
Enabling a quantum-gate-level interface
with a trapped ion control system

Master’s Thesis

Marco Erwin Stucki

marco.stucki@outlook.com

Institute for Quantum Electronics

Departement of Physics, D-PHYS

ETH Zürich

Supervisors:

Martin Stadler

December 9, 2021





Abstract

As quantum computing experiments grow in scale and become more robust to noise

the complexity of applicable experiments grows as well. At this point, it is a natural

step to switch from a low-level control of the experiments to a higher level. More pre-

cisely: switching from a pulse-level control to a control through a quantum programming

language.

The first step of this transition is established through this master’s thesis. After

choosing a suitable quantum programming language (Qiskit), an interface between the

trapped ion control system of the TIQI group (trapped ion quantum information group

of the federal institute of technology zurich) and this language was established through a

parser. A backend allows the transformation from a quantum circuit to a pulse schedule.

This schedule is then translated by the parser to a JSON-string that follows a well-defined

structure, can be read-in by the control system and executed on the hardware. In order to

utilise the strengths of the control system, additional instructions were added to Qiskit.

This way, the entire functionality of the control system can be utilised at a higher level.

This work enables a gate-level quantum program to be executed on a trapped ion setup

of the TIQI research group.

iii





Acknowledgments

Foremost I want to thank my supervisor Martin Stadler. During the time of this master

thesis and already before during a workshop at the TIQI group he was a reliable guide,

who would answer my questions even late in the evenings and give me constructive and

much appreciated feedback in our weekly meetings.

I want to thank Professor Jonathan Home and the whole TIQI group for letting me

take part in this project and contributing in this exciting research field. Unfortunately I

was not able to interact with the group that much due to the nature of my project and

the pandemic, which strongly encouraged working from home. Nevertheless you let me

feel part of this group especially during the three days of the annual group retreat.

Finally I thank my family particularly my mother Evelyne, father Urs and step-mother

Giusi wholeheartedly for their emotional and financial support and all the encouragement

through the six years of studying at ETH. And a special thanks to my partner Lisa who

was always next to me as a source of strength and inspiration during my master’s studies.

v





Contents

Abstract iii

Acknowledgements v

1 Introduction 3

1.1 Motivation for the Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Fundamentals 7

2.1 Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 TIQI Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Qiskit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Qiskit Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Qiskit Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Quantum Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.5 Important Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.6 Qiskit Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Qiskit Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Quantum Programming Language 35

3.1 Choosing a Quantum Programming Language . . . . . . . . . . . . . . . . 35

vii



Contents

3.2 Qiskit Configurations and Extensions . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Extension Instructions . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Pulse Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 JSON Structure & Parser 57

4.1 JSON Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Initial JSON Structure . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Problem with the Initial JSON Structure . . . . . . . . . . . . . . 62

4.1.3 Improved JSON Structure . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Design of the Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Important Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.2 Preparser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.3 Custom Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.4 Command Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.5 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.6 Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Conclusion & Outlook 87

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

viii



Contents

‘

1





Chapter 1

Introduction

The Trapped Ion Quantum Information (TIQI) group of the ’Eidgenössische Technische

Hochschule Zürich’ (ETHZ) conducts research on many topics in the experimental and

theoretical area of quantum information and quantum physics with trapped ions and

related fields. Many projects have the final goal of developing a universal quantum com-

puter on a trapped ion platform. A brief introduction to quantum computing in general

and its motivation can be found in section 2.1. A control system is utilised to perform

experiments on their multiple, independent trapped ion setups. This control system is

called modular advanced control of trapped ions (M-ACTION, more information in sec-

tion 2.2).

The goal of this master’s project was to enable an interface to the M-ACTION system

with a quantum programming language (see figure 1.1 for an overview). Qiskit was

chosen as this language. An introduction to Qiskit can be found in section 2.3 and a

comparison of Qiskit with other quantum languages as well as the reason for choosing

Qiskit is given in section 3.1.

An interface between Qiskit and the M-ACTION system is created through a parser that

translates a quantum circuit or a pulse schedule described in Qiskit to a JSON-string.

This string follows a specific structure, such that it can be read-in by TIQI’s control

system. Detailed information about the JSON structure can be found in section 4.1 and

about the parser in section 4.2.

At the end of the report an overview (see at the start of chapter 5) and an outlook (see

section 5.2) on the next steps of this project are given to the reader.

3



1 Introduction

Figure 1.1: This figure shows a broad overview of the contents of this master’s thesis (in
green) and how it schematically interacts with the current control setup (in
blue). With the interface created by this master’s thesis, gate- and pulse-level
experiments can be created in Qiskit and executed on the M-ACTION control
system. This interface consists of the quantum programming language Qiskit
and a parser function that translates an experiment defined in Qiskit to a
JSON-string following a specific structure. This string can then be read in
by the M-ACTION system and the defined experiment can be executed on
the physical system.

1.1 Motivation for the Interface

The development of quantum computers is reaching a point where they are not only

useful for quantum experiments, but, even though still subject to errors, can be used to

run small quantum circuitsi. The current stage of development is known as the NISQ

(Noisy Intermediate Scale Quantum) regime [1].

In order to efficiently define experiments for quantum computing, there must be a transi-

tion from a low-level, architecture-dependent control of the experiment to a higher-level,

architecture-independent control scheme. The motivation for this transition is that the

gate-level description of quantum circuits is platform independent and therefore does

iIBM offers public access to their quantum computer through the cloud.

4

https://quantum-computing.ibm.com/


1.1 Motivation for the Interface

not require any specialised knowledge about the underlying physical system that is used

for the quantum computation. At the same time the definition of a quantum circuit

is much more concise compared to an equivalent pulse schedule (low-level description).

This transition from lower to higher-level access is a natural technological step when-

ever a system becomes large and robust enough for more complex applications. This

master’s thesis is one of the first steps to enable a higher-level access to the quantum

computers of the TIQI group. The higher-level access in this case is accomplished by the

gate-level quantum programming language Qiskit. The interface between Qiskit and the

control system of the TIQI quantum computers is created via a parser that translates

experiments defined in Qiskit to a data structure (called the JSON structure) that can

be directly read into the control system, which then executes the experiment.

This master’s thesis is only one of the first steps towards the higher-level control. It

enables the interface between Qiskit and the M-ACTION system conceptually, which

means that a quantum circuit can be translated to a pulse sequence that can then be

executed on the control system. However, this pulse sequence does not correspond to the

actual physical implementation of the quantum circuit. To achieve this correspondence,

backends must be calibrated, which was beyond the scope of this master’s thesis and will

be addressed by another master’s thesis (more information in section 5.2).

5





Chapter 2

Fundamentals

This chapter gives a brief introduction of three topics that are important for understand-

ing this master’s project. The first section 2.1 covers the basics of quantum computing.

Section 2.2 gives an overview of the control system of the TIQI group. The third section

2.3 acts as an introduction to the quantum programming language Qiskit.

2.1 Quantum Computing

The goal of this section is to give the reader a brief background on quantum computing

and quantum programming on a conceptual level.

To highlight the difference between a quantum computer and a classical computer, we

start by describing the working principles of classical computing. A classical computer

stores information in the form of bits. A bit can be in exactly two states: a 0 state and

a 1 state. Multiple bits are used together to encode information in a binary encoding. A

classical computer acts on bits with classical gates. These gates are the well known logic

gates (AND, OR, NOT, XOR, etc.). By applying gates on bits any classical circuit can

be described.

A quantum computer on the other hand deals with quantum information, information

that obeys the laws of quantum mechanics. This quantum information is stored in qubits

(quantum bits). A qubit is a two-level system, a system that has two different energy

states: a ground state and an excited state. The quantum nature of these systems allows

the qubits to be in superpositions of both states (see subsection 2.1.1). A quantum

7



2 Fundamentals

computer uses quantum gates (specific quantum operations) to act on the qubits and

influence their state. In order to read out a quantum state the quantum information

must be projected to classical information. This is achieved by measuring the qubits. A

quantum measurement collapses the superpositions of qubits and therefore forces them

into one of the two states. These two states are then interpreted as a 0 or a 1 and one

bit of classical information can be extracted from them.

2.1.1 Basic Principles

In this subsection the working principles of a quantum computer shall be explained in a

bit more detail.

Qubit As mentioned before a qubit is a two-level system. Two-level systems can be

approximated by an anharmonic oscillator. Anharmonic oscillators have non-equidistant

spacings of energy levels. If only drive frequencies close to a single energy spacing are

applied an anharmonic oscillator will behave similar to a two-level system, because its

other energy levels are not addressed by this drive. Atoms (and thus also ions) have

inherently non-equidistant energy levels. Therefore, they are well suited as qubits. [2]

Mathematically, a qubit can be described using linear algebra. Each state of the qubit

can be represented as a basis vector of a two dimensional Hilbertspace. [3]

Usually the two states are represented as the standard basis.

|0〉 →
(
1
0

)
, |1〉 →

(
0
1

)
(2.1)

Superposition Superpositions are an inherently quantum mechanical property. Quan-

tum systems are described by wave functions. The square norm of a wave function de-

scribes a probability distribution of the possible quantum states. In the case of a qubit

there are only two possible states and the wave function of a qubit can be described

simply as the superposition of these two states (which are also wave functions). In a

8



2.1 Quantum Computing

superposition the wave function consist of both states simultaneously.

Mathematically a superposition of a qubit is expressed as a linear combination of these

two basis states.

|φ〉 = α |0〉+ β |1〉 (2.2)

Where the two coefficients are complex numbers and satisfy |α|2+|β|2 = 1. The square

norm of these coefficients represent measurement probabilities. Upon measurement of

the state |φ〉 the probability is |α|2 to measure the state |0〉, which corresponds to the

bit value 0. The measurement collapses the superposition and the qubit ideally stays in

the measured state. [3]

Entanglement Entanglement is a special case of a superposition of multiple quantum

objects. At least two qubits are required to create an entangled state (more general

at least two quantum objects). This state is a superposition of two pure qubit states

that upon measurement yields correlated measurement outcomes. While the result of a

measurement of a single qubit in an entangled state is still random, the outcome of the

second qubit measurement is predetermined by the first result.

Two classical bits can take the following states: 00, 01, 10, 11. A system of two qubits

has the states |00〉, |01〉, |10〉 and |11〉. These four states are basis states of the now four

dimensional Hilbertspace. Analogous to the one qubit example a four dimensional vector

can be associated with each of these states in the following way:

|00〉 →


1
0
0
0

 , |01〉 →


0
1
0
0

 , |10〉 →


0
0
1
0

 , |11〉 →


0
0
0
1

 (2.3)

A superposition in the two qubit case looks like the following equation:

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 (2.4)

9



2 Fundamentals

The four complex coefficient once again must obey the normalisation condition: |α|2 +

|β|2+|γ|2+|δ|2 = 1. As mentioned earlier, an entangled state is a state in a superposition

that yields correlated measurement outcomes. In the example of |ψ〉 this is the case if,

for example, α = δ = 1√
2
and β = γ = 0. We can rewrite equation 2.4 as:∣∣ψ′〉 = 1√

2
|00〉+ 1√

2
|11〉 (2.5)

A measurement of the first qubit of the entangled state |ψ′〉 projects the two-qubit system

in either the |00〉 or |11〉 state depending on whether the result of the measurement is 0

or 1. From the two qubit case one can extrapolate to the n qubit case. A number of n

classical bits can have 2n different states. Analogously, n qubits have 2n different states

that are basis states of a 2n dimensional Hilbertspace. [3]

As you can see the number of basis states doubles for each qubit, which means that

for each additional qubit twice the amount of complex numbers are required to fully

represent the quantum state. And multiple bits (depending on the accuracy) are required

to represent one complex number. This is a reason why large quantum systems are very

hard to simulate on classical computers.

Quantum Gates This paragraph is inspired by and based on reference Williams [4].

A quantum gate is a physical evolution of a qubit quantum system described by the

Schrödinger equation. The solution of the Schrödinger equation shows that the time

evolution of isolated quantum systems is performed by unitary operators. Quantum gates

are therefore unitary operators (that can be represented by unitary matrices) as long as

no measurements are conducted and no unwanted interactions with the environment

occur. The unitary property implies that these gates are also reversible.

There are single and multi-qubit gates. The action of single qubit gates are explained

most easily using the concept of the Bloch sphere. The degrees of freedom of a single

qubit state (up to a global phase) can be represented by the surface of a sphere called the

Bloch sphere. Any distinguishable qubit state is represented by a point on this sphere.

10



2.1 Quantum Computing

The action of single qubit gates can be expressed as rotations of the qubit state on this

sphere. Therefore, any single qubit gate can be expressed as composition of rotations

around the x, y and z axis of this sphere. In figure 2.1 one can see the action of a RY(π2 )

gate (rotation around the y-axis by 90°) on the state |0〉.

Figure 2.1: Actions of the RY gate visualised on the Bloch sphere. The blue arrow shows
the single qubit state |0〉 and the red arrow the state |+〉 = |0〉+|1〉√

2
. The state

of the red arrow is the results of a RY(π2 ) gate applied to the state of the
blue arrow. The arrows in between are possible intermediate states for the
rotation from the blue to the red arrow. This figure was created using the
Python packages Qiskit and Kaleidoscope.

Multi-qubit gates can have much more complicated interactions on both qubits. In

this brief introduction only two two-qubit gates will be mentioned as examples: the

SWAP gate and the CNOT gate. The SWAP gate simply swaps the state of qubit 1 with

the state of qubit 2. The action of the SWAP gate on an arbitrary two qubit state, as

in equation 2.4, can be understood by replacing the qubit basis states in the following

11



2 Fundamentals

manner:

|00〉 → |00〉 , |01〉 → |10〉 , |10〉 → |01〉 , |11〉 → |11〉 (2.6)

The CNOT gate (controlled-NOT gate) inverts the state of one qubit (target qubit) if

and only if the other qubit (control qubit) is in the |1〉 state. The action of the CNOT on

an arbitrary two qubit state, where qubit 1 is the control qubit and qubit 2 is the target

qubit, can be understood by replacing the qubit basis states in the following manner:

|00〉 → |00〉 , |01〉 → |01〉 , |10〉 → |11〉 , |11〉 → |10〉 (2.7)

Quantum Circuit Quantum algorithms can be described as quantum circuits, which

are ordered collections of quantum gates and measurements applied to qubits. A small

example of such a circuit can be seen in figure 2.2.

Figure 2.2: An example of a two qubit quantum circuit for visualisation. The circuit
contains a CNOT and a Hadamard gate and measurements of the two qubits
that are saved in classical registers. This figure was created using the Python
package Qiskit.

12



2.1 Quantum Computing

2.1.2 Motivation

There are many reasons for pursuing this interesting field. Quantum computers have an

advantage over classical computer as they can explore a much bigger configuration-space

with only a few qubits (because the dimension of the joint qubit state-space grows with

2n, where n is the number of qubits. This corresponds to 2n complex numbers, while

n bits can only represent a n digit binary number). Quantum computing also offers

new types of interactions between the qubits that allow the use of quantum effects, such

as interference, to be utilised and grant an enormous speed-up for certain algorithms

compared to their fastest classical counterparts. Two prominent examples of quantum

computing applications are unstructured search (which makes use of Grover’s algorithm)

and quantum chemistry applications.

Grover’s Algorithm Grover’s algorithm enables a polynomial speed up for searching

unstructured databases compared to classical algorithms. The algorithm starts with an

equal superposition of all possible database entries. It uses a method called ’amplitude

amplification’, where the probability amplitude of the searched entry is increased. This

method is applied repeatedly until a measurement will return the searched entry with

a high probability. For a database with N entries, Grover’s algorithm requires O(
√
N)

steps, where classical algorithms require O(N) steps. This is a quadratic speed up. It

can be proven that Grover’s algorithm is the best possible quantum search algorithm.

For more information check the reference of this paragraph LaPierre [2].

