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Abstract
Trapped ions are a promising architecture thanks to which scalable quantum information process-

ing could be achieved. There is a consensus that, in order to reach this goal, experimental noise has
to be reduced down to a threshold of 10−4[18; 31] per logic operation. Identifying and quantifying
errors is therefore pivotal.

This dissertation proposes two algorithms whose aim is noise characterisation: Direct Random-
ized Benchmarking and Gate Set Tomography. These have been executed on Segtrap, a 3D seg-
mented ion trap able to control 9Be+ and 40Ca+. This work applies the aforementioned algorithms
to the single Beryllium ion and to the single Calcium ion cases and offers a method of interpreting
Direct Randomized Benchmarking data, inspired by Ball et al. [3], based on Γ distributions.
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Introduction
Evaluating the performances of a quantum processing setup is pivotal if scalable quantum information processing
is to be achieved and if an error threshold of 10−4 is to be obtained. Quantifying how well quantum operations
can be executed, and therefore how noise affects the executions of quantum algorithms, can be the first step
in order to recognize noise sources and mitigate them. Different algorithm classes, whose aim is describing
the aforementioned performances, are at disposal. Two of these classes are tomographic algorithms [27] and
Randomized Benchmarking protocols [3; 34]. The computational time of the former scales exponentially with
the number of qubits involved, while the latter is efficient [21]. This difference reflects another dissimilarity:
tomographic algorithms are able to fully describe quantum logic operations, while Randomized Benchmarking
protocols can only offer average quantities. In both cases however, representations play a crucial role. A
representation, roughly speaking, is the way of explicitly writing down element by element any operation
belonging to a certain gate set. In general, for any gate set there are more equivalent representations that
produce the same physical observables. For the Randomized Benchmarking case, it was believed that the
results of such algorithms were in “direct mathematical relation” with the notion of average gate infidelity.
This is however not true. The numerical value of gate infidelity depends on the representation; therefore it is
not a physical quantity. Randomized Benchmarking results are instead physical, because they are measured
by experiments [32]. Thus, the physical meaning of these results is less trivial than just an estimation of the
average gate infidelity. As far as tomographic routines are concerned, a representation is assumed, for example,
when a process is characterized with respect to a set of measurements and state preparations. Measurement
and states are fixed (hence a representation for them is provided) and as a consequence assumed noiseless. The
process is described with respect to them but the error on the process tomography will be at least as great
as the error on the knowledge one has about states and measurements [27]. Calibration errors of states and
measurements affect process tomography.

Executing Randomized Benchmarking and tomographic experiments on the same setup is interesting. It can
be observed whether these different classes of algorithms provide consistent results and how they are connected.
Executing them an a mixed species ion trap is even more interesting. An advantage of having different ion
species is spectral separation: performing quantum operations on an ion of one species does not perturb the
information stored in a different species ion [22]. Single qubit experiments, multi qubit experiments and parallel
single qubit experiments with more ions trapped can lead to a characterisation of the same operations, with
and without the presence of other ions, and of cross talk noise [34].

Thesis outline
Section 1 introduces the theoretical foundations of Randomized Benchmarking and highlights the differences
between and the motivations of two algorithms, Clifford Randomized Benchmarking and Direct Randomized
Benchmarking, while Section 2 summarises the features and theory of Gate Set Tomography, a calibration-
free tomographic routine. This dissertation focuses on Direct Randomized Benchmarking rather than Clifford
Randomized Benchmarking because the former benchmarks a setup by exploiting logic operations that are
natively available to the setup itself. This is not the case for the latter. In Section 3, an analyses of simulated
DRB experiments attempts to devise a theoretical model that, under the assumption of coherent noise, should
help evaluating the experimental DRB results by providing a noise correlation length estimation. Section 4
recapitulates the main characteristics of the 3D segmented ion trap whose noise this project attempted to
characterize: Segtrap. Section 5 illustrates the necessary code to perform Gate Set Tomography and Randomized
Benchmarking experiments on Segtrap. This code is also offered to the whole TIQI group as a set of abstract
routines implementable on any setup belonging to the group. Section 6 illustrates the collected data and the
results that can be drawn from them. Direct Randomized Benchmarking and Gate Set Tomography experiments
on the single Calcium and on the single Beryllium ion were carried out.
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1 RANDOMIZED BENCHMARKING: THEORY

1 Randomized Benchmarking: Theory
Randomized Benchmarking (RB) is a protocol that was devised [17] with the aim of estimating the average
gate fidelity of a quantum processing system in a scalable way, decoupling state preparation and measurement
(SPAM) and gate errors, and as a comparison mean among different setups. Later studies exhibited proof of RB
efficient scalability in the number of qubits [16; 21]. Recently, another way of performing RB was developed,
which also considers another scaling problem: gate compilation. The two algorithms are respectively called
Clifford Randomized Benchmarking (CRB) and Direct Randomized Benchmarking (DRB)1 [34]. Because of
DRB recentness, its basis is not as solid and broad as than the CRB one. The goal of this section is to
summarize some theoretical results of the last 15 years about RB.

1.1 Clifford Randomized Benchmarking
1.1.1 Mathematical preliminaries

CRB has been broadly used for around a decade [52; 5]. Its core concepts are average fidelity and process
twirling. The average fidelity of a CPTP (noise) process Λ is defined as follows [30]:

F (Λ) ≡
∫

dψ 〈ψ|Λ(ψ) |ψ〉 (1)

where dψ is the Fubini measure [10] and |ψ〉 a pure state. F can in general be estimated tomographically,
but this escalates exponentially with the number of qubits, whilst here a more efficient approach is sought. To
achieve this objective the twirled process ΛT can be taken into account:

ΛT (ρ) ≡
∫

dU U†Λ
(
UρU†

)
U (2)

with ρ some density operator, U unitary and dU the Haar measure2. It can be shown [30] that

F (ΛT ) = F (Λ) (3)

and also that ΛT is a depolarizing channel [10],

ΛT (ρ) =
1− p
d

1+ pρ (4)

with d the dimension of the Hilbert space. By direct substitution one finds

F (Λ) =
1− p
d

+ p (5)

with 1 − p the depolarisation probability. The “mechanism” that is taking shape is the following: in order to
asses a quantum system performances, the noise affecting the system has to be twirled. A disadvantage of this
procedure is the impossibility of applying all the unitaries for the twirling, since they constitute a continuous
set. An auxiliary tool is needed to solve this issue: unitary 2-designs. There are more definitions for these
objects. One of them is particularly interesting given that it is an operational one [6]. Be H = Cd. A unitary
2-design is a set of unitaries {Uk}k on H s.t., ∀X, A, B linear on H,

1

K

K∑
k=1

U†kAUkXU
†
kBUk =

∫
dUU†AUXU†BU. (6)

In this manner it can be seen that, given the suitable set {Uk}k and the Kraus decomposition of Λ,

ΛT (ρ) =
1

K

K∑
k=1

U†kΛ
(
UkρU

†
k

)
Uk . (7)

1Another known protocol is Interleaved Randomized Benchmarking, where a specific gate of interest is applied between every
Clifford gate [11]. In general, variations of the RB protocol are known [17; 16; 47; 12].

2Without noise , i.e. with Λ = 1, ΛT (ρ) = ρ.
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1.1 Clifford Randomized Benchmarking 1 RANDOMIZED BENCHMARKING: THEORY

Does such a set exist? At least one exists, and it is the Clifford group [6]. The Clifford group on n qubits Cn
is the group of unitaries mapping the Pauli group to itself under conjugation [48]:

Cn ≡
{
U ∈ U (2n) | UPnU† = Pn

}
. (8)

Moreover, circuits with only Clifford gates can be simulated efficiently by a classical computer [13] and are
invertible by a single Clifford gate which can be found in polynomial time [1]. The idea of CRB is to twirl the
identity multiple times with Clifford circuits, which are equal to 1 when noiseless, on some relevant quantum
system and measure the survival probability of a predefined fiducial state, usually |0〉⊗n.

1.1.2 The protocol and its results

This is the CRB protocol [3; 21].

1. Choose some lengths J1 < J2 < · · · < Jlast.

2. Choose an initial state |ψ〉 (usually |0〉⊗n).

3. ∀Jj :

(a) Sample Kj sequences Sj,k of lengths Jj − 1 from Cn. The Jjth gate in each sequence inverts the
whole circuit such that under no noise every Sj,k = 1. Kj should be large enough to guarantee a
meaningful statistical sample.3

(b) ∀k ∈ [1,Kj ]:
i. Apply the sampled circuit and measure the survival probability of the chosen state after every

circuit, i.e. F (S̃k,j , |ψ〉) ≡ 〈ψ| S̃j,k |ψ〉, and store it (S̃k,j is the noisy Sk,j).
(c) Average the survival probabilities over k and store the result.

Given this paradigm, an actual experimental sequence would have different error channels,

S̃j,k =©Jj
i=0 (Λj,k,i ◦ Cj,k,i) . (9)

By expanding each error channel Λj,k,i at first order as Λaverage
j + δΛj,k,i, it was shown that the survival

probability F has this behaviour [21]:

F (Jj , ψ) = A1(Jj)p
Jj +B1(Jj) + C1(Jj − 1)

[
q(Jj)− p2

]
pJj−2. (10)

A1, B1, C1 and q are functions of the state preparation |ψ〉 and measurement, while p is the same of Eq. (4). All
things considered, the noise affecting logic operations is characterized by a single parameter p, which indicates
the average impact of the noise in terms of survival probability.

On the other hand, what can be often read in the literature, given the experience of the author of this report,
is just the zeroth order model.4 This means that every δΛ = 0. In other words, the noise is independent of the
gate and it is time uncorrelated. Although this hypothesis is rather unphysical, this way of proceeding is the
most used one. In this scenario

F (Jj , ψ) = A0p
Jj +B0. (11)

The interesting feature is that also here SPAM errors influence only the values of A0 and B0 without modifying
the exponential decaying rate, decoupling SPAM and gate noise. In more detail, the average gate set infidelity
(AGI) ε can be formalised. The relevant gate set is here the Clifford group Cn. Therefore

ε ≡
〈

1−
∫

dψTr
[
C̃(|ψ〉〈ψ|)Ĉ(|ψ〉〈ψ|)

]〉
Ĉ∈Cn

(12)

where C̃ is a noisy Clifford gate. Under the same assumption δΛ = 0, every C̃ = ΛĈ and Eq. (12) reduces to
ε = 1−F (Λ) as defined in Eq. (1). As a consequence, an estimator of ε called the RB number r can be defined
as follows

r ≡ 1− F (Λ) =
(d− 1)(1− p)

d
, (13)

3In an RB experiment, all Kjs are usually set equal.
4An argument on the feasibility of neglecting higher order terms can be found in the selected reference [21]. It involves the

diamond and trace norm. Other reasons are also present here [32].
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1.1 Clifford Randomized Benchmarking 1 RANDOMIZED BENCHMARKING: THEORY

with d the Hilbert space dimension. Although experimentally δΛ 6= 0 is most likely the case, it safe to use
the 0th order model anyway for the behaviour of F (Jj , ψ), i.e. Eq. (11). It was in fact exhibited that “the
exact behavior of randomized benchmarking under general gate-dependent noise converges exponentially to a
true exponential decay of exactly the same form as that predicted by previous analysis for gate-independent
noise” (Wallman, [49], page 1). However it is misleading and wrong to consider r to be the AGI with
δΛ 6= 0. A quantity which depends on the representation (or gauge), ε, and a representation invariant quantity,
F (Jj , ψ), are compared [32].

Given a gate set with unitaries Uw, state preparations ρx and measurements Ey,z5, changing gauge means
replacing

Uw →MUwM
−1 (14)

ρx →Mρx (15)

Ey,z → Ey,zM
−1 (16)

for some invertible linear map M . All the physical properties of every gate set do not change under a gauge
transformation. The RB number r defined as

r ≡ (d− 1)(1− p)
d

(17)

with p from Eq. (11) is gauge invariant, ε is not 6. One might advance the hypothesis that, with ||δΛ||H1→1 � 17,
r is nonetheless a good estimator of ε. This is again a mistake. It was shown [32] that even for rather small
overrotations the ratio ε/r diverges. A gauge in which Λ = Λj,k,i ∀j, k, i can always be found, but in general
the gate set is not CPTP and thus nonphysical. The physical meaning of r is non trivial8. To this level of
tractation it can be said that r is a function of the eigenvalues, which are gauge invariant, of the noise and of
the operations in the gate set. Please have a look at the selected reference [32] fore more details.

As an additional note, it is also wrong to use r to estimate error thresholds. CRB makes average properties of
the noise evident, while thresholds are about the worst case scenario. “[..] many realistic noise processes admit
a linear relation between the average error rate (which is accessible experimentally) and the worst-case error
(which is the relevant figure of merit for fault tolerance). The exceptions to this rule are highly coherent errors,
where the worst-case error scales proportionally to the square root of the average error rate” (Kueng et al., [19],
page 5). In the last case, discrepancies can amount to order of magnitudes.

1.1.3 Survival probability errors and distributions

A prominent question is: How many Clifford circuits for a given Jj must be run in order to obtain sensible
results for r? Höeffding’s inequality is helpful [21]. Let us use the stochastic variable

ΣKj (Jj , ψ) ≡ 1

Kj

Kj∑
k=1

F (S̃k,j , |ψ〉). (18)

Every symbol has already been defined in Section 1.1.2. Höeffding’s inequality states

P
(
| ΣKj (Jj , ψ)− F (Jj , ψ) |> ε

)
6 2e−2Kjε

2/(b−a)2 . (19)

ε, defined in Eq. (12), shall not be confused with ε, the accuracy of the estimate. As it can be seen, the
confidence δ is

2e−2Kjε
2/(b−a)2 ≡ δ (20)

where [a, b] is the range of F (S̃k,j , |ψ〉) for varying k. Of course this relation can be inverted in order to answer
the aforementioned question:

Kj =
ln
(
2
δ

)
(b− a)2

2ε2
. (21)

5The first index for the basis, the second one for the eigenvector.
6In particular, the p in Eq. (5) and Eq. (11) are respectively gauge dependent and invariant.
7Given a linear superoperator R : L (Cm)→ L (Cn), ‖R‖H1→1 ≡ maxA:A=A†,‖A‖161 ‖R(A)‖1, “where ‖‖1 on superoperators is

defined to be the ∞ norm induced by the trace norm ‖‖1 on L (Cm) and L (Cn).” (Magesan et al., [21], page 2)
8Neither is trying to bound the average error rate given r [46].
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1.2 Direct Randomized Benchmarking 1 RANDOMIZED BENCHMARKING: THEORY

This expression seems independent of Jj , but b− a and ε implicitly depend on it. b− a is an indicator of how
much the survival probabilities fluctuate, and this is crescent with Jj without diverging [21], while ε can be
relaxed for big Jj given the exponential decay. In a reasonable regime, it was shown that [21]

Kj ∼ 104 − 105 . (22)

Although this is actually independent of n and therefore efficient, so many sequences are hardly ever used for
an RB experiment. Some [11; 16; 50] have shown that Kj can be orders of magnitude smaller in the presence of
only Markovian noise9,10. This hypothesis does not however really work when it comes to experiments [33; 3].

