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Abstract

In the first part of this report we present a power-efficient approach to Fiber
Noise Cancellation (FNC) based on the assumption that the phase noise of close and
identical fibers is common to all of them. We validate the assumption by cancelling
the noise in various fiber paths by locking only one of them. In addition, we also
build and test an all in-fiber FNC setup for a compact way of stable light delivery.

In the second part, we calculate the modes of motion of a long chain of ions using
the package IonSim. Particularly, we focus on an isospaced potential that keeps
all ions equally spaced. We calculate how its normal modes are affected when the
analytical potential is replaced by its sixth order polynomial approximation and when
using mixed-species.
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Part I

Scaling Fiber Noise Cancellation

1 Introduction

Aiming to push the number of ions in a trap and scale experiments up, one of the key ingredients
in quantum systems based on trapped ion technology is the individual control of multiple qubits.
Laser light, used for coherent control and manipulation, is a key component of ion trap experi-
ments. In this regard, laser delivery is one of the main challenges that has to be addressed. The
desired setup should be compact, robust and present reduced losses. At the same time should
allow individual manipulation of qubits.

For driving a transition in a qubit defined on the quadrapole transition of a 40Ca+ ion, very
narrow resonant light at 729 nm is needed. To deliver these laser beams to the vicinity of the
ion trap, usually optical fibers are used. Being a very versatile alternative that not only allows
the separation of the trapping experiment from the laser setup but also offers compactness,
efficiency and scalability, optical fibers come at the expense of a loss of the laser’s original
frequency stability due to phase noise [1]. This noise is in the kHz range.

Fiber noise cancellation (FNC) in free space is an effective and widely used approach to
compensate for phase noise. However, this approach presents some constraints. One of them
is that conventional FNC setups are usually not very compact since their minimum sizes are
constricted by the space needed to separate and properly align the different orders diffracted by
an Acousto-optic modulator (AOM), one of its main building components. Also, if one wishes
to cancel noise in more than one fiber component, daisy chaining is required and this makes the
process very inefficient in terms of power. Moreover, a continuous beatnote signal is required
to continuously suppress the noise. This makes this approach unsuitable for the pulsed light
required to address qubits. Summing up, when using more ions and scaling up, having one FNC
setup for each fiber is not the most suitable alternative in terms of space, power and convenience.

In this part of the work, we first propose and test an alternative power-effcient approach to
FNC that is based on the assumption that signals propagating through identical fibers sitting
closeby experience the same phase noise. We also build and test an all in-fiber FNC experiment
that allows for even a more compact setup.

2 Fiber noise cancellation

2.1 Theoretical Background

2.1.1 Phase noise in optical fibers

The transmission of frequency-stabilized laser light through optical fibers is a practical and easy
way to transmit and distribute light to various locations. Attractive because their flexibility
and robustness, optical fibers have the disadvantage that light propagating through them likely
experience a broadening of the linewidth due to phase noise. This noise has origin in the random
fluctuations of the optical path length in the fiber that are induced by acoustic effects such as
thermal or mechanical variations [2]. Being most of the time a harmful phenomenon, the high
sensitivity to environmental changes can in fact be used for sensing purposes [3].
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When propagating through a medium, a phase φ proportional to the optical phase length
(OPL) is added to the light field. In an idealized situation in which the refractive index of the
propagating homogeneous material n, as well as the exact length of the path that light travels
γ are stable, the OPL is simply given by:

OPL =

∫
γ

n(~r)d~r = n |γ| (1)

However, for real-world applications, the medium of propagation is not perfectly homogeneous
and stable. Acoustic waves that generate pressure waves inside the fiber [4] or thermal effects [5]
produce fluctuations in the refractive index, in the path length and ultimately in the OPL. This
results in a stochastic modulation of the phase shift that leads to a broadening of the linewidth
of the stabilized laser. All these effects scale with the length of the fiber.

Phase noise effects have been studied and characterized for several decades. For example,
acoustic waves from a normal-speech can produce a frequency broadening of ∼ 1 KHz [1] (from
several Hz to a few kHz).

2.1.2 Classical Fiber Noise Cancellation

Different stabilization techniques have been proposed for cancelling phase noise and successfully
deliver very stable laser light. The approaches are usually based on a locking stabilization scheme
with a double-passed AOM. The scheme was firstly proposed and implemented in [2].

The method underlies in two assumptions. The first one is that the phase noise induced
by the fiber is linear and reciprocal, implying that two counterpropagating paths propagating
at the same time t experience the same phase shift φf (t). The second is that the phase noise

fluctuations or φ̇f (t) are slow with respect to the bandwidth of the locking electronics.

The basic setup is shown in Figure 1 and a more detailed description and mathematical
derivation that what is presented here can be found in [6].

The main idea is to use the phase shift φAOM induced by the AOM, that is driven by a VCO
at frequency ∆, to actively compensate for the noise introduced by the optical fiber. For that,
the -1st order reflection from the AOM is directed to a PC-ended fiber used for light delivery
that adds a phase noise of φf . In this fiber around 4% of the light is reflected back. Passing
twice through it, the reflected signal acquires a phase 2φf + φAOM. For the first 0th order, it
is back-reflected to the AOM and the +1st order emerging from it is made interfere with the
0th order coming from the reflected +1st order. Bearing in mind that the ±1st orders are also
shifted ±∆ in frequency, the interference produces a beat note that oscillates as:

cos (∆t+ φAOM − φt) · cos (Ωt) (2)

This interference is detected by an AC photodiode. The fast oscillation at an optical frequency
falls outside the bandwith of the detector and only the RF component is measured. The intensity
of this beat note is at 2∆ (because I = |E|2 ∝ cos2 (×) ∝ cos(2×)). The RF-signal is mixed
down to DC by a frequency mixer that takes a stable reference source at a frequency close to
2∆ as the local oscillator (LO). A low-pass filter eliminates the RF component at approximately
4∆ so as to end up with a DC signal containing the two phases φf − φAOM. This is the error
signal that is then sent to a feedback loop that controls the driving frequency of the AOM. This
control system is known as a phase-locked loop (PLL). [7] provides an extensive review of the
theory behind it.
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Figure 1: Experimental setup for the conventional FNC. The different orders
diffracted by the AOM produce a beatnote at around the driving frequency of the
AOM. The beatnote contains the noise induced by the fiber and with a PLL it is
possible to drive the AOM at the right modulation frequency to compensate for
the noise.