Quantum Chemistry Simulating quantum systems on classical computers poses many

different challenges, for example the scaling problem mentioned earlier (storing 2n com-

plex values for a n qubit system). Quantum computers are naturally more suited for

simulating quantum systems and are therefore extremely useful for certain quantum

chemistry problems. On quantum computers, wave functions can be encoded in multi-

13



2 Fundamentals

qubit entangled states, which then can be used to find the eigenstates and eigenenergies

of the simulated quantum chemistry system.

Fault tolerant quantum computers required for applications like Grover’s algorithm are

not available near term, but for quantum chemistry applications there are also algo-

rithms that are designed for NISQ Devices. These NISQ algorithms are defined with

the limitations of imperfect, noisy quantum computers in mind and therefore need to

leverage the strength of both classical and quantum computing by allocating different

task according to their strengths. Such algorithms are called HQC (Hybrid Quantum—

Classical algorithms). The VQE (Variational Quantum Eigensolver) is an example of an

HQC algorithm and provides approximate solutions to the time-independent Schrödinger

equation. The energy estimation of a VQE is performed by a method called ’Hamiltonian

averaging’. This technique makes up for the short qubit coherence times by sampling

the quantum computer multiple times. For more information check the reference of this

paragraph Cao et al. [5].

2.2 TIQI Control System

The goal of this section is to give the reader a rough overview of the current control

system of the TIQI group and how it is used to create experimental sequences. The

information for this section is taken from Vlad Negnevitsky’s thesis [6].

2.2.1 Overview

The TIQI control system is called M-ACTION system. It enables trapped ion quantum

experiments. These experiments can be understood at the lowest level as specifically

configured laser or RF pulse sequences combined with changes in the trapping potentials

of the ions. Trapped ion quantum experiments mostly rely on RF (radio frequency) pulses

to drive acousto-optic modulators which are used to modify the physical parameters

14



2.2 TIQI Control System

(frequency, phase and amplitude) of laser pulses. The laser pulse sequences interact with

the internal electronic and motional state of the ion and the changes in the trapping

potentials are used to control the position of the ions. The electronic components required

for these experiments must communicate to a central instance, which is the control

system, to send the individual sequences to each hardware component and ensure their

synchronized timing. The control system is also capable of feedback, which means that

sequences can be adapted in real-time depending on outcomes during the execution of a

sequence. During the execution of an experimental sequence all the pulses are physically

realised on their hardware components and interact with the trapped ions. This leads

to specific quantum mechanical interactions, which can represent, among other things,

quantum gates. The M-ACTION system can be structured into three major parts.

1. The first part is a control PC with a GUI (graphical user interface), where experi-

ments are started, modified and monitored.

2. The second part is a SoC (System on Chip) consisting of a dual-core ARM CPU

(central processing unit) and an FPGA (field programmable gate array), where

experimental sequences are processed, forwarded to the hardware components and

controlled in real-time (with feedback).

3. The third part consists of multiple different hardware components that physically

execute the experimental sequences, which includes DDS (direct-digital synthesiser)

boards for RF signal generation (which are used to modify laser beams or trapping

potentials).

The control system is a hybrid CPU- and FPGA-centric design. Together they cir-

cumvent the disadvantages of both individual architectures.

A problem with an FPGA-centric design is that experiments which require fast feedback

based on more complex algorithms must have this functionality coded into the FPGA

firmware. This is inflexible and much more error-prone than coding it into software.

15



2 Fundamentals

Such functionality is coded into the CPU in the hybrid design, where it can be tested

much more quickly and reliably.

An issue with a CPU-based design is that the CPU must remain unburdened to keep

the pulse sequencer on the FPGA supplied with instructions, otherwise it can lead to

timing errors. This problem becomes worse as the control system is scaled up and more

peripherals are added that need to be controlled by the same CPU. In the hybrid design

the burden of the CPU is distributed to FPGAs in the peripherals (in this case to the

FPGAs on the DDS boards). The design philosophy behind the FPGA architecture is

geared towards reducing the real-time communication (by making the individual compo-

nents more independent) and saving BRAM space (block random access memory on an

FPGA), which is a limited resource.

Experimental sequences are written in C++ and the compiled program is loaded into

the CPU. It provides instructions and parameters to the FPGA, where the sequences are

executed sequentially. It can run a given number of experimental shots independently

from the GUI and calculate the occupation probability of the quantum states in the

experiment. A newly compiled program must only be loaded infrequently because certain

types of values and settings, called remote parameters, can still be controlled via the

control PC. With the versatile CPU as control element, feedback and result analysis can

be executed in software instead of the much less flexible FPGA.

To reduce the demand on the CPU and prevent consequent timing errors the M-ACTION

system reduces its required data throughput by distributing instructions to standalone

DDS boards. These boards have their own FPGA, which is utilised for the low-level

control of the RF generation, and run independently once a pulse sequence is loaded

from the CPU. Only parameter updates and fork path changes are sent from the main

CPU in real-time.

16



2.2 TIQI Control System

Figure 2.3: A schematic overview of the four abstraction levels of ionpulse mentioned in
the continuous text. In the top level the server communicates with the GUI.
It handles changes of remote parameters and requests to execute experiments.
The experiments are programmed into ionpulse in the user code level. They
build up on the experiment class and the M-ACTION API given by the second
level. The lowest level contains the hardware drivers. This figure is taken
from Negnevitsky [6].

ionpulse Ionpulse is the software written in C++ that runs on the CPU. It is structured

hierarchically such that each stage builds on functions and classes from lower modules.

There are four different abstraction levels (see figure 2.3). The lowest one consists of

the drivers for the physical hardware. Two drivers are the interface between the CPU

and the FPGA cores. One of the two generates instructions which will be forwarded

through the FPGA to the DDS boards and the other one receives data through the

FPGA from PMTs (photo-multiplier-tubes), laser lock status signals and other external

triggers and generates digital outputs. There is an Ethernet, USB and serial driver as

well. The second level acts as a wrapper for these drivers. It provides a unified API

(application programming interface, see subsection 2.2.2) for all subsystems to create RF

pulse sequences and also provides a framework for experiments. This framework hides

the low-level interactions with the driver, which have to happen at the start and end of

an experimental sequence. Through the third abstraction level the different subgroups

of the TIQI group individually create their own specialised functions tailored to their

17



2 Fundamentals

experimental needs. These functions include, among others, cooling, state preparation

and qubit gates. Remote parameters are used to hold values which the user wants

to change and store in the GUI (like transition frequencies, laser amplitudes and pi-

pulse times). The third abstraction level also features the crystal classes. According to

Marinelli [7] these classes are a code representation of a trapped ion chain and its objects

contain information about the ion chain composition, the motional modes frequencies,

and all possible sequences to manipulate a specific ion chain. The fourth level handles the

requests from the control PC. For example, to execute experiments and modify remote

parameters.

The ionpulse API features an experiment class which links the program on the CPU

to the GUI of the control PC. On the control PC each experiment is displayed as a

page, where its remote parameters can be modified. An experiment consist of multiple

functions, which initialise the system, send the pulse sequences to the devices, run the

experiments multiple times to acquire statistics, do read out measurements and also cal-

culate the results from the raw measurement data, which can be user-defined.

2.2.2 Workflow

It will be explained how experiments for the M-ACTION system are created in ionpulse.

The fundamental elements of an experimental RF sequence are the following pulse classes:

Edge, Cap, Shaped and Wait. An Edge contains a wait time, after which a change in the

RF frequency, phase and/or amplitude is realised. A Cap is two Edges in a row, where

usually the first defines a rising edge of a pulse and the second a falling edge. A Shaped

pulse is similar to a Cap, with the difference that the amplitude does not change abruptly

at the start and end of the pulse but is shaped to narrow its frequency spectrum. A Wait

pulse corresponds to a delay. Objects from these classes contain the Settings that they

require to run. For an Edge these Settings consist of a frequency, phase, amplitude

18



2.2 TIQI Control System

and time parameter. These pulse objects will be physically realised by the DDS boards.

Each parameter in a pulse’s Settings has its own address and multiple pulses can use

the same Settings. This reuse of values may enable longer sequences to be stored on

the DDS boards and also allows modification of multiple pulses at once by changing

the referenced parameter. The pulses are arranged in sequences, which can also store

subsequences and instructions such as loops and forks. The firmware on the FPGA is

capable of branching/jumping between different subsequences, which is required for forks,

among other functions.

The M-ACTION system is capable of loops and conditional forks by changing pa-

rameter values stored in BRAMs in real time. A loop with iterated values is realised

by sending the value of the iterated Settings object to the DDS cards FIFOs (first-in

first-out buffer). The values from the FIFO are then written to the BRAM address of

the iterated pulse object in sync with the loop execution, such that for each iteration

the new value from the FIFO is applied. Forks are realised by changing a jump/branch

instruction conditioned on an experimental outcome.

Function pulses are another feature on the M-ACTION system. These are pulses that

can be reused without the need of sending the complete description of the pulse again to

the CPU, because their sequences are saved in the BRAM on the FPGA. An example of

a function pulse is the π
2 -X-rotation.

Execution of Experiments Once an experimental sequence is written using the C++

API ionpulse will be recompiled and loaded onto the CPU. Every sequence is checked

for validity and memory addresses are assigned to each of them, when the user calls the

sequence through the GUI. All the instructions are then transferred to the DDS boards.

This process has a duration of hundreds of microseconds up to milliseconds. After the

successful transfer the experiment can begin. It should be stressed that the CPU is not

processing the experimental sequence in real time, rather it constructs the sequences

19



2 Fundamentals

which are then executed autonomously on each DDS board with little to no interaction

with the CPU during execution.

During the construction of sequences on the CPU an organisation and check routine

(named ’Boss’) enforces equal pulse times globally on each DDS channel for synchro-

nisation purposes (see figure 2.4). These enforced time slots were no issue for the size

of the setup at the time the control system was developed. As up-scaling of quantum

computers are a major research goal, these slots have become more and more impractical

with the increasing size of the setup (more DDS channels to address more ions/qubits).

Figure 2.4: A schematic example of an experimental sequence. In this example one can
see how the ’Boss’ routine enforces time slots on all channels during the
construction of sequences (red lines). While on one channel either an Edge or
a Cap is defined a Wait instruction is introduced on all other channels. The
bottom line describes if an Edge or Cap instruction is used for each slot.

After completion of the experiments the results and the raw data for each experimental

run are returned to the control PC.

Instead of recompiling and reloading ionpulse to the CPU each time a new experiment

needs to be executed, this master’s thesis simplifies the process. Experiments can now

be described in Qiskit Pulse (see subsection 2.3.2) instead of C++ and ionpulse does not

20



2.3 Qiskit

have to be recompiled to use the new experiment. Instead a JSON-string, describing the

experiment, can be loaded directly into ionpulse. ionpulse will process the string and

internally create the pulse sequences for the experiment circumventing the creation of

the global slots depicted in figure 2.4. Additionally, Qiskit provides a direct link to the

quantum gate representation of an experiment.

2.3 Qiskit

Qiskit is the open-source quantum software development kit (SDK) of IBM. It is the

platform of choice to interface with the TIQI control systems, for many reasons (see

section 3.1). Throughout this thesis Qiskit is often called a quantum programming

language in the sense that it allows to describe quantum circuits, which can then be

transformed to an assembly language.

In this section I want to give a brief overview on the relevant capabilities of the plat-

form. Qiskit is split up in four elements: terra, aer, ignis and aqua. Each element has its

own GitHub repository and provides modules from different areas in quantum computing.

There are additional repositories beside the four elements, for example Qiskit Finance.

One can check out all the repositories on Qiskit’s GitHub page. In this project I worked

almost exclusively with the qiskit-terra API, since qiskit-terra lays the groundwork of

Qiskit. It contains, for example, all the Qiskit Circuit and Qiskit Pulse modules and

important functions which assemble quantum objects and transpile quantum circuits.

The information about the Qiskit functions and classes was taken from the Qiskit Terra

API reference [8]. There is a glossary at the end of this section due to the high number of

specific terms. The glossary has links to the sections, where these terms are introduced.

21

https://github.com/Qiskit


2 Fundamentals

2.3.1 Qiskit Circuit

Qiskit Circuit could be called the main module of Qiskit. It contains all the tools to define

and manipulate a quantum circuit (a collection of quantum gates and measurements

applied to qubits, see at the end of section 2.1.1).

QuantumCircuit The QuantumCircuit class is the main class in the circuit module.

It has more than 100 class methods, most of which are gate implementations. They are

added to a QuantumCircuit instance upon the call of the method. There are also other

useful non-gate instructions like reset(), which sets a qubit to a give state (1 or 0) and

barrier(), which ensures, that all the gates before and after the barrier will not overlap

after the circuit went through automated optimisation processes.

Qiskit Circuit gives the possibility to create conditional gates. That means gates which

are only applied to a specified qubit, if a certain measurement result (stored in a classical

register) has a certain value.

An important and useful method of the QuantumCircuit class is add_calibration.

With this function a gate and parameter pair can be mapped to a Schedule object (see

subsection 2.3.2). This Schedule object can be understood as the low-level instructions

for the physical realisation of this gate. The mapping is then applied when a circuit

is transformed to its pulse representation via the schedule function (see subsection

2.3.5). Such mappings can also be created through a Backend (see subsection 2.3.3).

The difference to the add_calibration method is that the latter is more flexible and a

specific calibration can be created on the fly for a gate without the need of instantiating

a complete new Backend.

2.3.2 Qiskit Pulse

The Qiskit Pulse module features tools to represent a pulse schedule. These schedules

can be generated from a QuantumCircuit object and therefore typically correspond to a

22



2.3 Qiskit

physical implementation of a quantum circuit. The schedules are intended to be played

directly on an arbitrary waveform generator (AWG) to physically realise the quantum

circuit as RF pulses on superconducting qubit devices (IBM’s preferred quantum comput-

ing platform). This is not a problem for the purpose of this master’s project, as trapped

ion quantum experiments also mostly rely on RF pulses (see section 2.2.1). Qiskit Pulse

offers therefore a low-level access for defining pulse sequences that can represent quantum

circuits.

Schedule The Schedule class similar to the QuantumCircuit class lies at the heart of

Qiskit Pulse. A schedule is a collection of timelines for different types of channels. More

information about the different channels will be explained in its own paragraph. All

pulse instructions (instructions that add pulses to a Schedule object or modify pulses,

see in the coming paragraph ’Pulse instructions’) need to be added to a Schedule or

ScheduleBlock object (see in the next paragraph). The Schedule keeps track of the

timing of the instructions (the time when the instructions will be executed and the

duration of the instructions), on which channel they are defined and checks that no

instructions overlap on the same channel. Figure 2.5 is made using the Schedule.draw()

method and illustrates an example Schedule object.

Schedule objects insist on explicit duration information. The explicit duration in-

formation is necessary to order the pulse instructions chronologically and ensure that

no pulses are overlapping. Parametrising durations is not straightforward. This was

problematic for applications in the Backend (see 2.3.3) or when Schedules are added as

calibrations to QuantumCircuits. Ideally one would have the possibility to parametrise

durations in Schedules as well to have maximal freedom of representing the circuit gate

parameters in the Schedules.

Pulse Builder and ScheduleBlock Qiskit offers a solution to the aforementioned

problem with the Pulse Builder context and the ScheduleBlock class. One can either

23



2 Fundamentals

Figure 2.5: This figure shows an illustration of a Schedule object. It consists of three
individual plots, one for each channel used in the Schedule. Each plot depicts
pulses with a normalised amplitude (between 0 and 1) on the y-axis and the
time in units ’dt’ on the x-axis. The light blue colour shows the real part of
the pulse and the dark blue the imaginary part. Pulses below the grey line
have a negative real/imaginary part. The round arrows show changes in the
phase for all future instructions on the corresponding channel. ’dt’ stands for
the minimum timescale given by the control system. This figure was created
using Qiskit.

use the Builder context to create a ScheduleBlock object or use the ScheduleBlock

class directly. Recent Qiskit examples promote the use of the first one. ScheduleBlock

objects are more flexible in the relative order of pulses. A ScheduleBlock can define

different alignment contexts (for example left aligned, where all pulses are played as soon

as possible or right aligned, where all pulses are played as late as possible) and even use

pulses with parametrised durations. A parametrised duration of in ScheduleBlock can

be used to modify the duration of multiple pulses simultaneously and dependent on each

other. For example, ’Pulse 1’ and ’Pulse 2’ may use the same duration parameter. This

way one can create a ScheduleBlock where ’Pulse 1’ has always twice the duration of

24



2.3 Qiskit

’Pulse 2’. Multiple different Schedules can be created by binding different values to the

parameterized ScheduleBlock.

