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Abstract

Quantum information processing with trapped ions is a large field of research, exploring different
approaches to develop computing devices that can potentially outperform classical computers. In
this thesis, we designed and developed the bottom-up python framework pycrystal that allows
to create a representation of such systems. The framework provides the user with a high-level
interface for writing pulse sequences for trapped ion (and potentially cold atom) setups and an
interface for executing the pulse sequences while performing scans on its parameters. Single- and
multi-zone measurements of the phase coherence of a single ion have been demonstrated with
that package using different variations of Ramsey experiments on a surface-electrode trap with
integrated optics. Phase fluctuations due to differential laser phase noise in different zones were
observed and cancelled by mapping the information on the optical qubit to a Zeeman qubit in the
electronic ground state of the ion.
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Chapter 1

Introduction

Quantum computer harness the properties of quantum mechanics to solve problems that are
thought to be intractable by classical computers. There are different promising platforms for
quantum computers, one of which is trapped ions, which utilise individually controlled ions to
store quantum information. Since it was first proposed by Cirac and Zoller in 1995[1], much ex-
perimental progress has been made to demonstrate the fundamental elements required to build a
quantum computer, such as quantum state preparation[2, 3], manipulation[3, 4] and read-out[3].

Scalability and control of such systems is an ongoing challenge. A solution to this problem was put
forward by D. Kielpinksi et al. in 2002[5] where it was proposed to use a quantum charge-coupled
device (QCCD) architecture, in which information is distributed across a micro-chip by physically
moving ions with dynamic electric fields and so linking them together. This architecture provides a
building block that can be used to perform extended calculations in a modular and scalable way[6].

Another crucial step in the direction of scaling ion trap systems is the integration of optical
interfaces into the trapping chips. This is because the delivery of the laser beams to the qubits
becomes increasingly complicated as the size of the system grows. Integrated optics in surface-
electrode traps (SETs) was first proposed in Ref. [7] as a solution to that challenge. Following
that proposal, multiple experiments, including the one I worked on during my thesis, have already
demonstrated the integration of optical elements [8, 9, 10, 11].

Interfacing with the flexibility of such systems on the control software side is a big challenge.
This thesis describes pycrystal, a python library for the generation of control sequences that I
developed during my master thesis, as my attempt to create a framework that solves this problem.
One of its main goals was to provide an easy-to-use interface allowing for a high-level description of
the pulse sequences the user wants to run on his system. The library is flexible and not only allows
the description of different trap architectures but also different ion species and their isotopes.
The thesis also includes results of single- and multi-zone Ramsey experiments that we obtained
with my package on a setup implementing a QCCD architecture on a SET with integrated optics.

The chapters are organised as follows:
Chapter 2 introduces the basics for quantum information processing with calcium ions.
Chapter 3 gives an introduction to the control system used in our research group and moti-
vates the developments of the python library pycrystal.
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Chapter 4 introduces the pycrystal library by presenting the design choices I made and
giving simple implementation examples.
Chapter 5 gives an overview of the setup pycrystal has been tested on.
Chapter 6 presents the Ramsey characterisation experiments that we have performed on our
setup.
Chapter 7 concludes the thesis with a summary of the results and an outlook for future work.



Chapter 2

Quantum Information with Calcium
Ions

Preparation, preservation, manipulation and readout of quantum states are important criteria for
a useful implementation of a quantum computer. It must achieve a balance between preventing
decoherence effects and allowing interaction with the qubits. This means that we must be able to
ensure that both the magnitudes α, β and relative phase ϕ of the general qubit state[12]

α |1⟩+ β |0⟩ = |α| |1⟩+ |β|eiϕ |0⟩ , (2.1)

change in a predictable manner such that we can preserve the information encoded in it. Moreover,
to manipulate the qubits, i.e. to apply gates to the qubits, we must be able to change their state
by means of external electrical fields and have the qubits interact with each other. Furthermore,
the preparation and readout of the qubits require that information can be extracted from them.
For state preparation, this means that we must be able to reduce the entropy of the qubit to reach
a deterministic initial state at the beginning of the sequence.

In section 2.1 I will give two ways of encoding a qubit in calcium ions. Section 2.2 shows how
quantum operations can be performed on those qubits, followed by the cooling schemes used in
our experiments in section 2.3. The chapter closes with an explanation of a Ramsey sequence in
section 2.4 which will be used later in the thesis.

2.1 Encoding Qubits in Calcium

The ion of choice in our setup is calcium 40Ca+. To show how qubits are encoded in calcium ions,
we will first have a look at the relevant part of their energy level structure and then elaborate on
how we can preserve information in a selected pair of states.

3



4 2.1. Encoding Qubits in Calcium

2.1.1 Calcium Energy Level Structure

The energy level structure of the lowest eigenstates of a 40Ca+ ion is shown in Fig. 2.1. Lasers
at wavelengths λ = 397 nm, 854 nm and 866 nm can be used to excite electric dipole transitions.
They can be driven very fast and with low intensities which makes them unsuitable for storing
information as they have very short lifetimes. The S1/2 → D5/2 transition, on the other hand, is
an electric quadrupole transition as it is dipole forbidden. This makes the D5/2 level meta-stable,
i.e. it has a longer lifetime than other excited states. This transition is driven with a 729 nm laser.
The P1/2 level, used for state preparation, cooling and readout, decays into the D3/2 level which
is also meta-stable. Thus, we have to repump it as otherwise, the electron will stay there.

Applying a magnetic field to the ion lifts the degeneracy of the levels, giving rise to well-defined
quantum states. We can also use those equally spaced energy sub-levels to encode a qubit.

397 

729

854

866

S1/2

P1/2

P3/2

D3/2

D5/2

S1/2

P1/2

P3/2

D3/2

D5/2

mJ = +1/2
mJ = -1/2

mJ = +5/2

mJ = -5/2

mJ = +3/2

mJ = -3/2

mJ = +1/2
mJ = -1/2

mJ = +3/2

mJ = -3/2

Zeeman effect

Figure 2.1: Calcium 40Ca+ ion level structure. The fine-structure energy states are shown on the
left, specified by LJ . The blue, red and orange arrows denote the lasers and their corresponding
wavelengths for the transition. The Zeeman splitting of the levels is shown on the right side: when
applying a magnetic field to the calcium ion the degeneracy of the levels will get lifted resulting in
states split into 2J + 1 equally spaced sub-levels. Figure taken from [11]

2.1.2 Qubits in Calcium and Decoherence Effects

To maximise the coherence time of the qubits, we have to address two issues: the decay rate of the
states and the phase de-coherence due to the noise of the quantisation magnetic field (B -field) or
phase noise in the laser. The solution to the first problem gives us two ways of encoding a qubit
in the electronic levels of a calcium ion.
Due to the long lifetime of the D5/2 level, it can be used together with the S1/2 level to encode
an optical qubit (|0⟩o =

∣∣D5/2,mJ = −1/2
〉
, |1⟩o =

∣∣S1/2,mJ = −1/2
〉
). Its coherence is limited

by both the B-field and laser frequency noise. The magnetic field changes the energy separation
of the qubit states, causing a phase difference between them. Fluctuations of it thus cause phase
fluctuations of the qubit. Laser frequency noise directly translates into phase noise as the instan-
taneous frequency is the time derivative of the phase[13, pp. 74-76]. The phase coherence can be
probed by, for example, a Ramsey experiment (see section 2.4).

We can also encode a Zeeman qubit in the mJ = +1/2 and mJ = −1/2 levels of S1/2 (|0⟩z =∣∣S1/2,mJ = +1/2
〉
, |1⟩z =

∣∣S1/2,mJ = −1/2
〉
). As the energy states are very close to each other
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the spontaneous emission is suppressed[14]. The Zeeman qubit also suffers from the decoherence
coming from the magnetic field, but single qubit operations are not subject to additional phase
noise. This is because they are not performed with a laser but rather with a radio-frequency (RF)
pulse through a current-carrying wire (CCW). However, due to the large wavelength, coupling the
electronic states of ions to their motion becomes infeasible and therefore two-qubit gates are not
possible[11].

2.2 Quantum Operations

Having shown how we can encode qubits into the electronic structure of calcium ions, we want to
revisit the other requirements for a useful quantum computer.

Interactions with ions are performed using lasers tuned to the resonance frequency of two levels.
We make the assumption that we use monochromatic light with frequency ω that only couples one
pair of internal states of the ion. Then, we can think of the ion as an effective two-level system
with ground state |0⟩ and excited state |1⟩ with energies E0 and E1, respectively. We can model
this two-level system with the following Hamiltonian

H0(t) = E0 |0⟩⟨0|+ E1 |1⟩⟨1| (2.2)

and the interaction with the time-dependent Hamiltonian in the dipole approximation

H1(t) =
eE0
2

(r⃗ · ε⃗) cos(ωt+ ϕ), (2.3)

where e is the elementary charge, r⃗ is the position vector, ε⃗ the polarisation vector of the electric
field, E0 its amplitude, ω its frequency and ϕ its phase. Expressing H1(t) in the {|0⟩ , |1⟩} basis,
we can rewrite it as

H1(t) = ℏ
Ω̃

2
|0⟩⟨1| cos(ωt+ ϕ) + h.c., (2.4)

where Ω̃ = eE0

ℏ ⟨0| (r⃗ · ε⃗) |1⟩ and h.c. represents the hermitian conjugate of the first expression1.

With the transformation |i⟩ → eiH0t |i⟩ we can move H1 into the rotating frame with respect to
H0. Thus, using ω0 = (E1 −E0)/ℏ we can write the interaction Hamiltonian in the rotating wave
approximation (RWA)2 as

HI(t) = ℏ
Ω

2
|0⟩⟨1| ei[(ω−ω0)t+ϕ] + h.c., (2.5)

where Ω is called the Rabi frequency. Although the above derivation is carried out in the dipole
approximation, eq. 2.5 is valid for both electric dipole and quadrupole transitions. The only
quantity that is changing is the Rabi frequency which is given by

Ωd =
eE0
ℏ

|⟨0| (r⃗ · ε⃗) |1⟩| (2.6)

1The diagonal entries vanish due to atomic parity, ⟨0|H1|0⟩ = ⟨1|H1|1⟩ = 0.
2In the rotating wave approximation we neglect those terms in the Hamiltonian that oscillate rapidly, i.e. at the

frequency ω + ω0, and only keep the ω − ω0 terms.
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for the dipole transitions and

Ωq =
eE0k
2ℏ

∣∣∣⟨0| (r⃗ · ε⃗)(r⃗ · k⃗) |1⟩∣∣∣ (2.7)

for the quadrupole transitions, where k = 2π
λ is the wavevector pointing in the propagation direction

of the plane wave. The expression corresponds to the second-order term of the multipole expansion
of the electric field and assumes that the dipole coupling between |0⟩ and |1⟩ is strictly zero[15]. It
thus describes the interaction with the electric field gradient[11, pp. 15-18].

We now want to show that we can drive arbitrary single-qubit gates with pulses from a single laser
modelled by the interaction Hamiltonian 2.5 (section 2.2.1) and then look at the key operations of
state preparation (section 2.2.2) and readout (section 2.2.3).

