisson distribution with mean λdark

Parameters Value

tdetection [µs] 200

# sub-bins 25

λdark
0.1
200

1
µs

tdetection
25 = 0.0143

λbright
25
200

1
µs

tdetection
25 = 0.7286

Method of approximation of expecta-
tion

Truncating 7.16 at maximum photon
count nmax = 9

Table 7.1: Specific example using reasonable parameters found in experimental setups.

We make use of the fact that the probabilities p
(m)
B & p

(m)
D are normalized to write p

(m)
D = 1− p

(m)
B

which leaves us with only one parameter. This enables us to pre-calculate the decision boundaries which
takes away the need to recalculate the expectation after each sub-bin. Figure 7.2 shows the contribution
of each term in the sum of 7.16.

This shows an interesting quirk of the entropy gain objective. Even though we are confident that we
are in the bright state, right before crossing the threshold we will still apply a π-pulse and switch to the
dark state. As the sign of the difference changes in the next sub-bin, it is likely that we then stay in
the dark state for the rest of the detection sequence. This will potentially prolong the average detection
time.
A possible explanation of this behavior is the nature of the objective function itself. Mathematically, it
maximizes the expected acquired information which does not immediately imply that the main goal of
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reducing the average the detection time is captured. It is also noted that this entropic quantity might be
sensitive to the future time horizon. The method proposed in this thesis only looks ahead one sub-bin.
It is possible that if the horizon is increased to more than one future sub-bin, the additionally introduced
zeros would vanish. This would effectively cancel the need for a π-pulse.

7.4 Minimum Bins Estimator

As our main goal is to minimize the average detection time it only feels natural to use an objective
function which explicitly tries to accomplish this task. We will therefore define:

J = - # sub-bins left (7.17)

where the minus sign turns in the maximization of the sub-bins left into a minimization. We denote the
probability of being in the dark (bright) state after observation ym as pcurrD (pcurrB ). These probabilities
depend on the number of π-pulses we have applied and can be found as follows:

pcurrD =

{

p
(m)
D , # π-pulses even

p
(m)
B , otherwise

(7.18)

As a first assumption, we are split the expectation in 7.9 into the two contributing terms:

E [# sub-bins left | θ, yi...n, a] =

pcurrD E [# sub-bins left | θ, yi...m, currently dark]

+ pcurrB E [# sub-bins left | θ, yi...m, currently bright]

(7.19)

As a further simplification, we will assume that the next π-pulse is the final one. Therefore, we stay
in the state after the action has been applied for the rest of detection sequence. Applying a π-pulse will
simply interchange the expectations in Eq 7.19. This allows us to write the difference term in Eq. 7.10
as:

E [J | θ, yi...n, a = no-π]− E [J | θ, yi...n, a = π] = − (pcurrD − pcurrB ) (Edark − Ebright) (7.20)

where we defined:

Edark = E [# sub-bins left | θ, yi...m, currently dark]

Ebright = E [# sub-bins left | θ, yi...m, currently bright]
(7.21)

Note that the negative sign is again an artefact of the maximization. Using the same reasoning when
analyzing the entropy gain estimator, we assume normalized pcurrD and pcurrB and rewrite Eq 7.20 as:

− (1− 2pcurrB ) (Edark − Ebright) (7.22)

The final simplification we can make is to assume no matter what previous observations have been
made, we have Edark > Ebright. This is not unreasonable as the premise of investigating these methods
was to speed up dark state detection. The assumption that we apply a final π-pulse can be interpreted as
performing a standard adaptive maximum likelihood method with non-uniform prior, namely the current
likelihoods. In section , we have shown theoretically that on average and under ideal conditions, dark
state detection takes longer. Performing the adaptive maximum likelihood method in real experiments
confirm the theoretical findings [22]. In this particular scenario with comparable error threshold ec, the
average bright state detection time was found to be 72µs while the average dark state detection time was
219µs. Provided all assumptions are reasonable, we arrive at a simple final decision rule:

â =

{

no-π, pcurrB ≥ 1
2

π, otherwise
(7.23)

We note that this is only holds true of the dark and bright state distributions do not exhibit a considerable
overlap. For pure Poissonian distributions, this translates to RD ≪ RB . This also excludes scenarios
when detecting multiple ions using a detection device without spatial resolution.
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Figure 7.3: Transition diagram showing the conditional probabilities of moving to a next state given the
current. Pumping events are modelled using rate equation, giving as the corresponding probabilities.
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Figure 7.4: Transition diagram showing the conditional probabilities of moving to a next state given
the current. We can model π-pulse fidelity with a success rate leading to a bit flip.