2.2 Optical and electronic components

In this section we describe the operation principle of the main elements present in the test setups
we built in this project.

2.2.1 FAOM

A Fiber-Coupled Acousto-Optic Modulator (FAOM) is a device used to modulate the amplitude
and phase of light propagating through fibers, avoiding having to launch it to free-space. FAOMs
are compact, practical and versatile devices that do not require any external alignment.

A FAOM has two reciprocal fiber ports that couple light into a compact-packaged optical
assembly. The housing contins two fiber collimators and two aspheric lenses that align the light
to an AOM (a description of it is given in the section that follows). The alignment is such
that the AOM operates in the Bragg regime and the coupling efficiency to the +1st order is
maximized. The transducer of the AOM is impedance-matched to an RF input through an SMA
cable. Figure 2 shows a detailed drawing of the interior of the device.

The Acusto-Optic Modulator

An acousto-optic modulator (AOM) is a device used to frequency-shift, modulate the inten-
sity and diffract an incoming light beam based on the acousto-optic effect. The device typically
consists of an acousto-optic cell, usually a transparent crystal, attached to a piezoelectric trans-
ducer electrically driven at RF frequencies [9]. The transducer generates acoustic waves inside
the cell that in turn produce a periodic modulation of its refractive index through the photoe-
lastic effect. This travelling gradient of the refractive index Bragg-diffracts the incoming light
producing a frequency shift and modulating the intensity.

The frequency of the driving determines the diffraction angle and the frequency shift whereas
the driving amplitude controls the diffracted power. AOMs can be operated in the Raman-Nath
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Figure 2: Interior of a FAOM. Fiber collimators focus the light into the AOM
with the right alignment to operate in the Bragg regime and to maximize the
coupling to the +1st diffraction order. Extracted from [8].

Figure 3: Acusto-optic modulator operated in the Bragg regime. Light at fre-
quency ω is incident at a Bragg angle θi to a acusto-optical crystal driven at Ω.
The beam is mainly difre

or in the Bragg regime. In the Raman-Nath regime, light is normally incident to the AOM
and several diffracted beams are produced. In the Bragg regime, light has to be incident at a
particular angle called the Bragg angle and just one diffraction (the +1st order) is produced.

2.2.2 POISON

The POISON board is a PCB containing two separate circuits. The first one is a phase-error
detector circuit. It mixes down to DC the AC input signal from the photodiode using a frequency
mixer. An operational amplifier in the IF (intermediate frequency) port filters out the high-
frequency components of the mixing with the LO stable source. In our implementation we use
AWG Aimtti TGF4242 and Rohde & Schwarz SMC100A as stable sources in the LO port. The
second circuit is a low-noise circuit that drives the VCO at the right frequency and amplitude
with the aim to compensate for the phase-error detected. Moreover, the POISON board has
another feedback circuit for suppressing intensity noise.
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2.2.3 EVIL

The Electronically Variable Interactive Lock-box or EVIL is a digital FPGA-based PI-Controller
developed and improved in [10, 11]. It is used as a PI controller in the multiple stabilization
loops in the laboratory that for example do Pound–Drever–Hall, beatnote or intensity locking.
The fast channel has a control bandwidth of ∼ 500 kHz, large enough for our setup where slower
fluctuations due to acoustic noise (always lower than 100 kHz) are expected.

2.2.4 Optical circulator

An optical circulator, the optical analogous of an electric circulator, is a nonreciprocal device
(its properties depend on the direction of propagation) used to separate counter-propagating
beams in optical fibers. Though there exist multiple different designs for a circulator, almost
all of them include similar components: polarizing beam splitters, Faraday rotators and some of
them also birefringent crystals that walk off different propagation directions. The operational
principle of the optical circulator is quite similar to the optical isolator but each design uses a
slight different approach. Figure 4 shows and describes one of the simplest implementations of
a 3-terminal circulator.
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Figure 4: Operating principle of an optical circulator. 1 → 2 direction: a
birefringent glass walks off two orthogonal polarizations and the combination of
the Faraday rotator and the phase-retarder plate rotates the polarization vector
by 90◦, finally the rays recombine in a second birefringent glass and couple into
Port 2. 2→ 3 direction: after the separation by polarization, the Faraday rotator
and the waveplate rotate the polarization vector in opposite directions giving rise
to a zero net rotation. After passing the first birefringent block, the rays meet up
in a PBS and are coupled into Port 3.

3 Experimental setup

3.1 Scalabe single-pass FNC

3.1.1 Setup and principle

In this part we present the optical and electronic setup built to perform power-efficient FNC. In
a nutshell, the main idea is to use several identical fiber links and to place them in a compact
and symmetric way so that they are exposed to the same acoustic noise mechanisms. Then one
of the links (in-loop) is used to detect the phase noise and to cancel it with a feedback loop.
The same feedback is also applied to the other fibers (out-of-loop), suppressing also the noise
in them. This validates the hypothesis of common noise in close and identical fibers. The full
schematics is shown in Figure 5.