By not disregarding time correlated noise, one obtains the following analysis [3], which treats only coherent
errors and was experimentally verified [23]. Given CRB sequences as in Eq. (9) and only 1 qubit11, each Λj,k,i

is set to be unitary and of the form exp
{
−iδj,k,iẐ

}
, with Ẑ the Pauli Z gate12. δj,k,i is Gaussian distributed

and three different correlation schemes are identified, imposing null correlations among different js and ks. For
a (j, k) there can be:

1. Markovian noise. All δi are Gaussian i.i.d. with 0 mean and standard deviation σ.

2. DC noise. δi = δ ∀ i ∈ [0, Jj ]. δ is Gaussian distributed with 0 mean and standard deviation σ.

3. Block correlated noise. As the previous case, but δ is sampled again from the same Gaussian distribution
after a certain correlation length cc.

Given these assumptions it is proven that 13

1− 〈PDF[F (Jj)]〉 = O(Jjσ
2) +O(J2

j σ
4), (23)

where PDF stands for probability density function. In particular, disregarding O(σ4) corrections, 1−PDF[F (Jj)]
is Γ distributed:

Γα,β(x) ≡ βα

Γ(α)
xα−1e−βx ≈ 1− PDF[F (Jj)] (24)

with Γ(α) Euler’s gamma function, α, β > 0.14 For Jjσ2 . 1, J, cc� 1 one arrives at Table 1. PDF[F (Jj)] can
be numerically probed by the distribution of the trace fidelity. The trace fidelity is defined as

〈F (Jj)〉k,η ≡

〈∣∣∣∣12 Tr
(
S†k,jS̃k,j,η

)∣∣∣∣2
〉
k,η

=
1

4ñKj

Kj ,ñ∑
k=1,η=1

∣∣∣Tr
(
S̃k,j,η

)∣∣∣2 (25)

and is the proxy thanks to which F (Jj) can be estimated [3]. ñ is the number of noise realizations. Averaging
over ñ is a way of keeping in mind that, experimentally, S̃k,j is sampled multiple times and the noise process
disturbing the sequence does not have to be same for each sampled point, even though it is assumed to maintain
its DC, Markovian or block correlated characteristics. By observing the distribution of PDF[F (Jj)], the noise
correlation length can be inferred. This model gives rise to Kjs that “increase rapidly as confidence bounds
tighten. These sample sizes are much larger than typically employed in experimental settings [..]” (Ball et al.,
[3], page 8). Quantitative expressions for Kj error bars can be found in the appendix of Ball et al. [3]15.

1.2 Direct Randomized Benchmarking
CRB has some disadvantages. The RB number defined in Eq. (17) is an indication of the error per Clifford
gate. Clifford gates, however, are usually not natively available to an experimental setup, especially with n > 1

9The 1/f noise model was also investigated. The interested physicist shall read the reference [11].
10Kj can be smaller also by disregarding noise, but with the addition of prior information [14].
11This framework can be extended to more qubits [36].
12The same reference [3] provides a generalization to errors along X, Y and Z.
13For a general treatment the initial state is dropped.
14E[Γα,β ] = α/β and V[Γα,β ] = α/β2.
15Interesting methods involving engineered noise and dynamically corrected gates had also the aim to estimate noise correlation

lengths [9].
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Markovian noise DC noise Block-correlated noise

α
3

2
ñ

3

2

3

2
Jj/(cc− 1)

β
2

3
Jjσ

2/ñ
2

3
Jjσ

2 2

3
(cc− 1)σ2

E 1− Jjσ2 +
2

3
J2
j σ

4 1− Jjσ2 1− Jjσ2

M 1− Jjσ2

(
1− 2

3ñ

)
+

2

3
J2
j σ

4 1− 1

3
Jjσ

2 1− Jjσ2

(
1− 2

3

cc− 1

Jj

)
V

2

3
J2
j σ

4/ñ
2

3
J2
j σ

4 2

3
Jj(cc− 1)σ4

S −2
√

2/3ñ −2
√

2/3 −2
√

2(cc− 1)/3Jj

Table 1: Asymptotic α, β, expected value, mode, variance, skew for PDF[F (Jj)], for different noises. Taken
from [3].

qubits16, and they have to be compiled in O(n2/ log n) native gates [1]. Therefore, the noise of a Clifford gate is
the result of the noise processes affecting the native gates with which the Clifford gate is compiled, thence errors
become gate dependent in CRB. On top of this, the more qubits are involved, the noisier a compiled Clifford
element will result. All things considered, CRB requires compilation, which becomes increasingly difficult with
n, and does not reflect the native properties of the setup. Because of this, the Direct Randomized Benchmarking
protocol was developed [34]. A relevant drawback affects DRB though: the theory supporting the protocol is
very limited, also because of DRB novelty. Some of this paper work goes in the direction of trying to extend
some CRB results to DRB.

1.2.1 The protocol and its results

It is required that the native gate set generates the Clifford group Cn for n qubits. The notion of layer will be
used: a layer is a depth-1 circuit of native gates17. These are the steps for DRB [34].

1. Choose some lengths J1 < J2 < · · · < Jlast. The initial state shall always be |0〉⊗n

2. ∀ Jj :

(a) Choose a Kj � 1.

i. Sample uniformly a C0 ∈ Cn. C0 |0〉⊗n is effectively a stabilizer state preparation.
ii. Sample a Jj-layer circuit UJj 18.

iii. Implement a circuit Us such that UsUJjC0 |0〉⊗n = |s〉 is a known state in the computational
basis. For convenience reasons, |s〉 will be in this work set to |0〉⊗n.

iv. Measure experimentally ⊗n 〈0| Ũ0ŨJj C̃0 |0〉⊗n and store the result.

(b) Average the previous quantity over Kj to calculate F (Jj).

Two differences in regards to CRB are already to be noticed. First, Ũ0ŨJj C̃0 does not have to and is not sampled
to be equal to 1. Second, the effective length of a sequence is greater than Kj given C0 and U0. Notwithstanding
these points, from experimental evidence F (Jj) decays exponentially:

F (Jj) = A+BpJj . (26)

16The order of Cn is 2n
2+n+2 (2n − 1)

∏n−1
j=1

(
4j − 1

)
[25].

17In other words, in a layer all gates are executed in parallel.
18The protocol accepts any probability distribution for native gate sampling. Here uniformity is assumed for the sake of simplicity.
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The interpretation of these parameters does not change: A and B depend on SPAM errors and p on gate errors.
Arguments comprising only stochastic errors [34] suggest adopting the error rate

r ≡ 4n − 1

4n
(1− p). (27)

“[..] Linking r to a formal notion of gate error rate is subtler with coherent errors, [..], as will be discussed in
future work” (Proctor et al., [34], page 5). In the meantime, this r shall be called the DRB number.

1.2.2 Survival probability errors and distributions

Can the results in Section 1.1.3 be extended to DRB? At the time of writing no scientific article supporting such
claims is known. Not everything can be treated in a master project, worse luck. As a consequence, part of this
is focus just on understanding whether, for a single qubit subjected to coherent noise, the infidelity measured
via DRB would be Γ distributed as well. An additional effort was also spent to directly fit a model resembling
the one in Table 1.

To begin with, a DRB sequence structure is much richer than a CRB one. For an arbitrary native gate set
generating the Clifford group Cn not much can be said yet. One way to prove the validity of Eq. (26) for a
chosen gate set and arbitrary noise process would be to construct the approximate or exact 2-designs [6; 15; 24].
However, the nature of C0, UJj and U0 complicate the tractation.

An alternative way to analyze the problem is to restrict our choice of native gate set to be a subset of Cn. Then
some of the steps in Ball et al. [3] will remain valid (see Appendix D for more details). In particular, native
Clifford gates conserve the random walk framework in DRB. The coherent errors exp(iσZ) expanded at first
order in σ, when combined with the Clifford gates, gives rise to a sequence of effective errors which can be seen
as a random walk in the XYZ Pauli space [3; 9; 23]. Nonetheless, the different sequence structure of DRB has
not allowed so far to exhibit a formal proof that, at first order Γα,β(x) ≈ 1 − PDF[F (Jj)]. Going in details,
the main obstacle is that an ideal CRB sequence is effectively a unit operation i.e. Sj,k = 1, while for DRB
the unique constraint is

∣∣〈0|U0UJjC0 |0〉
∣∣ = 1. This last quantity is the one measured by a DRB experiment

and the one considered in simulations. For CRB on the other hand, the same sequence permits to measure the
trace of the whole circuit: this is achieved by just changing initial state. While the relevant quantity for CRB
was mentioned in Eq. (25), here

〈F (Jj)〉k,η ≡
1

ñKj

Kj ,ñ∑
k=1,η=1

∣∣∣〈0| Ũ0ŨJj C̃0 |0〉
∣∣∣2 (28)

must be dealt with19. Notwithstanding this, simulations (Section 3.2) and experiments (Section 6) show that
this quantity is Γ distributed, although it was not possible to obtain a thorough model like the one presented
in Table 1 by Ball et al. [3].

19Nothing changes by choosing |s〉 6= |0〉. The whole sequence will be in general different and only its 0s element will be measured.
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2 Gate Set Tomography: Theory
Gate Set Tomography (GST) is a protocol whose aim is the characterization of state preparation, measurements
and gates of a quantum computing setup. In contrast to RB and in analogy to tomographic routines, GST main
task is to achieve a complete gate set (or setup) description and not just computing average quantities20. In
addition, GST is calibration free. This and many other points will be explained in the rest of this section, which
is mostly a summary of Nielsen et al. [27]. Given the complexity of the topic, some results will be provided
here without proof. Please read the original article in case a better insight is desired.

2.1 Preliminaries
Given a Hilbert space H of dimension d, states can be written as d × d complex matrices acting on H. The
set of these matrices is a vector space B(H) called Hilbert-Schmidt space. Such a space is equipped with the
inner product 〈A,B〉 ≡ Tr

(
A†B

)
. Therefore B can be represented by a d2-column vector |B〉〉, the superket,

and A† by a d2-row vector 〈〈A|, the superbra, and 〈〈A|B〉〉 ≡ Tr
(
A†B

)
. Given the hermiticity of states, only

the d2-real subspace of B(H) that trivializes the † operation is relevant. Therefore a d2-real representation
for physical states is admitted. It follows that physical superoperators for H (or operators on B(H)) have a
d2×d2-real matrix representation21, although not every superoperator is a quantum channel, because they must
be completely positive and trace preserving (CPTP). A gate set G is an object of the following kind

G =

{{
|ρ(i)〉〉

}Nρ
i=1

; {Gi}NG

i=1 ;
{
〈〈E(m)

i |
}NM,N

(m)
E

m=1,i=1

}
. (29)

Nρ state preparations |ρ(i)〉〉 are present; there are also the measurement outcomes 〈〈E(m)
i |: m indexes the NM

measurement and i the N (m)
E outcomes for the measurement m; lastly come NG logic operations Gi, which have

to be intended as layers (depth-1 circuits). They act on superkets as

operation : |ρ〉〉 → Goperation|ρ〉〉. (30)

As similarly mentioned in the previous sections, given an invertible superoperator M , an equivalent gate set (or
representation) is provided by

〈〈E(m)
i | → 〈〈E(m)

i |M−1

|ρ(i)〉〉 →M |ρ(i)〉〉
Gi →MGiM

−1.

(31)

It can be noticed immediately that physical observables do not depend on M . As in electromagnetism, addi-
tional degrees of freedom underlying the mathematical formalization of the physical nature emerge. They are
purely mathematical and named gauge degrees of freedom.

state tomography

process tomography

measurement tomography

unknown entity

assumed-known informationally complete set

Figure 1: Previous tomographic protocols, from [27].

Precedent tomographic algorithms such as state to-
mography, process tomography and measurement to-
mography fulfilled the purpose of characterizing state
preparations, gates and measurement respectively as-
suming complete knowledge of measurements, mea-
surement and states and measurements. Calibration
errors affect these protocols. In other words, the to-
mographic errors are at least as large as the errors
on the fiducial states and measurements. GST offers
a calibration free tomography, which considers each
element of a gate set relative to all the others. As
better clarified in Section 2.2, GST results describe a
gate set up to a gauge transformation. Selecting the
most appropriate gauge is an addition to the GST

protocol (see Section 2.3.2).
20Some experimental studies comparing GST and RB [4; 7].
21Of course there are other representations: the operator-sum representation is one of the most known.
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2.2 The GST protocol step by step
2.2.1 Linear GST

Linear GST (LGST) is a propedeutic algorithm to GST. It is already calibration free and is the first step of the
more advanced Long-sequence GST (Section 2.2.2). This protocol assumes:

1. No finite sample error in estimated probabilities.

2. The existence of informationally complete sets of fiducial states and measurement effects22 |ρ′i〉〉 and 〈〈E′j |.
These sets do not have to be the same of Eq. (29).

3. The cardinality of these two sets is d2, i.e. they are not overcomplete.

These assumptions will be relaxed later on. One can start with the idea of applying each gate Gk to all the
states and project this with every effect. The matrix

[Pk]i,j = 〈〈E′i|Gk|ρ′j〉〉 (32)

is a measurable object. One can define

A ≡


〈〈E′1|
〈〈E′2|
...

〈〈E′d2 |

 , B = (|ρ′1〉〉, |ρ′2〉〉, · · · , |ρ′d2〉〉) , 1̃ ≡ AB (33)

where only 1̃ is measurable. It follows that

Pk = AGkB, 1̃i,j = 〈〈E′i|ρ′j〉〉. (34)

Straightforwardly one observes that
Gk = B1̃−1PkB

−1. (35)

This is it! Gk was characterized with only measurable quantities, up to an unmeasurable gauge transformation
B, which can be fully specified only when a representation is chosen. 〈〈E(m)

l | and |ρ(l)〉〉 are yet to be treated.
The following objects can be defined:[

~R(l)
]
j

= 〈〈E′j | ρ(l)〉〉,
[
~Q
(m)T
l

]
j

= 〈〈E(m)
l | ρ′j〉〉. (36)

These are also measurable. They can be rewritten as

~R(l) = A|ρ(l)〉〉, ~Q
(m)T
l = 〈〈E(m)

l |B. (37)

This leads to
|ρ(l)〉〉 = B1̃−1 ~R(l), 〈〈E(m)

l | = ~Q
(m)T
l B−1. (38)

Exactly like Eq. (35), the states and the measurements are fully specified with only measurable quantities, up
to an unmeasurable gauge transformation B! The physical properties of the gate set are now fully determined.

Now it is time to relax some of the hypotheses. Overcomplete sets are not a problem; on the contrary they
allow for redundancy. In this case A, B and 1 are not invertible but they are full rank and admit a pseudo
inverse23. Having informationally incomplete state and measurement sets is usually not problematic. Typically
experimental setups possess only one POVM and one state preparation. Nonetheless, additional states and
measurement effects can be obtained given the native ones and circuits compiled in the native logic operations:

〈〈Eadded| = 〈〈Enative|G−1, |ρadded〉〉 = F |ρnative〉〉. (39)
22An effect set is informationally complete if any state |ζ〉〉 can be fully described by {pj}j ≡ {〈〈Ej |ζ〉〉}j . The analogous

definition holds for state preparations.
23Read [27] for more details.
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These G−1 and F are called in the literature fiducial circuits24. They decrease the degrees of freedom of LGST
but not its structure. The last obstacle is finite sample errors. LGST minimizes by construction the squared
differences between predicted probabilities p(gate set)

j and observed frequencies f (observed)
j for the outcomes of

LGST circuits, i.e.

sum of squared differences =
∑
j

(
p
(gate set)
j − f (observed)

j

)2
. (40)

Nonetheless, least squares optimization is not justified. One should take into account maximum likelihood
estimation (MLE) methods. The likelihood function L is the probability of collecting the acquired data given
the validity of the model (in this case the gate set):

L(gate set) = Pr(data|gate set). (41)

Another issue of finite sampling is that

fobserved = pgate set ±O
(

1√
N

)
(42)

if the outcome of every LGST circuit is measured N times. This is a very poor scaling: if an uncertainty
threshold of 10−4 is required, 108 measurements are entailed.