2.2.1 Single-Qubit Gates

We can decompose any unitary operator on a single qubit into rotations around two axes and a
global phase. A rotation is the action of a Hamiltonian of the form σx = |1⟩⟨0| + |0⟩⟨1| , σy =

i(|1⟩⟨0| − |0⟩⟨1|) or σz = |0⟩⟨0| − |1⟩⟨1| on a qubit. An arbitrary state can be written in this form

|ψ⟩ = cos(θ/2) |0⟩+ eiϕ sin(θ/2) |1⟩ (2.8)

= cos(θ/2) |0⟩+ (cos(ϕ) + i sin(ϕ)) sin(θ/2) |1⟩ , (2.9)

where θ, ϕ are some angles. Applying a rotation matrix Rn̂(θ̃) ≡ e−iθ̃n̂·σ⃗/2 to that state rotates is
by an angle θ̃ around the axis n̂, where σ⃗ = (σx, σy, σz)[12, 16, pp. 174-177].

Here, we want to show that the phase of the interaction Hamiltonian 2.5 can be chosen such that
it is in the form of either σx or σy and that the laser modelled by the Hamiltonian can indeed
be used to generate qubit rotations, inducing the so-called Rabi oscillations. We can see this by
calculating the propagator UI(t) of this Hamiltonian under which the qubit states undergo those
oscillations[11, pp. 25-26]. Setting the detuning δ = ω − ω0 = 0 and defining the operators
σ− = |0⟩⟨1| and σ+ = |1⟩⟨0| we can write the time-independent interaction Hamiltonian as

HI = ℏ
Ω

2

(
σ−e

+iϕ + σ+e
−iϕ
)
. (2.10)

Noting that σ± = (σx ∓ iσy)/2 we can transform that Hamiltonian into

HI = ℏ
Ω

2
(σx cos(ϕ) − iσy sin(ϕ)) , (2.11)

which is in the form of σx for ϕ = 0 and σy for ϕ = π/2.

Introducing the vector notation

|0⟩ =

(
1

0

)
|1⟩ =

(
0

1

)
, (2.12)
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the propagator UI(t) = e−iHIt takes the following form

UI(t) =

(
cos(Ωt/2) −i sin(Ωt/2)e−iϕ

−i sin(Ωt/2)eiϕ cos(Ωt/2)

)
. (2.13)

Under the action of that propagator a qubit |0⟩ undergoes resonant Rabi oscillations

|ψ(t)⟩ = UI(t) |0⟩ =

(
cos(Ωt/2)

i sin(Ωt/2)

)
e−iϕ. (2.14)

The time after which the whole population is transferred to the other state |1⟩ is called pi-time.
The probability of finding the system in the |0⟩ state after some time t is given by

P (0, t) = |⟨0|ψ(t)⟩|2 = cos2(Ωt/2) =
1

2
(1 + cos(Ωt)) . (2.15)

2.2.2 State Preparation

State preparation in calcium is an optical process where the population of the S1/2 ground state
is transferred to only one of its Zeeman sub-levels. Through this dissipative process, the ion
is prepared in a deterministic initial state. For this thesis, we prepare the qubits in |1⟩ =∣∣S1/2,mJ = −1/2

〉
. Fig. 2.2 shows two different ways of achieving state preparation.

397 σ-

S1/2

P1/2

mJ = +1/2

mJ = -1/2

mJ = -1/2

S1/2 mJ = +1/2

mJ = -1/2

729

854

P3/2

D5/2

a) b)

866
866

Figure 2.2: Calcium qubit state preparation. There are two schemes that can be used to pre-
pare the qubit in the

∣∣S1/2,m = −1/2
〉

state: a) by optically pumping the
∣∣S1/2,m = +1/2

〉
→∣∣P1/2,m = −1/2

〉
transition with a σ-polarised λ = 397 nm light while repumping the D3/2 popu-

lation with a laser at λ = 866 nm, and b) by optically pumping the narrow
∣∣S1/2,m = +1/2

〉
→∣∣D5/2

〉
transition while repumping the D3/2 and D5/2 levels with λ = 854 nm and 866 nm light.

Figure adapted from [11].

The first way is to drive the electrical dipole transition
∣∣S1/2,m = +1/2

〉
→
∣∣P1/2,m = −1/2

〉
with a circularly polarised λ = 397 nm laser travelling along the quantisation axis. Which levels
are coupled is determined by the selection rules, more specifically the handedness of the circularly
polarised light[17]. The excited state spontaneously decays with a probability of 1

3 into the desired
state |1⟩. Thus, the qubit should be prepared after more than three scattering events on average.
The other times it decays into either the

∣∣S1/2,mJ = +1/2
〉

or the
∣∣D3/2

〉
states which is why we

have to use a λ = 866 nm repump laser. This scheme is limited by the alignment of the 397 nm
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light and the purity of its polarisation.

The other state preparation scheme consists of driving the electrical quadrupole transition with a
λ = 729 nm laser followed by 866 nm and 854 nm repumping lasers. The first laser optically pumps
the

∣∣S1/2,m = +1/2
〉
→
∣∣D5/2

〉
transition. The coupled sub-level is selected by the frequency

sensitivity of the energy levels. The 854 nm laser repumps the population from the D5/2 levels to
the P3/2 levels which then decay into the D3/2 and the S1/2 levels. The 866 nm laser then repumps
the population from the D3/2 levels to the P1/2 levels which again decay into the D3/2 and the
S1/2 levels. One of the ground state sub-levels can be prepared after a few cycles of this scheme.
Although the quadrupole state preparation is only prone to off-resonant excitation errors of the
729 nm laser, it requires much more power than the dipole scheme.

2.2.3 Readout and Tresholding

Readout of the two qubit-encodings has to be performed differently (see Fig. 2.3).

S1/2 mJ = +1/2

mJ = -1/2

D5/2

mJ = +1/2

mJ = -1/2P1/2

729
shelves

397

S1/2 mJ = +1/2

mJ = -1/2

mJ = +1/2

mJ = -1/2P1/2

397 

866 866

a) b)

Figure 2.3: Calcium ion readout schemes. The counts of photons emitted by the P1/2 → S1/2

scattering will be used for readout. a) Optical qubit readout. Photons are transferred from the
S1/2 to the P1/2 levels by a λ = 397 nm laser. Another λ = 866 nm laser repumps the population
decaying into the D3/2 levels. b) Zeeman qubit readout. The population of the mJ = +1/2 state is
shelved into the D5/2 levels using a λ = 729 nm laser, followed by an optical qubit readout. Figure
taken from [11].

The optical qubit can be read using a λ = 397 nm laser driving the cycling S1/2 → P1/2 transition
along with a 866 nm repump laser saturating the D3/2 → P1/2 transition. Thus, ideally only the
qubits in the bright states, i.e. the S1/2 ground state, will fluoresce while the ions in the D5/2

state will stay dark. However, the results will always contain a background signal from the 397 nm

laser. To correct our measurements for this, we first do a cycle of optical qubit readout (containing
the background) and then another cycle without applying the repump laser. The latter will then
populate the D3/2 levels, making the ion dark. Thus, we only measure the background counts
which we use to get the background-corrected counts from the first cycle.

The Zeeman qubit, again, cannot simply be read out by driving a cycling transition. Rather, we
have to first transfer the dark-state population in the

∣∣S1/2,mJ = +1/2
〉

state to the D5/2 level
with a couple of λ = 729 nm shelving pulses. After that, we can use an optical qubit readout as
explained above.
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After the readout, we perform simple photon-count thresholding for state inference: we detect the
number of photons emitted from the ion and compare it to a threshold value to decide whether
the qubit was in the dark or the bright state. The threshold value is determined by preparing and
measuring a qubit in both |0⟩ and |1⟩ states and building a histogram from that. As the spon-
taneous emission follows a Poisson distribution, we can fit such a distribution to both the qubit
states and get their means/variances. From those values we can calculate the optimal threshold[11,
pp. 32-33].
Repeating the same experiment many times, we can use the thresholding technique to obtain prob-
abilities P (0) and P (1) of the ions being in states |0⟩ or |1⟩ before the measurement, respectively.
The probabilities are calculated using the sample mean

P (0) =
n

N
(2.16)

where n is the number of experiments with outcome |0⟩ and N is the number of repetitions. The
uncertainty of those probabilities is known as the quantum projection noise, given by[11, p. 33]

σP (0) =

√
P (0)(1− P (0))

N
, (2.17)

which corresponds to the standard error of the mean of independent Bernoulli trials. This fails
when the probability P (0) is close to either zero or one as it underestimates the population variance
for small N . Laplace’s rule of succession solves this: it calculates the probability of success of the
next trial based on previous successes and failures and gives a lower bound to the error. The
formula that we use is given by

σP (0),min =
1

N + 2
. (2.18)

2.3 Cooling Schemes

There are many schemes that can be used to cool the ions. Here, we want to look at Doppler cooling
and electromagnetically induced transparency (EIT) cooling as we use them in our experimental
setup. But before looking at them we will first see how we can model the "heating" of ions and
what we can do to reduce it.

In eq. 2.10 we only looked at the motional ground state of the ions. However, to account for
the heating of ions (which is just their vibration) we have to add another term that couples their
motional state to the external electric field. A good and simple model does this by assuming that
the ion moves in a three-dimensional harmonic potential where the laser field can induce transitions
that change the motional state with a coupling strength given by the Lamb-Dicke parameter η.

For our purposes, we assume η ≪ 1, meaning that the extension of the wavefunction of the ion is
much smaller than the laser wavelength λ. In this regime, which is called the Lamb-Dicke regime,
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the interaction Hamiltonian is given by

HI(t) = ℏ
Ω

2
(σ+e

i(δt+ϕ) + σ−e
−i(δt+ϕ)) (2.19)

+ iℏ
Ωη

2
(âσ+e

i[(δ−ωm)t+ϕ)] + â†σ−e
−i[(δ−ωm)t+ϕ)]) (2.20)

+ iℏ
Ωη

2
(â†σ+e

i[(δ+ωm)t+ϕ)] + âσ−e
−i[(δ+ωm)t+ϕ)]) (2.21)

where ωm is the motional frequency and â, â† are the ladder operators of the harmonic oscillator,
and Ω is the interaction strength. The first term is called the carrier term (see eq. 2.10) which
for δ = 0 corresponds to the resonant coupling between the electric field and the internal states of
the ion. The second and third terms are called blue sideband (BSB) and red sideband (RSB) for
δ = +ωm and δ = −ωm, respectively, and correspond to the coupling of the electric field with the
motional states of the ion. The blue sideband drives transitions of the form |0⟩ |n⟩ ↔ |1⟩ |n+ 1⟩
with a Rabi frequency of Ωn,n+1 = ηΩ

√
n+ 1 and effectively adds motional quanta. The red

sideband removes motional quanta by driving transitions of the form |0⟩ |n⟩ ↔ |1⟩ |n− 1⟩ with a
Rabi frequency Ωn,n−1 = ηΩ

√
n. Thus, by choosing the right detuning we can use our lasers to

cool the ions in our traps. For a detailed derivation of the theory, we refer to [11, 18].