During the writing of my thesis I discovered that ScheduleBlock objects can, counter

to what I have tried at an earlier point, now be very useful, because there is a way

to add them to a Backend object (see the ’Commands’ paragraph in subsection 2.3.3).

Unfortunately, I found out about this too late. For this reason both the Builder context

and ScheduleBlock class are not used in the scope of this master’s thesis, rather the

focus was put on the Schedule class as this is the underlying class that is needed in

many different contexts.

Channels There are multiple channel classes for different purposes. A channel takes

an index as an argument. The channel type and the index together would uniquely

correspond to a physical channel, for example a specific RF source. There are four types

of channels: PulseChannels, AcquireChannels, MemorySlots and RegisterSlots.

• PulseChannel – In an experiment a PulseChannel object corresponds to a physical

device that can generate a pulse. In superconducting circuit experiments there is

typically one channel to address each qubit individually (see DriveChannel below).

In trapped ion quantum experiments there is usually no one to one mapping be-

tween channels and ions. Often multiple ions are addressed by a single laser. This

makes the use of these channels, which are designed with a superconducting circuit

setup in mind, more challenging for us.

– DriveChannel – DriveChannel objects typically have a one to one correspon-

dence to qubits, in a sense, that the index of the DriveChannel is the same

number as the index of the qubit that this DriveChannel is driving. Therefore,

the frequencies of DriveChannel objects are typically close to the resonance

frequency of the qubits they are driving.

– ControlChannel – ControlChannel objects are less specific than DriveChannel

25



2 Fundamentals

ones. They represent remaining auxiliary channels, that can be used for ex-

ample, in multi-qubit gates. Specifically, as these channels are designed for su-

perconducting quantum circuits, these channels are used, among other things,

to drive the flux lines that tune the frequency of the superconducting qubits.

– MeasureChannel – These channels are used to readout qubit states, where

typically the index of the MeasureChannel corresponds to the qubit which is

read out.

• AcquireChannel – An AquireChannel is used for measurements. Different from

the MeasureChannel it does not drive the qubit to readout, rather it activates the

data acquisition process for a certain time window. In the example of a trapped ion

experiment, it could activate a PMT and in a superconducting circuit experiment it

activates the data acquisition on the readout channels of the circuit, which are only

activated for a small time window to minimize interference of background noise.

• MemorySlot – A MemorySlot is a channel, where a measurement outcome can be

saved and readout again at a later time. The outcome is calculated by a kernel and a

discriminator specified in an Acquire instruction (see in the following paragraph).

A kernel is a mathematical function that is used to integrate the raw data of

each measurement shot. A discriminator is used to distinguish between possible

measurement outcomes (1 or 0 for a single qubit measurement).

• RegisterSlot – RegisterSlot objects are very similar to MemorySlot objects,

where the only difference is the timescale they are operating on. While a MemorySlot

object is used for less time critical data acquisition RegisterSlot objects are used

when a measurement outcome will be used very soon, eg. for a conditional gate.

The distinction between these two slots makes most sense for a superconducting

circuit platform, where timing is a much greater constraint than in a trapped ion

platform.

26



2.3 Qiskit

Pulse instructions Qiskit Pulse offers multiple different instructions to define Schedule

or ScheduleBlock objects. All these instructions take the PulseChannel, on which they

act, as an argument. The pulse instructions are:

• Play – The Play instructions adds a pulse, which is either a waveform (a list of

amplitude values saved under a reference in a pulse library) or a ParametricPulse

(a class instance that defines a waveform, see next paragraph), to a Schedule.

• Delay – The Delay instructions can be used to define gaps between pulses on a

channel. These gaps are time intervals in which the amplitude on the channel is

zero.

• ShiftPhase – The ShiftPhase instruction shifts the phase on the channel it is

applied to by a given amount. Shifting means that the phase is adjusted relatively

to the current phase of a channel.

• SetPhase – The phase of a channel is set to the input of the instruction independent

of its earlier value.

• ShiftFrequency – This instruction is the frequency equivalent to the ShiftPhase

instruction.

• SetFrequency – This instruction is the frequency equivalent of the SetPhase in-

struction.

• Acquire – The Acquire instruction must be applied to an AcquireChannel. It

activates the data acquisition on this channel for a given amount of time and stores

measurement results in either a RegisterSlot or a MemorySlot. A kernel and a

discriminator can optionally be supplied to calculate the measurement result.

• Call – This instruction can be used to call a subroutine (of type Schedule or

ScheduleBlock) in a Schedule. This can allow for code reuse in the Qiskit session

27



2 Fundamentals

and in the hardware if supported. The Call instruction is represented as a single

instruction in a Schedule, but once this Schedule is assembled the Call instruction

is replaced by the assembled contents of its subroutine.

• Snapshot – The Snapshot instruction does not have a physical meaning. It is used

to collect a snapshot of, for example, a quantum state at a certain point in time in

a Schedule during a simulation.

It is important to note that all phase and frequency changes affect channels and not

pulses.

Parametric Pulses ParametricPulse is a base class in Qiskit for multiple classes,

which can be used together with the Play instruction to add the corresponding parametrised

pulse shapes to a Schedule. The parametric pulse library contains the following

ParametricPulse types: Constant (a pulse with a constant amplitude), Drag (deriva-

tive removal by adiabatic gate, see in reference Gambetta et al. [9]), Gaussian and

GaussianSquare (a Constant pulse with a gaussian shaped rising and falling edge). For

example, a Constant object can be used together with a channel as arguments for the

Play instruction.

2.3.3 Backend

The Backend is an object in Qiskit that stores important information about the physical

setup. Important attributes are the configurations and the pulse defaults, which are

elaborated in the paragraphs below. The Backend is technically not necessary at all, but

having all the configurations in one place and easily accessible makes function calls much

cleaner. For example it reduces the arguments of the assemble function from thirteen

to just two. In other words, all functions that use the Backend could also be executed

by supplying all the necessary members from the Backend directly.

28



2.3 Qiskit

Configurations The configuration part of the Backend (given by the

PulseBackendConfiguration class) stores many values that don’t change often. For

example information about the channels of the hardware, the native gate set of the

quantum computer, how many qubits the quantum computer has access to etc. The

Backend configurations are needed, for example, in the transpile function and the

assemble function (see subsection 2.3.5). This part of the Backend is needed for both

the Circuit and the Pulse side of Qiskit.

Pulse Defaults The pulse defaults (given by the PulseDefaults class) define default

settings, which are needed to translate a QuantumCircuit object to a Schedule. These

are: the estimated qubit frequency, the estimated measurement frequency and the pulse

library, where custom wave forms are saved that can not be defined via ParametricPulses

and the Command definitions.

Commands To translate Qiskit Circuit instructions to Qiskit Pulse, Command objects

can be defined in the Backend. These Commands will each be transformed to a single

entry in a map (called the instruction_schedule_map) that maps circuit instructions

applied to a specific qubit to its pulse Schedule. In this thesis the term Command is

used when the Command class or an object of that class is meant. On the other hand,

the term ’command’ is used when an entry of the instruction_schedule_map is meant,

since the entries of this map can be created by Command objects. A Command (generally

also a command) is defined by the circuit instruction name it is replacing, the qubits

this instruction is acting on, and the Schedule that the instruction will be translated

to. The Schedule of a Command is given as a sequence of PulseQobjInstructions (see

subsection 2.3.4). These objects are initialised with all the information of the pulse

instructions they will represent plus their channel and their start time relative to the be-

ginning of the Schedule. During the initialisation of the Backend instance, the sequence

of PulseQobjInstructions is converted to their pulse instruction equivalent. These

29



2 Fundamentals

instructions with their channel and time arguments are then combined to a Schedule

objecti. It is possible to have parametrised entries in the command Schedule. These

entries can either be filled in directly from the circuit instruction in the scheduling pro-

cess (see subsection 2.3.5), in the case of phase arguments, or after the translation of

the QuantumCircuit to the Schedule. The usage of frequency and phase arguments in

Commands is straight forward. Parametrised pulse amplitudes can be used in the com-

mand Schedule as well, but it has to be done in a specific way. In the examples of

Backends that I saw, PulseQobjInstructions were initialised by their from_dict()

method, where a Python dictionary can be handed to the function and the concrete

object is directly created. The problem with this implementation is that the amplitude

argument of a ParametricPulse will run through a check that only allows numerical

values and no parameters. This seems like an unnecessary restriction. Therefore, I cre-

ated a Github issue to address this problem. From the answer in this issue I learned

that using Commands is an old way to create the instruction_schedule_map. The new

way seems to be developed around the time I was researching how to create a func-

tioning Backend. This is a great example to show that Qiskit is very actively devel-

oped. The new way to create entries in the instruction_schedule_map is by using

the backend.defaults().instruction_schedule_map.add() method once a Backend

is initialized. This way even ScheduleBlock objects (see the paragraph ’Pulse Builder

and ScheduleBlock’ in subsection 2.3.2) can be used in these mappings, which means

that also parameterized durations are allowed and Commands, which inherently rely on

the Schedule representation, which does not allow parametrised durations, seem obso-

lete. This is great news for the future of this project. Unfortunately, I learned about it

too late to make the necessary adaptions in the Backend. Therefore, the Command class

is still very prominent in this project.

iInstead of mentioning the PulseQobjInstruction sequence of the Command it will be called com-
mand Schedule in the rest of this thesis, because this is simpler to understand and is what the
PulseQobjInstruction sequence will be transformed into.

30

https://github.com/Qiskit/qiskit-terra/issues/7318


2.3 Qiskit

2.3.4 Quantum Objects

Quantum objects (Qobj) are Qiskits approach for standardised representations of actions

on quantum hardware such as gates on the quantum circuit level and pulses on the pulse

level. Quantum objects exist for the assembly languages OpenQASM (open quantum

assembly language) and OpenPulse. OpenQASM defines a standardised gate-level de-

scription of quantum circuits in a JSON structure while OpenPulse does the same for

quantum experiment with pulse level control. These two JSON structures are explained

in the reference McKay et al. [10].

QasmQobj The QASM quantum object is created by applying the assemble function

together with a Backend on a QuantumCircuit object. It contains the whole description

of the experiment as a sequence of gates in a standardised structure.

PulseQobj The pulse quantum object (PulseQobj) is created by applying the same

assembly function together with a Backend on a Schedule. It contains a sequence of

PulseQobjInstructions. The parser in this master’s project will translate the PulseQobj

of a Schedule to a representation, which is straight forward to read in and execute by

the TIQI control system (specifically ionpulse).

PulseQobjInstruction It is a generic class for all kinds of pulse instructions. Its

attributes are restricted to a set of quantities, but using these allows many different kind

of instructions to be represented.

2.3.5 Important Functions

Some Qiskit functions are very important and their task in the Qiskit workflow is ex-

plained here briefly.

31



2 Fundamentals

transpile The transpile function takes a QuantumCircuit object and the Backend

as an input and translates all the quantum gates used in the circuit to an equivalent

representation using only gates from the native gate set defined in the Backend. The

transpilation process can be customized with many different optional inputs to optimize

the resulting QuantumCircuit. For example different optimisation levels can be applied

to reduce the complexity (the gate count) of the QuantumCircuit object. All other

transpile() specifications can be looked up on the Qiskit documentation.

assemble The assemble function can be applied to either a QuantumCircuit or a

Schedule object. It will translate these complex objects to the simplified quantum

objects, where only the necessary information is kept. The assemble function makes

use of the information in the Backend for this process. In the case of QuantumCircuit

objects, a QasmQobj is created. In the Pulse case, there are specific converters for each

instruction that define how the information is transferred from the instructions to the

PulseQobjs (which correspond to a description of the pulse sequence in the OpenPulse

structure). These converters are implemented in such a way that they can be easily

overridden from outside the Qiskit module. This allows for a customised translation

of the instructions if necessary (see the paragraph ’Converter Overwrite and Command

labels’ in subsection 3.2.1).

schedule The schedule function bridges the Qiskit Circuit and Pulse representations.

The function takes a QuantumCircuit and a Backend as an input and applies the gate

calibrations stored in the QuantumCircuit object (if any) to translate the gates to their

corresponding Schedules. If no calibrations were added to the QuantumCircuit the

commands in the Backend are used for this transcription process. The high-level quantum

circuit can this way be transformed to a low-level pulse schedule.

32

https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.html?highlight=transpile#qiskit.compiler.transpile


2.3 Qiskit

pad Padding is a process where all gaps in a Schedule are filled with Delay objects of

the same duration. The Qiskit pad function does exactly that and is useful for parsing

purposes.

2.3.6 Qiskit Workflow

After explaining the use of many different Qiskit classes and functions what follows

now is an overview of how these objects may be applied to end up with an executable

experiment. To create an executable quantum experiment on the TIQI control system

one needs a PulseQobj. There are three different ways to create one.

1. The user can start with the description of a quantum circuit purely in Qiskit Circuit.

The next step is to transpile it via a Backend to a QuantumCircuit object that

only contains native gates and then scheduling it to the Pulse representation. The

resulting Schedule is then assembled to the PulseQobj. This way, the user may

define an experiment utilising only a gate-level description without needing any

knowledge of pulse-level instructions.

2. Alternatively the user can describe a Schedule solely by pulse instructions. Once

the Schedule is finished it can then be assembled to the PulseQobj. This way

the user has maximum freedom to define his experiment, but requires an in depth

understanding of the low-level control.

3. Instead of directly assembling the scheduled QuantumCircuit in the first example

the user can adapt the experimental Schedule by adding pulse instructions before

and after the scheduled QuantumCircuit and assemble it then. This way the user

can take advantage of predefined gates but still has the freedom to make custom

adaptations.

A parser which was written as part of this master’s project will then take the PulseQobj

and transcribe it to a JSON structure that can be used to instantiate the corresponding

33



Qiskit Terms

objects in ionpulse dynamically which then can be executed on the hardware.

2.4 Qiskit Terms

assemble The Qiskit assemble function is introduced in this paragraph. 21, 28, 29,

31–33

Backend The Qiskit Backend class is introduced in this paragraph. 22, 23, 28–33

Command The Qiskit Command class is introduced in this paragraph. 29, 30

instruction_schedule_map The Qiskit instruction_schedule_map class is introduced

in this paragraph. 29, 30

ParametricPulse The Qiskit ParametricPulse class is introduced in this paragraph.

27–30

PulseQobj The Qiskit PulseQobj class is introduced in this paragraph. 31–33

QuantumCircuit The Qiskit QuantumCircuit class is introduced in this paragraph. 22,

23, 29–33

Schedule The Qiskit Schedule class is introduced in this paragraph. 22–25, 27–33

schedule The Qiskit schedule() function is introduced in this paragraph. 22, 32, 33

ScheduleBlock The Qiskit ScheduleBlock class is introduced in this paragraph. 23–25,

27, 30

transpile The Qiskit transpile function is introduced in this paragraph. 21, 29, 32, 33

34



Chapter 3

Quantum Programming Language

This chapter is focused on quantum programming languages in the perspective of ion

trapping. This includes explaining why Qiskit was chosen as the language of this project

(see section 3.1) and describing the work on and with Qiskit (see section 3.2).