7.5 Hidden Markov Model MAP Decoding

Up to this point we did not take any dark or bright state pumping or π-pulse infidelities into account.
Hidden Markov models are a valid representation of state discrimination algorithms which can easily
incorporate both effects. Hidden Markov models where employed to further develop the adaptive maxi-
mum likelihood algorithm and the π-detection method [19]. Moreover, with not too much computational
overhead, we can also infer an maximum a posteriori estimate. To simplify the model, we assume that
an ion does only decay or gets pumped once a detection sub-window is over. This assumption is justified
if leakage rates 1

τ
satisfy tbin

τ
≪ 1 for both bright-to-dark leakage rates 1

τbd
and dark-to-bright leakage

rates 1
τdb

.A π-pulse would then be applied immediately after potential leakage. We model both effects as
transitions which can be represented graphically as shown in Fig. 7.3.

We will further define the corresponding state transition matrix:

Tno-π =




e
− tbin

τbd 1− e
− tbin

τdb

1− e
− tbin

τbd e
− tbin

τdb



 (7.24)

where we represent messages as column vectors. The first entry holds the value associated with the
bright state whereas the second entry is dedicated to the dark state. The state transition diagram for
applying a π-pulse is shown in Fig 7.4.

Using our assumptions, the transition matrix is defined as:

Tπ =

(

1− pπ pπ

pπ 1− pπ

)

Tno-π (7.25)

We therefore only need to keep track of before which sub-bin we have applied a π-pulse. We proceed
to define the forward and backward messages for this hidden Markov model. We start of with the forward
messages by defining:

39



µ⃗X0
=

(

p(θbright)

p(θdark)

)

=

(
1
2
1
2

)

(7.26)

The recursion for future forward messages is given by:

µ⃗Xn
= T

(n−1)
i

(

µ⃗Xn−1
(bright)

µ⃗Xn−1
(dark)

)

⊙

(

p(yn−1 | θbright)

p(yn−1 | θdark)

)

, i ∈ {π, no-π} (7.27)

For the backward messages starting with the last observation yn−1 we have:

⃗µXn−1
=

(

p(yn−1 | θbright)

p(yn−1 | θdark)

)

(7.28)

Note that the message ⃗µXn
is the neutral message so we skipped it in the recursion definition. The

backward recursion can be computed as follows:

⃗µXn−1
= T

T (n−1)
i

(

⃗µXn
(bright)

⃗µXn
(dark)

)

⊙

(

p(yn−1 | θbright)

p(yn−1 | θdark)

)

, i ∈ {π, no-π} (7.29)

As the forward messages do not give is the likelihood at the end of each bin but at the start, we are
not able to use them for decision making. Furthermore, we cannot calculate the forward messages before
knowing our action. We need to modify the recursion such that we get the current state likelihoods at
the beginning of each sub-bin:

⃗̃µX0
=

(

p(θbright)

p(θdark)

)

=

(
1
2
1
2

)

(7.30)

⃗̃µXn
= Tno-π





(

p(yn | θbright)

p(yn | θdark)

)

⊙

(

1− pπ pπ

pπ 1− pπ

)✶[π-pulse sub-bin n−1](
⃗̃µXn−1

(bright)

⃗̃µXn−1
(dark)

)

 (7.31)

With these messages at hand, we are able to modify the minimum bins estimator to produce a MAP
estimate. In contrast to the previously introduced methods, we are not able to make use of previous
calculations and need to compute the backward messages from scratch after each sub-bin. Moreover,
the number of computations needed increases linearly with the sub-bin index. It may not be feasible
to perform the computation in real time. However, this modification allows us to benchmark simpler
algorithms against this optimal 1 estimator. When finish writing this thesis, the concept to use π-pulses
not only to increase fidelity but also reduce average detection times has been explored in [23]. State
detection was described as a partially observable Markov decision process (POMDB). Possible solutions
to solve POMDPs employ machine learning techniques. The notation used in section 7.2 is mostly in
accordance with notation used in the field of reinforcement learning.