A 729 nm stable light beam oscillating at ΩL is launched from an optical fiber to free space.
Right after, a half-wave plate followed by a polarizing beam splitter are used to separate the
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Figure 5: Experimental setup for the scalable FNC.

light into two beams. The reflected light serves as the clean and narrow reference and is used to
produce the beat note at a latter stage. The transmitted beam is coupled back to a long fiber
and will eventually be subject to acoustic noise. To resemble a more realistic fiber link, we use an
8 m long 630HP single mode fiber. When passing through the fiber, light gains a time-dependent
phase φf (t) ≡ φf . The output is sent into a FAOM that is driven by the VCO in the POISON
board at a frequency ∆, around 150 MHz. One of the differences with respect the conventional
FNC approaches is that in this case the FAOM is not double-passed. The FAOM shifts the
frequency by ∆ and adds a phase-shift of φAOM. As a result, after the FAOM and the fiber the
field oscillates with the cos ((ΩL + ∆)t+ φf + φAOM).

At this stage the light is split into four beams with a 1x4 fiber optic coupler from Thorlabs
(model TWQ850HA) and two of the four outputs are launched to free space again. A beat note
is created by interfeering them with the narrow linewidth light reflected in the first beamsplitter
and that was not coupled again to a fiber. The beating is detected with a silicon photodetector
from Electro-Optics (model ET-2030).
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The intensity of the field impinging the photodiode is:

I = |A1 cos ((ΩL + ∆)t+ φf + φAOM) +A2 cos (ΩLt)|2 = I1 + I2 + I3 (3)

Using trigonometric identities for the cosinus, we find that each of the contributions oscillates
as:

I1 ∝ cos2 ((ΩL + ∆)t+ φf + φAOM) ∝ cos (2(ΩL + ∆)t+ 2φf + 2φAOM)

I2 ∝ cos2 (ΩLt) ∝ cos (2ΩLt)

I3 ∝ cos ((ΩL + ∆)t+ φf + φAOM) cos (ΩLt) ∝
cos ((2ΩL + ∆)t+ φf + φAOM) + cos (∆t+ φf + φAOM)

The addition of I1 and I2 results in a fast oscillation at 2ΩL modulated with the cos (∆t+ φf + φAOM).
One of the terms in I3 are also fast oscillating at 2ΩL while the other also comes with the
cos (∆t+ φf + φAOM). Because the carrier frequency ΩL is in the THz range, it is completely
spectrally separated from the oscillation at ∆, in the RF range. The photodiode, with a band-
width extending up to few GHz, acts as a filter for these frequencies and the main contribution
of the photodetected current is the the beat note at ∆. This RF signal is sent to a frequency
mixer in a POISON board where is mixed down to DC using a stable reference source (AWG
Aimtti TGF4242 or Rohde & Schwarz SMC100A). The resulting DC signal carries the informa-
tion about the phase noise and it is the error input to the PI-Controller in the EVIL board. The
controller outputs the correcting voltage so that the VCO drives the FAOM at the appropriate
frequency to eliminate the contribution of φf .

3.1.2 Characterization of the Fiber-AOM

The fiber-coupled AOM used is a 780 nm FAOM from Gooch & Housego (model T-M150-
0.5C2W-3-F2S) with a nominal insertion loss of 3 dB and a polarization dependent loss of 0.5
dB. The device has to be driven with an RF signal of 150 MHz with a power up to 1 W.
The amplitude of the output of the AWG (Aimtti TGF4242) used to generate the RF signal
is adjusted so that after the amplification stage there is 1 W. For the amplification, a 27 dB
amplifier from Minicircuits (model 3ZHL3AS+) is used. We measure the transmission of the
FAOM for a range of frequencies around 150 MHz and also explore different drive powers. As
seen in Figure 6, the maximum transmission is 35.8% (which corresponds to an attenuation of
4.45 dB) when the driving it at 150 MHz and the signal before amplification is 700 mVPP (or 28
dBm after amplification). The measured insertion losses also take into account coupling losses
and there can also be some olarization sensitivity.

3.1.3 Beat note signals

The beat note signals detected at the photodiodes are measured with an spectrum analyzer. By
examining the beat note and its properties we will characterize the phase noise of the setup and
its performance in cancelling phase noise.
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Figure 6: Attenuation of the FAOM for driving frequencies around 150 MHz.

Figure 7: Beat note measurement of the in-loop photodiode when driving the
FAOM directly with the AWG (orange spectrum, centered at 150.00006 MHz)
and when the feedback loop is used (blue spectrum, centered at 149.99997 MHz).
When not locked, the beatnote is slightly wider (see inset) and a noise pedestal of
∼ 4 kHz appears.

Figure 7 shows the unlocked (orange) and locked (blue) beat note spectra of the in-loop
photodiode. The unlocked beat note is centered at 150.00006 MHz and is obtained by directly
driving the FAOM with the reference source (Rohde & Schwarz SMC100A), without using the
electronic boards. When the fibers are left untouched, the beat note is very narrow in linewidth
with a broadening of 31 Hz (FWHM of a Lorentzian fitting) and a pedestal due to phase noise
of ∼ 4 KHz, roughly 10 dB above the noise floor. Moreover, any small movement or vibration of
the fiber completely destroys the stability of the beat note and broads it a few kHz. Regarding
the locked beat note, a slightly more narrow peak at 149.99997 MHz is achieved by properly
adjusting the locking parameters. The fitted linewidth at FWHM is of 32 Hz. By locking,
the acoustic noise is effectively suppressed and the beat note becomes more robust to gentle
vibrations. In the inset plot we also observe a small peak to the right of the locked beat note,
this is a back-reflected signal from the electronics. These two traces were collected with the
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finest resolution (10Hz) of the spectrum analyzer. Being the signals quite narrow, probably a
spectrum analyzer with higher resolution (up to 1Hz) could have provided more resolved data for
a richer analysis. It is important to note that for a fair analysis of the noise induced by the fiber,
the FAOM has to be driven with a stable reference source and not with the VCO. Otherwise,
the noise added by the free running VCO broads the beat note a few kHz and totally hides the
acoustic noise because of the fiber.