2.2.2 Long-sequence GST

The LGST finite sampling scaling inconvenience can be solved by circuits with depth > 1 in which gates
are repeated: Pr = 〈〈E|GkGkGkGk|ρ〉〉. Circuits of depth O(L) enable O(1/L) estimation for the gate set
parameters, which are amplified by deeper circuits. Later on in Section 2.2.3 it will become clearer what these
parameters are. The Long-sequence GST protocol will be now made explicit as in [27].

1. Prepare a state |ρ′k〉〉, i.e. prepare a native state followed by a fiducial circuit.

2. Perform p repetitions of a short circuit g called germ.

3. Perform a measurement 〈〈E′(m)
i | by performing a fiducial circuit and then a native POVM measurement.

The germ repetitions are meant to amplify errors. For example, if an angle can be measured up to ε precision and
Gx overrotates by θ, with this protocol θ can be measured within ±ε/p precision. Not every error is amplified
by rerunning a single gate, like axis misalignments, but any physical gate error can be amplified. SPAM errors
cannot, since SPAM operations appear only once in every circuit. How are the germs to be selected, in order
to amplify every possible error? It can be demonstrated that, SPAM errors excluded, each physical error lies
in a subspace of the gate set parameters; gauge parameters find themselves out of this subspace. Thence this
subspace has to be spanned by the germs. Achieving this requirement yields an amplificationally complete set
of germs. A more detailed tractation is found in the appendix of the original article [27].

After the germs, the powers p have to be chosen. In the original article the authors argue that a logarithmic
spacing is a good choice. The same can be said for the circuits depths L. Thus both p and L will be 1, 2,
4, 8, 16, ...25 Where to stop though? “GST experiments are tailored to a hardware’s capabilities.” (Nielsen
et al., [27], page 19). If every gate has a decoherence rate η, there is little to gain from probing circuits with
L > O(1/η).

The last part of the Long-sequence GST algorithm deals with finding the optimal physical parameters for G,
obtainable by maximising the loglikelihood, which is a very complicated function. GST developers, after dealing
with this maximisation problem for years, devised the following algorithm. Given a GST experiment, let s index
the circuits to be run, Ns be the times s is run, ms the number of all possible outcomes of circuit s, Ns,βs the
number of times the outcome βs was observed for s. The loglikelihood is

logL =
∑
s

logLs =
∑
s,βs

Ns,βs log (ps,βs) =
∑
s,βs

Nsfs,βs log (ps,βs) (43)

24Despite the name, no representation for them is fixed.
25In practice any other base is ok.
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with fs,βs ≡ Ns,βs/Ns and ps,βs is the probability predicted by G of measuring βs for circuit s. Let ~θ be the
vector of parameters to be optimized, D the data set, Truncate(D, L) the data subset collected from circuits no
longer than L and Argmin(S,G,D, ~θ1) the function yielding the ~θ for which a statistical function S(G(~θ),D) is
minimal and whose optimizer is seeded at ~θ1. The first seed ~θ0 is provided by LGST and D0 is the full data
set. Then the optimization algorithm for Long-sequence GST is, as stated in [27],

~θ ← ~θ0

for L ∈ 1, 2, 4, 8, 16 . . .do
D ← Truncate (D0, L)

~θ ← Argmin(χ2,G,D, ~θ)
end for
~θ ← Argmin(− logL,G,D0, ~θ).

(44)

The last ~θ is the vector with the best gate set parameters. This structure comes from the authors’ experience.
They observed that χ2 defined like

χ2 =
∑
s,βs

Ns
(ps,βs − fs,βs)

2

ps,βs
(45)

is a good enough proxy for the likelihood, despite being slightly biased26. Optimizing χ2 at every stage except
the last one speeds up the calculations, because χ2 is a simpler function than logL. What is more, χ2 is
more well-behaved than logL. This helps avoiding local maxima at every step of the algorithm. In the end
logL is maximized27 to find the globally best parameters. The next section tries to clarify what is meant with
“parameters”.

2.2.3 Advanced Long-sequence GST

Another pivotal point is the role of gate set parameters and gate set models28. A gate set G as defined in
Eq. (29) is a point in a real matrix linear spaceM with dimension

Ne = d4NG + d2

(
Nρ +

NM∑
m=1

N
(m)
E

)
, (46)

with NG the number of available gates, Nρ the number of states and
∑NM

m=1N
(m)
E the number of measurement

results, where the summation runs over the NM measurements. Ne accounts for the entries in each matrix
(gate), vector (state) and dual vector (measurement result) in G. The parameter space is linear, will be called
P and has dimension Np ≤ Ne. A gate set model is a map W : P → M. Long-sequence GST finds a ~θ ∈ P
which is the optimal set of parameters. From the optimal gate set W (~θ) = G physical quantities are computed.
For any model Np = Ngauge

p + Nnongauge
p holds. These two quantities are respectively the number of gauge

and physical parameters. Gauge degrees of freedom trace orbits in the parameter space when keeping fixed
nongauge d.o.f.s.

The simplest case for a gate set model is the fully parametrized model. This has P =M andW (x) = x. Trivially
Np = Ne for this model. In most cases it has d2 gauge d.o.f.s [27]. More physical models are trace preserving
(TP). This requirement, together with the representation for G introduced right before Eq. (29), forces the first
row of every superoperator to be [1, 0, ... 0] and the first element of every state preparation to be 1/

√
d [27].

Once these constraints are provided,

for the TP model Np = NGd
2
(
d2 − 1

)
+Nρ

(
d2 − 1

)
+

(
NM∑
m=1

N
(m)
E

)
d2 (47)

26An attentive reader can identify the necessity of regularizing χ2 for small ps,βs . More details in [27].
27The exact procedure can be found in the original article.
28The original article also treats an additional algorithm to reduce overcompleteness and speed up a GST experiment. This will

be skipped in this work.
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where d2− d of them are gauge parameters, since all the allowed TP gauge transformations are TP matrices (a
full rank d2 × d2 matrix has d2 d.o.f.s, the eigenvectors, and −d comes from fixing the first column). The TP
model causes GST no complications; on the contrary complete positivity (CP) does. The CP constraint is non
linear and it interacts in an unfortunate way with gauge freedom, because non-unitary gauge transformations
do not preserve CP [27]. It can be exhibited that the CPTP model and the TP one have the same Np. The
same relation applies for the CP and the full one.

CP also complicates MLE and error bar calculations. As a rule of thumb, both CPTP and TP models should be
included when analysing GST data. If they provide consistent results, the CPTP one should be used, because
more physical. If not, either the CPTP optimisation did not find the global maximum or non-Markovian noise
affected the experiment.

2.3 GST estimates analysis
2.3.1 Goodness of the fit

GST can describe and fit gate set models with Markovian noise. On this basis, χ2 statistics allows the goodness
of the fit to be evaluated. Given a GST experiment with Nexp different circuits for a quantum setup with only
1 native POVM, which features only 2 possible outcomes, the GST data will have all in all Nexp independently
measured frequencies. With more complicated setups, the number of independent degrees of freedom in the
dataset is No ≥ Nexp. Calling

k ≡ No −Nnongauge
p , (48)

under Markovian noise one has
2 (logLmax − logL) ∼ χ2

k. (49)

This is Wilk’s theorem [27]. χ2
k is the χ

2 distribution with k d.o.f. Nnongauge
p is the number of physical parameters

for the gate set model selected by the tomographer. logL is the loglikelihood of this model, while logLmax is
the loglikelihood of a maximal model with No parameters. The maximal model always fits perfectly the data.
If the Markovian noise hypothesis is verified, it makes sense to consider

Nσ ≡
2 (logLmax − logL)− k√

2k
. (50)

Nσ estimates of how many sigmas 2 (logLmax − logL) deviates from χ2
k. Nσ � 1 is indication of non-

markvianities having occurred. These can for instance be due to slow drifts and leakages. The same paradigm
can be applied to logLs to check for model violations relative to a single circuit.

2.3.2 Gauge optimization

Certain gauge-variant metrics, like fidelity and diamond distance, are very important in the scientific dialectics.
Thus, calculating the gauge that makes the GST fit the most similar to the ideal gate set is a necessity. Forcing
the fitted model to have the same appearance of the ideal one may sound unfaithful, but gauge transformations
cannot change any physical observables nor eliminate physical errors, (they can add and remove unphysical
ones though). GST minimizes the Frobenius distance between fit and ideal model, in order to find to best
gauge. Infidelity and diamond distance are not utilized by GST because not positively definite and expensive
to compute respectively. Given a matrix A, the Frobenius norm is [51]

|A|F ≡

√√√√ m∑
i=1

n∑
j=1

|aij |2, (51)

with ai,j entries of A. Better said, GST makes use of a weight sum of Frobenius distances between the target
G and the estimation Ĝ,

f(Ĝ,G) =

Nρ∑
i=1

αi

∣∣∣ρ̂(i) − ρ(i)∣∣∣2
F

+

NG∑
i=1

βi

∣∣∣Ĝi −Gi∣∣∣2
F

+

NM∑
m=1

N
(m)
E∑
i=1

γm,i

∣∣∣Ê(m)
i − E(m)

i

∣∣∣2
F
, (52)
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because SPAM errors cannot be amplified and SPAM estimates are less accurate, O(1/
√
N) compared to

O(1/L
√
N) for gates. Gauge optimization consists in different steps where the weight αi, βi and γm,i are

changed and subsequent optimizations are run. The interested physicist shall read the original aricle [27] for
more details.

2.3.3 Error bars

In order to assign uncertainties to GST results, the authors adopted a confidence region approach presupposing
local asymptotic normality (LAN). LAN means that L for the collected data is Gaussian and that the likelihood
for other possible data sets that were not sampled is also Gaussian with the same covariance matrix. Under
these hypotheses, every region with confidence α is an ellipsoid centered around the point found with the MLE.
Changing α means rescaling the ellipsoid. From this error bars are assigned to the gate set parameters. The
confidence region can be identified in two ways:

1. by calculating the Hessian matrix of logL at the MLE and with this circumscribe the confidence region;

2. by simulating further data sets, with either the MLE gate set or directly with the experimental data, and
using their scatter to define the confidence region. This method is called bootstrapping.

Either way has to deal with gauge d.o.f.s while calculating error bars. It was decided to fix the gauge for the
region of interest before assigning error bars. This excludes the possibility of very large error bars due to gauge
variations in the imaginary situation where all gauge invariant properties are known exactly. In this scenario in
fact, all the measurable characteristics of a gate set are certain and it would not be sensible to have error bars.
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3 Direct Randomized Benchmarking: Simulations
The purpose of these simulations was to study the infidelity distributions of 1 qubit DRB experiments. DRB
circuits were sampled with the library pyGSTi29 [29] and Qiskit [2] was utilized to track the state evolution of
such sequences, affected by coherent noise as defined in Section 1.1.3. Numerical fits were computed thanks to
the SciPy library [8]. All computational variables were of the float64 datatype. The values for Jj were [8, 16,
32, 64, 128]; the correlation length cc (analogous to the one in Section 1.1.3) was allowed to be [1, 30, 90, 300]
and [10−1, 10−2, 10−3, 10−4] for σ. 300 is just a number > 128, the maximum sequence length, so to have DC
noise. cc = 1 means Markovian noise. Depending on the value of Jj , any cc 6= 1, 300 gives rise to either block
correlated or DC noise. For each truple (Jj ,cc, σ) K = 500 circuits were sampled, i.e. Kj = K ∀j, and ñ = 50
noise realizations were taken into account The chosen gate set included +π and +π/2 rotations along X, Y and
Z. All of the following data are available in the repository[38].

3.1 Exponential decay
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Figure 2: Simulated DRB decay, example 1.
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Figure 3: Simulated DRB decay, example 2.

To begin with, the law

F (Jj) = A+ApJj . (53)

was considered. This differs from Eq. (26). It was
observed that with the additional degree of freedom
B the quality of the fit degraded. The choice of elim-
inating one degree of freedom (d.o.f.) is also justified
by the absence of SPAM errors in the simulations:
state preparation and measurement were simulated
error less and deviations from the expected value 0.5
were expected to be small. To remove one d.o.f., one
should fix either A or B to 0.5, and just fit for p and
either B or A. Now one question arises: Shall B or A
be set constant? This is arbitrary. In order to reduce
the arbitrariness of the choice but still have one fewer
d.o.f., these parameters were fixed to be equal30. For
the weighted fit, it was established for each F (Jj) to
have the uncertainty dF (Jj) = σK√

K
, with σK the stan-

dard deviation of theK-fold distribution (1 data point
per circuit) at length Jj . This model was fit with
the function scipy.optimize.curve_fit, which per-
forms least squares optimization. Now the main re-
sults shall be here summarized.

The Figs. 2 and 3 portray the law in Eq. (53) for the
same σ = 0.1 but with different cc, 1 and 300 respec-
tively, i.e. Markovian and DC noise. The DC violin
plot31 features long tails. These are due to noise cor-
relations. Moreover, the tails become longer (for a
given σ) for greater cc. This general behaviour can
be noted from all the plots in Appendix A. For CRB
this is a well known trend [3; 36].

χ2 ≡
∑

data points

(fit− data)2

variance
(54)

is another quantity that increases with cc according
to the simulations (see Appendix A). For cc = 1 χ2 =

29As its name says, this library allows also GST circuits sampling.
30All of this was of course arbitrary.
31If not familiar, a violin plot provides an indication (relative density if you want) of how many points were measured to be of a

specific value.