3.1 Choosing a Quantum Programming Language

The choice of the quantum language is important for multiple upcoming projects in the

TIQI group which will build on this work. The choice is also significant for the interface

between this language and the control system. First of all, the specialised vocabulary

shall be clarified. The following direct quotes stem from reference LaRose [11] (2019).

Vocabulary regarding quantum programming languages

Quantum assembly/instruction language – such a language "instructs the quantum com-

puter which physical gates to implement on which qubits". (p. 5)

Quantum programming language – allows "to manipulate quantum (assembly) languages

in a more natural and readable way for programmers ". (p. 2)

Quantum software platform – stands for a "collection of a quantum programming lan-

guage with other tools, such as compilers and simulators". (p. 2)

gate-level quantum software platform – stands for a quantum software platform, which is

"designed around the circuit (gate) model of quantum computing". (p. 2, 4)

transpile/transpiler – refers to rewriting a given quantum circuit to a new universal set

of gates and often times optimising the circuit in the process. This is commonly used to

35



3 Quantum Programming Language

translate an arbitrary circuit to a platform specific set of basis gates.

Many different languages were evaluated qualitatively after the following criteria:

• Compiling and Optimisation – The quantum programming language must be

able to compile quantum code to a general format and ideally offer optional opti-

misations of the defined quantum circuit. This sort of compilation is necessary and

therefore a hard criterion for the evaluation.

• Open-source – The quantum programming platform must be open-source. This

is a hard criterion, because access to the source-code is necessary to directly in-

terface with the language and possibly extend needed functionality. If a problem

arises while interfacing with an open-source quantum language the problem can be

examined thoroughly by looking through the source code of the language, check

what is causing the problem and maybe circumvent it this way. And to extend the

needed functionalities of a language it makes sense to use existing classes in the

language as an orientation to create the extensions compatible with the existing

framework. Additionally, it ensures long-term availability free of charge.

• Abstraction level – On which level does this programming language interact

with qubits? The preferred interaction level is low, since in the NISQ regime only

few qubits are available. One must be able to access them directly to be able to

optimise processes and use the limited resources most efficiently. For this reason,

quantum software platforms which support gate-level manipulation are preferred.

• Documentation – How well documented is the programming language? A de-

tailed documentation is preferred, as group members will need to learn the lan-

guage. This is easier if the language is well documented.

• Community/Activity – How well known is the programming language and how

36



3.1 Choosing a Quantum Programming Language

active is its community? Also how actively is the language developed? Program-

ming languages which are well known and serve an active community are preferred,

because this increases the likelihood that the development of the language will con-

tinue in the future and that forums for exchange, discussions and questions exist.

• Additional functionalities – Does this programming language offer useful extras

such as simulation or visualisation tools? These can be considered as upsides.

The GitHub page in reference Fingerhuth et al. [12] acts as a great overview for existing

open-source quantum programming languages. From the following two sources, LaRose

[11] and Heim et al. [13], information about some handpicked quantum programming

languages was acquired. This selection was extended by a few choices from the afore-

mentioned GitHub page. A complete list of which quantum programming languages were

inspected (with varying depth) follows:

• Braket – Amazon:

"The Amazon Braket Python SDK is an open source library to design

and build quantum circuits, submit them to Amazon Braket devices as

quantum tasks, and monitor their execution."

(Braket Documentation, last accessed 25.11.2021)

Braket is an open-source gate-level quantum programming platform programmed

in Python. It provides a documentation, a GitHub page with examples, simulators,

and access to real quantum computers through the amazon web servicei.

• Cirq – Google:

"Cirq is a quantum programming library for Python with a strong focus

on supporting near-term quantum hardware."

(Heim et al. [13], 2020, p. 717)
iBraket features. Accessed July 1, 2021

37

https://amazon-braket-sdk-python.readthedocs.io/en/latest/index.html
https://amazon-braket-sdk-python.readthedocs.io/en/latest/index.html
https://github.com/aws/amazon-braket-sdk-python
https://aws.amazon.com/braket/features/ 


3 Quantum Programming Language

Cirq is an open-source gate-level quantum platform programmed in Python. It

provides a documentation, access to quantum computers of AQT, a compiler and

according to Fingerhuth et al. [14] a simulator and a circuit drawer.

• Forest – Rigetti:

"Forest is a quantum software platform developed by Rigetti which in-

cludes pyQuil, an open-source quantum programming language embed-

ded in the classical host language Python, for constructing, analyzing,

and running quantum programs."

(LaRose [11], 2019, p. 4)

Forest is an open-source gate-level quantum software platform. It features a de-

tailed documentation with examples, tutorials, a community slack channel, a sim-

ulator, access to a real quantum computer, and a compiler.

• OpenQL – QuTech TU Delft:

"OpenQL (is) an open-source high-level quantum programming frame-

work. OpenQL is mainly composed of a quantum programming inter-

face for implementing quantum algorithms independently from the target

platform, and a compiler which can compile the algorithm into executable

code for various target platforms"

(Khammassi et al. [15], 2020, p. 1)

OpenQL is programmed in Python and C++. It provides a detailed documentation,

a compiler which uses the quantum assembly language cQASM (common QASM),

a simulator and a instruction timing diagram generator.

38

https://quantumai.google/cirq
https://pyquil-docs.rigetti.com/en/latest/
https://openql.readthedocs.io/en/latest/


3.1 Choosing a Quantum Programming Language

• ProjectQ – ETHZ:

"We introduce ProjectQ, an open source software effort for quantum com-

puting ... (featuring) a compiler framework capable of targeting various

types of hardware, a high-performance simulator with emulation capabil-

ities, and compiler plug-ins for circuit drawing and resource estimation."

(Steiger et al. [16], 2018, p. 1)

Also ProjectQ is an open-source gate-level quantum software platform written in

Python. It provides a documentation with examples, a simulator, access to IBM’s

quantum computers, and a circuit drawer.

• Qiskit – IBM:

"Qiskit provides a Python-based programming environment that allows

one to generate and manipulate OpenQASM programs. It provides pow-

erful abstraction capabilities, such as the ability to synthesize gate de-

compositions for arbitrary isometries and certain unitary transforma-

tions"

(Heim et al. [13], 2020, p. 717)

Qiskit is as well an open-source gate-level quantum software platform programmed

in Python, but also usable in JavaScript and Swift. Similar to Forest, it features a

thorough documentation, tutorials, a community slack channel, simulators, access

to real quantum computers (IBM Quantum), a compiler which uses the quantum

assembly language OpenQASM (open quantum assembly language), and a circuit

drawer to visualise programmed quantum circuits.

39

https://projectq.readthedocs.io/en/latest/index.html
https://qiskit.org/documentation/
https://github.com/Qiskit/qiskit-tutorials


3 Quantum Programming Language

• Quantum Development Kit (QDK) – Microsoft:

"We present Q#, a scalable, high-level, domain-specific language for

quantum programming ... offering a high level of abstraction"

(Svore et al. [17], 2018, p. 10)

QDK is an open-source gate-level quantum software platform. It uses the quantum

programming language Q# written in C#, which is designed for higher abstraction.

It provides a documentation, and a simulator.

• Quipper – Artiste-qb:

"It (Quipper) addresses the problem of describing quantum computations

at a practical scale, and demonstrated by describing quantum circuit

representations with up to trillions of quantum gates."

(Heim et al. [13], 2020, p. 718)

Quipper is a quantum programming language embedded into Haskell.

• Scaffold/ScaffCC – Princeton:

"Scaffold is designed for expressing quantum algorithms in a high-level

format that can be compiled into low-level implementations whose prop-

erties can be studied."

(Heim et al. [13], 2020, p. 719)

Scaffold is a standalone quantum programming language which makes use of the

open-source compiler ScaffCC to translate the instruction to QASM. One can find

a user manual and code samples on the ScaffCC Github page.

40

https://docs.microsoft.com/en-us/azure/quantum/
https://github.com/epiqc/ScaffCC


3.1 Choosing a Quantum Programming Language

• Silq – EHTZ:

"Silq, a high-level quantum language enabling safe, automatic uncompu-

tation."

(Bichsel et al. [18], 2020, p. 287)

Silq is a high-level quantum programming language, which does not use the context

of any base programming language. It provides a documentation, and a proof-of-

concept simulator.

Now that the evaluated quantum programming languages were briefly introduced, some

can already be discarded.

As already mentioned in the direct quotations above, QDK and Silq are designed towards

higher level programming, which is not so relevant on NISQ devices in the near future.

Even though Q#, the quantum programming language of QDK, features a gate-level

representation, according to reference Heim et al. [13], it is still targeted at enabling

large-scale algorithms on future quantum computers.

Quipper falls into the same category. It addresses the problem of quantum computation

at a, from the current context, impractical and immense scale (’trillions of gates’, Heim

et al. [13], 2020, p. 718), which is not applicable in the near future. Also according to

Fingerhuth et al. [14], Quipper is no longer actively developed. This rules it out com-

pletely.

This leaves seven suitable quantum programming languages (Braket, Cirq, Forest,

OpenQL, ProjectQ, Qiskit, Scaffold). The direct comparison makes apparent that these

languages differ quite a bit in the community criterion and in the documentation. Pro-

jectQ and Braket lack a detailed documentation with examples and tutorials and even

though Scaffold features a manual and some example scripts, it is in my opinion clearly

41

https://silq.ethz.ch/documentation


3 Quantum Programming Language

inferior compared to the excellent documentation of the remaining languages.

To find the best suited language out of the final four, one can compare them by develop-

ment activity and community activity. To quantify this aspect, the number of commits

during last year on their GitHub pages are compared.

activity comparison pyQuil (Forest) Qiskit Terra Cirq OpenQL
total number commits 1029 5709 2327 2934

total number commits in last year 45 1047 649 863
number of contributors 81 304 135 23

ratio of open issues to closed issues 0.30 0.21 0.31 0.25

Table 3.1: Comparison of remaining four suitable languages in terms of activity and com-
munity. Total number of commits last year is in the interval July 5. 2020 –
July 04. 2021. All the data is collected from the corresponding GitHub pages,
which are linked in the names of the languages in this table. Out of all the
different Qiskit projects, Terra is the most relevant regarding this master’s
thesis, therefore the information regarding Terra is listed. Qiskit Terra excels
in all four disciplines.

Tabular 3.1 reveals, that Qiskit is the most actively developed quantum programming

language out of the remaining four. Reference LaRose [11] documents that IBM was

very successful in building an active community of student and researchers which use

Qiskit. The reference also stresses how Qiskit stands out with its large numbers of

tutorial notebooks on a broad rage of topics including even didactic quantum games.

To summarise, Qiskit is the clear winner out of the initial set of languages as it more

than satisfies all of the previously described criteria.

Qiskit is even more convincing, when we take additional features into account, in par-

ticular Qiskit Pulse. Qiskit Pulse is an extension of Qiskit, which allows compiling a

quantum circuit not only to the QASM assembly language, but directly to a pulse sched-

ule. These pulse schedules are intended to be easily mappable to the arbitrary waveform

generators of a superconducting circuit control system. Even though the TIQI group

doesn’t work with superconducting circuits, an experiment on a trapped ion setup is still

defined through a schedule of RF and transistor-transistor logic (TTL) pulses on many

42

https://github.com/rigetti/pyquil
https://github.com/Qiskit/qiskit-terra
https://github.com/quantumlib/Cirq
https://github.com/QE-Lab/OpenQL


3.2 Qiskit Configurations and Extensions

channels, which lines up almost perfectly with the capabilities of Qiskit Pulse.

Choosing Qiskit as a quantum programming language for this project and for the TIQI

group seems justified. Qiskit not only excels in the key requirements, but offers even

more, like the Qiskit Pulse functionality.

In this thesis Qiskit will be called a quantum programming language for readability. It

may be a bit imprecise as Qiskit is rather a gate-level quantum software platform or a

’SDK (software development kit) for working with quantum computers’ as it is called on

the Qiskit website (last accessed 03.12.2021).

3.2 Qiskit Configurations and Extensions

This section is focused on Qiskit configurations and extensions to fit the needs TIQI

group and enable the full potential of ionpulse through Qiskit. The configurations in-

clude mostly a usable Backend with Command instances (see subsection 3.2.1). The Qiskit

extensions signify additional pulse instructions (called extension instructions, see sub-

section 3.2.1) which enable all the Qiskit functionalities and additional parametric pulse

types (see subsection 3.2.3).

3.2.1 Backend

What the Backend is and how it is used is explained in section 2.3.3. Here, the focus lies

on how the Backend was configured and extended for the purpose of this project. Most

specific configurations, for example all the commands, are only for demonstration and

testing purposes and do not have an explicit physical meaning.

In subsection 2.3.3 in the ’Commands’ paragraph was mentioned that a better way to

add entries to the instruction_schedule_map was developed, which maps circuit in-

structions to pulse schedules in the Backend. This makes the Command class practically

obsolete. Because this was discovered only during the writing process of the thesis,

43

https://qiskit.org/


3 Quantum Programming Language

the project still makes heavily use of the Command class and word ’command’. Not ev-

erything regarding commands is obsolete, only the way to add them to the Backend.

A lot what is written in this thesis about commands still applies to the entries of

the instruction_schedule_map (which what is referred to when ’command’ instead

of Command is used).

Configuration The Backend configuration dictionary stores a lot of different informa-

tion. The most notable entries are:

• the number of qubits. In the example Backend the number of qubits was chosen to

be three.

• the basis gates and their QASM definition, which describes the effect of the gate on

its qubits in terms of CNOT gates and single qubit rotations. The QASM definition

is necessary for the Qiskit simulators and transpile function to understand the

effect of a potentially arbitrary gate in the basis gate set. The Backend in this

project uses the following operations: Rotations of arbitrary angles around the x-

and y-axis (RX and RY gates), plus a two-qubit rotation of an arbitrary angle for

qubit pairs (RXX/MS gate).

• the available channels, their purpose and their default frequency. The Backend

created for this project uses three drive channels and also three measure channels,

one for each qubit, six control channels and two acquire channels.

Gate Commands Each of the three basis gates in the Backend configuration re-

quire a command (see the ’Command’ paragraph in subsection 2.3.3) for each different

set of qubits that it can be applied to. These commands enable the translation of a

QuantumCircuit object to a Schedule object. Therefore, three commands for the RX

gate (one for each qubit), three for the RY gate and up to six for the two qubit gate

RXX, but since this gate is symmetric on both qubits (Sørensen & Mølmer [19]), only

44



3.2 Qiskit Configurations and Extensions

three commands are required. So together there are nine gate Command examples stored

in the Backend.

Non-gate Commands Commands in the Backend can also include non-gate instruc-

tions. The most common one would be a measure instruction for each set of qubits that

are measured simultaneously. Other instructions can be defined and added as a com-

mand as well. These commands could describe, for example, an initialization sequence

for qubits or any other non-gate instruction. In this project there are two additional

non-gate command examples. One is a simple cooling instruction, the other is called

test-command. The cooling command has a circuit instruction counterpart. This en-

ables it to be added to a QuantumCircuit object. When this circuit is transformed

to a Schedule the cooling Schedule (that is defined in the Command as a sequence of

PulseQobjInstructions) will be inserted in place of the cooling instruction analogously

to how gates are replaced. The test-command does not have a circuit counterpart as it

was only used for testing the Qiskit extensions, Loop, Fork and Sync, in the Command

framework and to parse them inside Commands. One can call a command that does

not have a circuit representation directly from the Backend instance to utilize the its

Schedule as a template and customize it by binding parameters.

Because the cooling command has a circuit counterpart, cooling must be added to the

basis gate set in the Backend. Otherwise the transpile function will raise an error, as

this instruction would be unknown by the Backend, even though cooling is not a gate

at all. The measure instruction is an exception and does not need to be declared in the

basis gates. The test-command is not needed to be added to the basis gates, since it

does not have a corresponding circuit instruction. Therefore it will never run into the

transpilation problem.