From the plot, we can also conclude that the fiber we used (630 HP single mode) doesn’t
add much noise: the beat note is just broadened a few Hz and the acoustic noise is very week
in power. Something that could be worth discussing is the effective impact in the experiment
of this noise and what detunnings and power levels can be tolerated. For that Monte Carlo
simulations would be needed and this falls out of the scope of this project.

Two paths comparison
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Figure 8: Beat note in the in-loop (locked) and in the out-of-loop photodiodes.
The two peaks are centered at 150.00001 MHz and have almost the same linewidth.
Some phase noise appears in the two signals and probably inherited from the AWG.
The out-of-loop trace, that is not directly locked, is a little bit more noisy.

The next step was to verify the assumption of the common noise. For that we split the
light into two paths: an in-loop path that was beat-locked (Locking PD in Figure 5) and an
out-of-loop that was not (Control PD in Figure 5). Both fibers were identical and were placed
close enough so that hypothetically the noise was common: any noise added to one fiber was
also added to the other one. Being this the case, the locking for the in-loop fiber would also
suppress the noise in the out-of-loop one.

The beat notes in the in-loop and in the out-of-loop photodiodes are shown in Figure 8
and both of them are centered at 150.00001 MHz. The difference in the alignment of the two
detectors resulted in a slightly less powerful signal at the out-of-loop photodiode. To help in the
analysis, the noise floor of the spectra were matched by shifting up 3 dB the in-loop trace. Also,
a black dashed line was plotted as a reference for the noise floor.

The first observation is that the beat notes are very simmilar and have a very narrow
linewidth. This indicates that either there is no much noise added or that the noise in the
two paths is common. Nonetheless, the out-of-loop spectrum does look a bit more noisy. This
is expected because this path is not directly noise-cancelled as a whole but the portion after
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splitting is noise-cancelled indirectly.

Besides and in contrast to what was seen in 7, the two beat notes show a slight widening
of a few dBm around the carrier frequency, between around ±1.2kHz. The effect is slightly
more noticeable in the out-of-loop signal, probably because of its more noisy nature explained
above. Our main hypothesis, to be contrasted, is that the widening comes from using the
Aimtti AWG instead of the Rohde & Schwarz one. We suspect that the widening probably
comes from the intrinsic phase noise of the Aimtti AWG. Other sources of origin could be a
non-proper adjustment of the control parameters or the fiber splitter not used for the previous
measurements. Also, not having identical experimental conditions for the two measurements
could also play some role since the spectra were taken with modified setups and in different
days.

Modification of the out-of-loop path

Figure 9 shows the beat notes at the out-of-loop photodiode with different modifications of
the out-of-loop path. The Direct trace corresponds to the unaltered setup in which after splitting,
light goes through the same fiber used for the in-loop path in the previous section. The +FAOM
and +Fiber refer to the addition of an extra FAOM or a fiber in the second path. This alters
the symmetry of the paths (by changing the path length in the out-of-loop path or also adding
an extra element) and therefore the possibility of uncorrectable differential fiber phase noise is
increased. The addition of any of the two extra elements only results in a noticeable decrease
of the detected power (11dB for the FAOM and 28dB for the fiber). Surprisingly enough, we
didn’t observe any differential noise in the kHz range. This is an unexpected result that seems
to indicate that not the FAOM nor the fiber add too much phase noise.

Regardless, there are few considerations that is worth making. The first one is that so as to
compensate for the power difference the traces were shifted to make the noise floors coincide.
Also, the range of the measured spectra, however, might not be large enough to capture the
real noise floor and do a right compensation. For future measurements, the width of the spectra
should be larger, at least 10 kHz wide so as to make sure that the baselines don’t have any noise
contribution at all. Another thing that we notice is that the broadband noise around the carrier
previously observed is also seen here, we also suspect that this is because of the Aimitti AWG.
Moreover, there are also some additional side peaks separated some hundreds of Hz from the
carrier frequency, those are due to electronics.
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Figure 9: Beat note in the out-of-loop photodiode for different modifications of
the out-of-loop path while the in-loop path is being stabilized. The blue trace
(Direct) corresponds to the unmodified path whereas for the orange (+ FAOM )
and the green (+ Fiber) traces an extra FAOM or a 8m fiber where added before
generating the beat note, making the in-loop and out-of-loop paths asymmetrical.
The beat notes are centered at 150.00009 MHz, 300.00019 MHz and 150.00009
MHz respectively. The addition of extra FAOM or fiber produces a significant
power loss. For a better comparison, all spectra are matched to have the same
noise floor. For that, the + FAOM is shifted 11 dB and + Fiber 28 dB.
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3.2 All in-fiber FNC

Inspired by the conventional FNC setups, we adapted the free-space approach to a version in
which everything except for the beat note detection is done in-fiber1. Easily extendable to a
complete in-fiber setup by replacing the free-space photodiode for a fiber-coupled detector, the
design is very compact, doesn’t need any alignment and has a high degree of scalability. Because
FAOMs work in the Bragg regime, here we don’t make use of the 0th and ±1st orders as in the
conventional approach. Light coming out from the FAOM is always the 1st order diffraction and
hence this light will always pick up a shift ∆ independently of the direction of propagation. As
a result (this is explained in the following paragraphs), the beat note comes at a frequency 2∆.