1Optimal when modeling state identification as a hidden Markov model.
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Chapter 8

Simulation Environment

In this chapter we will discuss the simulation environment used to benchmark the estimators described
in chapter 7.

8.1 General Structure

For this thesis, a Python package has been developed to streamline estimator bench-marking. It uses
an object-oriented approach where the user can instantiate ions and estimators, pair them freely, and
pass the them to an environment. The environment will repeat the detection sequence for a specified
number of times with user defined parameters. In the following, we will quickly introduce each of the
three mentioned base classes.

8.2 Ion Class

The Ion class encapsulates the photon emission statistics of a single ion during readout. To account
for non-Poissonian statistics, we use Markov Chain Monte Carlo methods. Leakage mechanisms can
be modelled using rates which will naturally lead to transition diagrams as in Fig. 7.3. While we have
assumed that the ion will only experience leakage mechanisms at the end of each sub-bin when describing
estimators, we will further divide sub-bins for a more fine-grained simulation. The photon statistics are
calculated using a discretized version of Eq. 6.8:

λsub-bin =

tsub-bin
dt∑

n=1

R(t0 + n dt) dt (8.1)

At the end of each sub-bin we sample from a Poissonian distribution to get the raw photon count.
Depending on the detection device, these statistics may need to be altered.

8.3 Estimator Class

Using the photon statistics provided by the paired ions, the estimator will go through either Alg. 2
or Alg. 3, depending in the estimator at hand. To allow for detailed analysis, the estimator will store
statistics for post-analysis. Furthermore, it is possible to also log the trajectory of the detection sequence
where we store a snapshot of estimator parameters for each sub-bin. Statistics are a summary of the
readout process. This most importantly includes total received photon counts, number of sub-bins it
took to terminate detection, and for π-pulse methods also the number of applied pulses. In contrast,
trajectory data will for example store the number of photons during each sub-bin or if an π-pulse was
requested. This allows for even more detailed analysis.

8.4 Environment Class

The Environment class coordinates the simulation. It will distribute the photon counts according to the
pairing and will execute the π-pulses after each estimator update. The environment is able to store the
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statistics and trajectory data of each repetition into an comma separated values or JSON file respectively
for long-term storage of simulation results.

8.4.1 Data Structure

We briefly want to introduce the data structure of the files created and stored by the simulation envi-
ronment. The .csv file containing the statistics has a simple database structure. Each row describes one
readout sequence, so the data frame has nrepetition rows. Each column defines a stat. Each column name
has a numerical suffix to identify to which estimator it corresponds to. The indexing starts at zero. The
order of the estimators is extracted from the pairing list provided to the environment. If an estimator
is passed more than once in this list 1 it will be skipped and only unique estimator entries are indexed
and stored. The JSON file structure is more complex as it does not have fixed data types and array
lengths. The structure of the nested dictionaries is shown in Fig. 8.1 for a π-pulse method estimator.
More simple estimators such as the adaptive maximum likelihood estimator will lack some field entries.
To be more specific, all entries concerning π-pulse statistics are not present.

index 0

P[trajectory] ∈ (0, 1]

Observation history: [y1...n]

Likelihood/MAP estimate p
(1...n)

B

π-pulse array ∈ {0, 1}n

π-pulse success array ∈ {0, 1}nπ

index 1

. . .

. . .

..
.

..
.

Figure 8.1: JSON file structure showing the hierarchy of the nested dictionaries and their contents.