Following the cooling example any kind of useful Schedules can be added to the Backend

and then used already in QuantumCircuit objects. These self-made instructions are

45



3 Quantum Programming Language

opaque to the Qiskit Circuit framework, which means that they will not interact with in

simulations or circuit optimisations.

Command instruction and custom instruction In this paragraph I want to ex-

plain the usage of word ’custom’ paired with the words ’instruction’, ’pulse’ or similar.

Usually custom in this case means manually added to a Schedule object. It is there-

fore the exact opposite of a command instruction, which would be an instruction that is

part of a command Schedule (sequence of command instructions), because command in-

structions are usually not added to a Schedule rather a Schedule made out of command

instructions is created at once by applying the schedule() function to a QuantumCircuit

object. If this Schedule object is then manually customized with pulse instructions these

instructions are called ’custom instructions’.

Usage of Commands in the JSON structure Command instructions ought to

stay grouped in the JSON-string (that communicates a Qiskit Schedule to ionpulse). A

particular command Schedule has a one to one correspondence to a circuit instruction

plus its parameters. Therefore, if in one experiment a circuit instruction with the same

parameters is used multiple times and the corresponding command Schedule is grouped

as one cohesive object this particular command Schedule needs to be represented only

once in the JSON-string but can be referenced any number of times. By preserving these

common (command) instruction blocks space in the DDS cards BRAMs can be saved,

which allows for longer experimental sequences.

Command labels One problem with trying to maintain command Schedules as one

cohesive object is that a Schedule object is simply a time-ordered list of pulse instructions

(and a PulseQobj is a time-ordered list of PulseQobjInstructions). This means that a

Schedule object has no record that it contains instructions that stem from a command

46



3.2 Qiskit Configurations and Extensions

Schedule. For this reason labels are added to command instructions to mark them as

being part of a command. These labels also contain information about which command

the instruction is part of and more. By looking for these labels, a parser function can

distinguish the command instructions from custom instructions and group command

instructions which stem from the same command. These labels are formatted in the

following way: command-type_qubits_parametrised-variable_instruction-number.

• The first section of the label specifies the command type by name, for example

’rxx’.

• The qubits are indicated with a ’q’ followed by the qubit index. For multi-qubit

commands the qubits are enclosed by square brackets and separated via commas.

• Commands may contain parametrised instructions. If they do, the type of the

parametrised variable is indicated by one of these letters: ’f’, ’p’, ’a’ and ’t’. They

stand for parametrised frequency, phase, amplitude and duration. This indication is

used (by the parser) to read out the value of the parametrised variable. For example,

if a circuit instruction applies a frequency parameter to a pulse instruction in the

command Schedule, the modified pulse instruction will have an ’f’ in its label.

Due to this label the parser will read out the frequency value of the instruction

and insert it in the reference/name of the corresponding command sequence in

the JSON-string. The parameter binding must be saved in the reference because

parameters influence the Schedule of a command. Then, if the same command

is parsed multiple times with the same parameters it is only saved once in the

JSON-string. On the other hand, if the command is parsed multiple times, each

time with different parameters, each command will be represented individually in

the JSON-string with unique references. The references are unique because they

contain the applied parameters.

• The last section of the label is the instruction number. The enumeration starts

47



3 Quantum Programming Language

with zero.

Here is an example of a command label: ’rxx_[q1,q2]_p_1’.

Converter override Qiskit Pulse utilises converter functions to transform between

pulse instructions and PulseQobjInstructions (which is used in the parsing process).

These converters define which parameters are extracted from the pulse instructions and

put into the PulseQobjInstruction dictionary and vice versa. Unfortunately, instruc-

tion labels are not preserved during the transcription process. This means the command

marker would be lost in the conversion. Fortunately, Qiskit features a rather simple way

to override these converters. The override functionality was used in this project to enable

instruction labels to be conserved through these conversions.

PaddedCommand The PaddedCommand class replaces the Command class for the def-

inition of commands in the Backend. PaddedCommand instances fulfill the same role as

Command instances with four differences:

1. The Schedule of a PaddedCommand will be automatically padded. ’to pad’ means

filling the gap intervals in a Schedule with delays (see subsection 2.3.4). Delay

instructions are added to the end of channels as well, such that the sequences of

all channels have the same duration. This creates a Schedule which can be more

easily translated to instructions for ionpulse.

2. Consecutive delays on the same channels are combined to one long delay.

3. The command labels are checked whether they are consistent with the label format.

4. The durations of all instructions are verified to be longer than the minimum wait

time, which is given by restrictions of ionpulse. No parameter change on a channel

can be applied with zero delay. Therefore, a minimum wait time is defined.

48



3.2 Qiskit Configurations and Extensions

dd_instruction Multiple different approaches were tried to enable parametrisable du-

rations for instructions in Commands. In order to enable some way of duration parametri-

sation, and allow Commands that have duration dependent arguments, a workaround was

developed. The function dd_instruction (duration dependent instruction) from this

project takes a command from the Backend as a template, adapts the duration of the

specified instructions and submits the adapted Schedule to the QuantumCircuit as a

calibration of a corresponding gate. This has some limitations: Because only durations

are adapted, the start time of the pulses are fixed. This defines a maximum duration

bound for pulses, which are followed by other pulses on the same channel. This method

was developed before I learned that duration-parametrisable ScheduleBlock objects can

be added to the Backend instead of Schedules, which makes dd_instructions obsolete.

Figure 3.1: Overview of the different instruction and command types and their relations.
The three important functions transpile(), schedule() and assemble()
are shown as well. The names in the blue ellipses represent important classes.
It is important to notice that the transpile and schedule function take
QuantumCircuit objects as input and not circuit instructions as the origins
of the ’is mapped to’ arrows might suggest, but because different circuit
instructions inside a QuantumCircuit are mapped to different objects this
representation was chosen.

49



3 Quantum Programming Language

3.2.2 Extension Instructions

Qiskit already offers a lot of different tools and instructions, but to represent all the

functionality of ionpulse some additional instructions had to be developed, namely the

Loop, Fork and Sync instructions.

After trying multiple different approaches and looking through the Qiskit source-code

and the internet for examples, an issue on the qiskit-terra Github page was found, which

covers integration of third party instructions. Using the information from the issue

combined with implementations of instructions from the Qiskit source-code (mainly the

measure instruction) and a lot of testing, functioning extension instructions were devel-

oped.

These extension instructions are fundamentally different from the previously discussed

added circuit instructions (for the non-gate commands, like cooling). Figure 3.1 gives

an overview on how the different instructions are connected. In the figure the exten-

sion instructions are marked red. The difference between an extension instruction and

a circuit instruction like cooling is that cooling has a command representation in the

Backend, while the extension instructions do not require a command representation.

They are rather pulse instructions to begin with that can be used in a QuantumCircuit

as well. That means the Loop, Fork and Sync instructions are comparable to the

Play or Delay instructions (with the difference that Play and Delay cannot be added

to a QuantumCircuit). The bottom line is that a cooling instruction added to a

QuantumCircuit will be translated to a Schedule when the circuit is scheduled, while

an extension instruction inserts directly its corresponding pulse instruction, which was

added to the circuit as a calibration. This was the most efficient solution to have a one

to one correspondence between the loop, fork and sync circuit objects and their pulse

objects. On the circuit side, the extension instructions are, similar to cooling type

instructions, opaque objects that do not interact with things like simulations or circuit

50

https://github.com/Qiskit/qiskit-terra/issues/2162
https://qiskit.org/documentation/_modules/qiskit/circuit/measure.html


3.2 Qiskit Configurations and Extensions

optimisations.

Loop Loops are useful tools to make code more compact. They can be implemented

in ionpulse but are not supported out of the box in Qiskit. To enable this feature, a loop

instruction was developed in Qiskit which contains the necessary information about the

loop. The arguments of the Loop pulse instruction are:

1. operands: A list or tuple with three entries

1.1. A Schedule or QuantumCircuit object that describes the loop body.

1.2. A looped value dictionary with the JSON representation: {’Name of swept

parameter’: [value_iter1, value_iter2,...]}.

1.3. A number of iterations of this loop. Usually this is equal to the length of the

looped values (from the second entry).

2. label: An optional label for the loop

The circuit Loop instruction uses the same arguments, but requires also a list of the

involved qubits.

It is possible to create nested loops. In a nested loop the outer loop’s looped value

dictionary may influence also instructions of the inner loop. This means that if the outer

loop has three iterations and the inner loop four, a parameter of an instruction in the

inner loop can have twelve (three times four) independent values.

At the initialisation of a Loop object, the type of the loop body is determined. If the

loop body is a QuantumCircuit it will be scheduled and the looped value dictionary will

be transformed to match the new format of the loop body. Next, the value dictionary

is thoroughly checked that all the keys have the correct format, reference an instruction

that is contained in the loop body and that the length of the parameter list is equal to

the number of iterations.

The duration of a pulse is a parameter which can be adjusted via the value dictionary.

51



3 Quantum Programming Language

The duration of the Loop instruction will take the modified durations for each iteration

into account and, when queried, return the correct total duration of the Loop instruction.

Fork Similar to loops, forks too are useful tools for a quantum programming language.

In Qiskit, there exists the possibility to create gates that are conditioned on a mea-

surement outcome. Multiple instructions can be conditioned on the same measurement

outcome, but a fork is not just one or multiple conditional instructions, it rather allows us

to define independent paths depending on the outcome of a measurement. These paths

could then contain additional forks as well. To enable this functionality, a custom Fork

instruction was developed for Qiskit. The arguments of the Fork pulse instruction are:

1. operands: A list or tuple with three entries

1.1. A list or tuple of conditions of the form: { "readout channel": 0, "state":

0x2 }. The conditions describe which measurement result must have which

result for a condition to be true. If a condition is true, the path with the same

index will be executed. If no condition is true the first path in the list will be

executed. This is the default path.

1.2. A list or tuple of paths. Paths are Schedules or QuantumCircuits. There

must be one path more than conditions as the first path counts as the default

path, which is chosen when no condition is met.

1.3. An optional tuple of passive channels. On passive channels, delays will added

to each path, which are equal to the path’s duration. This way, all the passive

channels stay synced to the active channels in a Fork. Per default, all channels

defined on the Backend will be treated as passive channels.

2. label: An optional label for the fork

The circuit Fork instruction uses the same arguments, but requires also a list of the in-

volved qubits. The duration of a Fork is the duration of its shortest path. The definition

52



3.2 Qiskit Configurations and Extensions

of the fork duration does not matter for ionpulse, as instructions on the hardware are

scheduled relatively and not with respect to the beginning of the sequence. Therefore,

no matter the actual length of the Fork it will be followed directly by the next event/in-

struction.

At the initialisation of a Fork object, the type of each path is determined. If a path is

a QuantumCircuit, it will be scheduled. All paths are padded next. Then the active

channels of the paths are determined. Active channels are all channels that have an in-

struction assigned. It will be checked if all channels have the same set of active channels,

otherwise an error will be raised.

Sync A synchronisation instruction is used to ensure that the instructions that come

after the Sync instruction will be executed parallel in time. This is useful after any process

that does not have a predetermined duration. At this point, this is only true for Fork

instructions. As soon as a channel reaches a Sync instruction in its sequence, it will not

execute further instructions until all other channels listed in the Sync’s argument reach

the same Sync instruction as well. From this point on, the channels will continue with

the following instructions synchronised. The arguments of the Sync pulse instructions

are:

1. operands: A list or tuple with two entries

1.1. A list of DriveChannels that will be synchronised.

1.2. A list of non-DriveChannels that will be synchronised.

2. label: An optional label for the Sync

The circuit Sync instruction separates the operands list into two arguments. Instead of

the involved DriveChannels, the corresponding qubits have to be handed to the instruc-

tion. The second argument is the list of non-DriveChannels, as non-DriveChannels are

53



3 Quantum Programming Language

not represented in the circuit model.

There is a tutorial in this projects Gitlab page (tutorials for TIQI / additional in-

structions tutorial.ipynb) that shows examples and gives an explanation on how to apply

these extension instructions.

3.2.3 Pulse Types

Qiskit Pulse features parametric pulses (see at the end of section 2.3.2). The RF pulses

in the TIQI experiments usually have a constant amplitude. This can be achieved with

the Constant parametric pulse provided by the Qiskit library. The Constant pulse type

receives an amplitude and a duration as arguments. Additional pulse types can be added

to this library via external modules. To complement the Constant pulse, three additional

pulse type were added:

• Logic: This pulse type is just a special case of the Constant pulse. A Logic pulse

has an amplitude of 1. The pulse type has only a duration and optionally flags as

an argument, since the amplitude is fixed. It can be used to define TTL pulses and

add them to a Schedule.

• QuadTone: This pulse type is an extension of the Constant pulse. It still has a

constant amplitude, but additionally it features four frequency tones. Its arguments

are duration, amplitude, four frequencies and optionally flags. These frequencies

are understood as frequency offset to the base frequency of the channel. It targets

the successor of the current RF generation card which will be capable of playing

back such a pulse.

• Static: The Static pulse type is also related to the Constant pulse. A Static

pulse features a constant amplitude and its duration is defined such that it will end

at the end of the Schedule. This Static pulse is equivalent to a single Edge on

54

https://gitlab.phys.ethz.ch/TIQI-projects/qiskit-ionpulse-api


3.2 Qiskit Configurations and Extensions

ionpulse, which has no fixed duration (see section 2.2.2). The Static pulse has an

amplitude argument and also an optional flags argument.

How to use these new pulse types, especially the Static one, is explained in more detail

in the tutorial on the GitLab project page.

1 from qiskit.pulse import Schedule , Play

2 from qparser.features import Logic , Play_Static , QuadTone

3

4 pulse_example = Schedule(name=’pulse_example ’)

5 pulse_example += Play_Static (0.1, DriveChannel (0), pulse_example)

6 pulse_example += Play(Logic (3), DriveChannel (1)) << 2

7 pulse_example += Play(QuadTone(5, 0.5, (200, 1230, 232, 212)),

DriveChannel (2)) << 1

8

9 pulse_example.draw()

Listing 3.1: Qiskit Pulse code to create an example Schedule of the pulse type additions:

Logic, QuadTone and Static

Figure 3.2: An example Schedule of the three pulse type additions: Static, Logic and
QuadTone. More information in section 3.2.3. This schedule is the result of
the code in listing 3.1. This figure was created using Qiskit.

55

https://gitlab.phys.ethz.ch/TIQI-projects/qiskit-ionpulse-api




Chapter 4

JSON Structure & Parser

First, the JSON structure will be explained in this chapter (section 4.1), followed by

the design of the parser (section 4.2) that transforms an experiment defined as Qiskit

PulseQobj to a JSON-string that obeys the structure. This enables the bridge between

Qiskit as the quantum programming language and the TIQI control system.

4.1 JSON Structure

A certain JSON structure was defined during the course of this project. Once a QuantumCircuit

or Schedule is defined in Qiskit and transformed to a PulseQobj, it can be converted to

the JSON structure. The resulting string can then be read in by the control system and

the experimental sequence can be constructed from the string. There are two different

JSON structures explained in this section. The initial JSON structure is explained in

subsection 4.1.1, the problem with the initial structure is illustrated in subsection 4.1.2

and the updated, current JSON structure is described in subsection 4.1.3.

4.1.1 Initial JSON Structure

The initial definition of the JSON structure is schematically described in figure 4.1 and

4.2. From this overview, we continue to explain the definition of the Sequence_objects

structure and use of the different sequence types, followed by the rules on how to translate

a given pulse sequence into this structure. Thereafter comes a description of a problematic

57



4 JSON Structure & Parser

type of arrangement, which cannot be represented with the initial definition of the JSON

structure.

Figure 4.1: Schematic depiction of the initial JSON structure. A JSON-string contains
a Header and a Main_Loop section. The Header is split into three parts:
Info (optional), RF parameters and Sequence_objects. The Info subsec-
tion contains the RF-channel mappings and Digital IO mappings. The RF-
parameters subsection contains the numerical values of the parameters used
in the pulses: Frequencies, Amplitudes, Phases and if there is a loop over
time, the Looped Times in a list. The Main_Loop section defines the whole
experimental sequence. The Sequence_objects subsection contains all the
sequence objects which are featured in the Main_Loop.