Partial reflector FAOM

Optical
circulator

PC-PC
Pickoff

PI controller
VCO

To Spectrum
Analizer

LO at

Partial reflector
1

5

2
3 4

Figure 10: Experimental setup for the all in-fiber FNC. The coupled light double-
passes the FAOM and the long fiber used to deliver light to another site. This
light gets frequency-shifted 2∆, twice the driving frequency of the FAOM, and
gains a phase 2(φFAOM + φf ). The interference with the reflected light in the
Partial reflector (made of a PC to PC fiber connection) produces a beat note at
2∆ that is detected at the photodiode. With the PLL, the FAOM is driven such
that φFAOM cancels out the phase noise φf induced by the fiber.

The experimental setup for the in-fiber and stable light transfer is shown in Figure 10. The
stable beam at 729 nm is coupled into a fiber and sent to an optical circulator. The light travelling
forward (to the right and in orange in the schematics) passes through a partial reflector, a FAOM
and travels all the way through a long fiber terminated with a FC/PC connection. This type of
termination has a glass-to-air back-reflection of ∼ 4% or -14 dB. Before the reflection, the signal is
cos((ΩL+∆)t+φFAOM+φf ). In the return path the light experiences the same perturbations due
to the fibers and the FAOM and arrives at the partial reflector as cos((ΩL+2∆)t+2φFAOM+2φf ).
There it interferes with the initially reflected signal cos(ΩLt) producing a beat note at around
2∆, twice the FAOM’s modulation frequency. This beat note is detected by the photodiode
(that also acts as a low-pass filter for the optical frequencies) and sent to a PLL. The mixer with
the local oscillator at 2∆ down-converts the signal to DC and with the locked-loop, the FAOM
is modulated so as to compensate for the phase noise (φFAOM = −φf ) and the fiber noise is
suppressed.

Here, a PC to PC fiber connection made with two APC to PC fibers is used as a partial
reflector. This type of connection has a return loss of approximately -30 dB or 0.1%, this is
relatively small but enough to create a beat note. If more back reflection is needed or/and to
minimise the losses in the connections, an in-line fiber partial reflector could alternatively be
used.

1The original idea is from Maciej Malinowski, a PhD student in the TIQI group.
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3.2.1 Characterization of the optical circulator

The circulator used in the setup is a 3-port, single-mode and non polarization-maintaining optical
circulator from Ascentta (model: VCIR-3-729-S-L-10-FA). The device has a nominal Insertion
Loss in all polarization states and directions of 1.8 dB and a Polarization Dependent Loss (PDL)
of 0.2 dB. The instability of the amplitude of the beat note in the first attempts of the all in-fiber
FNC motivated the characterization of the circulator and the dependence of its performance on
polarization.

To measure the effect of polarization, we measured the transmission of the circulator while
scanning all polarization directions of the input light. To do so, a λ/2 waveplate was placed in
the free-space beam before coupling into the fiber. The table in Figure 11 shows the maximum
and minimum transmitted power in the two transmission directions (1 → 2 and 2 → 3) as well
as their Insertion Loss (IL) and polarization-dependent loss (PDL). From the measurements
we conclude that while for the 1 → 2 direction, IL and PDL fall under the manufacturer’s
specifications, this is not the case for the reverse direction (2→ 3) that has a greater PDL and
a much greater IL.

Figure 11: Maximum and minimum transmitted power when scanning the di-
rection of polarization. The measurement of 1 → 2 (2 → 3) was taken in-
serting 1.60 mW from port 1 (port 2), rotating the waveplate and measur-
ing the output power in port 2 (port 3). The insertion loss is calculated as
IL = 10 log(Pout/Pin), being Pout the mean of the transmitted power. For the
PDL, we used PDL = 10 log(Pmax/Pmin) being Pmax/min the maximum and mini-
mum transmitted powers.

3.2.2 Power attenuation

In this section, we characterize the total power attenuation of the setup as well the insertion
losses of each of the sections that integrate it.

The power is measured in the setup points 1 to 5 marked with a yellow label in Figure 11.
There are 1.65 mW of power that couple into the fiber. The 1 → 2 direction of the circulator
transmits the 76% of the incoming power, arriving 1.25 mW at the partial reflector. Being made
of two APC to PC fibers, up to 2.9 dB power loss is expected in this stage (2 · 0.8 dB = 1.6 dB
from the fibers and connections, 2 · 0.5 dB = 1 dB for the two APC to APC connections and up
to 0.3 dB for the PC to PC connection). Experimentally, probably because of non-idealities and
imperfect fiber to fiber connections, an attenuation of 3.7 dB is measured. In a first approach,
after the FAOM that adds a loss of 4.4 dB, light is sent to a fiber terminated with a fiber optic
retroreflector (FOR, model P5-780R-P01-1 from Thorlabs) that reflects the light back and that
has a typical insertion loss of 2 dB. Considering that on the way back the losses are the same,
we expect that an 1.15% of the incident power or 18.9 µW (calculated from an attenuation
of 19.4 dB) arrive at point 2 and add up with the 1.65 µW calculated to be directly reflected
in the initial partial reflector. This is a total of 20.6 µW at port 2 of the circulator. Using
the characterized insertion loss for the 2 → 3 direction of the circulator (see Section 3.2.1), we
expect to measure 7.1 µW at terminal 3. This differs by just some µW with respect to the 10.4
µW measured in Point 5. The slight discrepancy might be due to error propagation, imperfect
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accuracy, inestability of the connections or because having underestimated the power reflected
in the PC to PC connection.

Setup point Power Element Attenuation Cumulative attenuation
1 1.65 mW - - -
2 1.25 mW Circulator (1-2) 1.2 dB 1.2 dB
3 0.53 mW Partial reflector 3.7 dB 4.9 dB
4 0.19 mW FAOM 4.4 dB 9.3 dB

4 (return) - FOR 2 dB 11.3 dB
2 (return) - FAOM + PR 8.1 dB 19.4 dB

5 10.4 µW Circulator (2-3) 4.6 dB 22 dB

Table 1: Power attenuation along the setup terminated with a Fiber Optic Retrore-
flector. In each of the measurement points (indicated in 10) the power is measured.
The measurements are used to calculate the insertion loss of each element.