We proceed to briefly explain the content of each field.

• index i: Numerical identifier of the trajectory.

• P[trajectory]: Probability of the trajectory occurring during simulation. This is calculated by
counting how many times this trajectory was sampled divided by the number of repetitions.

• Observation history: Array of the photon counts during sub-bin m.

• Likelihood: Array of the normalized bright state likelihood (or MAP estimate) at the and of
sub-bin m.

• π-pulse array: Boolean array indicating if a π-pulse was requested after sub-bin m.

• π-pulse success array: Boolean array indicating the success of requested pulses, ordered chrono-
logically.

1Meaning it was paired with multiple ions and therefore receives photons from all paired ions.
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8.5 User Example Code

We conclude this chapter by providing a short code excerpt which sets up the simulation environment.
We initiate the base class ion which has no leakage mechanisms. The state discrimination algorithm
to be bench-marked is the entropy gain estimator. The attribute n counts max determines where the
infinite series 7.16 is truncated. We both save the summary and the more detailed trajectory data at
the end of the simulation.

from PyonDetect.ion.ion import Ion

from PyonDetect.estimator.estimator import EntropyGainEstimator

from PyonDetect.environment.environment import SimulationEnvironment

# initialize simulation environment

R_D = 0.1 / 200 # per us

R_B = 25 / 200 #per us

initial_state = 0 # bright

n_subbins = 25

t_detection = 200 # us

ion = Ion(initial_state, R_dark=R_D, R_bright=R_B)

estimator = EntropyGainEstimator(R_D=R_D,

R_B=R_B, e_c=1e-4,

n_subbins_max=n_subbins,

n_counts_max=10,

save_trajectory=True)

env = SimulationEnvironment([ion],

[estimator],

detection_time=t_detection,

n_subbins=n_subbins,

n_repetition=10000)

# let simulation run

env.run()

# save data to files

env.save_to_csv()

env.save_to_json()

With that we end our brief introduction of the bench-marking framework and continue to discuss the
performance of the developed estimators.
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Chapter 9

Estimator Benchmarking

In this chapter we will make use of the simulation environment to assess the performance of the derived
estimators. In the beginning we assume ideal circumstances, steadily increasing performance-decreasing
effects.

9.1 General Setup

For all of the following tests, it was assumed that ions are detected using PMTs. We note that the
theory also allows for differing detection devices. The main change that needs to be made is to adapt
the observation likelihood function in the simulation of the ion and estimator. If not otherwise stated, a
full detection window is tdet, max = 200 µs and the error threshold is set to ec = 10−4. Every simulation
will run for an ion initially in the dark and bright state an equal number of times. By default we will
analyze three figures of merit:

1. Average detection time: Reducing the average detection time was the main goal of our analysis.
Apart from the average detection time, we may also be interested in the distribution of the detection
time. It is likely that the distribution for a given number of divisions into sub-bins is not symmetric
and will exhibit a tail towards higher detection times. We note that we have excluded the π-pulse
duration for estimators which make use of them. The rational behind this decision is the fact that
even for a high number of sub-bins, the sub-bin time is still a order of magnitude higher than the
pulse duration.

2. Dark/bright state detection accuracy: Synonymous with the readout fidelity - the ratio of
miss-identified states to total read out states. The speedup in detection should not come at the
cost of a degrading fidelity. We will analyze accuracy separately, depending on the initial state.
Owing to the fact that we prepare as many ions in the bright and dark state, the average accuracy
will simply be the arithmetic mean of both error figures.

3. Average number of π-pulses applied: Using a large number of π-pulses comes with two issues:
The time it takes to perform said pulse and the introduced possibility for failure. It seems likely
that a failed π-pulse will lead to a false identification. Ideally, the estimator will only apply a
π-pulse if the ion starts in the dark state.

Lastly, we note that for no leakage mechanisms and unit π-pulse fidelity, hidden Markov models and
belief propagation methods no not differ from the π-pulse methods described in sections 7.3 and 7.4.