19



3.2 Gamma distributions 3 DIRECT RANDOMIZED BENCHMARKING: SIMULATIONS

O(1), while for cc = 300 χ2 = O(10) with 3 d.o.f. As it will be understood in the next section, the less cc is,
the more similar the underling distributions of the shadowed areas in the violin plots are to Gaussians. More
figures can be found in Table 2. Another aspect emerging from these data is SPAM error: 0.5-A is ≈ 3 sigmas
away from 0 on average. The state preparation and the measurements were simulated errorless, though. This
shows that certain error contributions do not vary with Jj . This stems from the coherent errors on C0 and U0.
For 1 qubit and given the chosen gate set, they are compiled into at most 4 gates each.

sigma cc 1-p 0.5-A chi squared
1×10−1 1 3.338×10−3 ± 2.5× 10−5 -4.9×10−4 ± 1.4× 10−4 1.6
1×10−1 30 2.741×10−3 ± 5.3× 10−5 -5.2×10−4 ± 3.0× 10−4 2.7
1×10−1 90 2.518×10−3 ± 6.7× 10−5 6×10−5 ± 3.3× 10−4 4.5
1×10−1 300 2.420×10−3 ± 7.3× 10−5 3.6×10−4 ± 3.3× 10−4 11.0
1×10−2 1 3.334×10−5 ± 2.2× 10−7 -4.0×10−6 ± 1.4× 10−6 0.24
1×10−2 30 2.967×10−5 ± 5.8× 10−7 -8.9×10−6 ± 3.1× 10−6 6.4
1×10−2 90 3.014×10−5 ± 9.0× 10−7 -8.7×10−6 ± 3.9× 10−6 8.9
1×10−2 300 3.041×10−5 ± 9.9× 10−7 -1.09×10−5 ± 3.7× 10−6 8.0
1×10−3 1 3.359×10−7 ± 2.3× 10−9 -4.7×10−8 ± 1.4× 10−8 3.2
1×10−3 30 2.973×10−7 ± 6.0× 10−9 -8.4×10−8 ± 3.2× 10−8 4.1
1×10−3 90 3.029×10−7 ± 8.9× 10−9 -9.4×10−8 ± 3.8× 10−8 6.6
1×10−3 300 3.07×10−7 ± 1.0× 10−8 -1.17×10−7 ± 3.8× 10−8 9.4
1×10−4 1 3.339×10−9 ± 2.2× 10−11 -4.4×10−10 ± 1.4× 10−10 0.63
1×10−4 30 2.999×10−9 ± 6.0× 10−11 -1.00×10−9 ± 3.3× 10−10 5.7
1×10−4 90 3.009×10−9 ± 8.9× 10−11 -9.3×10−10 ± 3.7× 10−10 9.3
1×10−4 300 3.05×10−9 ± 1.0× 10−10 -1.17×10−9 ± 3.8× 10−10 9.3

Table 2: Parameters for the simulated DRB decays. All of the related plots can be found in Appendix A.

3.2 Gamma distributions
Instead of looking at the whole decay as in Fig. 2, one could focus on the different shaded areas of a violin
plot. It is of interest whether the measured infidelities (1 − F (Jj)) are Γ distributed as in CRB experiments.
Numerically there is strong evidence of such feature, as displayed by all the graphs in Appendix B. With the
help of scipy.stats.gamma.fit which uses maximum likelihood estimation methods, ∀ Jj , cc, σ the respective
distribution, originating from the K infidelities, was fit by a Γ distribution. The model has an additional
parameter with respect to Eq. (24):

Γα,β,x0
(x) ≡ βα

Γ(α)
(x− x0)α−1e−β(x−x0) ≈ 1− PDF[F (Jj)]. (55)

The offset x0 ≈ 0 but 6= 0 serves for this work the only purpose of avoiding singular behaviours of the already
introduced scipy.stats.gamma.fit. In many cases, varying x0 manually helped with finding a good fit. Other
actions to improve the fits were setting the starting values for the optimisation according to Footnote 14, i.e.

α =
E [Γα,β ]

2

V [Γα,β ]
, (56)

β =
E [Γα,β ]

V [Γα,β ]
. (57)

A interesting trend can be observed. An instance of it is now shown by the Gamma distributions for σ = 10−4

and cc = 30 (Figs. 4 to 8). For Jj < cc the distribution is highly skewed and monotonic. For Jj > cc the first
derivative changes sign, a maximum appears and this moves away from 0 with increasing Jj . In particular,
DC noise features skewed distributions and Markovian noise rather symmetric ones. For Jj ≈ cc a “transition”
between the two trends can be observed. From the plots in Appendix B it can be inferred that this holds for any
pair (σ,cc), except (10−1,300) and (10−1,90)32. The reason can be that in this case Jjσ2 & 1 and the first order

32Since no Jj ≈ 90, the exact transition around this value cannot be observed, but the general trend in regards to the distribution
peak can.
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expansion leading to Eq. (24) does not hold anymore. Similar facts for CRB were reported before [9; 3; 36],
but they have not been used so far to estimate cc. By noticing when a Gamma distribution changes shape for
different Jjs, cc can be estimated. If Jj are such that Ji+1 = 2Ji, the estimate will be at worst a factor of 2
distant, provided that Jjσ2 . 1.
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Figure 4: Gamma distribution. J = 8
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Figure 5: Gamma distribution. J = 16
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Figure 6: Gamma distribution. J = 32
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Figure 8: Gamma distribution. J = 128.

These plots show how the behaviour of the Γ distribution
changes when Jj , from being less than cc, becomes larger.
All of these histograms have σ = 10−4, cc = 30 and the
same number of data points: 500. Plots with other values
of σ and cc can be found in Appendix B.

This “transition” will be experimentally used in this work in Section 6 to estimate noise correlation lengths.
This is rather qualitative however. According to Ball et al. [3], information on cc can be deduced from the
variance of the distributions. Therefore, a more quantitative model that given cc, σ and Jj could predict the
average and variance of F (Jj) distributions is sought. The model for E[1− Γα,β ] = E[F (Jj)] is the following.

E[F (Jj)] =



A−B1Jjσ
ν + C1J

2
j σ

2ν for cc = 1 or Markovian noise

A−B2Jjσ
ν + C2J

2
j σ

2ν for cc < Jj or block correlated noise

A−B3Jjσ
ν + C3J

2
j σ

2ν for cc ≥ Jj or DC noise

(58)

A, B1, B2, B3, C1, C2, C3 and ν are free parameters to be fit. scipy.optimize.curve_fit was used. The
uncertanty for each F (Jj) is dF (Jj) = σK√

K
, with σK the standard deviation of the K-fold distribution. The

results are the following.

- A B1 B2 B3 C1 C2 C3 ν
value 1.0000000000 1.59×10−1 1.41×10−1 1.33×10−1 1.9×10−2 2.4×10−2 2.7×10−2 1.994
± 2×10−10 1×10−3 2×10−3 1×10−3 1×10−3 2×10−3 3×10−3 1×10−3

Table 3: E[F (Jj)] fit parameters summary. χ2 = 169

It was expected and desired for ν to be approximately 2, as previously reported in Table 1. It is also comforting
that A = 1: without errors, i.e. σ = 0, the measured fidelity would always be 1. The first difference between this
model and the one of Table 1 is the presence of second order terms in O(Jσ2). Numerically this is preferred: χ2

decreases of 1 order of magnitude by adding second order terms. On top of that, different Ci and Bi parameters
among the 3 noise schemes are preferred to a model with the same B and C. At first order this represents
something new when compared to the CRB case. With 72 d.o.f. and a χ2 = 169, on average every d.o.f. is 1.5
sigmas away from the fit model. Although the theoretical explanation for these values is yet to be unveiled33,
this is a satisfying result.

As E[F (Jj)] was treated, now it is the time of V[F (Jj)]. A possible model is

V[F (Jj)] =



A1(Jj −B1)(Jj − C1)σν for cc = 1 or Markovian noise

A2(Jj −B2)(cc− C2)σν for cc < Jj or block correlated noise

A3(Jj −B3)(Jj − C1)σν for cc ≥ Jj or DC noise

(59)

33Carrying out simulations where ñ is let vary is an idea.
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Figure 9: E[F (Jj)]. Plot of the normalized residuals, i.e. (data-fit)/uncertainty. Average distance from 0: 1.5σ.

Table 1 suggests a dependence on cc for the block correlated scenario. Because of this the second line of Eq. (59)
is of the displayed form. Here the data points are the variances of each distribution. Given a variance ∆, its
uncertainty for the weighted fit was chosen to be

√
2

K−1∆. More information is available in Appendix C. This
is a good choice for normal distributions though, not gamma. Nothing better was found at the time of the data
analysis, worse luck. The results are the following.

- A1 A2 A3 B1 B2 B3 C1 C2 C3 ν
value 2.1×10−4 4.9×10−3 6.8×10−3 1.6 1 -4.0×101 -1.6×102 -4.3×101 4.8 3.925
± 2×10−5 4×10−4 3×10−4 4×10−1 2 4 3×101 7 1×10−1 3×10−3

Table 4: V[F (Jj)] fit parameters summary. χ2 = 1.3× 103

In this case the fit is not as appealing as before. The residuals plot (Fig. 10) makes manifest the unsuitability
of this model in regards to DC and block correlated noise. Markovian noise data points are the only ones
within 5 sigmas from 0. The chosen uncertainty works in fact better with Gaussian distributions, and gamma
distributions subjected to Markovian noise are the most similar to Gaussins. Edmundus et al. [9] have shown
that for ñ ∼ 100, V[F (Jj)] converges, while for smaller values it is susceptible to fluctuations of order of
magnitudes and comparable with its own value. Other simulations could be run with this ñ. A greater value of
ñ might diminish the overall χ2 as well. On top of this issue, some parameters of this fit are much greater than
1. This is hard to justify. The only positive note is that ν ≈ 4 as for the CRB analogue. Given the failure of
the variance model, a quantitative approach for the noise correlation length estimation has not been found.
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Figure 10: V[F (Jj)]. Plot of the normalized residuals, i.e. (data-fit)/uncertainty. Average distance from 0:
4.3σ.

4 The experimental setup
The experimental work of this Master’s thesis was focused on the Segtrap setup. This is a 3D segmented ion
trap, which was designed to work with beryllium 9Be+ and 40Ca+ ions. The long term aim of the setup is to
adopt the Quantum Charged-Coupled Device (QCCD) approach. This involves designated regions for cooling,
gate implementation and storage between which ions are shuttled back and forth to implement an arbitrary
algorithm. Different ion species are used in order to have the spectral separation needed to avoid perturbing
the quantum state of an ion when carrying out operations on the other one and to realize sympathetic cooling,
with which one ion is cooled by the other one of a different species. The 15 segments of the trap enable shuttling
of ions along the trap axis. Quantum operations, be they state initialization, quantum gates, state readout or
cooling, are driven by laser light while the ions are trapped in a potential well. All of the information in this
section and much more can be found in Matteo Marinelli’s PhD thesis [22].

4.1 Ions electronic levels and related operations
An experimental run can be divided in 4 parts: cooling of the motional modes, state preparation, qubit manip-
ulation and state detection. While the qubit manipulation differs from experiment to experiment, the other 3
parts are executed for any experiment on Segtrap with minor differences.

The theme of cooling motional modes is here only introduced (see [22] for the complete tractation). There are 4
cooling “stages”: far detuned Doppler cooling or precooling, standard Doppler cooling, EIT cooling and sideband
cooling. Precooling has a large capture range. In this way large motional excitation caused by gas collisions or
laser frequency drifts can be recovered. Then standard Doppler cooling is applied to further reduce the motion
close to the Doppler limit. Then it is the turn of EIT cooling (applied only on Ca on the radial motional mode
with lowest frequency) which reduces the average excitation quantum number n̄ to n̄ ≈ 1. Eventually it is the
turn of sideband cooling, applied on the axial motional mode, which cools the ion to the ground state. With
mixed species ions, sideband cooling is applied on the two axial modes.
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4.1.1 Calcium ion

Figure 11: 40Ca+ levels. In green the ones used as qubit levels, in black the accessible levels. The solid purple,
blue and red lines represent the lasers used for the ion manipulation. Taken from [22].

Once a magnetic field of 119.45 Gauss is applied the relevant electronic structure of 40Ca+ becomes the one
portrayed in Fig. 11. The chosen qubit transition is the

∣∣S1/2,mJ = 1/2
〉
↔
∣∣D5/2,mJ = +3/2

〉
quadrupole

allowed transition34. This is also called the optical qubit transition and it is driven by a laser with wavelength
729.35 nm. The coherence time of the optical qubit is approximately 1.7 ms. This value stems from how much
the transition frequency varies with the magnetic field, i.e. 1.12 MHz/G [22]. The S1/2 ↔ P1/2 transition
at 396.96 nm is used to prepare and readout the state and cool the motional modes. The P1/2 levels can
however also decay to the metastable D3/2 manifold. For this reason, repumping at 866.45 nm is necessary. The
D5/2 levels are also repumped to the ground state exploiting the short lived P3/2 manifold. The P3/2 ↔ D5/2

transition is driven by a 854.44 nm laser.

In regards to state preparation, population in the
∣∣S1/2,mJ = −1/2

〉
state is unwanted. This is depopulated

by driving the
∣∣S1/2,mJ = −1/2

〉
↔
∣∣P1/2,mJ = 1/2

〉
with 397 nm σ+-polarized laser light which does not

couple the
∣∣S1/2,mJ = +1/2

〉
state. After the drive the population will decay back to both ground state levels.

Continuing cyclically, after some µs
∣∣S1/2,mJ = −1/2

〉
will be depopulated.

As far as state readout is concerned, the 397 nm transition is driven and if the qubit is in the bright state | ↓〉
photons will be measured by a photomultiplier tube (PMT). The | ↑〉 is instead a dark state and fewer photons
will be measured. According to the number of measured photons the qubit states can be discriminated.

34
∣∣S1/2,mJ = 1/2

〉
↔
∣∣D5/2,mJ = −1/2

〉
is another possible transition.
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4.1.2 Beryllium ion

Figure 12: 9Be+ levels. | ↓〉 and | ↑〉 are the qubit levels. The solid lines represent the lasers used for the ion
manipulation. Taken from [22].

Beryllium has nuclear spin 3/2 while Calcium does not have a nuclear spin. Because of this, Be features
hyperfine structures. The degeneracy is removed once a magnetic field of 119.45 Gauss is applied. Two-photon
Raman transitions couple the S1/2, F = 1 and S1/2, F = 2 manifolds via the P1/2 states. The detuning of
the Raman lasers from the P1/2 is ∼230 GHz [22]. With the chosen magnetic field B, the |F = 2,mF = 0〉 ↔
|F = 1,mF = 1〉 transition is at first order independent of B. Therefore it is called field independent qubit (FIQ).
Its coherence time is ∼ 4s. The light used for any transition has wavelength around 313 nm. Co-propagating
and perpendicular beams are available. The former are used to drive motion insensitive qubit transitions, the
latter are employed for motion sensitive transitions, e.g. sidebands.

When performing state readout, the probability of the the dark state | ↓〉 to be measured as bright is decreased
by driving the FIS (field independent qubit shelving) transition as in Fig. 12, while the FDQ (field dependent
qubit) transition is driven to transfer the population from the bright state to

∣∣S1/2, F = 2,mF = 2
〉
. Then∣∣S1/2, F = 2,mF = 2

〉
↔
∣∣P3/2, F = 3,mF = 3

〉
is driven with σ+-polarized light. Photons emitted during the

decay can be measured with a PMT. Like with Ca, the state is distinguished depending on the number of
measured photons. Possible error sources are the following ones. Polarization impurities allows the decay to
any state of the S1/2 manifold, not only

∣∣S1/2, F = 2,mF = 2
〉
. In addition off resonant pumping of the dark

states can populate
∣∣S1/2, F = 2,mF = 2

〉
.
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The | ↑〉 state is prepared by repumping from both
∣∣S1/2, F = 2,mF = 1

〉
and

∣∣S1/2, F = 1,mF = 1
〉
to the

state
∣∣P1/2, F = 2,mF = 2

〉
. This enables

∣∣S1/2, F = 2,mF = 2
〉
to be repopulated. Then the FDQ transition

is driven.

4.2 The control system and limitations
Complex experiments like Segtrap need an adequate control system. The TIQI group developed over the years
the M-ACTION control system. It consists of a hardware and a software part. The relevant aspects for this
project are here listed. Please refer to Negnevitsky’s thesis [26] for more information beyond that.