After that, for a realistic approach of light delivery, once we knew that we had enough power
to see a beat note and lock it, we replaced the retroreflector for a PC-terminated fiber that
did allow for light delivery. With that, from 1.58 mW of coupled-in power, 0.132 mW or 8.4%
(attenuation of 10.8 dB) were delivered to the end fiber end, while just 0.75 µW (0.05%) were
reflected back to port 3 creating a beat note and using it to lock the setup. Despite being a
very small fraction of the incoming light, the power was enough for FNC (the amplitude of the
beatnote measured with the spectrum analyzer was of -72dBm).

3.2.3 Beat note signal

In the initial efforts, the amplitude of the beat note amplitude suffered from strong oscillations
in amplitude that made locking almost impossible. By measuring an almost constant power at
the circulator’s port-3 (point 5 in Figure 10) we discarded power fluctuations to be the origin
of the problem. The issue could also have roots in the polarization sensitivity. Despite having
measured a low PDL for the optical circulator and being the FAOM not typically very sensitive
to polarization (typical PDL of 0.5 dB), these devices are just single mode and not polarization-
maintaining. The change of polarization in them could possibly affect the interference measured
in the photodiode. With this hypothesis in mind, we decided to add an In-Line Fiber Optic
Polarization Controller (CPC900 from Thorlabs) before the FAOM with the purpose of handling
the polarization. With the addition and proper adjustment of the polarization controller, we
could reduce the fluctuation of almost 40 dB to less than 5 dB and the stability of the locked
signal increased significantly.

The beat note spectrum at the photodiode is shown in Figure 12. The carrier peak appears
at ∼ 300 MHz, twice the driving frequency of the FAOM. Because of the fiber losses, it has a
quite small but sufficient for locking amplitude of ∼ −70 dB (measured in the realistic set-up
with an AC/PC fiber). When directly driven by an external source, some acoustic noise of a
few kHz and approximately 10 dB above the noise floor was present. This noise was effectively
suppressed when locking the PLL. Starting with a narrow beat note with a width at FWHM of
∼ 20 Hz, with the feedback loop we manage to shrink it even more, down to less than 5 Hz. It
is worth mentioning that in this case we took the measurements with another spectrometer that
has a higher resolution of 1 Hz. For the previous measurements presented, the highest resolution
of the spectrometer used is 10 Hz and this probably prevented us from seeing the decrease of the
line-width when locking and probably also avoided us from seeing finer details of the spectra.

17



Figure 12: Beat notes of the all in-fiber FNC when locking the FAOM (blue
spectrum, centered at 299.99997 MHz) and when driving the FAOM directly with
the LO (orange spectrum, centered at 300.00018 MHz). The offset ∼ 10 dB above
the noise floor and ∼ 4 KHz wide in the orange trace disappears when locking
the setup. The inset plot, taken with a resolution of 1 Hz, clearly shows the the
reduction of linewidth when using the PLL.

3.3 All in-fiber scalable FNC

Having presented a new method for FNC to scale the noise cancellation to several fibers using
just one setup and also a new all in-fiber approach to the conventional FNC, the next reasonable
step would be a scalable and all in-fiber setup that integrates both. Such setup is power-efficient,
easily scalable and all in-fiber. It is shown in the diagram in Figure 13. The laser setup is located
in Table 1 and a pair of fibers deliver its light to Table 2, where the experiment would sit. The
FNC setup in Table 1 cleans the phase noise induced by the fiber Fiber 1 and in this way the
light arriving to Table 2 through this fiber is free from phase noise and serves as the reference
for the second FNC. This second setup is in Table 2 and suppresses the noise induced by the
fiber Fiber 1 and the symmetric paths after splitting. With this technique we would be able to
deliver narrow linewidth light from one location to another and also split this light into several
beams without causing broadening to the spectrum just using two control loops and without
using free space.
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Figure 13: Complete all in-fiber FNC. Two fibers are used to deliver the light
from the laser’s table (Table 1 ) to the experiment’s table (Table 2 ). In Table 1 a
full in-fiber FNC setup supresses the noise added by Fiber 1, used to bring a clean
reference to Table 2. Fiber 2 delivers the light that will be used for the experiment.
After splitting into four signals, one of the outputs is used to cancel the phase noise
induced by Fiber 2 and the rest of fibers in Table 2. Being the fibers after splitting
placed in a compact way, phase noise would be common among all them and FNC
will not only correct for the noise in Fiber 2 but also for the one produced after
the splitter.

4 Outlook

In this part of the project we built and tested two setups for new approaches to fiber noise
cancellation that allow for more compact, power-efficient and scalable setups. We described,
built and tested an scalable beat-note lock in which one feedback loop is used to control phase
noise in several fibers. With these tests we saw that the various paths did not exhibit differential
noise. This made possible the suppression of noise in all the paths by just controlling one. In
turn, the noise cancellation validates the assumption of the common mode noise. It is worth
noting, however, that this assumption could eventually break down if the paths are not kept as
identical as possible, if they are too long or pick up too much noise.