9.2 Effect Of Non-zero Background

For this section, we assume no leakage mechanisms and unit π-pulse fidelity. Included in this scenario
is the ideal case of zero background photon counts. We proceed to analyze the effects of increasing
background. The photon rates indicated are always referenced to a detection window of 200µs. We
assumed that the bright state count rate to be RB = 25 1

200µs for the rest of this section. We assess
the performance of the Entropy Gain estimator and the Minimum Bins estimator against the standard
adaptive maximum likelihood method.

44



20

40

60

80

100

De
te

ct
io

n 
tim

e 
[
s]

Dark state detection (RD = 0) Dark state detection (RD = 0.1) Dark state detection (RD = 0.5)

5 10 15 20 25 30 35
# of sub-bins

0

10

20

30

40

50

60

De
te

ct
io

n 
tim

e 
[
s]

Bright state detection (RD = 0)

AML MinBins Entropy gain

5 10 15 20 25 30 35
# of sub-bins

Bright state detection (RD = 0.1)

5 10 15 20 25 30 35
# of sub-bins

Bright state detection (RD = 0.5)

Average detection times comparison (ec = 10 4)

Figure 9.1: Average detection times against number of sub-bins introduced into the 200 µs detection
window. Number of repetitions for each panel n = 10000. Top row: Each panel shows the average
detection times for dark state readout. Starting at the most left with zero background, we increase dark
state photon counts moving right. Bottom row: Same as the top row but for bright state readout.

Fig. 9.1 compares the average detection times of the competing estimators for increasing background
photon count. The ideal case corresponds to the first column. Note the different time scales for bright and
dark state detection respectively. We observe a major speedup in dark state detection for both the entropy
gain and minimum bins estimator compared to the standard adaptive maximum likelihood method. The
average detection time starts to saturate after approximately 30 subdivisions. Looking at the bright state
detection we observe that the standard adaptive maximum likelihood method outperforms both π-pulse
methods. The minimum bins estimator for instance lags approximately one sub-bin time behind. The
entropy gain estimator starts to exhibit the behaviour discussed in section 7.3.1. We predict that this is
due to fact that the entropy gain estimator may request π-pulses even for high bright state likelihoods
as discussed in section 7.3, reducing the chance of fast termination of the detection sequence. The
analysis shown in section 9.2.1 confirms this hypothesis. For the ideal number of sub-bins, average dark
and bright state detection are equal. For the minimum bins estimator, this would correspond about 25
sub-bins resulting into an average detection time of 20 µs. For increasing background counts we see an
overall degradation of performance, affecting all estimators. We proceed by inspecting the accuracy of
each estimator.

Fig. 9.2 shows the absolute number of errors depending on the number of sub-bins. We first observe
that in general, bright state detection is more error-prone than dark state detection. The error rate
for any case is low and is with high certainty below 0.05%. Even with increasing dark count the error
rate does not increase dramatically. We also note that when performing MCMC simulations to infer
probability distributions we generally overestimate the probability of rare outcomes. With that in mind,
this result indicates that the error rate does not strongly depend on the background count. We will
conclude the accuracy discussion at this point as leakage mechanisms impose a far greater challenge to
the accuracy of the estimators.

Lastly, we analyze the number of π-pulses the estimators applied on average. Fig. 9.3 uses the same
structure as the comparison of the average detection time. We first note that ideally, the estimators would
not apply a π-pulse when starting in the bright state and only one when starting in the dark state. For
the case of no background, the entropy gain estimator closely follows the aforementioned ideal case. We
only see a slight deviation for bright state detection. With increasing number of sub-bins, the probability
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classifications for dark state readout. Starting at the left with zero background, we increase dark state
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Figure 9.4: The orange trace always indicates the number of remaining estimators during sub-bin index.
Top row: The fraction of remaining estimators requesting a π-pulse. Bottom row: Average normalized

bright state likelihood p
(m)
B during sub-bin with index m.

to observe zero photons also increases. Therefore it is likely that the entropy gain estimator confuses
some rare low-photon-count events when in the bright state with being in the dark state. Clearly, the
entropy gain estimator outperforms the minimum bins estimator if no background counts are present.
For increased background counts however, the entropy gain estimator starts to apply more π-pulses. The
minimum bins estimator in contrast does not increase the frequency of π-pulses.