The hardware’s core component is the Zedboard. This board has, among other parts, a Field Programmable
Gate Array (FPGA) and a Xilinux Zynq-700 0 chip composed of two ARM CPUs which control the experiment.
The Zedboard is connected to the DDS boards (direct-digital synthesizer) which generate the signal for the
AOMs (acousto-optic modulator), which enable the experimental physicist to obtain the desired laser pulses.
Other devices belonging to the M-ACTION system are the AWG (arbitrary waveform generator) board, admin-
istering the voltages on the DC electrodes of the trap, and the DEATHs (Direct Ethernet-Adjustable Transport
Hardware), controlling the time dependent voltages.

In regards to the software part, with the Xilinix software development kit (SDK) the user can code in C++
the experiments to be run. This code controls the M-ACTION system. On top of this, there is also the C++
GUI (Graphical User Interface) called Ionizer2. Ionizer2 communicates with Zedboard, the DEATHs and other
devices. It queries the Zedboard, on which experiments and parameters are compiled, for the available experi-
ments and for digital outputs results. With these data it creates a page for every experiment at disposal. On
these pages the user can set parameters, run experiments and in general run scans. A scan is a sequence of
experiments in which one or also two parameters are changed sequentially. During a scan, Ionizer2 saves its
results obained from the Zedboard for every data point, i.e. for every value of the parameter(s). In addition,
Ionizer2 exposes a scripting API. Python scripts can be launched from the dedicated Ionizer page. Thanks to
the group efforts, the API permits the scripts to reproduce any action executed manually by a TIQI group
member. Scripting allows scheduling tasks and running calibrations.

4.2.1 Some preexisting SDK APIs

The SDK provides different APIs with different levels of abstraction. Some of the important characteristics are
mentioned here. A more detailed description is found in Matteo Marinelli’s thesis [22]. The experiment class
is the object that executes an experimental sequence as defined in Section 4.1. This class interacts with the
remote parameters. These are experiment-specific, like frequencies and pulse times. They can be set via the
GUI or the SDK and are compiled onto the Zedboard.

An additional software element developed by Matteo Marinelli and Tanja Behrle are the crystal classes. A
crystal object has information on what ions are trapped and on the relevant remote parameters. The crystal
classes encapsulate sets of operations that are often carried out during an experiment, like detection and readout,
adding abstraction and allowing users without a low level knowledge of the M-ACTION system to code and
perform experiments. crystal objects contain transition objects as well. “A transition object groups together
the main pulses [e.g. π and π/2 pulses] that can be run on a particular qubit transition, together with the remote
parameters that the user controls” (Marinelli, [22], page 54). Phase accumulators were coded by Matteo, too.
They belong to the crystal classes and their task is to ensure phase coherence between DDSs (and therefore
light pulses) and qubits. Phase accumulators calculate and add a phase offset to the relevant DDSs after each
applied pulse. As an example, for the Calcium case, considering the Stark shift as well, the phase accumulated
by the qubit, after a pulse of time tp and a waiting time tw before the next pulse, is

φq = ωdtp + ω0tw, (60)

where ω0 is the transition frequency without the drive, or bare frequency, and ωd the one with the drive, or
dressed frequency. The phase accumulators make sure that the relevant DDSs have the same phases of the
qubits after tp + tw time.
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4.2.2 Sequence length limitation

The way the crystal classes and the phase accumulators were coded, in combination with the limited DDSs
memory, limits the number of pulses that can be run for a single qubit manipulation to 35-40. By keeping track
of the Stark shift phase correction the pulses have different phases and therefore the already allocated DDS
memory cannot be reused to instantiate other pulses with the same characteristics. With Beryllium one can
run ∼ 40 pulses, with Calcium ∼ 35. Ca is also EIT cooled, Be is not. For this reason less DDS memory is
at disposal and therefore fewer pulses can be performed on Ca when compared to Be. These numbers limited
the potential of the RB and GST experiments executed for this thesis. RB and GST experiments would benefit
from longer sequences. Martin Stadler has eased the limitation by modifying the code that instantiates the
pulses. The new code updates the relevant parameters after a pulse has been executed, without the need of
instantiating another one. Now a sequence can be some hundreds of pulses long. This new software was however
not yet adopted by or tested on Segtrap due to time constraints.
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5 The Randomized Benchmarking Framework
One of the main tasks of this project was to code and develop software which could be used by any TIQI
subgroup, as well as more specific code for Segtrap, with the goal of designing and executing RB and GST
experiments. The following sections will clarify RBF (Randomized Benchmarking Framework) motivations
and aspects. Alfredo Ricci Vásquez was an active contributor to the RBF, especially in its design and early
stage coding. The RBF documentation is available at the dedicated TIQI WIKI page [45]. The RBF sup-
ports at the moment any single qubit gate and 2-qubit gates which act symmetrically on the qubits, i.e.
GATE(q1,q2)=GATE(q2,q1), like the MS gate. At the time of writing, a missing requirement of the Random-
ized Benchmarking Framework (RBF) is the possibility of generating and performing 2-qubit GST experiments.

5.1 RB implementation

Figure 13: RBF software components for RB. Taken
from the TIQI RBF repo [45].

Randomized Benchmarking is the first class of algo-
rithms that has been implemented in this framework.
The library pyGSTi [29] enables the physicist to de-
sign CRB or DRB experiments provided the avail-
able gates, the sets of lengths Jj , as defined in Sec-
tions 1.1.2 and 1.2.1, and the number of randomiza-
tions K independent of the index j. The output of
this library is the collection of CRB or DRB circuits,
compiled in the native gates of the system, which
the benchmarker will apply to the relevant quantum
system with the aim of running an RB experiment.
pyGSTi supports an arbitrary number of qubits n.

5.1.1 A human-readable framework

Solutions that guarantee transparency in regards to what circuits are to be and are being executed and user-
friendliness were looked for. JSON files were identified to be an attractive solution. They allow to store simple
data structures in the form "parameter_name" : parameter_value. The value can be a boolean, a number,
a string, a list or another JSON data structure. JSON files can be modified by any text editor [35].

Two python scripts, which can be found in the TIQI repo [37], were coded. The first one is sequence_generator.py.
It is run by the user and needs a JSON file as input, in which the Jjs, K, the available gates, the choice between
DRB or CRB and other parameters are declared. The script makes use of pyGSTi and as output it provides
a JSON file in which the CRB or DRB sequences, compiled in the native gate set, are stored. If not already
available, sequence_generator.py creates a Quantum Processor object. This is used by pyGSTi to sample
the RB circuits. The Quantum Processor can be reused for other RB experiments with the same native gates.
run_randomized_benchmarking.py is the second script. This is executed by Ionizer. It necessitates the JSON
file with the RB sequences and an additional JSON setting file. This JSON file allows to define the value of
any parameter that appears in the relevant Ionizer experimental page35, like the qubit transition, the cooling
type, shaping or not the pulses, the number of shots per data point etc. run_randomized_benchmarking.py
starts from the randomization 0 and ends with the randomization K − 1. Given i ∈ {0, 1, ..,K − 1}, the script
loads the i-th circuit ∀ Jj in Ionizer, Ionizer performs a scan over Jj and run_randomized_benchmarking.py
appends the results of the i-th randomization onto an established text file. Other experiments start by running
the shortest sequences and finish with the longest ones. This approach is here rejected. In this scenario any
time dependence of the experimental errors accumulate on the longest sequences, leading to worse data for
them, i.e. a bias. In the RBF case instead, long and short sequences are performed through all the experiment.
In this way, slow noise contributions will not appear as a “parasiticly” additional Jj-dependence worsening the
experimental results of circuits with high values of Jj . run_randomized_benchmarking.py enables the physicist
to stop the experiment at any point and to resume it by inputting the desired value of i, while keeping the
already collected data thanks to the usage of the same text file. This is very convenient if the SDK crashes (for
example if the DDSs memory is depleted) or if major experimental issues require RB to come temporarily to a
halt.

35What page this is will become explicit in the next lines.
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The experimental page on which run_randomized_benchmarking.py loads RB circuits relates to an experiment
object which must inherit from the class gate_sequencer . This class is available in the ionpulse_sdk_core
[44]. When an experiment extends gate_sequencer, its page in Ionizer exposes one rp_string per qubit in-
volved in the RB experiment. The rp_string boxes are filled in by run_randomized_benchmarking.py with
the RB circuits, in JSON format. When Ionizer runs a scan over Jj , the loaded circuits are carried out on the
setup. The RapidJSON library [20], also available in the ionpulse_sdk_core, is exploited by gate_sequencer
to translate the JSON content of the rp_strings into logic gates, which are then executed. gate_sequencer
does not directly call the functions generating the pulses: this can be very different among the different se-
tups; by implementing one single solution, gate_sequencer would not be general anymore. For this reason,
gate_sequencer features an abstract function which has to be overwritten by the experiment object that
inherits from the sequencer. This function, depending on the setup, will use the relevant SDK to generate the
actual pulses.

5.1.2 The case of Segtrap

In the specific case of Segtrap, the explicit way for the experiments inheriting from gate_sequencer to generate
the light pulses had to be defined. The new gate classes were added to the APIs developed by Tanja and Matteo
(see Section 4.2.1). These gates were defined for the Calcium, Beryllium and BerylliumCalcium crystal classes
and can be found in the SDK repository [39]. They make use of the pulse functions exposed by the crystal
classes and run the desired pulse. They are grouped by a Native_Gate_Set object. This object instantiates
gates along the X, Y and Z36 axes with rotational angles π and π/2 once the user has selected the qubit
transition, whether to keep track of the Stark shift phase and other parameters. An RB experiment (a derived
class of the gate_sequencer)37 possesses a Native_Gate_Set object. The latter enables the former to access
the gates and generates the pulses. The gate classes approach is thought to be a valuable one: logic gates can
now be used on Segtrap for other non-RB experiments. Other TIQI members working with different setups do
not necessarily have to code their gates, because their RB experiment could directly call their pulse functions
at disposal in their SDK. They do however have to code their RB experiment class.

5.2 GST implementation

Figure 14: RBF software components for GST. Taken from the TIQI RBF repo [45].

GST is also at the TIQI group’s disposal via the RBF. The software already coded for RB is not to be thrown
away. In fact, the gate_sequencer, run_randomized_benchmarking.py and the gate classes are used for the
GST case as well and with the same objectives. In addition, 2 further python scripts were coded. gst_setup.py
performs the GST “preprocessing”: it uses pyGSTi to generate the GST circuits which are saved in a JSON
file just like sequence_generator. It also saves a folder which is used in postprocessing. This folder and
the generated sequences can be reused for any setup if the gate set is the same. gst_setup.py requires a
JSON file with the allowed lengths for the GST sequences and other parameters. The JSON file containing
the GST sequences is structured in a way that reminds the RB structure, i.e. K randomizations for every Jj .
“K randomizations for the length Jj” does not make any sense when talking about GST, because there are no
randomizations in the RB sense. Rather different germs are performed more times (see Section 2.2.2). All of
this only means rearranging the GST sequences in order to “trick” run_randomized_benchmarking.py, i.e. to

36Z gates do not need any actual pulse: they are phase shifts applied to subsequent gates.
37An RB experiment also inherits from the ion-related frame_CoolDet class.
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provide it with a suitably structured file, and to exploit it to scan GST sequences with gate_sequencer. K is
chosen to be

K =

⌈
# all circuits
# all lengths

⌉
. (61)

GST circuits are order per length by pyGSTi. The effective k-th randomization groups the circuits with the
enumeration decided by pyGSTi like

k-th randomization ≡ {k, K + k, 2K + k, · · · , (# all lengths− 1)×K + k} . (62)

In this way every randomization has circuits that come from every part of the circuit collection generated by
pyGSTi, not only from the beginning or the end, which means circuits with (potentially) different lengths.
If (# all circuits/# all lengths) is not an integer, additional circuits with only SPAM operations are added
such that every randomization has the same number of circuits. gst_analysis.py rearranges then the results
saved by run_randomized_benchmarking.py and analyzes the GST data. In the settings JSON file one can
specify what gate set models (TP, CPTP , etc.) and what gauge optimization procedures to use, as well as
whether adding error bars at 95% confidence level with the Hessian matrix method described in Section 2.3.338.
gst_danalysis.py generates than a report in HTML form with all the results in the aforementioned folder.

5.3 2-qubit GST
The RBF does not offer yet the possibility of designing a 2-qubit GST experiment. The reason will be now
explained.

Let us assume that each qubit can be addressed by a set of gates whose cardinality is Ξ. If a setup can generate
and handle contemporaneous pulses, the 2-qubit gate set will be of cardinality Ξ2 +# 2 qubit gates. If not, the
executable gates are the 2 qubit ones, 1⊗Gsingle qubit and Gsingle qubit⊗1. The resulting gate set has cardinality
2Ξ + # 2 qubit gates. At the time of writing, pyGSTi does not seem to support a gate set with more than 26
logic gates. This fact can limit its usefulness in the former case. A reply from the pyGSTi creators is awaited.
In addition, Luca Huber and Alfredo Ricci Vásquez are putting effort in developing simultaneous pulses for the
SDK. It is not yet clear whether the 2-qubit GST should be able to work in both cases or just in the latter one.

More information is required about the pyGSTi library and further reasoning is needed for a successful 2-
qubit GST implementation in the RBF. The available time for this master project brought the 2-qubit GST
implementation to a halt.

38This is preferred to bootstrap because better documented [28]
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6 DRB and GST experimental data on Segtrap
On the Segtrap setup, DRB and GST data sets were collected for the single Calcium ion and for the single
Beryllium ion employing the RBF. Tanja Behrle was an indispensable help in the laboratory. It was attempted
to also collect DRB data for the 2 qubit case with Beryllium and Calcium both loaded. Unfortunately ex-
perimental issues led to relatively high ion loss rate and made this unfeasible. 2 qubit data would have been
interesting in order to compare the setup performances for the same operations with and without cross-talk
noise [34], as well as benchhmarking the 2 qubit MS gate. DRB was preferred over CRB because it bench-
marks with the natively available gates. Had more time been at disposal, CRB experiments would have been
also executed for the sake of undestanding whether DRB and CRB produce equivalent results. When not
specified differently, the gate set used comprises +π/2 and +π rotations along the logical axis X, Y and Z.

20210622_104447
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Figure 15: Time scan of the FDQ red sideband at 90°
for Be+. The transition flops between bright and dark.
The solid black line can be ignored. Photon counts on
the Y axis.

6.0.1 Calibrations for both ions

Before running the actual experiment, several cali-
brations had to be performed. Although these dif-
fer between the Ca and the Be case, some had to
be executed for both, like micromotion compensation,
before the actual experiments started. Fabrication
defects and electrodes misalignments cause the time
dependent voltages (or rf potential) in the trap to
have a not perfect orientation. This leads the ions to
move around the point of equilibrium and give rise
to what is called micromotion. Micromotion can in-
crease the chance of losing ions, and with more than
one ion, frequency and directions of normal modes are
modified [22]. In order to compensate for the micro-
motion, Calcium was loaded and the voltages on the
relevant electrodes, the shim electrodes, were tuned.
For each of the two radial directions, the respective
motional frequencies were scanned. Subsequently, the
shim voltage α was sequentially changed, and the shim voltage β was scanned with the aim of having a bright
ion. α and β are the voltages related to the shim electrodes. From the optimal βs, the new voltages to apply
to the shim electrodes can be calculated using pre-existing routines.