2.3.1 Doppler Cooling

Doppler cooling is the first step we use to reduce the temperature of the ion. We want to use
a dipole transition that has a high scattering rate for faster cooling, however, we cannot directly
drive a RSB from the ion as the transition linewidth Γ is usually broader than the motional
frequency. We are rather driving carrier, RSB and BSB transitions at the same time. However,
with a detuning δ < 0 we make the RSB excitation more likely than the BSB excitation and thus
on average cool down the ion. Classically, the atoms counter-propagating the cooling beam see a
higher frequency due to the Doppler shift and emit photons with higher energy than the photons
they absorbed. The temperature limit is thus dominated by single-photon scattering[11].

We perform Doppler cooling by illuminating the ion with red-detuned 397 nm light and a laser at
866 nm to repump the population in the D3/2 states. The hotter the ions, the more should the
cooling laser be detuned. We usually first apply a far-detuned Doppler cooling sequence to the
ions to cool them down from high-energy states before applying a near-detuned cooling sequence
to also remove the lower motional quanta.

2.3.2 EIT Cooling

In addition to Doppler cooling, we can use EIT cooling, which exploits the principle of coherent
population trapping, for reducing the motional state of the qubits below the Doppler cooling limit.
It requires a three-level Λ system consisting of two ground states |e⟩ , |f⟩ and a short-living excited
state |e⟩. Both ground states are driven with detunings δ1 and δ2, respectively. When choosing
δ1 = δ2, the population is transferred into the dark state of the system which is a superposition of
the two ground states. In this state, the system does not scatter photons anymore as the drives
destructively interfere with each other[19, 11].
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EIT cooling utilises this phenomenon in the following way: one of the ground states is strongly
pumped with a detuning δ1 while the other is weakly probed with detuning δ2. The detunings are
carefully chosen such that with δ1 = δ2 it suppresses the carrier transition while the RSB of the
probe beam will be driven and the BSB is only driven weakly. It can cool multiple modes at the
same time and thus cool the ion down to the motional ground state[11].

We use both circularly and linearly polarised λ = 397 nm lasers in addition to an 866 nm repump
laser to perform EIT cooling. The strong circularly polarised pump beam off-resonantly drives
the

∣∣S1/2,mJ = +1/2
〉
→
∣∣P1/2,mJ = −1/2

〉
transition with a detuning δ1 while the weak linearly

polarised probe beam drives the
∣∣S1/2,mJ = −1/2

〉
→
∣∣P1/2,mJ = −1/2

〉
transition with detuning

δ2 and the 866 nm laser repumps the D3/2 states. When the detunings match each other δ1 = δ2

the ions will be cooled along the wavevector difference of the 397 nm lasers.

2.4 Ramsey Experiment

To probe the coherence of qubits we can perform Ramsey experiments. The simplest form is shown
in Fig. 2.4. This scheme starts with a qubit in the excited state |1⟩ and transforms it into an equal
superposition of ground and excited state with a π/2 pulse R̂

(
π
2

)
. During a time τ the qubit

evolves freely and acquires an additional phase φ that we probe with a second π/2 pulse with
variable phase ϕ followed by a readout of the qubit state.

Initialisation ReadoutWait

Time

Figure 2.4: Scheme for a Ramsey sequence. The qubit is initialised in the |1⟩ state and brought
into an equal superposition of |0⟩ and |1⟩ by a π/2 pulse. After a free-evolution of length τ another
π/2 pulse with variable phase ϕ is applied and the qubit is read out. By varying ϕ, the coherence
of the qubit can be measured.

The probability of finding the qubit in the excited state after the Ramsey sequence is given by a
sinusoidal oscillation[11, 20]

P (1) =
1− cos(φ(τ)− ϕ)

2
, (2.22)

where φ(τ) =
∫ τ

0
δ(t)dt is the phase due to the detuning δ of the laser from the qubit frequency.

Thus, we can use the Ramsey sequence to perform a frequency calibration of the |0⟩ ↔ |1⟩ transition
with the condition φ = 0.
However, as the time τ gets longer, the amplitude of the oscillation decays due to phase noise and
the probability takes the form[20]

P (1) =
1− C(τ) cos(φ(τ)− ϕ)

2
. (2.23)

Another Ramsey scheme which reduces part of the low frequency noise is the spin-echo scheme
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(see Fig. 2.5). It introduces an additional π pulse between the ground state and the excited state
after half of the wait time.

Initialisation ReadoutWait Wait

Time

Figure 2.5: Scheme for a spin-echo sequence. It modifies the Ramsey scheme by introducing an
additional π-pulse after half the wait time τ .

The probability of finding the qubit in the excited state after the sequence is the same as in the
Ramsey sequence, shifted by π. The only thing that changes is the additional phase due to the
detuning of the laser from the qubit frequency φ̃(τ) =

∫ τ/2

0
δ(t)dt −

∫ τ

τ/2
δ(t)dt. Due to this, we

expect an echo signal τ/2 after the π pulse, which gives the scheme its name[11].

2.4.1 Phase Noise

The decay of the oscillation amplitude can have different reasons. In this thesis, we to look at two
simple models for the phase noise: the high-bandwidth or white noise and the low-bandwidth noise.

The white noise can be treated as having a flat power spectral density and yields a contrast loss
following an exponential decay[12, 11]

Cwhite(τ) = e−τ/T2 , (2.24)

with a decay constant commonly referred to as the T2 time.

The low-bandwidth noise, on the other hand, can be treated as frequency components centred
around ω0 as this noise is very slow and has long correlation times. The Ramsey contrast follows
a Gaussian decay[11]

Cslow(τ) = e−(τ/T )2 , (2.25)

where T is the slow noise decay constant. As this noise is so slow, it is partially suppressed by the
spin-echo sequence which inverts the direction the phase decoheres into through the π-pulse.

2.4.2 Phase-insensitive Ramsey Scheme

We perform the Ramsey experiments with our 729 nm laser coupling the
∣∣S1/2,mJ = −1/2

〉
↔∣∣D5/2,mJ = −1/2

〉
transition which is limited by the phase noise of the laser. To circumvent that

we can perform the Ramsey sequence with a scheme that is insensitive to the phase of the laser[21,
ch. 8.3]. For this, we exploit the hybrid operation on Zeeman and optical qubits as demonstrated in
[11, 21]. Operation and manipulation is performed on the optical qubits |0⟩o , |1⟩o while free-space
evolution takes place in the Zeeman qubit |0⟩z , |1⟩z. We can do this by mapping the |0⟩o state on
the |0⟩z state with a π pulse of our 729 nm laser.
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With this scheme, we can potentially achieve higher coherence times. This is because the phase
shift of a laser only matters when we are in a superposition of that transition. When we are in the
Zeeman qubit, any phase of the π pulse will bring us up to the |0⟩o state and we won’t acquire a
phase shift as long as the operations on the optical qubit are coherent.



Chapter 3

Motivation for pycrystal

In this chapter I want to explain the motivations for developing pycrystal. To that end, I will give
a short overview of the control system in section 3.1 and explain how experiments and experiment
sequences can be created and passed to the control system in section 3.2. I will highlight the
advantages and disadvantages of the different approaches and point out where pycrystal comes
in.

3.1 Control System

The control system of the TIQI (Trapped Ion Quantum Information) group (see Fig. 3.1) is
called M-ACTION (which stands for Modular Advanced Control of Trapped IONs). It is based
on a hybrid CPU (central processing unit) and FPGA (field-programmable gate array) centric
architecture separating the time-coherent operations on the FPGA from the main application
on the CPU. This application, called ionpulse, is written in C++ and is executed "bare-metal"
(without an operating system) on the CPU. Currently the Zedboard1 is used as the main controller,
where the FPGA and CPU meet on a single chip. A PC connects to the Zedboard via USB to
debug and program it with the main application, and via Ethernet to configure it in a graphical
user interface (GUI) called Ionizer.

The Zedboard has multiple digital outputs, often referred to as TTL (transistor-transistor logic),
and is connected to DDS (direct digital synthesis) cards which generate RF signals. The digital
outputs are used to trigger asynchronous devices during experimental sequences and from the
GUI. These can be, for example, shutters, readout devices like photomultiplier tubes (PMTs) or
arbitrary waveform generators (AWGs) like the Fastino controller, handling the electrode voltages
of a trap. The RF outputs from the DDS cards go to acousto-optic modulators (AOMs) used to
control the laser pulses and to shift the frequency of the beams.

There are also some other standalone devices like lasers, cavity locks, shim or cavity DACs (digital-
to-analogue converters) or fixed RF sources that are not controlled directly by the M-ACTION
system. The control PC uses tiqi-plugin to control those devices via raspberry pis.

For a detailed description of the control system we refer to [23, 24].
1Commercial Zynq evaluation board by Digilent using a Xilinx XC7Z020-CLG484-1 chip[22]

14
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Figure 3.1: A schematic of the M-ACTION control system, along with a control PC and raspberry
pi devices controlling asynchronous, high-latency devices. The green-coloured areas show PCBs
equipped with an FPGA (white boxes). The white-red box combination depicts a chip with
combined CPU and FPGA. The control PC is connected to the main controller, the Fastino
controller and a couple of raspberry pis via Ethernet (blue lines). The Zedboard communicates
with the DDS cards via the backplane (red arrows) using a custom, low-level interface and handles
digital in- and outputs (black lines). Image created by Martin Stadler.

3.2 Creating and Running Experiments

At the moment, there are two ways of executing pulse sequences through our control system, as
depicted in Fig. 3.2. In the original implementation, experiments are written in C++ using the
ionpulse SDK and compiled and linked into the ionpulse executable on the control computer. It
is uploaded onto the Zedboard’s CPU, which executes the experiment on demand, in which case
it passes instructions and parameters to the FPGA. The FPGA executes the sequence concerning
digital in- and outputs sequentially and forwards instructions for the RF generation to the DDS
cards. The experiments are arranged in "pages" on the Zedboard. They can be triggered and con-
figured from Ionizer on the control computer. This allows the user to change "remote parameters"
through the GUI which the experiments reference in their sequences. This can, for example, be
the number of shots (which is the number of repetitions to average over for a single data point),
or other parameters such as the amplitudes, frequencies or phases of the AOMs. They can be
updated while the experiment is still running which makes experiments more flexible. The results
of each data point of an experiment or scan get sent back to the control computer where Ionizer
plots it in a separate window.

Recent work has been done which provides an alternative way of creating pulse sequences. The
new framework makes use of a specific experiment already compiled within the ionpulse SDK.
It accepts as a remote parameter JSON strings, a file format storing data objects in terms of
attribute-value pairs and arrays. Those strings encode the sequences we want to run on the control
system which uses a custom JSON parser, created by Martin Stadler and further developed by
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Alexander Ferk, to create the corresponding experimental sequence on the control system. This
work is complemented by the ionpulse sequence generator python library created by Marco
Stucki[25] and further developed by Martin Stadler, Alexander Ferk[26] and me which can be used
to create a JSON-encoded pulse sequence. The library defines classes that are directly mapped to
instructions for the RF and TTL signals processed by the control system (see section 4.1).
The workflow of creating an experiment is to write a sequence with the ionpulse_sequence_generator
consisting of RF and TTL events which is then represented as a JSON string. Upon sending it to
the Zedboard, the JSON parser translates it into hardware instructions which are then executed.
The result of the experiment is returned from the Zedboard to the control PC afterwards.

3.2.1 Evaluation

There are advantages and disadvantages to both approaches of creating and running experiments
on the control system. I now want to motivate the reason behind the use of the second method
and describe how pycrystal comes in.