9.2.1 Entropy Gain Trajectory Analysis

We will demonstrate the trajectory logging capabilities of the simulation environment by analyzing the
behavior of the entropy gain estimator. We restrict ourselves for the case of dividing the detection
window into 25 sub-bins and only consider bright state detection. Using the trajectory data, we can
use more fine-grained statistics to confirm our hypothesis stated earlier namely that the entropy gain
estimator will apply π-pulses for bright state likelihoods close to pass the threshold. For this run we
start with a population of 10000 entropy gain estimators. Apart from monitoring the estimators still
actively detecting, we also keep of track of the average bright state probability among the remaining as
well as the fraction of estimators which requested a π-pulse after each sub-bin. The resulting statistics
are shown in Fig 9.4.

One would expect that if the normalized bright state likelihood is close to one, no π-pulse application
would be necessary. As already theoretically discussed in sub section 7.3.1, the entropy gain estimator
will request pulses after passing a certain threshold defined by the total entropy difference term. If this
pulse threshold is reached before the detection error threshold ec is met for the errors eB or eD, the pulse
will be applied, possibly prolonging the detection sequence.

9.3 Influence of π-pulse Infidelity

Up to this point we have assumed that π-pulses result in a perfect population inversion. To judge the
performance of π-pulse method estimators, it is necessary to take this infidelity into account. For this
purpose, we again fix the number of sub-bins to 20 while keeping the detection time at 200 µs. We only
consider the case for no background and low background photon counts. We perform a linear scan of
increasing infidelity starting at perfect inversion going up to an infidelity of 0.5 %. We analyze the effect
on the number of π-pulses applied and the resulting fidelity.
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Figure 9.5: Average number of π-pulses applied during a detection sequence for a given infidelity. Top
row: Dark state detection with zero background counts (left) and low background (right). Bottom
row: Same as top but for bright state detection

Fig. 9.5 shows the average number of applied π-pulses for increasing infidelity. There is no apparent
effect on the number of pulse requests. We focus our attention to the state readout errors introduced by
failed population inversion as shown in Fig. 9.6.

In the case background-free detection, we see that the error in population inversion bleeds through
to the readout error. It is therefore safe to assume that a single failed pulse will lead to an erroneous
detection as the estimator is not able to recover. The effect is amplified if we apply more than one
π-pulse.

9.4 Effect of Leakage Mechanisms

We end off your discussion by considering the same scenario as in the discussion of the effect of increasing
background counts. We further introduce bright-to-dark as well as dark-to-bright leakage mechanisms.
The experimental parameters are summarized in Tab. 9.1.

Parameter Value

RD

[
1

200µs

]

0.1

RB

[
1

200µs

]

26.34

τdb [µs] 12700

τbd [µs] 2915

ec 10−4

nrepetition 20000

Table 9.1: Parameters used in the scenario for estimator benchmarking in section 9.4
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Figure 9.6: readout errors during a detection sequence for a given population inversion error. Top row:
Dark state detection with zero background counts (left) and low background (right). Bottom row:
Same as top but for bright state detection.