Explanation of the Header Figure 4.1 conveys the basic structure of the Header.

• Info – The Info section of the Header contains information about the various

channel and digital IO mappings. This is not necessary for running the experiment,

but to make the experiment human comprehensible in a selfcontained manner even

if the physical setup changes significantly over time.

• RF Parameters – The RF parameters section contains objects for all unique RF

parameters used in the experiment. There are four different types of objects to

58



4.1 JSON Structure

encode: frequency, phase, amplitude and time. Each object contains the numerical

value of the parameter and a channel index or mask that encodes on which hardware

channel this parameter is used. Each of these objects corresponds to a Settings

object in ionpulse, which can be reused by multiple pulses (for example the π
2 time).

• Sequence_objects – In the Sequence_objects section all the pulses and se-

quences which are used in the experimental sequence are defined. They are ref-

erenced by name in the Sequence object with the name ’main loop’, which is the

root sequence and represented in the Main_Loop section.

Figure 4.2: This schematic overview explains the structure of the different sequence
types. There are four different sequence types: Sequence, PulseSequence,
LoopSequence and ForkSequence. A Sequence contains at least one Slot,
each Slot contains at least one sequence object. A PulseSequences con-
tains at least one ChannelSequence and each ChannelSequence contains at
least one Wait or Pulse object. A LoopSequence just contains one Sequence,
which it will loop over a given number or times. A ForkSequence contains
a list called Conditions and a second list of Paths which correspond to the
Conditions. Each entry in Paths is a Sequence.

59



4 JSON Structure & Parser

Explanation of the pulse and sequence types This paragraph will explain the

structure of the sequence and pulse types, what they represent and which information

each of them contain. Figure 4.2 conveys the basic structure of the four sequence types.

All the sequence types can either be defined on just one or on multiple channels. Inde-

pendent of the number of channels, sequence objects always have a ’rectangular shape’.

That means, a sequence object starts on all of its channels at the same time, stops at the

same time and has a constant set of channels (no channels are added or removed during

the sequence). This makes it much easier to arrange and define such objects, but it also

makes sense from a physical standpoint, as it helps preventing unintended interference

with qubits, while a multiqubit gate is still active for example. The following itemization

explains the sequence object types.

• Sequence – A Sequence is the most general object of the four. It is merely a

chronologically structured container for sequence objects. The chronological struc-

ture arises from the Slots. Slots have a corresponding start time and stop time.

One Slot follows after another without leaving time gaps. A Slot therefore repre-

sents a time interval. Inside a Slot, all sequence objects must start at the beginning

of the Slot. The Slots in this structure originate from the check routine described

in 2.2.2 that enforces equal pulse times. Only sequence objects, which are defined

on a subset of channels of the Sequence, are allowed to be added to this Sequence.

Inside a Slot there can be only one sequence object per channel, therefore all se-

quence objects inside a Slot have a set of mutually exclusive channels, which are all

subsets of the channel set of the parent Sequence. The channel set of a Sequence

remains constant after its creation.

• PulseSequence – A PulseSequence can be of two types, either it corresponds

to a command or a custom pulse. PulseSequences which are of the command

type represent reoccurring instructions (see the ’Commands’ paragraph in sub-

60



4.1 JSON Structure

section 2.3.3) that are saved in the Backend such as gates or cooling procedures.

Therefore, commands are directly translated to PulseSequences of the command

type. Custom pulses, on the other hand, are also translated to PulseSequences,

but without the command flag. Each custom pulse will be translated to its own

PulseSequence, even if there are multiple custom pulses in succession. Each cus-

tom PulseSequence contains only one pulse, which is realized as two pulse edges

(one rising edge and one falling edge). In general PulseSequences may contain one

or multiple ChannelSequences. Custom PulseSequences only contain one pulse in

a single ChannelSequence.

– ChannelSequence – A ChannelSequence is a list of Pulses and Waits on a

single channel. Each entry of the list will be executed sequentially.

∗ Pulse – A Pulse object corresponds to an edge (single change of state)

on a channel. It contains the pulse parameters: frequency, phase, ampli-

tude, a wait time (wait duration before the edge is executed) and a flags

argument.

∗ Wait – It contains the information on how long to wait and an option to

set flags.

As Pulses and Waits do not contain information about the channel they run

on, Pulses and Waits can only exist in the framework of a ChannelSequence

which provides the channel context.

• LoopSequence – A LoopSequence consists of two things, a Sequence which acts

as the loop body and the number of iterations.

• ForkSequence – A ForkSequence contains two lists: one which defines Conditions

and the second defines Paths (in form of Sequences), which is executed if the cor-

responding condition is met. Ideally, these conditions should be defined mutually

exclusive, such that exactly one condition is fulfilled in every scenario.

61



4 JSON Structure & Parser

Parsing rules After discussing the JSON structure and the sequence types, the rules

on when and how to create these objects can be explained. All sequence objects and

also the Slots inside a Sequence have always a well-defined start time, stop time and

set of channels which they run on. The main loop Sequence object, represented in the

Main_Loop section, is the direct or indirect parent sequence of all other sequence objects.

As the experiment is parsed chronologically, the first parsed object will be placed in the

first Slot inside the main loop. For each following sequence object, there are multiple

different scenarios, which depend on the earlier parsed objects, the start time of the

sequence object, type of the object and the channels on which the object is defined. For

a Sequence to be parsed correctly, the right scenario must be deduced and the suitable

instructions applied. These instructions include the creation of a new Slot, closing of

an existing Slot, placing sequence objects in Slots and the creation of new Sequences,

which in turn can be divided into multiple Slots. Although the structure definition

seems simple, the parsing rules implied by the structure can become quite complex.

4.1.2 Problem with the Initial JSON Structure

While exploring the parsing rules implied by the JSON structure, problematic arrange-

ments of sequence objects were found that can lead to unsolvable scenarios. One example

can be seen in figure 4.3. The depicted Schedule is still possible to parse, but it creates

an arrangement of sequence objects, which cannot be closed easily and can lead to an

unsolvable error.

Explanation of the unsolvable scenario

The following subsection explains the process of parsing the Sequence depicted in figure

4.3, which will result in an arrangement of sequence objects as depicted in figure 4.4.

The parser will start by adding command rxx_q0q2 to the first Slot in the main loop

Sequence. The first Slot will be extended by adding ’Custom Pulse 1’ to it. Next, either

62



4.1 JSON Structure

Figure 4.3: The depicted Qiskit Schedule consists of two commands (rxx_q0q2,
rxx_q0q1) and two custom pulses (1 & 2). This specific arrangement of
sequence objects could lead to a scenario, which is impossible to parse fol-
lowing the JSON structure rules at that time (see subsection 4.1.2 and figure
4.4). This figure was created using Qiskit.

rxx_q0q1 or ’Custom Pulse 2’ will be parsed, in both cases we will end up with a nested

Sequence inside main loop Slot 1, because a Slot can only contain one sequence object

per channel. The nested Sequence runs on the channels D0, D1, D2, U0, and U2 and

it has two Slots. The first Slot contains only rxx_q0q2 and the second Slot contains

rxx_q0q1 and ’Custom Pulse 2’.

The problem arises when after this Sequence a new command, Loop, Fork or Sync

instruction follows without delay and is defined on channel U1 and at least one channel

of the following: D0, D1, U0, U2. The problem lies in the fact that the active Sequence

63



4 JSON Structure & Parser

on channel U1 is still the main loop, while a new Sequence was created on the other

channels. Usually one would just close the new Sequence and then the extra command

could be parsed without issue, but the new Sequence can only be closed at the stop time

of ’Custom Pulse 2’. If this stop time is later in time than the start time of the additional

command, the closing of the Sequence will lead to an overlap, which results in an error.

This problem cannot be circumvented as long as sequence objects can only be rectangular.

As explained earlier, rectangular means that the start and stop time on all channels of

a sequence object must be the same and the set of channels on which a sequence object

operates must remain constant through the whole duration of the object.

Possible adaptions to the JSON structure

1. A solution for this problem would be to relax the constraints on the Sequence

definition such that not the latest stop time of all the pulses inside a Slot defines

the stop time of the Slot, but the earliest stop time. This way we get rid of the

constraint, that the stop time on all channels of a Sequence must be simultaneous

(Sequences would not be rectangular anymore).

2. Another possibility would be to represent the main loop as a chronologically ordered

list of sequence objects, completely eliminating Slots. This simpler representation

loses the notion of simultaneous timing and it removes the information about which

channels a child object belongs to from the parent object, which makes it harder

to parse the structure on the control system.

3. An alternative is to completely discard Sequences and, similar to Qiskit, simply

create an ordered list of pulses for each channel independently. This has the upside

of a simpler implementation and the downside that objects which are run on mul-

tiple channels will lose the information that a synchronized operation is running

on multiple channels.

64



4.1 JSON Structure

Figure 4.4: This figure is a schematic representation of the pulse arrangement in figure
4.3 plus an additional ’Problematic Command’. The black or red boxes repre-
sent different sequence objects. Below each sequence object one can read the
channels on which the sequence object is defined. Subsection 4.1.2 explains
how it comes to this arrangement. The ’Problematic Command’ is added to
help visualizing the problem. In this example the ’Problematic Command’
is defined on the channels D1 and U1. The active Sequence on channel D1
is ’Sequence 1’, while for channel U1 it is the main loop. The ’Problem-
atic Command’ cannot be defined in both ’Sequence 1’ and the main loop.
’Sequence 1’ cannot be closed, as it would create an overlap with the ’Prob-
lematic Command’ on the channel D1 (due to ’Custom Pulse 2’ ending after
the start of the ’Problematic Command’).

A variant of this solution would be to add a reference to a multi-channel object

to each of the concerned channels. These references will then point to one single

object with the information on which channel which channel sequence is executed.

Commands on multiple channels still appear cohesive when using this variant.

65



4 JSON Structure & Parser

4.1.3 Improved JSON Structure

Unfortunately, the parser for the old JSON structure was already implemented to a ma-

jor part. Nevertheless, a parser for a structure which cannot represent any possible pulse

sequence is at minimum questionable. This made the decision clear, that the JSON

structure must be redefined and the parser adapted.

The new JSON structure is essentially a well-defined version of the third idea in the

subsection 4.1.2. The JSON-string is structured in six sections: Info, RF parameters,

RF pulses, Digital IO, Readouts and Sequences.

Info This section corresponds to the Info section in the initial JSON structure (see

subsection 4.1.1). It contains information about the channel and digital IO mappings.

One can define which units are used by the RF parameters and additional information

about the experimental sequence can be added.

RF parameters In this part of the JSON structure, which is also still the same as in

the old JSON structure, the numerical values of all pulses/instructions of the experiment

are listed. There are four different types of RF parameters: frequency, phase, amplitude

and time. The first three parameters are represented identically in this structure. Each

parameter has a unique name as an identifier (the values are referenced inside the RF

pulses section by this name). The frequency, phase and amplitude parameters then

contain two entries: ch_idx and value. The first represents the index of the channel

on which this parameter is used. The second contains the value of the parameter. The

units of these values are Hz orMHz (not fixed yet) for frequencies, degrees [°] for phases

and a normalized value between 0 and 1 for amplitudes, where 0 stands for minimum/no

amplitude and 1 for maximum amplitude. Time parameters are represented very similarly

to the ones before with the only difference that a time entry does not contain a ch_idx

66



4.1 JSON Structure

but rather a ch_mask. This stands for channel mask and is a binary mask for the channels

on which this time parameter is used. The unit of the time value is µs. If a parameter

is iterated inside a loop, the value of the parameter is a list, and not just a single entry.

RF pulses The RF pulses section lists all instances of fundamental pulse objects that

are required to describe a given experiment. These objects are closely related to the

ones described in section 2.2.2, which makes sense as the JSON-string will be translated

to instances of these classes. These objects are: Edge, Wait, Quadedge (an edge with

four frequency components) and Sync. They reference RF parameters from the previous

section in some of their entries. Here is a detailed overview of the structure these pulse

objects:

• Rf_edge: describes a single change in frequency, phase and/or amplitude. There-

fore, it describes a rising or a falling edge of a pulse on a given channel.

– type: the type of sequence or pulse object. In this case this is always rf_edge.

– ch_idx: the channel on which the Rf_edge is defined

– freq: the name of the frequency parameter. The name acts as a reference to

an entry in the RF parameters.

– phase: the name of a phase parameter similar to freq

– amp: the name of an amplitude parameter similar to freq

– time: the name of the time parameter similar to freq

– flags: an integer value that is used as a flag, default is 0. A shaped pulse as

described in section 2.2.2 can be achieved by handing a specific flag.

• Rf_wait: describes a delay of a duration given by its time argument. During the

wait time no instructions will executed on the corresponding channel. The Rf_wait

contains the following information:

67



4 JSON Structure & Parser

– type: rf_wait

– ch_idx: the channel on which the RF_wait is defined

– time: the name of the time parameter

– flags: an integer value that is used as a flag, default is 0

• Rf_quadedge: describes an edge of a QuadTone (see 3.2.3). The Rf_quadedge

contains the same dictionary entries as the Rf_edge with the difference that the

value for the type key is rf_quadedge and the value to the freq key is a list of

four frequency tones.

• Sync: describes a Sync instruction. A Sync contains the following information:

– type: sync

– ch_mask: a binary mask, which describes on which channels the Sync is active.

– time: the name of the time parameter

– flags: an integer value that is used as a flag, default is 0

Sequences The Sequences section of a JSON structure lists all the more complex ob-

jects in an experimental sequence. All sequence objects contain a subsequences section

with a dictionary entry for each channel that the sequence object acts on. This dictio-

nary entry is an ordered list of references to objects in the RF pulses section and/or

previously described sequence objects. For each channel, each list entry will be executed

one after another on the physical setup. These objects are ordered in such a way that

more complex objects, which reference other sequence objects, are listed after all of their

dependencies. This way, a function that reads in a JSON-string from top to bottom can

efficiently unpack and combine the sequence objects, as all references are already defined

once a more complex object is read in. The different sequence objects are:

68



4.1 JSON Structure

• Linear_sequence: describes general container for any kind of pulse and/or se-

quence objects. A Linear_sequence contains the following information:

– type: linear sequence

– ch_mask: a mask, which describes on which channels the Linear_sequence

object is active.

– subsequences: a dictionary that has channel indices as keys and a list of

references to pulse and/or sequence objects as values. The list contains in

order all the objects that will be executed on the given channel.

• Loop: describes a loop instruction. Loops, Forks and Syncs are directly translated

from their Qiskit counterparts (see 3.2.2). A Loop contains the following informa-

tion:

– type: loop

– ch_mask: see Linear_sequence

– iterations: the number of times the loop will be iterated

– subsequences: the value to this key value has the same form as the subsequences

in the Linear_sequence objects. Here the subsequences act as the loop body,

which is the sequence of instructions that will be repeated in the loop.

• Fork: describes a Fork instruction. A Fork contains the following information:

– type: fork

– ch_mask: see Linear_sequence

– conditions: a list of conditions

– subsequences: a dictionary that has channel indices as keys and a list of ref-

erences to Path objects as values. The lists contain in order all the Paths. The

first Path in these lists is the default Path and any other Path will be executed

69



4 JSON Structure & Parser

by the Fork if the condition with the Path’s index minus one is fulfilled. The

lists of Paths must therefore contain one additional entry compared to the list

of conditions.

• Path: has the exact same form as a Linear_sequence with the only difference that

the value to the type key is path. Paths are separate objects to discern them from

Linear_sequence objects.

The pulse and sequence objects combined are the building blocks to define arbitrarily

complex experimental sequences (see a schematic example in figure 4.5) and make use of

all of the capabilities of ionpulse.