An advantage of writing the experiments in C++ is that we do not need to know the exact values
for the parameters when compiling them as they can be configured from Ionizer. However, C++
is not a beginner-friendly language and as such not accessible to all users. Furthermore, adding
new pulse sequences requires writing new experiments and to recompile them together with the
ionpulse SDK which can take up to a couple of minutes. Interfacing with high-level libraries for
creating pulse sequences, like Qiskit2 or pyGSTi3, is not possible at the moment. This is because
there is no API to translate the code from those libraries into classes and methods that can be
used in C++, and neither is there a straightforward way to implement this. This is not desirable,
especially when you want to provide an easy-to-use interface for third parties. Another conceptual
consideration is that the Zedboard should only run hardware operations, i.e. trigger TTL and
generate DDS card signals. It does not have to know about all the physics behind the scenes,
i.e. knowing about abstract pulses and qubit gates, generating waveforms to move the ion or even
translating high-level code into hardware operations.

A python program that uses the ionpulse sequence generator has to know the values for all
parameters before translating the sequence into a JSON string. This means that we have to gen-
erate new JSON strings to change the parameters of a pulse sequence. However, it is unrestricted
in defining the sequences that will be run on the control system and does not require to recompile
the software of the main controller. Following the conceptual considerations mentioned above, it
separates the hardware instructions from the high-level pulse sequence description by providing
an interface to low-level instructions that the Zedboard understands. The pulse sequences are
generated on the control PC rather than stored on the Zedboard. Thus, it is easier to integrate the
library with asynchronous devices, like Fastinos, and third party packages that provide a high-level
API to create pulse sequences as communication with those devices can happen at the same layer
as the pulse sequence generation, which was not the case before. This allows to keep the code for
an experiment well-structured and easier to understand and maintain.

2"Qiskit is an open-source SDK for working with quantum computers at the level of pulses, circuits, and appli-
cation modules."[27]

3"pyGSTi is an open-source software for modeling and characterizing noisy quantum information processors
(QIPs), i.e., systems of one or more qubits."[28]
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Figure 3.2: There are two ways of creating and running experiments on our control system. (a)
The experiments are written in C++. They are compiled and linked into ionpulse to create an
executable which is written onto the CPU of the main controller. Experiments are triggered and
controlled from a GUI (called Ionizer) on the control PC. (b) Experiments are written in python
and translated into a JSON string. The software for the control system is already deployed and
provides an interface for those strings. New pulse sequences require the generation of the sequence
description. Those can directly be passed to the executable on the main controller which will return
the results of the experiment. Adapted from image created by Martin Stadler, idea: Alexander
Ferk, Mose Müller.
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While the ionpulse sequence generator exposes the low-level classes and makes use of the JSON
interface to the Zedboard, it is left to the user to build pulse sequences with meaningful physics.
This is where pycrystal comes in: it serves as a high-level python interface for creating pulse
sequences following a bottom-up approach. The users can define their hardware, implement an
abstract representation of the trapped ions and directly write sequences that request pulses on
them. Chapter 4 will elaborate on the requirements of the package and the design choices I made
for it.

It is also worth mentioning other work conducted with the JSON interface of the control system:
complementary to the bottom-up approach, a top-down approach was used to directly use Qiskit
and its custom JSON encoding of pulse sequences to define abstract operations at the gate level
and translate them into a format that could be parsed by ionpulse[29, 25]. This work, however,
turned out to be not as flexible in the representation of more generic experimental setups.
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pycrystal

This chapter now introduces pycrystal, the library that I have been working on for the biggest
part of my thesis work. Its main goal is to unify the following of requirements into one framework.
It should

1. use the ionpulse sequence generator to create the JSON strings that can directly be
executed. This should allow for flexibility in creating different pulse sequences.

2. be able to model different traps and architectures like QCCD or long chains with single-
ion addressing. In view of the scalability of those architectures, the library should also
transparently implement simultaneous operations on multiple ions. Testing the package in
the Cryo setup of TIQI, which I will describe in Chapter 5, allowed me to develop the package
with a special attention to this feature.

3. be able to model different configurations of ion species and their isotopes. This and the
last point also requires that the framework basis remains very generic, leaving the users to
implement most of the specific details themselves.

4. connect the generation of experiments to a database storing the values of the experimental
parameters and update them after performing calibration scans.

5. allow for re-usability of parameters in form of Parameter class instances. We want to use
the same parameter for all the variables with the same physical meaning instead of hav-
ing a parameter instance for each possible variable. For example, we should use the same
parameter to query the π/2 time for both the

∣∣S1/2,m = −1/2
〉
→
∣∣D5/2,m = +1/2

〉
and∣∣S1/2,m = −1/2

〉
→
∣∣D5/2,m = +3/2

〉
transitions and only change the arguments we pass

to it.

6. provide a module for quickly defining and scheduling experiments on the Zedboard and ex-
ecuting parameter scans. Although this is useful for seeing pycrystal in action, a sequence
scheduler is not intended to be part of the library, and this functionality will be later imple-
mented somewhere else.

I will first go through the ionpulse sequence generator API in section 4.1 and explain what
functionality it offers before presenting the design decisions of pycrystal in section 4.2.

19
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4.1 Ionpulse Sequence Generator

The ionpulse sequence generator is a python API to create pulse sequences that can be exe-
cuted on the ionpulse application running on the M-ACTION system. It uses the JSON format to
communicate information to the control system (which was originally inspired by the JSON format
of Qiskit’s Schedule)[25]. The control system parses the JSON string to create the experimental
sequence that will be run.

The API provides a couple of classes which we can use to create pulse sequences:

• RF events (RFEdge, RFWait, RFPulse) are used to abstract fundamental pulse objects acting
on a single RF channel. RFEdges describe single rising/falling edges with a wait time of spec-
ified length before the edge while RFWaits describe a time span during which no instruction
will be executed. RFPulses are putting two of those edges together and correspond to a rising
and falling edge separated by a wait time of a specified length.

• TtlEdges are handling the digital I/O signals. They change the global state of all TTL
channels and can be used to synchronously trigger devices (e.g. for transport or readout
events) during an experiment sequence.

• Readout events register a read-out on the Zedboard’s CPU.

• Qubit events (QubitEdge, QubitWait) are used to keep track of the qubit phases to enable
coherent operations when taking AC-Stark Shifts into accounts[30]. They work the same way
as RF events, but set frequency and phase for the phase accumulator tracking a qubit phase
(see [26]).

• Sequences (LinearSequence, Loop, Fork, Path) are more complex objects making up the
experimental sequences. They contain subsequences for RF-, qubit- and readout events and
digital I/O signals. LinearSequences describe general containers for pulse and sequence
objects, Loops describe loop instructions and Forks describe forked instructions. They take
multiple Paths (which are just linear sequences themselves) and a condition upon which the
following path is decided, allowing to implement experiments with real-time decisions and
feedback[31].

The JSON generator implements an event-based approach analogous to the control system (as
opposed to Qiskits timetable-based approach). That is, each edge, wait instruction and sequence
is an event with no fixed starting time. When added to a sequence, they start directly after the
last event on the same channel has finished. The time argument passed to the events is the wait
time before the new event will take place. If sequences act on multiple channels the instructions
will start at the same time on all channels, which is enforced by the generator.

4.2 Design

In this section, I want to show how I approached fulfilling the requirements of pycrystal. The
library follows a bottom-up approach to modelling the setups in our labs while abstracting the
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parts in an object-oriented way. It consists of four modules with separate functionalities. The
pycrystal.beamline module (section 4.2.1) models the hardware of the setup and revisits require-
ments 1. and 2. The pycrystal.crystal module (section 4.2.2) deals with the 3. requirement by
abstracting the ion crystals in the trap. Points 4. and 5. are fulfilled in the pycrystal.parameters
module (section 4.2.3) which connects the physical parameters to the parameters in a database.
Finally, the last requirement is implemented by the pycrystal.experiment module (section 4.2.4)
which defines an abstract Experiment class. This class is used to build pulse sequences that can
then be run on the control system and is used to perform scans on parameters.

4.2.1 pycrystal.beamline - Defining the Hardware

This module creates an abstract representation of the lab hardware used to control laser pulses,
defining all the beamline objects like AOMs or readout devices like PMTs or cameras, and builds
objects that can be used to create pulses from lasers or trigger readout events.

For this, I have abstracted the AOMs and PMTs in an object-oriented way as can be seen in Lst.
4.1. The class instances store the defining attributes, such as the DDS or TTL channels they
respond to, or the AOM type, central frequency or order of the AOM, within the instance.

1 aom_729_sp_3 = AOM(

2 "729_sp_3",

3 type=AOMTypes.SP,

4 dds_channels=[13, 14],

5 central_frequency=150,

6 order=1,

7 endpoints=[Zones.ZONE_3],

8 )

Listing 4.1: Examples of instantiation of a single-pass AOM pointing to zone 3. The initialiser
takes multiple arguments that will be stored in the instance and is used to internally address the
object. The type specifies whether the AOM is a single-pass or a double-pass, the DDS channels are
connected to the AOM to drive it in either single-tone (first channel) or multi-tone (both channels)
mode. The central_frequency is the central frequency specified by the manufacturer while order
is the Bragg diffraction order that is physically chosen through the setup. The endpoints argument
takes a list of arbitrary specifiers that can be used to specify where this AOM points to. This can,
for example, be used for single-ion addressing.

I decided to create three main classes which use the optical objects to build an abstraction of the
experimental setup (see Fig. 4.1): the BeamLineLayout, the BeamLineParameterisation and the
BeamLine. Those classes separate different functionalities needed to build a working abstraction.

The BeamLineLayout class abstracts the path the beam takes from the laser through optical devices
to some endpoints on the trap (e.g. an AOM, a zone, a single ion, ...). It uses a tree data structure
to store the beamline objects it consists of and their position in the layout (see Lst. 4.2). The base
class of the tree is BeamLineNode which is based on anytree’s NodeMixin class1. The nodes of the

1It adapts some methods for better integration with pycrystal (like type annotations, instance checking, printing
warnings, raising errors, ...)

https://anytree.readthedocs.io/en/latest/intro.html
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Figure 4.1: A simple setup with lasers, AOMs, ions on a trap with different zones and a PMT.
The italic text gives the name of the physical entities or values, the red dotted lines indicate where
the laser beams are going to the trap, the blue dotted lines show where the PMT collects photons
from and the black dotted lines indicate the RF parameters that have to be supplied to the AOMs.
The colour-coded regions highlight the layers of abstraction of the pycrystal library. The bold
text gives the name of the objects in the code base abstracting the physical entities or values.

layout tree are the beamline layout itself (which is the root) and the beamline objects (like AOMs
or acousto-optic deflectors (AODs)).

1 layout_729 = BeamLineLayout(

2 "729 Laser",

3 children=[

4 aom_729_dp([aom_729_sp_1, aom_729_sp_2, aom_729_sp_3]),

5 ],

6 )

Listing 4.2: Example of a BeamLineLayout initialisation for a 729 nm laser with a double pass
AOM followed by three single pass AOMs going to three different zones. The BeamLineLayout is
the root of the tree structure and the children argument takes a list of AOMs that will be the
branches of the parent node. This happens recursively for each AOM. The AOMs that do not take
any children are called the leaves of the BeamLineLayout.