Besides, we also built and characterized an all in-fiber method for the noise cancellation and
proposed a design that integrates the two presented methods that would enable for a all in-fiber
and efficient setup for stable light delivery.
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Part II

Simmulations of an Isospaced ion string
with Mixed-Spieces

5 Introduction

One of the proposed approaches to scale up ion trap quantum computing for near term applica-
tions such as NISQ type devices is to use long ion strings in a Paul trap. While this approach
of having long string of ions in a single potential well simplifies the design of the trap and also
the voltage control of the electrodes -it doesn’t require several trapping regions and transport
or splitting routines- it presents bigger constraints on the individual addressing of qubits. To
overcome this, one of the proposed solutions are glass written waveguides, where each core is
imaged to a single ion. To ease the manufacturing of these devices, equal spacing of ions is
desirable and a way to achieve this geometry is to use an anharmonic term that counteracts the
Coulomb interaction that is one of the causes of the typical non-equally spaced distribution.

In this part we present the calculation of the equilibrium positions and normal modes of
motion of a mixed-spieces linear string of ions under an isospaced potential that keeps them
uniformly spaced. The first part includes a brief introduction to linear Paul traps and motivates
the usage of mixed-spices and anharmonic potentials. Then we present the analytical derivation
of the isospaced potential and the general derivation of the normal modes of a mixed string.
Finally, we explain the method used and show the results of the calculations of the normal
modes.

5.1 Paul traps

The classical laws of electromagnetism predict that it is impossible to confine a charged particle
using a static potential. This is known as the Earnshaw’s theorem and as has the consequence
that without a combination of electric and magnetic fields or without time-dependent fields it
is impossible to confine ions. Different trap solutions that overcome the issue have historically
been implemented: Penning traps that use both electric and magnetic fields and Paul traps that
use an RF electric field.

In a Paul trap, a combination of DC and RF feilds are used to generate a quadrupole potential
along two axes - commonly referred to as the radial directions - while purely DC fileds are used
to confined the ions along a third direction - the axial direction. Normally, the DC confinement
is weaker than the radial, allowing the creation of linear strings.

More specifically, the DC field creates a static potential [12] well described by

US =
1

2
mω2

z

(
z2 − x2 + y2

2

)
with ωz =

√
2κZeU0

m
(4)

where Ze is the charge of the ion, κ is a geometrical factor, U0 is the voltage applied and m
is the mass of the ion. Without an extra oscillating field in the perpendicular plane, the ions
would be anti-confined as a result of Poisson’s law. An RF quadrupole potential in this plane
counteracts for this effect and keeps the ions dynamically localized. A typical implementation
consists of four rod-shaped electrodes that periodically alternate the sign of the potential so that
the accelerated ions change direction continuously avoiding any collision with the electrodes.
The movement is described by Mathieu equations and consists of a rapid oscillation known as
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micro-motion superposed with a secular motion [13]. If micromotion is averaged, the secular
motion can be approximated by an harmonic oscillation at a secular frequency ωsec/x,y,z that
depends on the mass and charge of the ion [14]. On average, the ion behaves as it was trapped
radially in an quadratic potential, also called pseudo-potential, given by

URF =
1

2
m(ωxx

2 + ωyy
2) with ωx,y =

ZeVRF,x/y√
2mΩRFR2

(5)

The secular frequency is of the order of some MHz and VRF,x/y is the voltage applied to diagonally
opposite electrodes, ΩRF is the frequency of oscillation of the field and R is the radius of the
trap. Figure 14 shows a typical implementation of these potentials.

Figure 14: Linear Paul trap with a string of ions. The four blades oscillate
at high voltages at RF frequencies and provide radial confinement while the two
needle electrodes create the DC field. The picture was extracted from [15].

5.1.1 Collective oscillations

Coulomb coupling is key when it comes to conventional quantum gates. The strong interactions
between the ions make them oscillate collectively in a set of non-degenerate normal modes that
can be addressed with a laser. This way the collective vibration is used as a quantum bus
to couple ions. In linear traps, we can usually distinguish between axial modes - along the z
direction in this report - and radial modes - in the xy plane. In a string of N ions, there are 3N
modes. Figure 15 shows, shows the normal mode of motion for a chain of 2 and 3 ions.

Figure 15: Normal modes of motion of a chain of 2 ions (left and middle) and 3
ions (right).
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The mode with lowest energy is the COM mode and is characterized by all the ions moving
together back and forth [12]. This oscillation comes at a frequency ωz. In order to keep a linear
string and avoid the transition to other configurations, the COM frequency ωz needs to be much
smaller than ωx/y. Also the COM mode is the one that gets heated more easily, because ions
move in phase and all of them couple to the noise. On the other hand, out-of-phase modes don’t
heat up that much because the movement on opposite directions cancels out any coupling to a
constant stray field and a field with a gradient is needed to couple to the noise.

5.1.2 Mixed-species ion string

Trapped ion strings need to be cooled down to almost the ground state of motion for high-fidelity
gates. The cooling of ions can be done by means of laser-cooling and using Coulomb interactions
it is possible to propagate the cooling to an entire string. The process is known as Sympathetic
cooling and requires close proximity between the ions being sympathetically cooled and the
coolans. The short distances required present a problem when the cooling is applied to chain
of identical ions: the large amount of scattered photons are easily absorbed by neighbouring
ions causing information loss and decoherence. One solution that overcomes the problem is
the combination of different ion species: one specie to store information and the other to cool.
This way the scattered photons are unlikely to be absorbed by the data ions since they are
far-detunned from any transition in them.

When adding new species to the chain, the modes of oscillation change and the characteristics
of the new oscillations depend on the relative masses of the ion and the symmetries of the chain.
When it comes to the radial motion, ions of different masses tend to move almost independently
and no collective motion is observed. This doesn’t happen in the case of identical masses and
has roots mass-dependent pseudo-potential confinement.