The main loop, which defines the root object of the experimental sequence, is simply

a Linear_sequence and is listed at the end of the Sequences section in a JSON-string,

as it either directly or indirectly references all other sequence objects.

While the Qiskit PulseQobj (and also Schedule) instances keep track of an absolute

time and the instructions usually contain a start time and a duration, the JSON struc-

ture utilizes a so-called ’event based approach’. In this approach each Edge, Wait, Sync,

Loop, Fork or Linear_sequence is an event. Events do not have a fixed start time. A

new event starts directly after the last event on the same channel has occurred. The

time argument of an event is the wait time until the instruction (mostly Edges, because

Linear_sequences, Loops, Syncs, and Forks do not require time arguments) is realized

on the hardware. Due to hardware limitations, a minimum wait time exists between

consecutive Edges on the same channel.

The new JSON structure does not run into the same problem as the initial JSON

structure. Although Linear_sequence objects are still rectangular, they do not contain

70



4.1 JSON Structure

Slots as Sequence objects did in the original structure. This JSON structure even

circumvents the creation of Slots on the control system, which is not the case with

the former way of defining experiments through the ionpulse API. The check routine

mentioned in 2.2.2 uses time slots to enforce a simple structure. This routine is not

applied to the JSON-string. A Linear_sequence contains a separate sequence for each

channel. These channel sequences do not have a need for Slots, because no instructions

run in parallel on a channel sequence and only one instruction is active at a point in

time. The instructions of a channel sequence are simply executed in order. One needs

to pay attention that multi-channel instructions start at the same time on all channel

sequences. The parser ensures that this is the case.

71



4 JSON Structure & Parser

Figure 4.5: A visual representation of the new structure. Each box represents a key-value
pair. Curly braces indicate additional contents in the boxes. The fourth and
fifth part of the structure consist of the Digital IO pulses and Readouts.
These two sections were added recently before submission of the thesis and
are therefore not yet implemented in Qiskit nor in the parser and are shown
here only for completeness.

72



4.2 Design of the Parser

4.2 Design of the Parser

The development of the parser is a major part of this master’s project. It can be un-

derstood as the bridge between Qiskit and ionpulse. The parser translates the Qiskit

PulseQobj to the JSON structure. A simplified overview of the structure of the parser

can be seen in figure 4.6. The arguments of the parser function are the following:

• qobj: The first argument is a Qiskit PulseQobj generated by assembling an exper-

iment described as a Schedule.

• backend: The second argument is the Backend that holds information on all chan-

nels used in the PulseQobj and also the command definitions for the instructions.

• verify: The third argument is optional and per default True. The boolean-type

’verify’ argument decides if the resulting JSON-string will be checked against the

PulseQobj after parsing. In the process of checking, any mismatches will be printed

to the console. It is recommended to verify every time as confirmation of the

integrity of the JSON-string.

• filename: The fourth argument is optional as well and per default ’parsed_experiment.json’.

This argument defines the filename used for the JSON-string. One can also input

a relative path in front of the filename.

The parser function will return the resulting JSON-string and at the same time create

a file with the supplied name and path that contains the JSON-string.

The core of the parser (the parse_instructions function) is structured in a way that al-

lows it to be used in a recursive manner. This is necessary because the loop body of Loop

instructions as well as Paths of Fork instructions can be understood as complete experi-

ments themselves. If such an instruction is encountered the parser will recursively parse

them and all nested Loops and Forks if there are any. When the parse_instructions

73



4 JSON Structure & Parser

Figure 4.6: A simplified overview of the internal structure of the parser function. The
parsing process starts with an initialization routine that prepares the impor-
tant objects. Next, the subfunction parse_instructions is called, where
the main parsing process happens. This starts with the preparser that rear-
ranges the pulse instructions. A loop over all instructions is executed, where
each instruction is parsed depending on if it belongs to a command and which
kind of instruction it is. After the loop, the parsing process is done and the
JSON-string is generated.

function is called recursively the created pulse and sequence objects are not added di-

rectly to the main loop. They are stored in a dictionary and are combined with the main

loop only in the original call of the parse_instructions function. This is necessary to

enforce the order of the objects in the JSON-string as discussed in 4.1.3 at the start of

paragraph ’Sequences’.

Sequence objects reference other pulse or sequence objects by name. The parser creates

names for both types of objects that define them uniquely, as its name carries all the

relevant information about a certain pulse or sequence object. This enables savings in

memory if multiple times the exact same object is created, as it will only appear once in

the JSON-string. The names are constructed differently for Loop and Fork instructions,

because they carry too much specific information in their loop body and paths argument

to be condensed into a meaningful name. If necessary, the object names can be hashed

74



4.2 Design of the Parser

or a unique ID can be used. The memory saving capabilities would still apply, but it

would not be easily human-readable anymore.

Due to the change in the JSON structure after months of development on the original

parser, the parser had to be adapted to a major part as well. In that process as much

code as possible was reused for time saving purposes. There may be legacy structural

components which could be written more straightforwardly and make the parser more

streamlined. For example, the preparser (see subsection 4.2.2) could be adapted.

The parser will ignore Acquire instructions. Different to all other Qiskit instructions

the Acquire instructions do not carry a channel argument, although they are defined on

AcquireChannels. Another problem with Acquire instructions is that, even after many

different approaches, no possibility was found to conserve the label of an Acquire instruc-

tion through the conversion into a PulseQobj. This is necessary for Acquire instructions

to be recognized as part of a command. After realizing these issues, not too much time

was wasted to enforce the correct parsing of Acquire instructions. The functionality of

an Acquire instruction can be replicated by sending Logic pulses on ControlChannels

to PMTs to activate the data acquisition.

The main goal of the master’s project is to conceptually create a bridge from a gate-level

quantum programming language to the control system of the TIQI group. With the

parser and the Qiskit extensions this is possible. The absence of Acquire function does

not hinder this goal.

4.2.1 Important Objects

In the parser function, some objects are required by each parsing subroutine. These

objects either accumulate parsed objects or keep track of information that is updated

throughout the parsing process and is used as arguments in the pulse and sequence

objects.

75



4 JSON Structure & Parser

main loop The main loop is a Linear_sequence object. It holds the description of

the whole experiment. During the parsing process, all the other objects are added to the

main loop either directly or indirectly by first adding them to other sequence objects,

which are eventually added to the main loop.

channel_dict The channel dictionary keeps track of the phase, frequency, absolute

time and delays for each channel. Qiskit describes pulses not in a single instruction,

rather the phase and frequency are adapted via their own instructions. The absolute

time tracker is used to check if additional Waits must be created and how long the

wait times of pulses are. The time is updated whenever an instruction with a non-zero

duration is parsed. As Schedules are allowed to have gaps, which are implicit delays,

the parser must notice these gaps by comparing the absolute channel time to the start

time of instructions and act accordingly. This ensures the correct conversion from the

timetable-based representation of the experiment in Qiskit to the event-based one in the

JSON structure.

Another important dictionary is the wip_command_dict (short for work in progress

command dictionary). It is only used for parsing commands and therefore explained in

the subsection 4.2.4.

4.2.2 Preparser

The main goal of the preparser is to arrange all the Qiskit instructions from the

PulseQobj into a dictionary with the name timed_instructions. The keys of this

dictionary are the start or stop times (integers) of the instructions in the PulseQobj.

The values associated with the time keys are again dictionaries and contain the following

entries:

• ’start_time’: It contains all the instructions that start at the time indicated by

76



4.2 Design of the Parser

the parent key. These instructions are arranged in this lower dictionary by the

following three keys:

– ’custom’: all the instructions which are not part of a command. These custom

instructions can be any type of instruction including extension instructions like

Loop or Fork.

– ’starting_inst’: all instructions that belong to a command and are the first

instruction of that command, i.e. all instructions of a command that have a

start time of zero in the command. The starting instructions are important

to recognize when a command starts.

– ’cmd_body’: all other instructions of commands that are not starting instruc-

tions.

• stop_time: a list of command names that end at the time indicated by the parent

key. This stop time flag is used in the parser to signal that the assembly of the

command is finished and that it can be inserted into the main loop. This is only

needed for instructions that belong to commands, because commands need to be

first combined to a Linear_sequence before they can be added to the main loop.

All custom instructions can be added directly.

4.2.3 Custom Instructions

As mentioned before, custom instructions are all instructions that do not belong to

a command. More information in the paragraph ’Command instruction and custom

instruction’ in subsection 3.2.1. Custom instructions are parsed individually depending

on their type. For each type a paragraph describes what is noteworthy when parsing this

kind of instruction.

77



4 JSON Structure & Parser

frequency and phase The instructions that modify the frequency or phase on a chan-

nel are the following four: ShiftFrequency, SetFrequency, ShiftPhase, SetPhase. No

individual object is created when one of these instructions is parsed. They only modify

the phase and frequency entries in the channel_dict and have a duration of zero. It

is important that all the changes to phase and frequency are made before any other in-

struction types are parsed. If this would not be the case and, for example, a ShiftPhase

instruction and a Play instruction have the same starting time a problem would occur. If

the Play instruction is parsed before all the changes to phase and frequency are applied,

the phase and frequency arguments of the pulse, described by the Play instruction, are

not up to date. This is unintended behaviour. Whenever a phase or frequency modifying

instruction has the same start time as a instruction that describes a pulse, the phase or

frequency modification must be applied first.

delay and gap A custom Delay is not directly parsed at the point when the Delay

instruction runs through the parser. It is rather saved in the channel_dict as custom

delay time. Depending on the next instruction on the same channel, a Wait object

will be created with a duration of the custom delay time. This happens when the next

instruction is a Loop, Fork or Sync or belongs to a command. If the next instruction is

a custom pulse, a part of the custom delay time may be used as the time argument of

the rising edge of this pulse. All Edge objects require a time argument of at least the

minimum wait time defined by the hardware. For this reason, the minimum delay time

must sometimes be taken from custom delay times.

Gaps are implicit delay instructions and will be translated to Wait objects if the next

instruction is not a custom pulse (but a Loop, Fork, Sync or part of a command). If a

gap is followed by a custom pulse, the duration of the gap is used as the time argument

of the rising edge of this pulse if its duration is longer than the minimum wait time,

otherwise an error is raised.

78



4.2 Design of the Parser

pulse Custom pulses are translated to either one (if the pulse is of type Static) or

two Edge objects. The phase and frequency argument of these Edges are taken from

the channel_dict. The amplitude and the channel is given by the instruction itself.

The time argument will be calculated depending on the custom wait time, the channel

time from the channel_dict and the start time of the instruction. Once the Edges are

created, they are combined to a Linear_sequence object and added to the main loop or

parent object.

Loop When a Loop is parsed, the start time of the Loop instruction is compared to the

current channel time stored in the channel_dict. If necessary Wait objects are created

and added to the main loop. At the same time the phase and frequency entries of the

channel_dict is reset to the default values for all channels involved in the Loop. This

is necessary for the JSON structure to function properly, otherwise each iteration of a

loop could have the same pulse with different phase or frequency arguments. If this is

intended it can be achieved with the looped value dictionary.

Next, the looped value dictionary of the Loop is expanded into a nested dictionary that

carries the same information, but is easier to use for the parser.

The parse_instructions function is then called once recursively to parse the loop

body. In this function call the restructured looped value dictionary is handed to the

parse_instructions function, which is then used to replace the parameters of the in-

structions specified by the looped value dictionary with the corresponding list of looped

parameters. After this, the Loop object is assembled and added to the main loop or other

parent object.

Fork When a Fork instruction is parsed its start time is compared to the current

channel time of the relevant channels and Wait objects are created if necessary. At

the same time, similar the Loop parsing process, the phase and frequency entries of

the channel_dict are reset to their default values at the start and end of the Fork

79



4 JSON Structure & Parser

instruction. The reset is necessary for Fork instructions because it is undefined how

the phase and frequency are modified during the different paths. The pulses after the

Fork would then depend on which path was taken. This is not possible with the current

JSON structure, but also not necessary. The paths can simply be expanded to include

the concerned instructions, which then enables this behaviour.

Next, each Path is parsed individually by calling the parser function recursively. The

Fork object is then constructed and added to the main loop or other parent object.

Sync A Sync instruction is parsed by comparing the channel times of each of the

instructions channels to the start time of the instruction and creating Waits if necessary.

This sounds counterintuitive as it is the function of the Sync instruction to synchronize

the channels. For the parser these Waits are necessary to correctly keep track of the

absolute time. Even though a Fork has a duration that is not predetermined, it still has

a well-defined duration for the parser and if there is a time gap before any instruction

(even Syncs), the parser must fill these with Waits. Next, the Sync object can be created

as only the channels argument is required and this object is then added to the main loop

or other parent object.

4.2.4 Command Parser

In this subsection the process of parsing commands is explained. Before that, it is im-

portant to clarify why it makes sense to parse commands as one sequence object and not

parse every instruction of a command independently. This has two reasons.

Firstly, a command usually represents a higher-level instruction, often gates. If a com-

mand is represented in the JSON-string as a cohesive object, the file is more human-

readable.

Secondly, because commands represent a higher-level instruction, there is a high likeli-

hood that a command would be reused in the same Schedule with the same arguments.

80



4.2 Design of the Parser

In this case the command’s Linear_sequence object is described only once in the JSON-

string and multiple references point to that same object. This makes the file more memory

efficient and allows the control system to transfer these memory savings to the memory

limited FPGA that executes the experiment.

Commands cannot be parsed in a single function call like custom instructions. A

command needs to be built instruction after instruction. Intermediate results a saved in

the wip_command_dict.

wip_command_dict The work-in-progress command dictionary is essential to the

command parsing process. Disregarding the information in the channel_dict, the

wip_command_dict stores all the information necessary to create a command instruc-

tion by instruction.

Multiple commands can be running in parallel, so the dictionary has an entry for each

command that is currently being built. The most relevant entries of the dictionary are

the following:

• ’complete_sequence’: the complete sequence of the command saved as a list. A

new pulse or sequence object is added to the list whenever an associated instruction

is parsed. The complete_sequence is used to create the Linear_sequence which

corresponds to the command once all its instructions were parsed.

• ’parameter_binds’: A command usually requires parameters as arguments. These

parameters are handed to instructions and influence the behaviour of the command.

To differentiate between commands with different arguments, these arguments must

be captured in the parsing process and featured in the name of the command, which

is also its reference. Only this way, commands can be reused correctly.

• ’initial_p_f’: This key in the dictionary serves a similar need as the parameter

81



4 JSON Structure & Parser

bindings before. The sequence of a command is influenced by the phase and fre-

quency of its channels. Therefore, if non-default phase and frequency values exist

on any of the commands channels, the channel and the phase and/or frequency

value is displayed in the name of this command as well to ensure that commands

can be reused correctly.

• ’next_wait_time’: A next wait time entry exists for each of the commands chan-

nels. The wait time is needed as a time argument of the rising edge of pulses that

follow a previous pulse without any delay. In this case, the first pulse will not have

a falling edge, which turns the amplitude on the channel to zero. The duration of

this first pulse will become the wait time of the rising edge of the next pulse. This

way some unnecessary edges can be omitted and pulses can be used in a command

back to back.

The preparser already separated the custom instructions, the first instructions of a

command and the rest of the command instructions. The parsing of a new command

begins when a starting instruction of a command is parsed. The start time of the whole

command is given by the start time of the starting instructions. The name and the

qubits of the command is extracted from the label of the starting instructions. With this

information the whole command can be retrieved from the instruction_schedule_map

of the Backend. This gives access all of the command channels. The channel time from

the channel_dict of each of the command channels is compared to the start time of

the command and Waits are generated accordingly. A new entry for this command is

added to the wip_command_dict and the initial phases and frequencies for each of the

channels are saved. Then all instructions of the command will be parsed and added to

the corresponding entry in the wip_command_dict, since the command name is written in

the label of each of these instructions. The parsing of the individual instructions happens

very similarly to how custom instructions are parsed with the difference that they are

82



4.2 Design of the Parser

not added to the main loop yet but to the wip_command_dict. Once every instruction is

parsed and the stop time of the command is reached, the command will be finalised in

the function insert_into_main_loop. Final Waits or turn off edges at the end of each

channel sequence are generated and added to the command sequence. Then, the duration

of each channel sequence is compared to the duration of the command to ensure that no

instruction was missed or added multiple times. The name of the command is generated

containing all the information to define the parsed command sequence in a reproducible

manner. Finally, the Linear_sequence object of the command is generated and added

to the main loop or parent object.