The layout itself does not know the parameters that the beamline objects receive, e.g. frequency,
phase and amplitude shifts of the laser beam passing through an AOM together with the duration
the AOM will be turned on during a specified pulse. This is done by the BeamLineParameterisation.
A beamline parameterisation is a container defining the values of the attributes of all the beamline
objects of a layout. The parameterisation can depend on the input arguments like pulse type or
endpoints. In calcium, for example, we can parameterise the 866 nm laser for EIT- and Doppler
cooling, sigma-spin-polarisation and detection pulses with the same values. The only thing that
changes is how long the AOM is turned on (see Lst. 4.3). The 729 nm laser, on the other hand,
could have different parameterisations depending on the pulse type (e.g. sideband or carrier pulses)
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and transition. To parameterise a multi-tone AOM one has to pass a list of two parameters or
values where the first value will be applied to the first DDS channel and the second value to the
second channel.

1 class Parameterisation866(BeamLineParameterisation):

2 """This class acts as a container for parameterising the 866 laser."""

3 layout = BeamLineLayout("866 Laser", children=[aom_866])

4
5 @classmethod

6 def params(

7 cls, pulse_type: PulseTypes, **kwargs: Any

8 ) -> Tuple[Dict[BeamLineObject, Dict[str, Any]], float]:

9 params: Dict[BeamLineObject, Dict[str, Any]] = cls._params_init()

10
11 params[aom_866]["frequency"] = ... # frequency parameter

12 params[aom_866]["amplitude"] = ... # amplitude parameter

13 params[aom_866]["phase"] = ... # phase parameter

14
15 if pulse_type == PulseTypes.EIT:

16 motional_identifier = kwargs.pop(

17 "motional_identifier", MotionalIdentifiers.COM

18 )

19 pulse_time = ... # time parameter using motional_identifier var

20 elif pulse_type in {PulseTypes.DOPPLER_FAR, PulseTypes.DOPPLER_MID}:

21 pulse_time = ... # time parameter

22 elif pulse_type == PulseTypes.SIGMA_SPIN_POL:

23 pulse_time = ... # time parameter

24 elif pulse_type == PulseTypes.DETECTION:

25 pulse_time = ... # time parameter

26 else:

27 raise Exception(f"Pulse type {pulse_type} has not been parameterised yet!")

28 return params, pulse_time

Listing 4.3: BeamLineParameterisation example. The Parameterisation866 parameterises an
866 nm laser with one AOM for EIT- and Doppler cooling, sigma-spin-polarisation and detection.
The class derives from BeamLineParameterisation and implements the layout attribute and
the params class method. The latter returns a dictionary containing the parameterisation of the
beamline objects and the pulse duration in dependence on the input arguments like pulse type
or endpoints. The dictionary contains another dictionary for each beamline object of the layout
assigning values to all attributes of that object. The layout defines the BeamLineLayout you want
to parameterise and is used internally to initialise the dictionary with cls._params_init(). One
can use the arguments passed to the params method to set the values for the variables as done
with the motional_identifier.

The BeamLine class connects both BeamLineLayout and BeamLineParameterisation and builds
the interface between pycrystal and the ionpulse sequence generator. Beamline instances
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are the central object to create using the pycrystal.beamline module as they are essential for
creating crystal classes in the pycrystal.crystal module. They represent entities that can re-
quest pulse sequences from specific lasers through the request_pulse method which creates a
LinearSequence, as demonstrated in Lst. 4.4. This allows us to create arbitrary pulse sequences
by adding the requested pulses together, either sequentially or in parallel.
Furthermore, support for different architectures like QCCD is implemented using the endpoints

specifier. When defining an AOM, the endpoints keyword argument takes a list with entries of arbi-
trary type, e.g. an enumeration. It is used to specify the physical locations or objects in the setup
the beamline object points at. The endpoints can then be referenced in a requested pulse through
either a beamline or a crystal to drive the required AOMs only. One can thus request pulses from
beamlines on arbitrary endpoints, as long as they are defined on those objects that are leaves of a
beamline layout (setting it for the other objects will not have any effect). This allows, for example,
the implementation of single-ion or -zone addressing.
Finally, the phases argument implements a way of setting the phases of the beamline’s AOMs
directly. The order of the specified phases goes from the root of the tree structure to the leaf.
Thus, setting the phases of a beamline like the beamline_729 in Lst 4.4, consisting of a double-
pass AOM followed by a single-pass AOM, results in phase shifts of zero for the double-pass and
90 degrees for the single pass.

1 beamline_729 = BeamLine(layout_729, Parameterisation729)

2 sequence = beamline_729.request_pulse(

3 pulse_type=PulseTypes.PI,

4 endpoints=Zones.ZONE_1,

5 transition=Transitions.SM12_TO_DM12,

6 phases=[0, 90],

7 )

Listing 4.4: BeamLine example. The initialiser takes both the layout and the beamline parameter-
isation. It exposes the request_pulse method which takes a pulse_type keyword argument and
arbitrary other keyword arguments. If endpoints are provided, e.g. a beamline object or a list
of enumerations, they will be used as the output of the laser. If a list of floats is provided to the
phases keyword argument, those phases are directly applied to the AOMs of the beamline. All
arguments you pass to the pulse request will be passed down to the beamline parameterisation.
Using the return values of the parameterisation, the beamline objects are initialised and the RF
pulses are generated. The request returns a linear sequence containing information that can be
passed to the control system to drive the selected beamline objects.

4.2.2 pycrystal.crystal - Abstracting Ion Crystals

Continuing with the bottom-up approach, this module was designed to build upon the pycrystal.beamline
module. It implements a Crystal class whose instances abstract ion crystals in the trap (see Fig.
4.1), fulfilling the fourth requirement of the package.

I decided to first compose a Crystal class that meets the requirements for a 40Ca+ ion as this is
the ion we are trapping in the Cryo setup. The idea is that the crystal defines all the pulses we



Chapter 4. pycrystal 25

can apply to the ion crystals as methods, e.g. detection, doppler_cooling, pi, pi_half, etc.
The pulses themselves come from the beamlines that the user has to define for his setup, while
the readout events have to be triggered using a user-defined PMT object. That means that the
Crystal class has to get the information of which beamlines and PMT he can use to request pulses
from. The PMT that can be used in the detection pulse is defined as the Crystal class attribute
readout_pmt while the beamlines are stored in a dictionary which takes the beam type parameter
as the key and the beamline as the value. Thus, knowing that we are manipulating a 40Ca+ ion,
we can already implement the pulses that are generic to the calcium ions. When the users now
want to use the Crystal class, they inherit from the generic 40Ca+ crystal class and overwrite the
readout PMT and the beamline dictionary (see Lst. 4.5).

1 class CryoCrystal(Crystal):

2 """Implementation of a Cryo-specific calcium-40 Crystal class."""

3 beamlines = dict()

4 beamlines[BeamTypes.BEAM_397_SIGMA] = beamline_397_s

5 beamlines[BeamTypes.BEAM_397_PI] = beamline_397_p

6 beamlines[BeamTypes.BEAM_729] = beamline_729

7 beamlines[BeamTypes.BEAM_854] = beamline_854

8 beamlines[BeamTypes.BEAM_866] = beamline_866

9 readout_pmt = pmt

10
11 def individual_pulse(

12 self, endpoints=None, phases=None, **kwargs: Any

13 ) -> LinearSequence:

14 ...

Listing 4.5: Crystal class example implementing the crystal class for the Cryo setup. The class
derives from the generic Crystal class and defines the beamlines and the readout PMT the class
can use to create the pulse sequences. The beamlines are stored in a dictionary taking the beam
type as key and the BeamLine instance as value. The class also implements an individual pulse
that is not part of the generic class.

This approach also allows for multiple species and other isotopes. The abstract Crystal class
implements the pulses as abstract methods which can be overwritten for each atom species or
isotope. As the abstract pulses are very specific to the different ions used this is not really an
overhead for the user as they have to define the pulses either way if they are not yet present.

To make the crystal instances really model the ion crystals, they should also keep track of the ion’s
position. This is not yet implemented, but the idea is that one can initialise an ion crystal with
a specified number of ions at a specified endpoint. When performing a transport operation on it,
the endpoint should get updated. When the ion crystal is split, it should create another crystal
instance and update the number of ions and their positions.
Another feature from the ionpulse_sequence_generator that is not made use of yet is the phase
tracker through the qubit events.



26 4.2. Design

4.2.3 pycrystal.parameters - Interface between Database and Experi-
mental Parameters

The pycrystal.parameters module was designed to provide an interface between a system storing
values relevant to our experiments (from now on called database) and pycrystal. The module
contains classes that provide an interface to query and set values in a database (database classes)
and classes that abstract sets of values in those databases which can be used in the beamline
parameterisations (parameter classes). The parameter class instances (from now on called param-
eters) interface with a database that is set by the user and are designed to be reusable, i.e. to
parameterise multiple variables with the same physical meaning. I will first explain my design
decisions for the databases and how we can set them for the parameters before going into the
reusability aspect of the parameters and how we can scan those parameters in experiments.

The first database class I wrote was the ZedboardDB. This database takes the hostname and port of
the Zedboard to connect to it. With it, we can query and set the values for the remote parameters
that are defined in the ionpulse SDK. As we are interfacing the values in the SDK, we can also use
Ionizer to update them. This was key to our approach as we can use Ionizer and the ionpulse SDK

to scan the parameters and use them in pycrystal afterwards. Furthermore, it allowed us to be
flexible in the transition and testing phase in between the two different types of control systems as
both pycrystal and Ionizer can access the same set of parameters and can thus share experiments.
For this to work, we have to provide the hostname of the computer Ionizer is running on and the
port it is exposing.
To access the variables with pycrystal, I had to implement a naming convention for the Cryo
setup, i.e. declare how the name of the remote parameter in the SDK reflects the information
about it. For example, the remote parameters always start with the parameter type, i.e. "f" for
frequency, "a" for amplitude, "p" for phase and "t" for time, and could continue with the pulse
type or transition. This is of course setup-specific, and different setups would either have to stick
to the same convention or use a different database class that reflects their own.

The parameter classes call the database instance specified by the user (see Lst. 4.6), or the dummy
database DummyDB otherwise, to query and set values through their instances. This makes it very
easy to change the database. The only thing that new databases have to do is to overwrite the
abstract methods of the abstract Database class.

1 # add this at the beginning of your config code

2 from pycrystal.parameters import Parameter

3 from pycrystal.database import ZedboardDB

4 Parameter.db = ZedboardDB(<optional_connection_details>)

Listing 4.6: One can set the database for the parameter classes by changing the db attribute of
the Parameter class which is inherited by all derived classes. Here, we set it to the ZedboardDB.
One can change its connection details by providing it with the hostname and port of the Zedboard
and the hostname and port for the Ionizer host connection.