Figure 16: Example of plots for the micromotion compensation. The blue areas with few photon counts (dark
Ca+) are caused by the motional resonances.: the ion is excited and therefore appears as dark. With the optimal
β Ca+ is bright.

Another calibration regards thresholding. When measuring a qubit, a PMT collects a certain number of photons.
The probability of detecting n photons follows a superposition of two Poisson distributions [22] if errors like
leakage, off reasonant pumping and impure polarization are not present. The already coded routines allow to
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keep these non-idealities into consideration and they produce a threshold (≈ 4 counts for Beryllium and 6 for
Calcium). When fewer photons than the threshold are measured, the state is considered dark, otherwise bright.

Sideband cooling also had to be tuned. It was made certain that the 729 red sideband and the FDQ with
perpendicular beams red sideband transitions could flop properly. In this way it is assured that the transitions
can be driven when executing sideband cooling. This was achieved by calibrating the motional frequencies,
by calibrating the frequency and π time of 729 and FDQ 90° red sibands and by tuning the intensities of the
relevant laser light.

6.1 Beryllium ion
20210622_105725
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Figure 17: Time scan of the FIS π time. The state is
dark after ≈ 40µs.
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Figure 18: Exponential DRB decay for Be+.

DRB and GST data were collected in the same in-
stance for the single Beryllium ion. The FIQ transi-
tion was used as qubit transition. In addition to the
aforementioned calibrations, the FDQ carrier with co-
propagating beams was calibrated. The π time was
tuned too, obtaining a value of ∼ 6µs. After this it
was the time for the FIQ bare frequency, the FIQ π
and π/2 times, with values of ≈ 10 and 5 µs, at a
fixed equal laser amplitudes for both. By keeping the
amplitudes equal and fixed, the Stark shift phase cor-
rection (see Eq. (60)) can be applied to both π and
π/2 pulses. Subsequently the FIS π time was also cal-
ibrated, resulting to be ≈ 40µs. As explained in Sec-
tion 4.1.2, the FDQ and FIS transitions play a role
in SPAM operations. In the end the FIQ Stark shift
frequency was calibrated. Frequencies are calibrated
via Ramsey experiments [22].

Then the DRB and GST experiments were executed,
making use of the Randomized Benchmarking Frame-
work (see Section 5). During the experiments, FDQ
π time, FIQ bare frequency, π time and π/2 time
calibrations were performed every ∼10 minutes. The
laser amplitudes for the FIQ pulses were not varied
and the same Stark shift differential frequency cor-
rection was used for both experiments.

6.1.1 DRB data and results

The possible lengths Jj were [2, 4, 8, 16, 32]. For each
of them, K = 500 circuits were run. Each one of these
K circuits was executed 500 times (also known as 500
shots). The raw data is found in its repository [40].
The law

F (Jj) = A+ApJj (63)

was fitted. As already stated in Section 3.1, the law F (Jj) = A+ BpJj is rejected: with the additional degree
of freedom scipy.optimize.curve_fit cannot provide a sensible fit. Like in Section 3.1, in order to work
out a weighted fit, for each Jj the average survival probability was assigned the uncertainty σK√

K
, with σK the

standard deviation of the K-fold distribution for the length Jj . As shown by Fig. 18, the fitted parameters are:

1− p 0.5−A χ2

5.69× 10−4 ± 2.7× 10−5 2.995× 10−3 ± 8.2× 10−5 1.8

Table 5: Fit results for Eq. (63) for Be+. The data are shown in Fig. 18.
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When compared to the simulations in Section 3.1, the Beryllium data show a low value of χ2. This suggests
that non-markovianities have a short correlation length. The violin plot (Fig. 18) shows however tails. Given
these two points, one can expect a noise correlation length cc greater than one but comparable to 1. cc
can be better estimated by observing the infidelities distributions for each Jj (Figs. 19 to 23). Just like in
Section 3.2, scipy.stats.gamma.fit was employed to fit the gamma distributions. Table 6 puts together the
fitted parameters for Figs. 19 to 23.
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Figure 19: Distribution of 1− F (2), Be+.
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Figure 20: Distribution of 1− F (4), Be+.
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Figure 21: Distribution of 1− F (8), Be+.
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Figure 22: Distribution of 1− F (16), Be+.
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Figure 23: Distribution of 1− F (32), Be+.

Figs. 19 to 23 show, for each value of Jj , 1-the survival
probability produced by theK = 500 DRB circuits. These
distributions are gamma distributions.

Recalling the qualitative estimation method in Section 3.2 based on the shape of the gamma distributions, it
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J average variance alpha beta offset
2 6.35×10−3 2.63×10−5 6.89×100 1.65×10−3 -5.0×10−3

4 7.16×10−3 2.38×10−5 1.34×101 1.28×10−3 -1.0×10−2

8 8.46×10−3 2.63×10−5 3.12×100 3.03×10−3 -1.0×10−3

16 1.049×10−2 3.41×10−5 2.50×100 4.24×10−3 -1.0×10−4

32 1.484×10−2 7.40×10−5 3.83×100 4.27×10−3 -1.5×10−3

Table 6: Summary table with the parameters of Figs. 19 to 23.

can be observed that none of the Beryllium data distributions have either a peak in 0 or are monotonic like
Figs. 4 and 5. This is indication of the noise not being DC for Jj = 2 already, but rather block-correlated.
From this a bound on the noise correlation time can be obtained. Firstly, the effective average sequence length
for F (Jj) = 2 has to be calculated. The DRB algorithm in Section 1.2.1 has to be kept in mind. A sequence is
composed by 3 circuits: Us, UJj and C0. For Jj = 2, Uj has depth 2 while Us and C0 depths do not depend on
Jj . With the chosen gate set, where +π and +π/2 rotations along X, Y and Z are available, C0 is compiled in
at most 4 native gates [52] and Us in at most 2. The last result can be deduced by imagining a block sphere,
with the allowed states and rotations. Assuming that on average only half of these gates is used to compile Us
and C0, there are three additional gates. Therefore the average DRB sequence length for Jj = 2 is 5. Now the
average noise correlation time can be bounded. With depth-5 sequences the noise does not appear as DC noise.
Therefore the noise correlation length cc ≤ 4. The average time duration of 4 gates has to be calculated. π and
π/2 Z rotations are just phase modifications for successive gates: they need no time to be executed. X and Y π
pulses need approximately 10µs, while X and Y π/2 pulses 5µs. All things considered, on average a gate needs
5µs. This means that the noise correlation time with a Beryllium ion was ≤ 5µs× 4 gates = 20µs. This can be
caused by magnetic fields or laser frequency fluctuations.

This estimation, based on the simulations in Section 3.2, is valid under three assumptions.

1. SPAM operations are noiseless.

2. The gates are subjected only to coherent noise.

3. Gate errors occur only along one axes.

The first hypothesis is not valid as the value of 0.5 − A in Table 5 shows that 0.5 − A is not compatible with
0 (within 36σ): this is indication of SPAM errors. RB experiments are designed to decouple SPAM and gate
errors. The former manifest themselves with values of A away from the ideal 0.5. A different value of A, keeping
p fixed, changes the gamma distribution offsets, as defined in Eq. (55). It is not believed that (small) SPAM
errors can transform a gamma function from monotonic to not monotonic. Thus this should not invalidate the
previous analysis. As far as the second assumption is concerned, GST data provide evidence of the presence of
only coherent errors (see next section). The third element of the list could be the weak point of this analysis.
The simulations of Section 3 took into account merely coherent errors along Z while they can occur along any
axes. Ball et al. [3] outlined the theory for this scenario: 1 − F (Jj) is distributed like a sum of 3 gamma
distributions for CRB experiments. The Be+ DRB data can be fitted by just one gamma distribution. It might
have surprisingly happened that most of the errors affected only one axis or that the same errors affected more
axes. This is just a speculation, though.

6.1.2 GST data and results

The GST analysis report is found in the GIT repository [41]. By downloading this folder, main.html can
be opened and the results visualized. The raw data is found in the superior directory. The file is named
gst_segtrap_be.txt. Only parts of this very detailed report will are shown in this work. The GST data
was analysed using the CPTP and TP gate set models (see Section 2.2.3) and different gauge optimization
algorithms39 with different SPAM weights (see Section 2.3.2). The GST circuit formal depths were established
to be 1, 2, 4, 8, 16 and 32. The actual depth can vary from circuit to circuit, depending on the SPAM fiducial
circuits (see Section 2.2.1), which increase the depth, and on the depth of the germ which is repeated40. An

39Their results can be selected in the report [41].
40If the germ has depth 3 and the length considered is 16, the germ will be repeated 5 times, accounting for a depth of 15.
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amplificationally complete set of germs up to depth 6 were considered (this is the default option).

Figure 24: Model violation summary for the TP and
CPTP gate set models. Nσ was defined in Eq. (50).
Its high values are indication of non markovianities.
Taken from [41].

Figure 25: Model violation including circuits up to for-
mal depth L for the CPTP gate set model. A different
MLE optimal model is considered for any column of
the graph. L = 1 and 2 contribute the most to Nσ.
The green - red scale stands for small - great model
deviations. Taken from [41].

Figure 26: Model violation including circuits up to for-
mal depth L for the TP gate set model. A different
MLE optimal model is considered for any column of
the graph. L = 1 and 2 contribute the most to Nσ.
Taken from [41].

Figure 27: Model violation for any single circuit for the
CPTP model. On the X axis the actual length (not the
formal one) of the circuits. On the Y axis the equiv-
alent of Eq. (50) for 1 d.o.f. (up to a a factor

√
2).

Model discrepancies (non markovianities) are greater
for shorter circuits. Red means highly non markovian.
Taken from [41].

pyGSTi assumes Markovian noise. Deviations from this assumption are quantified by Nσ as defined in Eq. (50).
Figs. 24 to 26 reveal that non markovianities are present, both in the CPTP and TP model, since Nσ � 1. No
significant differences can be observed, in the whole report, between the CPTP and TP gate set model results.
Therefore, from now on, only the CPTP gate set model will be dealt with because more physical than the TP
one. According to Fig. 25 most of the non markovianities stem from circuits with short formal length. The fact
that non markovianities are more relevant for short GST circuits is confirmed by Fig. 27. This plot shows the Nσ
for each single performed circuit (up to a

√
2 factor) as a function of their actual length. Greater discrepancies

occur for shorter lengths, i.e. non markovianities are more “relevant” for shorter circuits, which indicates a short
noise correlation time, in accordance to the DRB data. The element by element characterization of every gate
is provided by the pyGSTi report. This dissertation reports of other quantities, e.g. Table 741. Leaving out Z

41Gauge dependent quantities, like the ones of Table 7, depend on the gauge and therefore also on the gauge optimization
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rotations, for which no pulses is run, underrotations affect X and Y gates. The relative error amounts to 1-4
parts in 1000. Compared to the measured π and π/2 times, this is equal to an error of order 10 ns in time
calibration. Z gates are subjected instead to relative overrotations of order 10−4. Z gates are less noisy because
no actual pulses is involved, but only an AOM phase modification. Rotation axes have only one coefficient equal

gate rotation angle [π] rotation axis average gate infidelity

X(+π) 0.998757 0.00125± 0.005829

Y (+π) 0.996638 0.001082± 0.002774

Z(+π) 1.00023 0.000105± 0.009126

X(+π/2) 0.498118 0.000406± 0.003332

Y (+π/2) 0.498985 0.000597± 0.00163

Z(+π/2) 0.500212 0.000058± 0.002454

Table 7: The rotation angles, the rotation axes coefficients and the average gate infidelities are shown for the
Beryllium GST data. The rotation axes coefficients are presented rounded.. 3m3 stands for 0.003. The pictures
in the second last column are taken from the pyGSTi report [41]. No error bars are available for the first two
columns and they are not reported for the third one. The error bars for the fourth column are of 95% confidence
level. They are not reliable because non markovianities were observed.

to 1 in the noiseless case with the others equal to 0. Despite the unwanted coefficients being of order 10−2, the
error on the rotational axes should be considered of order 10−4, because the relevant normalization is the sum
of the squared coefficients. The average gate infidelities, defined in analogy to Eq. (12) but without averaging
over more gates, are of order 10−3 − 10−4. These cannot be directly compared to 1− p, obtained via the DRB
experiment. The former are gauge variant, the latter gauge independent. Table 8 illustrates Segtrap SPAM
performances with Beryllium. The state preparation has 0.035% probability of preparing a dark state; the
probability of a dark state being measured as bright is 0.014% and 0.38% vice versa. The provided uncertainties
are unreliable: they are calculated based on the local asymptotic normality assumption (see Section 2.3.3). The
pyGSTI report includes information on the type of errors affecting the gates. The error generator formalism is
adopted, i.e. a noise gate G̃ and the ideal one G are related in the following manner:

G̃ = eLG. (64)

L is the error generator; it modifies the gate after its application. The report also offers a decomposition, written
in the Pauli basis, of L in unitary errors, stochastic errors42 and affine errors43. Listing all of this information
in these pages would overload them. An example is provided for the X(π) gate. Fig. 28 indicates that the X(π)

procedure used by pyGSTi. Several were used in the analysis but they do not show significant variations. From now on the
standard gauge optimization data is presented.

42These are the ones appearing in the Kraus decomposition of a noise process.
43An affine error has the following action on a state ρ: ρ→ Tr(ρ)Bi, with Bi some vector.
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6.1 Beryllium ion 6 DRB AND GST EXPERIMENTAL DATA ON SEGTRAP

operation probabilities

state preparation
(

0.999648
0.000352

)
±
(

0.00588
0.00588

)
bright state measurement

(
0.996212
0.000139

)
±
(

0.011254
0.001552

)
dark state measurement

(
0.003788
0.999861

)
±
(

0.011254
0.001552

)
Table 8: SPAM characterization. Error bars are of 95% confidence level. Like for Table 7, they are not

meaningful. The last two rows of the table are linearly dependent: each of them is the vector
(

1
1

)
− the

other.

Figure 28: Error generator and its decomposition for the X(π). Gxpi stands for X(π). A blue-red scale is used
to show how negative-positive a number is. From left to right, the columns present the unitary, stochastic and
affine part of the error generator. To the best of this author’s understanding, Power is just a multiplicative
factor of the related coefficients. From the powers and the coefficients it can be observed that non unitary errors
are negligible. In addition, X, Y and Z axes are all affected by coherent errors.

gate is almost exclusively affected by coherent errors and that more axes are subjected to them44. The original
report highlights that this is the case for all the gates used: coherent noise is the principal source of noise and it
manifest along not just one axis. When these data are related to the hypotheses underlying the noise analysis
method employed for the DRB data, GST data confirms that noise is coherent and indicates that it does not
occur just for one axes. It is somewhat surprising that the DRB infidelity distributions are explainable by just
one Γ distribution and not a sum of them.

44Error bars, not shown here, are available for these values as well. As already mentioned, they are not considered credible.
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6.2 Calcium ion 6 DRB AND GST EXPERIMENTAL DATA ON SEGTRAP

6.2 Calcium ion 20210503_103514

Ca+ signal (s) Timing err. DDS err. BkgCorr counts FIT
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Figure 29: 729 bare frequency calibration. On the Y axis
photon counts. The resonance with few photon counts
indicates the qubit frequency.