4.2.5 Verification

After the experiment is parsed, the resulting JSON-string can optionally be compared to

the original PulseQobj. This happens through the parser_verificator function that

is defined in a separate module. During the verification process the sequence of each

of the channels is compared one instruction at a time. For each instruction the JSON-

description and the Qiskit PulseQobj description are transformed to an intermediate

description that makes comparison simple. Every single argument of all the instructions

is compared. When a mismatch is detected, an error message is prepared, containing as

much detail as possible about the type of mismatch and the position in the experimental

sequence. This error message is printed into the console after the verification process and

the verification function returns the boolean value False.

The verification function is programmed with recursive capabilities to correctly verify

loop bodies and the paths of forks (and all nested varieties) as well.

4.2.6 Emulation

A proof of concept Schedule was created, assembled and parsed. The resulting JSON-

string was loaded into an ionpulse emulation and executed to verify that the parser

83



4 JSON Structure & Parser

correctly translates an experiment encoded in a PulseQobj to an equivalent experiment

on ionpulse (via the JSON-string). Figure 4.7 compares the result of this test to the

original Schedule (generated from the code in listing 4.1).

1 from qiskit.pulse import Schedule , DriveChannel , Play , Constant

2 from qparser import min_wait_time

3 from qparser.features import Fork , Loop

4

5 loop_body = Schedule ()

6 loop_body += Play(Constant(3, 0.8), DriveChannel (0)) << min_wait_time

7 loop_body += Play(Constant(4, 0.5), DriveChannel (1)) << 4

8 loop_body += Play(Constant(2, 0.2), DriveChannel (1)) << min_wait_time

9 loop_body += Play(Constant(3, 1), DriveChannel (2))

10

11 looped_values = {’play_2_d0_dur ’: [2,3,4,5], ’play_4_d1_dur ’: [7,3,9,5]}

12 iterations = 4

13

14 path1 = Schedule ()

15 path1 += Play(Constant(min_wait_time , 0.5), DriveChannel (0)) << (

min_wait_time + 4)

16 path1 += Play(Constant(4, 0.1), DriveChannel (1)) << min_wait_time

17

18 path2 = Schedule ()

19 path2 += Play(Constant(3, 0.4), DriveChannel (0)) << min_wait_time

20 path2 += Play(Constant(min_wait_time , 0.2), DriveChannel (1)) <<

min_wait_time

21

22 paths = [path1 , path2]

23 conditions = [{"readout channel": 0, "state": 0x2}]

24

25 test_sched = Schedule ()

26 test_sched += Play(Constant(2, 0.2), DriveChannel (0)) << min_wait_time

27 test_sched += Loop([loop_body , looped_values , iterations ])

84



4.2 Design of the Parser

28 test_sched += Play(Constant(3, 0.5), DriveChannel (1)) << min_wait_time

29 test_sched += Fork([ conditions , paths , []])

30 test_sched += Play(Constant(4, 0.6), DriveChannel (0)) << min_wait_time

31 test_sched.draw()

Listing 4.1: Qiskit Pulse code to create the example Schedule shown in figure 4.7. The

call of the draw() method in line 31 generates the top most plot in figure

4.7 without the insets. The insets need to be plotted separately, because the

draw() method cannot represent the extension instructions (Loop, Fork and

Sync) correctly.

Figure 4.7: An example Schedule drawn by Qiskit (upper plot) with insets showing the
loop and the fork. The lower plot shows the output of the ionpulse emulator
provided with the JSON-string generated from the same Schedule.

85





Chapter 5

Conclusion & Outlook

After getting familiar with the current TIQI control system, the first step of this mas-

ter’s thesis was to find a suitable quantum programming language to interface with the

system. Qiskit is the language of choice out of many reasons. The most prominent is

that it features a low-level language for writing pulse sequences. This enables the choice

between a higher, gate-level definition of experimental sequences or a lower, pulse-level

control.

A proxy Backend was configured for testing purposes and to serve as a conceptual ex-

ample. The function of a Qiskit Backend instance is to store information about the

hardware setup and a map between gate instructions and pulse schedules, which allows

to transform a Qiskit QuantumCircuit to a pulse Schedule.

Qiskit was extended with additional modules to enable all the functionality of ionpulse.

These modules define a loop and a fork instruction on both Qiskit Circuit and Pulse.

After months of work on the parser between Qiskit and the JSON-string, a problem with

the original JSON structure was found, which set the work back significantly. This hur-

dle was overcome by defining an improved JSON structure that allowed me to develop

a parser with a much cleaner design. The parser also features a verification function to

verify that no errors during the parsing process occurred.

The Gitlab repository of this project is named Qiskit ionpulse API and features two tu-

torial Jupyter notebooks to give examples on how to use the parser, the Qiskit extensions

and the functionality around them.

87

https://gitlab.phys.ethz.ch/tiqi-projects/qiskit-ionpulse-api


5 Conclusion & Outlook

Noteworthy Comments The parser ignores Qiskit Acquire instructions (instructions

that define a data acquisition time window during a measurement process). There are

multiple ways to create a Schedule that can be translated to a measurement acquisition

instruction in hardware without the use of Acquire instructions. The reason for this and

a simple alternative is mentioned in section 4.2.

At a very late stage during this master’s thesis, it was discovered that certain parts

of the Backend were implemented according to a now obsolete example. Right at

the time when I was looking for example Backend instances, a new way to define the

instruction_schedule_map in the Backend was getting introduced. This map is used

to transform QuantumCircuits to PulseSchedules. The new method to create this map,

explained in subsection 3.2.1, solves the former problem that duration arguments of

pulses in the instruction_schedule_map could not be parametrised. Unfortunately,

this method was found at such a late stage that it was not possible to utilise it in the

Backend in the scope of this master’s thesis. This means that durations cannot be pa-

rameterised in the example Backend of this thesis, but new Backends can be defined

without this limitation.

5.1 Conclusion

The goal of this master’s thesis is, as the title implies, to enable a quantum-gate-level

interface with a trapped ion control system. This is achieved by the conceptual Backend

and the parser, which allows the transformation from a Qiskit QuantumCircuit or a

pulse Schedule object to an experiment described in a well-defined JSON structure.

This JSON-string can be read in by ionpulse and executed without the need of recompil-

ing and reloading ionpulse to the CPU of the control system, which is an improvement

to the former way of defining pulse experiments. This was demonstrated by running an

experiment defined in a JSON-string, created by the parser, on the emulated control sys-

88



5.2 Outlook

tem (see subsection 4.2.6). To verify the output of the parser only on an emulated system

and not on the actual hardware is sufficient. This is because for this master’s thesis we

want to test if the parser generates the correct JSON-strings and not if the parser on

ionpulse, which recreates the pulse experiment from the JSON-string, functions correctly.

5.2 Outlook

This master’s project is a first step towards running arbitrary quantum circuits on

trapped ion quantum computers of the TIQI group. What is missing at this point is

an accurately calibrated Backend and additional functionality, which makes the Backend

more flexible. Then, the Backend will not just translate a QuantumCircuit instance to a

more or less arbitrary pulse sequence, but to a pulse sequence that physically corresponds

to the quantum circuit.

Liberto Beltran will continue working on this project as part of his master’s thesis with

the final goal of running a small variational quantum eigensolver algorithm on a TIQI

setup programmed in Qiskit. To achieve this goal a setup-dependent calibration of a

backend for TIQI’s eQual project is required. Ideally the calibration procedure can be

developed in a general fashion such that this procedure can easily be implemented for

other setups of the TIQI group.

Liberto’s and my master’s thesis also play a role in the efforts of the division for trapped

ions of the ETHZ-PSI Quantum Computing Hub. One goal is to make quantum com-

puters commercially available and also provide cloud access. The Qiskit ionpulse API

will play a crucial role in these endeavours.

89





Bibliography

1. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2, 79.

issn: 2521-327X. https://doi.org/10.22331/q-2018-08-06-79 (Aug. 2018).

2. LaPierre, R. Introduction to Quantum Computing chap. Grover Algorithm. https:

//doi.org/10.1007/978-3-030-69318-3_12 (Springer, Cham, 2021).

3. Chang, W.-L. & Vasilakos, A. V. Fundamentals of Quantum Programming in IBM’s

Quantum Computers https://doi.org/10.1007/978-3-030-63583-1 (Springer,

Cham, 2021).

4. Williams, C. P. Explorations in Quantum Computing https://doi.org/10.1007/

978-1-84628-887-6 (Springer, London, 2011).

5. Cao, Y. et al. Quantum Chemistry in the Age of Quantum Computing. Chemical

reviews 119, 10856–10915. issn: 1520-6890. https://doi.org/10.1021/acs.

chemrev.8b00803 (19 Oct. 2019).

6. Negnevitsky, V. Feedback-stabilised quantum states in a mixed-species ion system

PhD thesis (ETH Zurich, 2018).

7. Marinelli, M. Quantum information processing with mixed-species ion crystals PhD

thesis (ETH Zurich, 2020).

8. Qiskit Development Team. Qiskit Terra API reference https://qiskit.org/

documentation/apidoc/terra.html (2021).

91

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/978-3-030-69318-3_12
https://doi.org/10.1007/978-3-030-69318-3_12
https://doi.org/10.1007/978-3-030-63583-1
https://doi.org/10.1007/978-1-84628-887-6
https://doi.org/10.1007/978-1-84628-887-6
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.8b00803
https://qiskit.org/documentation/apidoc/terra.html
https://qiskit.org/documentation/apidoc/terra.html


Bibliography

9. Gambetta, J. M., Motzoi, F., Merkel, S. T. & Wilhelm, F. K. Analytic control

methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys.

Rev. A 83, 012308. https://link.aps.org/doi/10.1103/PhysRevA.83.012308

(1 Jan. 2011).

10. McKay, D. C. et al. Qiskit Backend Specifications for OpenQASM and OpenPulse

Experiments 2018. arXiv: 1809.03452 [quant-ph].

11. LaRose, R. Overview and Comparison of Gate Level Quantum Software Platforms.

Quantum 3, 130. issn: 2521-327X. http://dx.doi.org/10.22331/q-2019-03-

25-130 (Mar. 2019).

12. Fingerhuth, M., Jayasinha, P. & Roy, A. S. Open-Source Quantum Software Projects

https://github.com/qosf/awesome-quantum-software. Accessed June 30, 2021.

13. Heim, B. et al. Quantum programming languages. Nature Reviews Physics 2, 709–

722. issn: 2522-5820. https://doi.org/10.1038/s42254-020-00245-7 (Dec.

2020).

14. Fingerhuth, M., Babej, T. & Wittek, P. Open source software in quantum comput-

ing. PLOS ONE 13 (ed Mueck, L. A.) e0208561. issn: 1932-6203. http://dx.doi.

org/10.1371/journal.pone.0208561 (Dec. 2018).

15. Khammassi, N. et al. OpenQL : A Portable Quantum Programming Framework for

Quantum Accelerators 2020. arXiv: 2005.13283 [quant-ph].

16. Steiger, D. S., Häner, T. & Troyer, M. ProjectQ: an open source software framework

for quantum computing. Quantum 2, 49. issn: 2521-327X. https://doi.org/10.

22331/q-2018-01-31-49 (Jan. 2018).

17. Svore, K. et al. Q#: Enabling scalable quantum computing and development with a

high-level domain-specific language. Proceedings of the Real World Domain Specific

Languages Workshop 2018 on - RWDSL2018. http://dx.doi.org/10.1145/

3183895.3183901 (2018).

92

https://link.aps.org/doi/10.1103/PhysRevA.83.012308
https://arxiv.org/abs/1809.03452
http://dx.doi.org/10.22331/q-2019-03-25-130
http://dx.doi.org/10.22331/q-2019-03-25-130
https://github.com/qosf/awesome-quantum-software
https://doi.org/10.1038/s42254-020-00245-7
http://dx.doi.org/10.1371/journal.pone.0208561
http://dx.doi.org/10.1371/journal.pone.0208561
https://arxiv.org/abs/2005.13283
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
http://dx.doi.org/10.1145/3183895.3183901
http://dx.doi.org/10.1145/3183895.3183901


Bibliography

18. Bichsel, B., Baader, M., Gehr, T. & Vechev, M. Silq: A High-Level Quantum Lan-

guage with Safe Uncomputation and Intuitive Semantics in Proceedings of the 41st

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion (Association for Computing Machinery, London, UK, 2020), 286–300. isbn:

9781450376136. https://doi.org/10.1145/3385412.3386007.

19. Sørensen, A. & Mølmer, K. Quantum Computation with Ions in Thermal Motion.

Physical Review Letters 82, 1971–1974. issn: 1079-7114. http://dx.doi.org/10.

1103/PhysRevLett.82.1971 (Mar. 1999).

93

https://doi.org/10.1145/3385412.3386007
http://dx.doi.org/10.1103/PhysRevLett.82.1971
http://dx.doi.org/10.1103/PhysRevLett.82.1971


 
 
 
Declaration of originality 
 
The signed declaration of originality is a component of every semester paper, Bachelor’s thesis, 
Master’s thesis and any other degree paper undertaken during the course of studies, including the 
respective electronic versions. 
 
Lecturers may also require a declaration of originality for other written papers compiled for their 
courses. 
__________________________________________________________________________ 
 
I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it 
in my own words. Parts excepted are corrections of form and content by the supervisor. 
 
Title of work (in block letters): 
 

 
 
Authored by (in block letters): 
For papers written by groups the names of all authors are required. 
 
Name(s): First name(s): 
   

   

   

   

   

 
With my signature I confirm that 

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information 
sheet. 

− I have documented all methods, data and processes truthfully. 
− I have not manipulated any data. 
− I have mentioned all persons who were significant facilitators of the work. 

 
I am aware that the work may be screened electronically for plagiarism. 
 
Place, date Signature(s) 
   

   

   

   

   

  
 For papers written by groups the names of all authors are 

required. Their signatures collectively guarantee the entire 
content of the written paper. 

Enabling a quantum-gate-level interfacewith a trapped ion control system

Stucki Marco Erwin

Zürich, 08.12.2021 M
.

Stucki


	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation for the Interface

	2 Fundamentals
	2.1 Quantum Computing
	2.1.1 Basic Principles
	2.1.2 Motivation

	2.2 TIQI Control System
	2.2.1 Overview
	2.2.2 Workflow

	2.3 Qiskit
	2.3.1 Qiskit Circuit
	2.3.2 Qiskit Pulse
	2.3.3 Backend
	2.3.4 Quantum Objects
	2.3.5 Important Functions
	2.3.6 Qiskit Workflow

	2.4 Qiskit Terms

	3 Quantum Programming Language
	3.1 Choosing a Quantum Programming Language
	3.2 Qiskit Configurations and Extensions
	3.2.1 Backend
	3.2.2 Extension Instructions
	3.2.3 Pulse Types


	4 JSON Structure & Parser
	4.1 JSON Structure
	4.1.1 Initial JSON Structure
	4.1.2 Problem with the Initial JSON Structure
	4.1.3 Improved JSON Structure

	4.2 Design of the Parser
	4.2.1 Important Objects
	4.2.2 Preparser
	4.2.3 Custom Instructions
	4.2.4 Command Parser
	4.2.5 Verification
	4.2.6 Emulation


	5 Conclusion & Outlook
	5.1 Conclusion
	5.2 Outlook