There are several parameter classes, beginning with the abstract Parameter class. The classes differ
in their default values for some keyword arguments, e.g. the FrequencyParameter defaults the
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param_type to "frequency", while AmplitudeParameter, PhaseParameter and TimeParameter

default to "amplitude", "phase" and "time", respectively. Parameters can be specialised: for
instance, there are several frequency parameter classes, each specifying a default value for the
frequency_type, i.e. BareFrequency, StarkShiftFrequency and MotionalFrequency defaulting
to the bare-, stark-shift- and motional frequency, respectively. They all implement a "frequency"
parameter which shares the same logical function in different types of beams, e.g. addressing
different qubit transitions.
The function of these classes is to reduce the overhead of specifying the same arguments every
time a new parameter has to be created. Additionally, fixing the default values makes it easier to
debug the code if something does not work. It also enabled me to write more precise warnings and
error messages.
One can create a parameter by instantiating one of the parameter classes. By performing a call
on it, you can retrieve the value it is parameterising from the database while you can set a value
using the set_value method, taking the new value as the first argument and arbitrary keyword
arguments. Both constructor and call also take additional keyword arguments that are passed to
the database for querying and setting the corresponding values (see Lst. 4.7). The arguments
passed to the call take prevalence over those passed to the constructor if a keyword argument
overlaps. This is done by storing the arguments provided to the constructor as default values. But
unlike the default values defined by the parameter classes themselves, they can be temporarily
overwritten with a parameter call. (This behaviour can easily be changed to default values that
cannot be overwritten).

1 >>> from pycrystal.parameters import BareCarrierFrequency

2 >>> from pycrystal.utils import PulseTypes, Transitions

3 >>> freq_full_init = BareCarrierFrequency(transition=Transitions.SM12_TO_DM12)

4 >>> freq_partial_init = BareCarrierFrequency()

5 >>> freq_full_init() == freq_partial_init(transition=Transitions.SM12_TO_DM12)

6 True

Listing 4.7: This example shows how we can define and use parameters. It instantiates the pa-
rameters freq_full_init and freq_partial_init which instantiate a bare carrier frequency
parameter. The former parameter provides a default value for the transition while the latter does
not. We can see, however, that the return values of calling freq_full_init without keyword
arguments and freq_partial_init with the same transition as an argument are the same.

With the example in Lst. 4.7 we can already see how the "re-usability" of the parameters can be
exploited. The parameter instance freq_partial_init parameterises the bare carrier frequency
of pi pulses for different transitions. By just changing the keyword argument transition we can
change the value queried from the database.

Another feature of the parameters is that they can be used in context managers (starting with a
with statement), where it is possible to set the value for the parameter without interfacing and
changing values in the database. When leaving the context, the value is reset (see Lst. 4.8). This
way it is possible to perform scans on parameters, e.g. for calibrating the value of a physical
variable.
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1 >>> bare_freq = BareCarrierFrequency()

2 >>> bare_freq.set_value(2, transition=Transitions.SM12_TO_DM52)

3 >>> print(bare_freq(transition=Transitions.SM12_TO_DM52))

4 ... with bare_freq as param:

5 ... param[

6 ... ("transition", Transitions.SM12_TO_DM52),

7 ... ] = 10

8 ... print(bare_freq(transition=Transitions.SM12_TO_DM52))

9 ... print(bare_freq(transition=Transitions.SM12_TO_DM52))

10 2

11 10

12 2

Listing 4.8: This example shows in a python interpreter how we can easily change the value of a
parameter for specific keyword arguments without changing the value in the database. We first
instantiate a bare carrier frequency parameter and print out the value for the

∣∣S1/2,m = −1/2
〉
→∣∣D5/2,m = −5/2

〉
transition that we just stored in the database. Then we change this value inside

a context manager (which is really storing the value in a dictionary) and see that the parameter
call gets assigned to that value. Printing the same parameter call after the context manager again
yields the value stored in the database.

4.2.4 pycrystal.experiment - Building Experiment Pulse Sequences

This module allows us to easily create and run pulse sequences on the Zedboard and perform scans
over variables, in a way similar to how it is done in Ionizer with the ionpulse SDK. I wrote it
for testing purposes and for quickly debugging test sequences. The data and results presented in
chapter 6 were taken using this module.

With the abstract Experiment class, this module provides a skeleton for experiments. It imple-
ments an abstract schedule method that should return the JSON string of the pulse sequence
which is either run or used to perform scans on parameters. The intended usage of this class is to
inherit from it to implement a specific experimental sequence, defined by overriding the schedule

method as shown in Lst. 4.9. With that, one can now use the methods run, scan_1D and scan_2D

on instances of this class to run this pulse sequence or perform parameter scans.

1 class CryoExperiment(Experiment):

2 def schedule(self) -> str:

3 crystal = CryoCrystal("Test exp")

4 seq = LinearSequence("Test exp", auto_channel_mask=True)

5 seq += crystal.default_cooling(eit_cooling=False, sideband_cooling=False)

6 seq.sync()

7 seq += crystal.state_preparation(endpoints=Zones.ZONE_3)

8 seq.sync()

9 seq += crystal.pi(transition=Transitions.SM12_TO_DM52, endpoints=Zones.ZONE_3)

10 seq.sync()
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11 seq += crystal.detection(endpoints=Zones.ZONE_3, detect_background=True)

12 seq.sync()

13 json_string = seq.get_json_string()

14 return json_string

Listing 4.9: An experiment derives from the Experiment class and overrides the schedule method.
This example shows a typical sequence involving cooling, state preparation, a π pulse and a detec-
tion of a CryoCrystal. The sync statements indicate that the pulses will be scheduled sequentially.
The last statement translates the LinearSequence into the JSON string.

The run method takes the number of shots of the experiment and calls the schedule method to
create the JSON string before executing it on the Zedboard. The method returns the message sent
back from the Zedboard when the data point was taken. It contains the raw PMT counts along
with the readout channel results, containing the PMT counts post-processed on the CPU of the
Zedboard.
The scan_1D and scan_2D methods perform scans over one or two variables, respectively (see Lst.
4.10). They use the feature presented in Lst. 4.8 to change the value of the parameters and create
a JSON for each new data point of the scan. Using the run method, they then execute each of
the JSON files consecutively and return a dictionary with the scan parameters as keys and the
return value of run as the values. For 1D scans, I have also implemented a live-plotting feature.
This plots the data points as soon as they are returned by the Zedboard while scheduling the next
data point. This helped us a lot during data taking as we could directly see when things went
wrong. Additionally, Carmelo Mordini also implemented the functionality for timestamping and
saving the experimental data, such that they could be stored and then analysed offline.

1 from pathlib import Path

2 exp = CryoExperiment(

3 "Test", data_dir=Path("<results_folder>"), zb=Zedboard(<connection_details>)

4 )

5 value_1 = exp.scan_1D(

6 num_shot=50,

7 parameter=<time parameter used to parameterise the pi pulse>,

8 param_kwargs = {

9 "pulse_type": PulseTypes.PI,

10 "transition": Transitions.SM12_TO_DM52,

11 },

12 scan_range=[1.4, 100, 40],

13 )

Listing 4.10: This code snippet shows how to perform a scan with pycrystal. First, one instan-
tiates the experiment class with a name, a directory specifying where the data will be stored and
a Zedboard instance which is used to connect to the Zedboard and run the sequences there. Then
you can call scan_1D on the experiment instance and provide the number of shots, the parameter
to be scanned, the specific keyword arguments for the parameter to be scanned and the scan range
(or a list of scan values). Here, we are scanning the time parameter used to parameterise the pi
pulse on a specific transition and we would expect to see a Rabi oscillation.
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Experimental Setup

In this chapter, I will give an overview of the Cryo setup which I used to perform experiments on
with pycrystal (see chapter 6). I will first present an overall picture, continue by explaining the
surface trap more in detail and then what lasers — and where — we are using in the setup.

5.1 The Cryo Setup

Our setup utilises a two-dimensional Paul surface-electrode trap (SET) to trap and control 40Ca+

ions. Fig. 5.1 shows a simple schematic of the setup. The trap lies within a 6K cryostat (see
Fig. 5.1 (left)). The chamber is placed in a vacuum vessel and protected from room-temperature
radiation by heat shields. This provides the ions with an environment with attenuated magnetic
field fluctuations and ultra-high vacuum (UHV). As the ions are trapped using a combination of
DC (direct current) and RF voltages applied to the electrodes of our trap, the cryostat chamber
also houses various electronics like RC filters. Imaging is performed by collecting the light emitted
by the ions with an objective which focuses it on either a PMT or a camera outside the cryostat.
The vacuum chamber has three viewports used to deliver free-space lasers to the trap as well as
a feedthrough for integrated optics fibres. Two sets of permanent magnets are placed outside the
vacuum chamber to create a homogeneous magnetic field of 5.8 G at the position of the trap. The
calcium atoms are emitted from a resistively heated oven mounted on a vacuum flange.

The trap is a two-dimensional SET with integrated waveguides. On the upper layer, there are
both DC and RF electrodes creating the electric fields that trap the ion. The RF electrodes lie
between the inner and the outer DC electrodes and create an effective potential trapping on the
radial plane, perpendicular to the axis of the trap. The inner DC electrode is split into two and
used to tilt the principal axes of the radial potential with respect to the plane of the trap, which is
necessary to cool the ion using beams parallel to the surface. The outer electrodes are separated
into nine segments, each 120 µm wide, which allows shaping the electric potential along the trap
axis (see Fig. 5.1 (right)). The electrode voltages can all be controlled separately by a Fastino
controller, a 32 channel DAC capable to execute real-time voltage waveforms (see section 5.1.1).
We use it to position the ions in the trap and to move them from one region to another.
The silicon oxide layer below the electrodes hosts embedded silicon nitride waveguides in which
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Figure 5.1: Schematic of our experimental setup. (left) A SET with integrated photonics is located
in a cryostat copper chamber and is held in UHV. Two permanent magnets outside of the vacuum
chamber generate the 5.8 G magnetic field in the region of the trap. Blue lasers are delivered to
the trap through three viewports, red and infrared light through integrated waveguides. (right)
The SET consists of 18 outer DC electrodes separated by 120 µm, two inner DC electrodes, two
RF electrodes and laser outcouplers for the integrated waveguides (highlighted in red). The DC
and the RF electrodes create the trapping potential and are used to confine and transport the ions
between the zones. The trap has three zones, only two of which are shown here, characterised by
the laser outcouplers. Image adapted from [32].

light is coupled directly into the chip and which deliver it directly to the ion at the position of
interest. In three equally separated regions, the trap has large openings in the middle DC electrodes
in correspondence with grating outcouplers terminating the waveguides, which focus the output
light at the position of the ion (see Fig. 5.1 (right)). These zones define where we can operate
and manipulate the ions. We call the second zone, i.e. the one in the middle, the loading zone as
we use it for generating and trapping ions, and the third zone the working zone as it is where we
mainly manipulate and read out the ions. We load and work in different zones as the lasers used
to ionise the atoms charge up the exposed dielectric on the trap, modifying the electric potential
landscape in the vicinity of the ion. The first zone is currently not used.