The numbers in Tab. 9.1 are taken from [17] for beryllium detection. It imposes more of a challenge
than calcium as leakage mechanisms are negligible in this case. We will also only consider π-pulse method
estimators. In addition to the entropy gain and minimum bins estimator we also introduce the modified
minimum bins estimator using belief propagation to infer a MAP estimate of the initial state and the
current state before π-pulse application. It will be referred to as the MAP estimator in the following.
A slight modification to the MAP estimator is needed to decrease the average readout time. Due to
the mixing of the bright and dark states, the a posteriori probabilities will not reach the confidence
needed to satisfy the threshold ec = 10−4. We start with a higher threshold of ec, MAP = 10−3 and will
multiply it by a factor after each sub-bin. The factor has been chosen such that at the last sub-bin, the
threshold satisfies ec, MAP = 0.5 - equivalent to not having to simply guess a state. We go through the
three categories analogously as in section 9.2. The average detection times, even in the case of leakage
mechanisms, shows a similar behavior to that studied in previous sections. Generally speaking, the
detection times have only been slightly increased. The threshold tuning of the MAP estimators results
in outperforming both standard estimators. This is not surprising as the unmodified minimum bins and
entropy gain estimators use pure Poissonian statistics as the underlying model. Leakage machanisms
are therefore not considered. A leakage event will lead to miss-identification in a similar fashion as the
non-ideal population inversion. We expect to see the effect of the missing dynamics in the entropy gain
and standard minimum bins estimator most pronounced in the readout fidelity.

In Fig. 9.8 we can see a high increase in readout errors over all test cases. For background-free dark
detection we see a significant decrease in readout errors for increasing sub-bin number. This is due to
the fact the the average detection time decreases with increasing sub-bin numbers. We are therefore
less likely to experience a leakage event if the detection time is kept shorter. The decrease levels off as
soon as we reach the performance of background-free bright state detection. We note that bright state
detection fidelity deteriorates for shorter sub-bin times. As soon as we introduce background counts,
the performance worsens. The MAP estimator has the lowest error rate. This benefit comes with the
increased computational burden. Lastly, we analyze the effect of leakage mechanisms on the average
number of π-pulses.

A disadvantage of the MAP estimator becomes apparent when regarding the frequency of π-pulse
application for dark state detection as seen in Fig. 9.9. The number of applied pulses is at least as high
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state detection for increasing background photon counts (increasing from left to right). Bottom row:
Same as top for bright state detection.
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detection starting with zero background on the left, increasing moving right. Bottom row: Same as
top but for bright state detection.

as both the entropy gain and the minimum bins estimator, increasing comparatively strongly for higher
sub-bin numbers. In the case of dark state detection, the performance of the MAP estimators is on
par with the minimum bins estimator. A nice feature of both the standard and modified minimum bins
estimator is the independence if the average number of applied pulses with respect to the background
present.
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Chapter 10

Conclusion & Outlook

For this part of the thesis, we introduced hidden Markov models, the factor graph framework including
belief propagation, and trapped ion qubit readout techniques. After analyzing the adaptive maximum
likelihood method, we further developed the notion of qubit interacting state discrimination algorithms
to speed up detection sequences. A simulation environment was developed to benchmark different es-
timators. We have shown that under ideal circumstances, π-pulse methods speed up the average dark
detection time considerably by a factor of 4. We analyzed the robustness of estimators against non-
ideal experiment parameters and concluded that the speed up persists although the relative performance
decreases. With the groundwork being laid, we list future steps to further develop π-pulse methods:

• Adding different detection devices: Currently, the simulation environment only support detec-
tion using PMTs. It should be straightforward to add different detection devices like APD, EMCCD
cameras, and CMOS cameras. The main change would be to adapt the count distributions and
observation likelihoods.

• Unsupervised learning of hidden Markov models: Instead of relying on fitted parameters
one could explore learning techniques which also estimate model parameters.

• Implementing algorithms on control hardware: While simulations are able to provide es-
timates, to properly assess performance of the analyzed estimation techniques they need to be
implemented and tested in actual trapped-ion quantum experiments.
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Chapter 11

Appendix

11.1 Gain-Bandwidth Product

While we do not present a proof for the general validity of 3.3 we will show a motivating example. We
will focus on the non-inverting amplifier topology which is part of many of the circuits outlined in thesis
in order to set the DC gain. The transfer function is frequency-independent and has the following form.