For Calcium GST and DRB data were not collected
in the same occasion. This is not ideal, since the two
data sets portray the setup in two different experi-
mental conditions. This is what was possible due to
time limitations and to the GST absence in the RBF
when the DRB experiment was performed. For both
experiments, the initial calibrations included the 729
bare and dressed frequency. For the GST experiment,
the π and π/2 times were also calibrated, with val-
ues around 3 and 1.5 µs respectively, keeping fixed
and equal the laser intensities. For the DRB experi-
ment instead, the intensities were calibrated and the
times kept fixed at around 3 and 1.5 µs. This was
not ideal. The Stark shift phase correction worked
in proper conditions for the GST experiment and not
for the DRB one. During the former, pulse times
where periodically calibrated and the fixed intensities
allowed the same dressed frequency to be kept and therefore the Stark shift correction, too. During the latter,
pulse intensities periodically changed due to calibrations. Therefore also the dressed frequency and the phase
accumulated with the drive on varied, since the Stark shift was calibrated only at the beginning. The relative
intensity changes throughout the experiment amounted to ∼0.01. Having observed changes of only this order
of magnitude, it is believed that, even though not optimal, the Stark shift phase tracking was effective. For
both experiments, the 729 bare frequency was also periodically updated. Shaped pulses were used, in order to
prevent unwanted states excitations, and it was kept track of the Stark shift phase. During both experiments,
calibrations were repeated every ∼3 minutes.

Before the execution of the GST experiment, jumps of hundreds of MHz were observed for the 729
laser frequency. After optimizing the incoming power to the 729 cavity, this problem was mitigated.

6.2.1 DRB data and results
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Figure 30: Exponential DRB decay for Ca+.

The set of lengths and number of shots are the same of
Section 6.1.1. With Ca+ fewer randomizations could
be run: K = 184. The far detuned cooling time had
been set 10 times longer than needed: this slowed
down the experiment overall and fewer data could be
sampled. In addition, some randomizations could not
be performed because their longest circuit made the
SDK crash for the reasons explained in Section 4.2.2.
The raw data is available in the GIT repository [42].
The same software routines of Section 6.1.1 and the-
oretical model (Eq. (63)) have been employed for this
data.

The data are portrayed in Fig. 30. Long tails are visi-
ble and their length increases with Jj . This, together
with χ2 = 13, is a sign of a long noise correlation
length. Comparing Tables 5 and 9 it is deduced that
Calcium SPAM errors are smaller than the Beryllium case, but for the latter 1 − p is smaller. Therefore less
SPAM noise but more gate noise affects Calcium than Beryllium. This could be caused by the wrong tracking
of the Stark shift phase.
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6.2 Calcium ion 6 DRB AND GST EXPERIMENTAL DATA ON SEGTRAP

1− p 0.5−A χ2

7.77× 10−4 ± 5.3× 10−5 1.88× 10−4 ± 7.5× 10−5 13

Table 9: Fit results for Eq. (63) for Ca+. The data are shown in Fig. 30.
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Figure 31: Distribution of 1− F (2), Ca+.
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Figure 32: Distribution of 1− F (4), Ca+.
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Figure 33: Distribution of 1− F (8), Ca+.
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Figs. 31 to 35 show, for each value of Jj , 1-the survival
probability produced by theK = 184 DRB circuits. These
distributions are gamma distributions.

J average variance alpha beta offset
2 6.35×10−3 2.63×10−5 1.18×100 1.36×10−3 -5.0×10−4

4 7.16×10−3 2.38×10−5 1.03×100 2.70×10−3 -5.0×10−4

8 8.46×10−3 2.63×10−5 9.58×10−1 4.11×10−3 -5.0×10−4

16 1.049×10−2 3.41×10−5 6.88×10−1 8.00×10−3 -5.0×10−5

32 1.484×10−2 7.40×10−5 9.64×10−1 1.62×10−2 -5.0×10−5

Table 10: Summary table with the parameters of Figs. 31 to 35.

In accordance to the previous aurgumentations and to the simulations of Section 3.2, the highly skewed Γ
distributions portrayed by Figs. 31 to 35 indicate DC noise. Thus, the noise correlation length is greater
than 32. Adding a correction of 3 gates as for Beryllium, the effective circuit length for Jj = 32 becomes 35.
Considering the π and π/2 times, the noise correlation time can be bounded to be > 35 gates× 1.5µs = 52.5µs.
Because both Calcium and Beryllium ions experience the same magnetic field, the different noise correlation
times for Be and Ca could be due to laser frequency shifts. As for Beryllium, one should verify with GST
whether the assumptions 2 and 3 of Section 6.1.1 are verified.

6.2.2 GST data and results

The same gate set models, germs and gauge optimizations of Section 6.1.2 were included in this analysis. The
set of formal lengths was however different: [1, 2, 4, 8, 16, 24]. During the DRB experiment it was noticed that
some circuits with Jj = 32 could not be performed because too long (see Section 4.2.2). GST does not admit an
incomplete data set as the basis of its analysis. Therefore it was made sure that every circuit was short enough
to be run. The report is available at [43] and the raw data file gst_segtrap_ca.txt in the superior.

Fig. 38 shows interestingly that non markovianities are highly less relevant for the model including circuits with
L up to 4 than for L up to 1 for the TP model. The same plot fot the CPTP model, Fig. 37 does not confirm
this phenomenon. This anomaly is thought to be caused by the numerical loglikelihood maximization for the
TP gate set model getting stuck in a local maximum. Any other data in the report does not vary significantly
between the TP and CPTP models. The results of the CPTP one will be from now on shown because more
physical and because Fig. 38 does not seem reasonable. Fig. 39 evidences that longer circuits manifest greater
non markovianities, confirming the DRB results proposing DC noise. This trend is the opposite of the one
noticed in Fig. 27 where the noise had a shorter correlation length.
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6.2 Calcium ion 6 DRB AND GST EXPERIMENTAL DATA ON SEGTRAP

Figure 36: Model violation summary for the TP and
CPTP gate set models. Nσ was defined in Eq. (50).
Its high values are indication of non markovianities.
Taken from [43].

Figure 37: Model violation including circuits up to for-
mal depth L for the CPTP gate set model. A different
MLE optimal model is considered for any column of
the graph. Taken from [43].

Figure 38: Model violation including circuits up to for-
mal depth L for the TP gate set model. A different
MLE optimal model is considered for any column of
the graph. Taken from [43]. Non markovianities ap-
pear to be less relevant for models including short and
medium lengths.

Figure 39: Model violation for any single circuit for the
CPTP model. On the X axis the actual length (not the
formal one) of the circuits. On the Y axis the equiv-
alent of Eq. (50) for 1 d.o.f. (up to a a factor

√
2).

Model discrepancies (non markovianities) are greater
for longer circuits. Red means highly non markovian.

Compared to Table 7 for Beryllium, Table 12 displays similar rotation axis deviations from the noiseless case
and similar infidelities but with higher uncertainties45. The interesting aspect of Table 12 is that Segtrap
underrotates gates with Calcium even more than with Beryllium, with a relative error on the angles that
reaches the 1% level. This could be an effect of the 729 laser frequency drifts observed in the laboratory. These
greater underrotations also support that 1 − pCa > 1 − pBe for DRB, which is a sign of better performance of
Segtrap when performing logic gates on Beryllium. When it comes to SPAM operations, Segtrap executes them
more reliably on Calcium than Beryllium (see Table 11): the probability of preparing the dark state instead of
the bright one is 10−4, of a bright state being measured as dark 2 × 10−3, of a dark state being measured as
bright 1.5 × 10−4. This is also supported by DRB data, where |0.5 − A|Be > |0.5 − A|Ca. The error generator

45As for the Beryllium GST experiment, the data reported was obtained with the standard gauge optimization.
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6.2 Calcium ion 6 DRB AND GST EXPERIMENTAL DATA ON SEGTRAP

operation probabilities

state preparation
(

0.999904
0.000096

)
±
(

0.002923
0.002923

)
bright state measurement

(
0.998081
0.000152

)
±
(

0.009458
0.002353

)
dark state measurement

(
0.001919
0.999848

)
±
(

0.009458
0.002353

)
Table 11: SPAM characterization. The last two rows of the table are linearly dependent: each of them is the

vector
(

1
1

)
− the other. Error bars are not reliable.

table reports that noise is coherent for all gates (an example is Fig. 40) but it affects more than a single axis,
supporting hypothesis 2. but not 3. of Section 6.1.1.

For this reason, it is surprising that the two DRB data sets can be explained by single Γ distributions. A further
DRB data set on Ca+, mentioned in Appendix E and collected before the RBF was coded, is believed to show
sums of Γ distributions. Not having kept track of the Stark shift phase through this additional DRB experiment
could be the explanation of these new distributions.

Figure 40: Error generator and its decomposition for the Y (π/2). Gypi2 stands for Y (π/2). From the powers
and the coefficients it can be observed that non unitary errors are negligible. In addition, X, Y and Z axes are
all affected by coherent errors.
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6.2 Calcium ion 6 DRB AND GST EXPERIMENTAL DATA ON SEGTRAP

gate rotation angle [π] rotation axis average gate infidelity

X(+π) 0.986758 0.001406± 0.01832

Y (+π) 0.988196 0.001236± 0.010094

Z(+π) 1.000947 0.000006± 0.0007

X(+π/2) 0.493296 0.000554± 0.00953

Y (+π/2) 0.494253 0.001113± 0.01642

Z(+π/2) 0.499887 0.000074± 0.001609

Table 12: The rotation angles, the rotation axes coefficients and the average gate infidelities are shown for
the Calcium GST data. The rotation axes coefficients are presented rounded. Xm3 stands for X×10−3. The
pictures in the second last column are taken from the pyGSTi report [43]. No error bars are provided for the
first two columns and they are not reported for the third one. The error bars are of 95% confidence level. They
should not be trusted because non markovianities were observed.
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7 Conlusions, outlooks and remarks for the future
A qualitative method was developed to infer the noise correlation length from 1 qubit DRB experiments sub-
jected to coherent noise along one single axis. Numerical simulations showed different shapes for the Γ distri-
butions describing the infidelities of DRB experiments. On the basis of these distributions shapes, i.e. whether
they exhibit a monotonic behaviour or not, the noise correlation time can be bounded and/or estimated. With
the simulated data it was also attempted to devise a more quantitative model, with the aim of extrapolating
noise intensity and correlation length from the statistical properties of the Γ distributions of future real exper-
iments. This was unsuccessful: the best fit linking variance of the distributions, noise intensity and correlation
length is distant more than 4σ from the simulated data. This idea was inspired by the work of Ball et al. [3],
which treated similar topics but for CRB. A theoretical extension of Ball’s results from CRB to DRB was not
possible, because the two protocols involve different, even though similar, measurable fidelities.

A set of software routines, the RBF, was coded. This allows any subgroup of the TIQI group to design and
perform GST and RB experiments, except 2 qubit GST experiments, given its complex structure. The RBF is
based on the pyGSTi [29] and rapidJSON [20] libraries, the crystal classes and the Ionizer2 APIs [22]. pyGSTi
allows to design GST and RB experiments and generates their sequences, which can be very long. Therefore
being aware of what circuits are run and what their expected outcomes are is crucial. JSON files were chosen
for the clarity they offer. User-RBF communication and communication between different parts of the RBF are
based in part on JSON files.

DRB and GST data sets were collected for the single Calcium ion and for the single Beryllium ion on
Segtrap. Due to experimental problems leading to a frequent ion loss and time limitations, no 2 qubit DRB
experiment with Beryllium and Calcium trapped was executed. The selected qubit transitions were respectively∣∣22S1/2, F = 1,mF = 1

〉
↔
∣∣22S1/2, F = 2,mF = 0

〉
and

∣∣42S1/2,m = 1
2

〉
↔
∣∣32D5/2,m = 3

2

〉
for Beryllium and

Calcium. Limitations of the M-ACTION system limited the maximum depth of an experimental sequence to be
less than 40. This limitation was eased by end of this project’s time but not yet implemented. It was noticed
that Γ distributions can explain both Calcium and Beryllium DRB data. From these, the noise correlation
time was bounded to, for the two respective cases, > 52.5µs and ≤ 20µs. These values can be attributed to
laser frequency shifts and magnetic field fluctuations. In addition, DRB data show that SPAM operations are
performed better when Calcium is trapped and logic operations with Beryllium instead. The state survival
probability per native logic gate p, with value 1 in the noiseless case, is such that 7.77 × 10−4 ± 5.3 × 10−5 =
1− pCa > 1− pBe = 5.69× 10−4± 2.7× 10−5. On the other hand, considering the SPAM operation indicator A
(with value 0.5 in the noiseless case), 2.995×10−3±8.2×10−5 = 0.5−ABe > 0.5−ACa = 1.88×10−4±7.5×10−5.
GST data confirms the previous remarks on the noise correlation lengths by reporting that non markovian noise
leads to greater discrepancies with respect to a noiseless scenario on short sequences for Beryllium and on long
sequences for Calcium. GST indicates that logic gates are affected by coherent noise that occurs along the X,
Y and Z logical axes. It is believed that this contradicts the possibility of describing DRB data with single Γ
distributions, which stem out of coherent errors occurring along only one axis. GST supports as well the fact
that logic operations are better performed with Beryllium and SPAM operations with Calcium. Relative errors
on rotation angles up to 10−2 were observed with Calcium and 10−3 with Beryllium. SPAM operations errors
are for both cases of order 10−3 − 10−4 but, as already declared, less relevant on Calcium.