The integrated waveguides deliver lasers at 729 nm, 854 nm and 866 nm to each zone. The 729 nm

laser is used for coherent control and passes a free-space double-pass AOM followed by a fibre-
coupled single-pass AOM for each zone before being delivered to the trap. Lasers of wavelength
423 nm, 389 nm and 397 nm are delivered in free-space to the loading zone (see Fig. 5.1 (left)). The
first two lasers are used for the photoionisation of the atoms, the last one can be used for both
cooling and readout. The only two free-space lasers delivered to the working zone are at 397 nm

where one is π polarised and the other is σ polarised. As we only have a 397σ beam in the working
zone, we can only perform state preparation and EIT cooling there (see sections 2.2.2, 2.3.2). For
further details about the setup and integrated optics we refer to [11].
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5.1.1 Fastinos

We use DAC boards, called Fastinos1, to control the DC voltages of our trapping electrodes on the
trap. Each board is capable of outputting synchronous, time-dependent voltage sequences, hereby
called waveforms. We use waveforms in the experiments described in this thesis to transport the
ion between two trap zones. The execution of predefined waveforms can be triggered with a TTL
signal.
Waveforms are setup-specific and have to be optimised experimentally for the specific experiment
for which they are used. Waveform synthesis is a topic that has been already developed in our lab
and is outside of the scope of pycrystal, so I will not go further into details.

1https://github.com/quartiq/fastino

https://github.com/quartiq/fastino


Chapter 6

Ramsey Characterisation
Experiment

In this chapter, I will present the Ramsey characterisation experiments we performed on the
Cryo setup using the pycrystal library. I will first explain the typical experiment sequence and
then show the Ramsey- and spin echo sequences in our working zone in section 6.1. In section
6.2 I will show our efforts in measuring the laser phase stability of multi-zone operations with a
simple Ramsey scheme which suffered from differential laser phase noise. Section 6.3 then closes
with a demonstration of an improved multi-zone Ramsey scheme that is insensitive to the phase
fluctuations of the 729 nm light.

A typical experiment sequence starts with a cooling step, i.e. far- and mid-Doppler cooling, and
a state preparation in the working zone, and ends with a state readout of the qubit. Additional
sequences can be put in between the state preparation and the readout as shown in Lst. 6.1.

1 class RamseyExperiment(Experiment):

2 def schedule(self) -> str:

3 seq = LinearSequence("Ramsey experiment", auto_channel_mask=True)

4 crystal = CryoCrystal("Ramsey experiment")

5 seq += crystal.default_cooling(eit_cooling=False, sideband_cooling=False)

6 seq.sync()

7 seq += crystal.state_preparation(endpoints=Zones.ZONE_3)

8 seq.sync()

9 # ... additional pulse sequence

10 seq.sync()

11 seq += crystal.detection(endpoints=Zones.ZONE_3, detect_background=True)

12 json_string = seq.get_json_string()

33
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13 return json_string

Listing 6.1: The Ramsey experiment class. The generic sequence starts with a cooling step followed
by a state preparation in zone 3 and finishes with a read-out in zone 3 with background detection.
The placeholder between the state preparation and the detection is the region where we put our
ion manipulation sequence.

Lst. 6.2 shows the code to perform the scan. We can instantiate the experiment class with the
arbitrary keyword arguments, e.g. wait_time or spin_echo, which will be added as instance
attributes and the zb keyword which takes a Zedboard instance as discussed in section 4.2.1. We
then perform a scan over the phase of a single-pass AOM of the 729 nm laser with the specifications
given in param_kwargs. We take a scan range from 0 to 360 degrees with 100 data points of 50
shots each.

1 scan_range = [0, 360, 100]

2 ramsey_exp = RamseyExperiment("Ramsey experiment", wait_time=100, spin_echo=True, zb=zb)

3 result = ramsey_exp.scan_1D(

4 num_exp=50,

5 parameter=CarrierPulses.phase_729_sp,

6 param_kwargs={

7 "pulse_type": PulseTypes.PI_HALF,

8 "transition": Transitions.SM12_TO_DM12,

9 "zone": Zones.ZONE_3,

10 },

11 scan_range=scan_range,

12 )

Listing 6.2: We can use this code snippet to run the Ramsey experiment while scanning the phase
of the 729 single-pass going to the working zone from 0 to 360 degrees with 100 data points of
50 shots each. The zb is a Zedboard instance again, connecting to the Zedboard. The parameter
CarrierPulses.phase_729_sp is located in the CarrierPulses class storing the parameters we
use for driving the 729 nm laser.

6.1 Single-zone Ramsey- and Spin Echo Sequences

We performed Ramsey- and spin echo sequences to test the phase coherence in the working zone
which we wanted to use as a baseline for comparison with the transport sequences in the next
chapters. The two different pulse sequences are explained in section 2.4.

6.1.1 Code

The Ramsey experiment sequence is shown in Lst. 6.3. Depending on the spin_echo keyword
passed to the constructor of the experiment class we execute a spin echo or a pure Ramsey sequence
on the qubit.
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1 seq += crystal.pi_half(

2 transition=Transitions.SM12_TO_DM12, endpoints=Zones.ZONE_3, phases=[0, 0]

3 )

4 seq.add_global_wait(wait_time=self.wait_time / 2)

5 if self.spin_echo:

6 seq += crystal.pi(

7 transition=Transitions.SM12_TO_DM12,

8 endpoints=Zones.ZONE_3,

9 phases=[0, 0],

10 )

11 seq.add_global_wait(wait_time=self.wait_time / 2)

12 seq += crystal.pi_half(

13 transition=Transitions.SM12_TO_DM12, endpoints=Zones.ZONE_3

14 )

Listing 6.3: The Ramsey sequence consists of two pi_half pulses interleaved by a wait time
whose length is passed to the experiment constructor. If self.spin_echo is true (also set in the
constructor) we perform another pi pulse after half the wait time.

In the pure Ramsey scheme, we start with a π/2 pulse bringing the qubit into an equal superposition
of
∣∣S1/2,m = −1/2

〉
and

∣∣D5/2,m = −1/2
〉
. With the phases=[0, 0] argument, we keep the

phases of both AOMs of the 729 nm laser at zero for the first two pulses, and only scan the phase
of the final pulse. Then we add a wait time before another π/2 pulse on the same transition. The
length of the wait time is determined by the wait_time argument passed to the constructor. The
second π/2 pulse does not fix the phases to enable us to scan over it during the experiment.
The spin echo sequence adds the additional π pulse with fixed phases on the same transition after
half the wait time.

6.1.2 Results

We performed both sequences for eight different wait times in the range of 0µs to 10 000µs measur-
ing the probability of detecting the bright state as a function of the phase offset of the single-pass
AOM. We measured the PMT counts for every shot and thresholded them at a value nthr = 22.

The measurement results show the expected Ramsey oscillation (see eq. 2.23). Figs. 6.1a and 6.1b
plot the average thresholded counts against the phase offset ϕ for a wait time of 100 µs for the
Ramsey- and the spin echo sequence, respectively. The errors on the average were calculated as
described in 2.2.3, taking the minimum of the quantum projection noise (eq. 2.17) and the error
calculated using Laplace’s rule of succession (eq. 2.18). The orange line corresponds to the fit of
the Ramsey oscillation to the data.

We fitted the Ramsey- and spin echo oscillation to the data for each wait time to extract the
amplitude (see Appendix A). The uncertainty is given by the standard error of the fit. The
amplitude contrast is fitted to an exponential and Gaussian decay (eqs. 2.24, 2.25) as well as
a combination of both in Figs. 6.2a and 6.2b. The Gaussian decay which is modelling the low
bandwidth noise should be suppressed by the additional π pulse of the spin echo sequence. It
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(a) Ramsey sequence oscillation.

0 50 100 150 200 250 300 350
Phase shift 

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 o
f 

th
re

sh
ol

de
d 

co
un

ts

100 µs wait time

best fit
data

(b) Spin echo sequence oscillation.

Figure 6.1: (a) Ramsey sequence and (b) spin echo oscillations for a wait time of 100 µs. The data
points (blue) correspond to the average of the thresholded counts over 50 repetitions with an error
given by the quantum projection noise. The data is fitted to a Ramsey oscillation (orange, see eq.
2.23) The best fits for amplitude contrast and phase shift are given by Ar = 1.000 ± 0.007, ϕr =
(−3.6 ± 0.9) deg for the Ramsey sequence and Asp = 0.971 ± 0.010, ϕsp = (−180.3 ± 1.1) deg for
the spin echo sequence.

is anyway shown for comparison. We left out the combined fit for the spin echo sequence which
coincides with the Gaussian fit.
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(a) Ramsey amplitude contrast.
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(b) Spin echo amplitude contrast.

Figure 6.2: Amplitude contrast of the (a) Ramsey- and the (b) spin echo sequence (blue) plotted
against the interrogation time τ . The errors correspond to the standard error of the amplitude
fit. The data of the Ramsey sequence is fitted to an exponential- (orange) and a Gaussian decay
(green) and a combination of both (dotted, red) while the data of the spin echo sequence is fitted
to an exponential- and a Gaussian decay.

Neither decay model fits the data well. This indicates that the noise sources in our laboratory
cannot be fully described by high- and low-bandwidth noise. The low amplitude for τ = 4000µs is
either a measurement error or could already hint at a noise source at a discrete frequency which
was also observed in [11]. However, we do not have enough data points to make more accurate
statements about this or the nature of the noise. We should probe especially the region from
2000 µs to 10 000µs with more data points.
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6.2 Multi-zone Ramsey Sequence

After successfully demonstrating the Ramsey- and spin echo sequences in the working zone, we
wanted to perform a Ramsey experiment involving two zones to determine the viability of those
operations. The first scheme we tried was applying a π/2 pulse on the optical qubit in zone 3,
transporting the qubit to zone 2 and performing another π/2 pulse on the same transition before
transporting it back for readout.

6.2.1 Code

Lst. 6.4 shows the code we used for the first multi-zone Ramsey experiment. We again start with a
π/2 pulse with fixed phases to bring the qubit into an equal superposition of

∣∣S1/2,m = −1/2
〉

and∣∣D5/2,m = −1/2
〉
. Then we transport the ion into zone 2 with the transport_event() function

which triggers the Fastino with a TTL signal. We add an additional wait time after that to make
sure that the trap voltages settle and the ion does not move anymore. We then contine with
another π/2 on the optical qubit transition whose phase we scan. After that, we transport the ion
back to zone 3 for the readout.

1 seq += crystal.pi_half(

2 transition=Transitions.SM12_TO_DM12, endpoints=Zones.ZONE_3, phases=[0, 0]

3 )

4 seq.sync()

5
6 # 3 -> 2

7 seq += transport_event()

8 seq.add_global_wait(wait_time=100)

9
10 seq += crystal.pi_half(

11 transition=Transitions.SM12_TO_DM12, endpoints=Zones.ZONE_2

12 )

13 seq.sync()

14
15 # 2 -> 3

16 seq += transport_event()

17 seq.add_global_wait(wait_time=100)

Listing 6.4: The multi-zone Ramsey experiment. It starts with a pi_half pulse on the optical
qubit transition. Then we transport the ion to zone 2 with transport_event() and apply another
pi_half pulse where we scan over the phase. After that we transport the ion back.

The scans are performed with the code in Lst. 6.2 without the additional keyword arguments in
the experiment constructor and scanning the phase in zone 2 rather than zone 3.
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6.2.2 Results

We performed the multi-zone Ramsey sequence multiple times, measuring the probability of de-
tecting the bright state as before.

Fig. 6.3 shows the average thresholded counts plotted against the scanned phase offset ϕ for two
of those experiments, representing what we saw in all the other experiments. The two selected
measurements were performed 1.5min apart from each other, the errors are calculated as in the
previous section.
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Figure 6.3: Two multi-zone Ramsey sequence measurements representing the data that was taken.
Most measurements didn’t show any clear sinusoidal pattern (left) with a few exceptions (right).