Hideal(s) = 1 +
R1

R2
= Gnon-inv (11.1)

If we allow for finite, frequency-dependent open-loop transfer function as in 3.1 we have a set of
equations: 





Vout = (V+ − V−)A(s) = (Vin − V−)A(s)

V− =
R2

R1 +R2
Vout

(11.2)

If we solve for the transfer function by substitution of V− into the first equation we get:

Vout

Vin

=
R1 +R2

R2 + (R1 +R2)A−1(s)
(11.3)

We proceed to divide by R2 to re-introduce the ideal closed-loop gain we finally find:

Vout

Vin

=
Gnon-inv

1 +Gnon-invA−1(s)
=

Gnon-inv

1 + s
ωa

Gnon-inv

ADC
+ Gnon-inv

ADC

(11.4)

Assuming ADC ≫ Gnon-inv and defining ωc = ωa
ADC

Gnon-inv
we have:

Vout

Vin

=
Gnon-inv

1 + s
ωc

+
Gnon-inv

ADC
︸ ︷︷ ︸

→0

≈
Gnon-inv

1 + s
ωc

(11.5)

which has the same form as the open-loop transfer function of an operational amplifier. We have
reduced the gain by the same factor as we have increased the bandwidth. Therefore, also the closed-loop
transfer function satisfies the GBW.

11.2 Repositories

In this section we will briefly list the repositories and the containing design files.

1. https://gitlab.phys.ethz.ch/tiqi-projects/qchub/out-of-vacuum-amplifier-boards

• Measurements: Contains all the measurements used to create the corresponding plots in this
thesis. A jupyter notebook can be used to regenerate the plots if necessary.

• Orders: Contains GERBER files used to order PCB. Also, it contains some orders for passive
components for the amplifier board.
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• PCB: Contains Altium design files of the amplifier prototype board, the full prototype, and
the regulator board.

• SPICE: Contains simulation files for the amplifier circuit design. The whole chain from Fastino
to a lumped trap model can be used to simulate the design.

• Script: Contains a jupyter notebook which implements automatic component search for a
Sallen-Key low-pass filter. It also serves as an example to automate SPICE simulations using
python.

2. https://gitlab.phys.ethz.ch/tiqi-projects/qchub/scsi-to-dsub-passive-filter

• PCB: Contains Altium design files for the passive filter board.

3. https://github.com/marti-m/ion-detect-mcmc

• Contains the python package which has been used to perform MCMC simulations. All batch
files which were run for estimator performance assessment can be found.

56

https://gitlab.phys.ethz.ch/tiqi-projects/qchub/scsi-to-dsub-passive-filter
https://github.com/marti-m/ion-detect-mcmc



	Introduction
	I Low-Noise DC Amplifier Design for Trapped Ion Setups
	Concepts
	Active Filters
	Operational Amplifiers
	Second Order Transfer Function
	Sallen-Key Low-pass Filter


	Amplifier Board Design
	Operational Amplifier Selection & Criteria
	Criteria
	Comparison

	Circuit Topology & Performance
	Alternative Topologies

	Passive Component Selection
	Prototype Board
	Design Verification
	Full Amplifier Board
	Power Supplies & Rail Regulation

	Full System Testing
	Overview Signal Path
	Fastino DAC board
	Board Interconnect

	Overview Power Distribution
	Preliminary Results
	Possible Improvements

	Conclusion & Outlook

	II Bayesian Schemes for Fast Single Qubit Detection
	Concepts
	Hidden Markov Models
	Factor Graphs and Belief-Propagation
	Factor Graphs
	Belief Propagation

	State Readout
	Non-Poissonian Statistics
	Real-Time State Discrimination


	State Discrimination Algorithms
	Adaptive Maximum Likelihood
	Bright State Detection
	Dark State Detection

	π-pulse Methods
	Information Gain Estimator
	Example

	Minimum Bins Estimator
	Hidden Markov Model MAP Decoding

	Simulation Environment
	General Structure
	Ion Class
	Estimator Class
	Environment Class
	Data Structure

	User Example Code

	Estimator Benchmarking
	General Setup
	Effect Of Non-zero Background
	Entropy Gain Trajectory Analysis

	Influence of π-pulse Infidelity
	Effect of Leakage Mechanisms

	Conclusion & Outlook
	Appendix
	Gain-Bandwidth Product
	Repositories