In order to continue with noise characterisation, it is important to add into the RBF the possibility of
designing 2 qubit GST experiments. Together with 2 qubit DRB and CRB experiments, they would make feasible
to benchmark and characterize cross talk noise and the MS gate. Of primary relevance is also implementing the
new pulses coded my Martin Stadler, such that longer experimental sequences are exploitable. On the other
hand, in order to solidify DRB theoretical basis more simulations and/or more analytical efforts should be put
in order to develop a quantitative model able to link Γ distributions statistical moments with noise intensity
and correlation length.
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Appendix

A DRB simulations. Exponential decay graphs
The graphs show 1-qubit DRB experiment simulations data. Noise correlation length and intensity σ vary.
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σ = 10−1
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B DRB simulations. Gamma distribution graphs
To be read per column. For summary table with all the fitted parameters see Table 13.
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B.1 Summary table

Table 13: This table shows the key parameters for each of the previous 80 plots. cc stands for correlation length
and J for sequence length.

sigma cc J average variance alpha beta offset

1×10−1 1 8 1.237×10−2 3.40×10−5 2.31×103 1.21×10−4 -2.7×10−1

1×10−1 1 16 2.474×10−2 8.05×10−5 5.41×103 1.22×10−4 -6.3×10−1

1×10−1 1 32 4.960×10−2 1.62×10−4 2.53×101 2.53×10−3 -1.4×10−2

1×10−1 1 64 9.602×10−2 3.99×10−4 7.02×101 2.39×10−3 -7.1×10−2

1×10−1 1 128 1.732×10−1 7.47×10−4 2.27×102 1.81×10−3 -2.4×10−1

1×10−1 30 8 1.007×10−2 1.455×10−4 1.87×10−1 5.39×10−2 -1.1×10−17

1×10−1 30 16 1.97×10−2 5.82×10−4 5.55×10−1 3.54×10−2 -1.0×10−10

1×10−1 30 32 3.96×10−2 1.252×10−3 1.28×100 3.08×10−2 8.3×10−5

1×10−1 30 64 8.19×10−2 2.44×10−3 2.30×100 3.31×10−2 5.9×10−3

1×10−1 30 128 1.468×10−1 3.70×10−3 6.72×100 2.37×10−2 -1.3×10−2

1×10−1 90 8 1.032×10−2 1.68×10−4 5.31×10−1 1.95×10−2 -1.3×10−5

1×10−1 90 16 1.91×10−2 5.22×10−4 5.64×10−1 3.39×10−2 -1.0×10−10

1×10−1 90 32 3.82×10−2 1.396×10−3 1.01×100 3.77×10−2 1.1×10−4

1×10−1 90 64 8.01×10−2 4.73×10−3 1.30×100 6.13×10−2 1.8×10−4

1×10−1 90 128 1.356×10−1 6.63×10−3 2.69×100 5.12×10−2 -2.0×10−3

1×10−1 300 8 1.033×10−2 1.540×10−4 3.93×10−1 2.63×10−2 -1.2×10−7

1×10−1 300 16 1.93×10−2 5.21×10−4 7.55×10−1 2.56×10−2 -5.2×10−31

1×10−1 300 32 3.76×10−2 1.339×10−3 9.87×10−1 3.81×10−2 2.2×10−4

1×10−1 300 64 8.06×10−2 4.61×10−3 1.25×100 6.41×10−2 5.6×10−4

1×10−1 300 128 1.261×10−1 9.53×10−3 1.59×100 7.92×10−2 6.5×10−4

1×10−2 1 8 1.257×10−4 3.75×10−9 3.04×104 3.51×10−7 -1.1×10−2

1×10−2 1 16 2.587×10−4 9.50×10−9 6.43×102 3.84×10−6 -2.2×10−3

1×10−2 1 32 5.231×10−4 2.09×10−8 1.38×101 3.90×10−5 -1.6×10−5

1×10−2 1 64 1.056×10−3 5.56×10−8 2.29×101 4.92×10−5 -7.2×10−5

1×10−2 1 128 2.126×10−3 1.323×10−7 4.82×101 5.24×10−5 -4.0×10−4

1×10−2 30 8 1.047×10−4 1.555×10−8 5.38×10−1 1.95×10−4 -1.2×10−7

1×10−2 30 16 2.04×10−4 7.00×10−8 5.51×10−1 3.70×10−4 -1.0×10−10

1×10−2 30 32 4.36×10−4 1.86×10−7 1.07×100 4.07×10−4 -2.3×10−7

1×10−2 30 64 9.84×10−4 4.88×10−7 2.19×100 4.50×10−4 -7.9×10−31

1×10−2 30 128 1.865×10−3 9.03×10−7 3.63×100 5.01×10−4 4.8×10−5

1×10−2 90 8 1.096×10−4 2.12×10−8 5.04×10−1 2.75×10−4 -8.8×10−25

1×10−2 90 16 2.08×10−4 6.95×10−8 5.55×10−1 3.74×10−4 -1.0×10−10

1×10−2 90 32 4.29×10−4 2.33×10−7 7.66×10−1 5.60×10−4 3.0×10−30

1×10−2 90 64 1.029×10−3 1.129×10−6 9.18×10−1 1.12×10−3 3.9×10−8

1×10−2 90 128 1.943×10−3 2.75×10−6 1.58×100 1.23×10−3 -3.6×10−30

1×10−2 300 8 1.036×10−4 1.539×10−8 6.84×10−1 1.09×10−4 -2.7×10−33

1×10−2 300 16 2.10×10−4 7.40×10−8 5.50×10−1 3.83×10−4 -1.0×10−10

1×10−2 300 32 4.24×10−4 2.18×10−7 7.88×10−1 5.20×10−4 1.8×10−8

1×10−2 300 64 1.020×10−3 1.089×10−6 9.88×10−1 9.99×10−4 6.2×10−8

1×10−2 300 128 2.01×10−3 4.98×10−6 9.16×10−1 2.19×10−3 -2.0×10−30

1×10−3 1 8 1.257×10−6 3.75×10−13 4.25×103 9.38×10−9 -3.9×10−5

1×10−3 1 16 2.611×10−6 9.56×10−13 3.76×104 5.03×10−9 -1.9×10−4

1×10−3 1 32 5.200×10−6 1.80×10−12 6.34×101 1.68×10−7 -5.5×10−6

1×10−3 1 64 1.060×10−5 6.01×10−12 3.69×101 4.04×10−7 -4.3×10−6

1×10−3 1 128 2.158×10−5 1.59×10−11 4.92×101 5.65×10−7 -6.3×10−6

1×10−3 30 8 1.053×10−6 1.64×10−12 2.27×10−1 4.64×10−6 -1.5×10−16

1×10−3 30 16 2.08×10−6 7.73×10−12 6.09×10−1 3.42×10−6 -1.0×10−10

1×10−3 30 32 4.40×10−6 1.96×10−11 1.06×100 4.15×10−6 -3.0×10−9

1×10−3 30 64 9.78×10−6 4.99×10−11 2.18×100 4.49×10−6 -5.6×10−31
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sigma cc J average variance alpha beta offset

1×10−3 30 128 1.877×10−5 9.56×10−11 3.28×100 5.38×10−6 1.1×10−6

1×10−3 90 8 1.070×10−6 1.98×10−12 4.18×10−1 2.56×10−6 -1.0×10−10

1×10−3 90 16 2.11×10−6 7.91×10−12 6.05×10−1 3.49×10−6 -1.0×10−10

1×10−3 90 32 4.30×10−6 2.36×10−11 7.19×10−1 5.35×10−6 7.8×10−13

1×10−3 90 64 1.020×10−5 1.083×10−10 9.30×10−1 1.10×10−5 7.5×10−30

1×10−3 90 128 1.949×10−5 2.71×10−10 1.54×100 1.26×10−5 -8.9×10−31

1×10−3 300 8 1.045×10−6 1.64×10−12 4.24×10−1 2.46×10−6 -1.0×10−10

1×10−3 300 16 2.09×10−6 6.98×10−12 6.18×10−1 3.38×10−6 -1.0×10−10

1×10−3 300 32 4.28×10−6 2.29×10−11 8.15×10−1 4.71×10−6 2.0×10−12

1×10−3 300 64 1.050×10−5 1.245×10−10 9.07×10−1 1.16×10−5 2.9×10−29

1×10−3 300 128 2.015×10−5 4.73×10−10 7.86×10−1 2.83×10−5 1.5×10−11

1×10−4 1 8 1.257×10−8 3.86×10−17 4.12×102 3.06×10−10 -1.1×10−7

1×10−4 1 16 2.567×10−8 9.74×10−17 4.82×102 4.49×10−10 -1.9×10−7

1×10−4 1 32 5.222×10−8 1.96×10−16 3.01×101 2.56×10−9 -2.5×10−8

1×10−4 1 64 1.060×10−7 5.51×10−16 1.88×101 5.41×10−9 4.3×10−9

1×10−4 1 128 2.134×10−7 1.440×10−15 5.11×101 5.31×10−9 -5.8×10−8

1×10−4 30 8 1.045×10−8 1.73×10−16 6.64×10−1 1.59×10−8 -1.0×10−10

1×10−4 30 16 2.06×10−8 7.08×10−16 7.79×10−1 2.66×10−8 -1.0×10−10

1×10−4 30 32 4.31×10−8 1.87×10−15 1.05×100 4.09×10−8 -2.6×10−11

1×10−4 30 64 9.78×10−8 4.78×10−15 2.20×100 4.45×10−8 -8.5×10−31

1×10−4 30 128 1.907×10−7 1.016×10−14 3.68×100 5.18×10−8 2.6×10−29

1×10−4 90 8 1.066×10−8 1.77×10−16 5.58×10−1 2.20×10−8 -8.8×10−39

1×10−4 90 16 2.09×10−8 7.09×10−16 7.77×10−1 2.70×10−8 -1.0×10−10

1×10−4 90 32 4.25×10−8 2.20×10−15 5.48×10−1 1.02×10−7 -1.8×10−34

1×10−4 90 64 1.041×10−7 1.122×10−14 8.98×10−1 1.12×10−7 1.6×10−15

1×10−4 90 128 1.926×10−7 2.80×10−14 1.96×100 1.02×10−7 -7.9×10−9

1×10−4 300 8 1.028×10−8 1.63×10−16 6.74×10−1 1.54×10−8 -1.0×10−10

1×10−4 300 16 2.11×10−8 7.82×10−16 7.60×10−1 2.79×10−8 -1.0×10−10

1×10−4 300 32 4.21×10−8 2.06×10−15 8.15×10−1 4.37×10−8 1.1×10−16

1×10−4 300 64 1.034×10−7 1.215×10−14 8.69×10−1 1.19×10−7 -8.0×10−31

1×10−4 300 128 2.03×10−7 5.22×10−14 7.89×10−1 2.58×10−7 -1.1×10−30

C Error of the variance estimator
K occurrences xi (i from 1 to K) of the same Gaussian random variable x with average and variance E[x] and
V[x] shall be considered. Every occurrence is independent of the other, i.e. all the xi are i.i.d. Gaussian random
variables. The variance estimator is

Ṽ[x] =
1

K − 1

K∑
i=0

(
Ẽ[x]− xi

)2
. (65)

with Ẽ[x] the estimated expected value of x. It is quickly understood that

Ṽ[x] =
V[x]

K − 1
χ2
K−1 (66)

with χ2
K−1 the chi squared random variable with K − 1 degrees of freedom. From this follows that

E
[
Ṽ[x]

]
=

V[x]

K − 1
E
[
χ2
K−1

]
= V[x], (67)

which means that the variance estimator converges to the distribution variance. Moreover,

V
[
Ṽ[x]

]
=

(
V[x]

K − 1

)2

V
[
χ2
K−1

]
=

2

K − 1
V[x]2. (68)

All in all, the standard deviation of the variance estimator is
√

2/(K − 1)V[x] which can be estimated by√
2/(K − 1)Ṽ[x].
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D Extension of noise correlation analysis to DRB protocols
Ivan Rojkov, who must be thanked for his contribution, extended some of the results for Clifford Randomized
Benchmarking reported in Ball et al. [3] to the Direct Randomized Benchmarking formalism.

One must first mention that Ball et al. [3] work primarily analyses the effects of temporal noise correlations on
single qubit Clifford Randomized Benchmarking experiments and outlines some results for more qubits, whereas
the DRB pioneer work of Proctor et al. 2019 [34] covers mainly benchmarking of multiqubit devices. However,
the general approach of the former generalises straightforwardly to any CRB protocol and can also be, to some
extent, applied to the new DRB paradigm.

In this protocol, presented in Section 1.2.1, one considers a set of native gates that has the only requirement to
generate the Clifford group Cn. Even though this degree of freedom exists, the authors mention that a natural
choice for such a set is the subset CDRB ⊂ Cn of depth-one circuits, e.g. parallel one- and two-qubit gates 46.
This additional assumption implies that DRB sequences U0 UJj C0 are, as in the CRB, composed exclusively of
Clifford gates. One can thus replicate the analysis performed in Section C of [3] and conclude that coherent-
noise-affected sequences Ũ0ŨJj C̃0 result in a random walk in the XYZ Pauli space. The main difference with
the standard CRB is that for short benchmarking sequences the walks will be restricted to only certain regions
of the Pauli space. It is believed that this regions would depend on the size of the native gate set CDRB and the
probability density function that is used to sample the layers UJj . Large sequences would however be boundless,
since CDRB is supposed to generate Cn, i.e. ultimately any Clifford gate could be randomly generated in the
sampling process.

However, another major disparity exist between the CRB and the DRB: the expression of the trace fidelity that
captures the overlap between an ideal and a noisy sequence. Indeed, in the CRB protocol it is written for a
single sequence as:

FCRBk,η =

∣∣∣∣12 Tr
(
S†kS̃k,η

)∣∣∣∣2 =
1

4

∣∣∣Tr
(
S̃k,η

)∣∣∣2 (69)

where the second equality follows from Sk ≡ 1. The trace of the noisy sequence is then what has effectively the
random walk behaviour in the Pauli space. For the DRB, the overlap fidelity takes the following form

FDRBJj =

∣∣∣∣12 Tr
(

(U0 UJj C0)†Ũ0ŨJj C̃0

)∣∣∣∣2 =
1

4

∣∣∣Tr
(
C†0 U

† U†0U0ŨJjC0

)∣∣∣2 =

=
1

4

∣∣∣Tr
(
U†Jj ŨJj

)∣∣∣2 ≤ 1

4

∣∣∣Tr
(
U†Jj

)∣∣∣2 ∣∣∣Tr
(
ŨJj

)∣∣∣2 .

(70)

Here, for the sake of simplicity, it was assumed that the intial random Clifford operation C0 and the last
unitary U0 are noiseless47. Then the third equality follows from the cyclicity of the trace and the unitarity of
the operations. Finally, the inequality is obtained from Cauchy-Schwarz. The quantity which would in this
situation follow a random walk in the Pauli space is the trace of the noisy layers ŨJj .

The empirical fidelities given in Eqs. (25) and (28) are in fact estimators of the overlap fidelity given above.
However, only in the CRB one can truly express their behaviour as random walks in the XYZ Pauli space.
Indeed, in the DRB, it only helps us to determine an upper bound to the overlap fidelity which also has the
additional difficulty of evaluating the trace of U†Jj , since no way has been found yet to connect Eq. (70) to
Eq. (28).

This brief investigation of the effect of correlated noise for DRB shows that this protocol despite being interesting
in terms of scalability adds some subtlety in the analysis of the output. It would require further investigation to
draw stronger conclusion on the relationship between the theoretical channel distances and the empirical data.

46This could be as well extended to higher order qubit gates.
47For noisy C0 and U0, a similar conclusion can be drawn if they are both elements of the Clifford group.
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E Sums of gamma distributions in DRB experimental data
A DRB data set with the Calcium ion had already been sampled before the RBF was developed. The set of
lengths was the same of the other DRB experiments in the main text and K = 500, but for Jj = 2 only 441
circuits were sampled due to experimental problems. For this experiment the gate set did not include Z gates
and the Stark shift phase was not taken care of. These differences make this data set not suitable for comparison
with the other data. Nonetheless these data are interesting because PDF(1 − F (Jj)) cannot be fit by a single
Γ distribution. With intuition one case see two Γ distributions in the following histograms. The speculation
is that not considering the Stark shift phase led to additional coherent errors which led to an additional Γ
distribution. It was attempted to produce a fit for them, but the double amount of parameters has not allowed
this yet. Truth be told, this data set was neglected for moths because related to worse experimental procedures
than what was presented in the main text and it was “rediscovered” only some days before the official end of
this project and not much time was left to try and fit sums of Γ distributions.

1− p 0.5−A χ2

1.38× 10−3 ± 2.2× 10−4 7.08× 10−3 ± 7.4× 10−4 35

Table 14: When compared to Table 9 and Table 5, these fitted parameters are worse.
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