Both measurements show a high contrast close to one. However, with a few exceptions, most
measurements did not show a clear sinusoidal pattern, which makes us think that there are phase
fluctuations in the system faster than the timescale needed to complete a scan. One plausible
reason could be the phase noise between the 729 nm lasers in the different zones. As the fibres
going from the double-pass to the single-pass AOMs are about two metres long, even small thermal
fluctuations, acoustic noise or stress on the fibres could change their length by a sufficiently large
amount to cause phase noise.

6.3 Laser Phase-insensitive Multi-zone Ramsey Sequence

To circumvent the effect of relative phase fluctuations between zones, we decided to utilise a laser
phase-insensitive scheme for the multi-zone Ramsey sequence (see section 2.4.2).

In the phase-insensitive scheme, we map the optical qubit to the Zeeman qubit before the transport
and interrogation time τ while keeping the rest of the sequence the same. We do this by performing
a π pulse on the

∣∣D5/2,m = −1/2
〉
↔
∣∣S1/2,m = +1/2

〉
transition after the first π/2 and before

the second π/2 pulse in the multi-zone Ramsey sequence (see section 6.2).

6.3.1 Code

Lst. 6.5 shows the code we used for the phase-insensitive multi-zone Ramsey experiment. It is simi-
lar to the one that we used in section 6.2.1 with an addition of π pulses on the

∣∣D5/2,m = −1/2
〉
↔
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∣∣S1/2,m = +1/2
〉

transition after the π/2 pulse in zone 3 and before the π/2 pulse in zone 2. The
scans are performed in the same way as in section 6.2.1.

1 seq += crystal.pi_half(

2 transition=Transitions.SM12_TO_DM12, endpoints=Zones.ZONE_3, phases=[0, 0]

3 )

4 # Mapping onto Zeeman qubit

5 seq += crystal.pi(

6 transition=Transitions.SP12_TO_DM12, endpoints=Zones.ZONE_3, phases=[0, 0]

7 )

8 seq.sync()

9
10 # 3 -> 2

11 seq += transport_event()

12 seq.add_global_wait(wait_time=100)

13
14 # Mapping back to optical qubit

15 seq += crystal.pi(

16 transition=Transitions.SP12_TO_DM12, endpoints=Zones.ZONE_2, phases=[0, 0]

17 )

18 seq += crystal.pi_half(

19 transition=Transitions.SM12_TO_DM12, endpoints=Zones.ZONE_2

20 )

21 seq.sync()

22
23 # 2 -> 3

24 seq += transport_event()

25 seq.add_global_wait(wait_time=100)

Listing 6.5: The phase-insensitive multi-zone Ramsey experiment. It modifies the multi-zone
Ramsey experiment in Lst. 6.4 by adding pi pulses after the first and before the second pi_half
pulse to map the optical qubit onto the Zeeman qubit.

6.3.2 Results

We performed the phase-insensitive multi-zone Ramsey sequence multiple times. Fig. 6.4 shows
the average thresholded counts plotted against the scanned phase offset ϕ for two examples of the
experiments, representing what we saw in all the other experiments.

The data shows a sinusoidal contrast pattern with best fits given by Aleft = 0.898± 0.013, ϕleft =

(109.3 ± 1.2) deg and Aright = 0.872 ± 0.013, ϕright = (97.7 ± 1.2) deg. We mainly attribute the
amplitude contrast loss to the transport operation, which heats up the ion. There might also
be a residual effect from the phase noise that is not cancelled by the hybrid qubit scheme as
the interrogation time τ is non-zero due to the transports and their successive wait times. The
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Figure 6.4: Two laser phase-insensitive multi-zone Ramsey sequence measurements taken 12min
apart. The plot shows the average of the thresholded counts plotted against the phase offset of
the single-pass AOM in zone 2 (blue) fitted to a sinusoidal Ramsey oscillation (orange). The best
fits for amplitude and phase shifts are given by Aleft = 0.898± 0.013, ϕleft = (109.3± 1.2) deg and
Aright = 0.872± 0.013, ϕright = (97.7± 1.2) deg.

phase offset seems to drift only slightly over a period of 12min and could be something that can
be calibrated. It is due to the free evolution of the qubit in the Zeeman subspace and is thus
influenced by the fluctuation and variation of the magnetic field along the transport path.



Chapter 7

Conclusion

There are many different approaches to creating quantum computers with trapped ions. They
differ in the species of ions they use, the trap technology and design and their scaling approaches.
This thesis tried to tackle the problem of creating a python framework that is able to interface with
that flexibility. The library was designed with the goal to abstract various setups and creating a
python interface that can be used to create pulse sequences for them in a way that the user has
meaningful physics in mind.

The presented python package pycrystal follows a bottom-up approach to modelling the labora-
tory setup. To offer the desired flexibility, it remains very generic on its basis, leaving the user
to implement most of the specific details. The framework builds on top of an already existing
python API called ionpulse sequence generator. This library provides classes to create low-
level instructions that can be sent to the M-ACTION control system. pycrystal abstracts the
hardware used to control the laser pulses in an object-oriented way with its beamline module.
Its main class BeamLine builds the highest-level abstraction of the lasers in the setups, offering
support for different architectures like QCCD or long chains of ions with single-ion addressing.
Furthermore, the crystal module offers the tools to create classes that model any ion crystal on
a trap. Those crystal classes are intended to make use of the beamlines to implement all pulses
that can be applied to the ions as methods of the class. This allows the end-user to directly apply
the desired pulses to the ions while pycrystal takes care of triggering the hardware to deliver the
requested pulses to the correct positions. Finally, pycrystal also offers the possibility of directly
running pulse sequences on the control system and performing scans on the parameters used in the
sequences. This was developed for debugging and testing purposes and will be moved into another
project at a later point.

We demonstrated the new python framework on the Cryo setup of the TIQI group. This setup
features a SET with a QCCD architecture and integrated photonics. We characterised the phase
stability of the system by performing Ramsey experiments in a single trapping zone and multi-
zone Ramsey schemes. The single-zone Ramsey experiments consisted of both Ramsey- and spin
echo sequences. We used them to measure the amplitude contrast of the Ramsey oscillation as a
function of the interrogation time. Our results did follow neither low- nor high-bandwidth noise
models and thus indicated other noise sources in our laboratory.
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The multi-zone Ramsey schemes were performed with a fixed interrogation time to determine the
viability of operations on two zones. We noticed differential laser phase fluctuations between the
zones and proposed and implemented a scheme to bypass that issue. To our knowledge, this is the
first time multi-zone operations on a SET with integrated optics was demonstrated.

Future work will be devoted to benchmark the capability of such a trap for distributed quantum
operations, which involves a full characterisation of both single-zone and multi-zone operations
with Ramsey and spin echo sequences. We can also investigate the phase fluctuations we saw in
our first multi-zone scheme by, for example, using shorter fibres coupling the single-pass AOMs
to the double-pass AOM of the 729 nm light or protecting them from thermal fluctuations and
acoustical noise.
On the software side, we can also add more features to pycrystal. This can be new beamline
objects such as AODs, implementing recent features of the ionpulse_sequence_generator such
as the phase tracking of the qubits, adding capabilities to the crystal classes such as keeping track
of the position of the crystal, which is especially useful for sequences involving transport events,
or adding features to the ionpulse_sequence_generator itself. This could be, for example, the
implementation of a way to directly specify whether to add a sequence sequentially or in parallel.
Moving or migrating the experiment class from pycrystal into another package is also something
to be done. A scheduler functionality has to be implemented and integrated within pycrystal, but it
doesn’t have to be necessarily part of it, as the package scope is on the generation of experimental
sequences. A future task will then be to develop an OS-independent multi-threaded scheduler,
where generation and execution of the sequences can be kept as separate tasks.
Furthermore, for the experiments described in this thesis we used the Ionizer GUI as an interface
between pycrystal and the control system. We utilised it both as a parameter database and as a
means to trigger the experiments on the Zedboard. In the future, those functionalities should be
implemented separately, defining a standard for the parameter database and switching to a more
convenient communication with the hardware which can be integrated in the experiment scheduler.



Appendix A

Ramsey- and Spin-echo Data
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Figure A.1: Ramsey sequence with τ = 0µs.
Best fit parameters are given by A = 1.000 ±
0.007, ϕ = (1.6± 0.9) deg.
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Figure A.2: Ramsey sequence with τ = 100µs.
Best fit parameters are given by A = 1.000 ±
0.007, ϕ = (−3.6± 0.9) deg.
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Figure A.3: Ramsey sequence with τ = 200µs.
Best fit parameters are given by A = 1.000 ±
0.008, ϕ = (−3.8± 1.1) deg.
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Figure A.4: Ramsey sequence with τ = 400µs.
Best fit parameters are given by A = 0.977 ±
0.009, ϕ = (−10.3± 1.0) deg.
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Figure A.5: Ramsey sequence with τ = 800µs.
Best fit parameters are given by A = 0.902 ±
0.012, ϕ = (5.7± 1.2) deg.
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Figure A.6: Ramsey sequence with τ =
1000 µs. Best fit parameters are given by
A = 0.867± 0.015, ϕ = (−2.5± 1.4) deg.
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Figure A.7: Ramsey sequence with τ =
2000 µs. Best fit parameters are given by
A = 0.70± 0.02, ϕ = (−59.0± 1.9) deg.
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Figure A.8: Ramsey sequence with τ =
4000 µs. Best fit parameters are given by
A = 0.49± 0.04, ϕ = (−8± 5) deg.
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Figure A.9: Ramsey sequence with τ =
10 000µs. Best fit parameters are given by
A = 0.23± 0.03, ϕ = (−159± 6) deg.
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Figure A.10: Spin-echo sequence with τ =
0 µs. Best fit parameters are given by A =
1.000± 0.010, ϕ = (−180.2± 1.0) deg.
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Figure A.11: Spin-echo sequence with τ =
100 µs. Best fit parameters are given by A =
0.971± 0.010, ϕ = (−180.3± 1.1) deg.
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Figure A.12: Spin-echo sequence with τ =
200 µs. Best fit parameters are given by A =
0.995± 0.007, ϕ = (−180.7± 1.0) deg.
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Figure A.13: Spin-echo sequence with τ =
400 µs. Best fit parameters are given by A =
0.991± 0.008, ϕ = (−181.2± 1.0) deg.
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Figure A.14: Spin-echo sequence with τ =
800 µs. Best fit parameters are given by A =
0.990± 0.008, ϕ = (−181± 9) deg.
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Figure A.15: Spin-echo sequence with τ =
1000µs. Best fit parameters are given by
A = 0.948± 0.010, ϕ = (−180.8± 1.2) deg.
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Figure A.16: Spin-echo sequence with τ =
2000 µs. Best fit parameters are given by
A = 0.786± 0.016, ϕ = (−179.6± 1.5) deg.
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Figure A.17: Spin-echo sequence with τ =
4000 µs. Best fit parameters are given by
A = 0.242± 0.018, ϕ = (−184± 4) deg.
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Figure A.18: Spin-echo sequence with τ =
10 000µs. Best fit parameters are given by
A = 0.296± 0.016, ϕ = (−189± 3) deg.
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