5.1.3 Linear string

In a linear Paul trap, the outer ions push inner ions togheter leading to a non-uniform spacing.
Usually the separation is of several µm. As said, typically the external potential is harmonic in
the three spacial directions with strong confinement in the radial plane (ωx, ωy � ωz). However,
an harmonic axial potential presents some issues when adding more ions to the chain. It has non
homogeneous equilibrium positions thet tend to be closer at the center of the string and more
separated at the edges. If an equally spaced ion chain is desired, anharmonicities to the external
potential can be added so as to compensate for Coulomb interactions.

5.2 Potential for an isospaced ion string

The conventional way to extract the equilibrium positions and phonon modes of ions in a linear
trap is through the minimization of the system’s potential V and diagonalization of the Hamil-
tonian H0 that describes the motion of the ions [16]. If a particular arrangement of the ions is
desired, the reverse problem has to be solved. In other words, the external potential that results
in a desired distribution is unknown. Though an analytical solution doesn’t always exist, few
distributions as a string of equidistant ions have one. In the following paragraphs we summarize
the key steps of the analytical derivation of the isospaced potential that is presented in [17].

The potential of a string with equally spaced ions has two contributions, one coming from
the external trapping potential and the other that is due to Coulomb interactions between the
ions

V (~ri) = Vext(~ri) +
∑
i 6=j

e

4πε0|~ri − ~rj |
= Vext(~ri) +

∑
i6=j

e

4πε0|~ri − ~rj |
(6)
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If the crystal is a string of N ions equally separated a distance d and oriented along the z
direction, the i-th ion experiences an electrostatic field pointing also in z direction that can be
expressed as

E(~ri) =
∑
i 6=j

e

4πε0|~ri − ~rj |2
=

e

4πε0d2

(
i−1∑
n=0

1

n2
+

N∑
n=i+1

1

n2

)
≡ Ei (7)

Defining Enn = e/4πε0d
2 as the field strength created by a nearest-neighbour ion and making

use of polygamma functions, the expression can be rewritten as

Ei = Enn

(
ψ(1)(N − i+ 1)− ψ(1)(i)

)
(8)

The field created by the external potential Vext has to contrarest the effect of the Coulomb
repulsion in each of the ions’ positions but not in between. This means that it has to fulfil

Eext = −dVext
dz

∣∣∣∣
z=i·d

= −Ei (9)

Integrating the last expression and setting the origin of potential at z = 0, the potential is

Vext,z = V0 − Ennd
(
ψ(0)(z̃+) + ψ(0)(z̃−)

)
(10)

with

V0 = 2Enndψ
(0)(N+), z̃± = N+ ±

z

d
, N+ =

N + 1

2
(11)

In a linear trap, the ions are usually bounded radially by an effective harmonic potential (the
ion i with mass mi moves at a secular frequency ωx/y,i). If in z direction Vext keeps them equally
spaced, the potential for an N-ions linear and equally spaced string is

VN (x, y, z) = Vext(z) +

N∑
i=1

1

2
mi(ω

2
x,ix

2 + ω2
y,iy

2) (12)

5.3 Equilibrium positions and string dynamics

5.3.1 Equilibrium positions

The equilibrium positions can be extracted by finding the (x, y, z)∗ points that solve

∇(VN + VCoulomb)|(x,y,z)∗ = 0 (13)

Because VN was constructed to haveN equally-spaced equilibrium positions along the z direction,
these equilibrium points do cancel the gradient of VN . It is worth pointing out that the mass of
the ions doesn’t play any role in the equilibrium positions and hence these equilibrium positions
will not change when using mixed-species ion chains - as long as all of them have the same
charge.

5.3.2 Normal modes of motion

The normal modes of motion can be extracted by formulating and solving the Lagrange equations
of the system [18]. Being {ξi}3Ni=1 the position coordinates of the system, the kinetic and potential
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energies around the equilibrium positions are

T =

N∑
i=1

1

2
mi(ẋ

2
i + ẏ2i + ż2i ) =

3N∑
i=1

1

2
miξ̇

2
i (14)

U = −VN +

N∑
i=1

N∑
j=1

1

4πε0

e2

|~ri − ~rj |2
' U0 +

3N∑
i,j=1

∂2U

∂ξi∂ξj
(ξi − ξ0i )(ξj − ξ0j ) (15)

Introducing the mass weighted coordinates ξ̃i =
√
mi(ξi−ξ0i ) the expressions simplify and become

analogous to the ones corresponding to the identical mass ion string. In this case the Lagrangian
is

L = T − U =

3N∑
i=1

1

2
˙̃
ξ2i −

3N∑
i,j=1

1
√
mimj

∂2U

∂ξ̃i∂ξ̃j
ξ̃iξ̃j (16)

And the equation of motion for the ith ion writes

d

dt

∂L

∂
˙̃
ξi

=
∂L
∂ξ̃i

=⇒ ¨̃
ξi =

3N∑
j=1

1
√
mimj

∂2U

∂ξ̃i∂ξ̃j
ξ̃j (17)

Then the normal modes of motion and their frequencies are given by the eigenvectors and
eigenvalues of the Hessian matrix defined by the potential energy

Hik =
1

√
mimj

∂2U

∂ξ̃i∂ξ̃j
(18)

The eigenvectors {ẽα,i} contain the information of the participation of each coordinate in
a mode or, in other words, how much an ion moves in a particular direction with respect to
the others. On the other hand, the frequency associated with each motional mode is given by
ωα =

√
λα, with λα being the eigenvalue of the mode.

6 Statics and dynamics of an isospaced ion string

6.1 Method

To calculate the normal modes we use the IonSim package in Python that was developed in the
group and that can be found in https://gitlab.phys.ethz.ch/graum/ion_sim. The package
allows the calculation of the equilibrium positions, normal modes and the simulation of the
dynamics of the string adding for example some damping.

We consider a long chain of N = 11 40Ca+ ions in a linear Paul trap. The confinement in the
radial directions (x and y) is harmonic with a secular frequency of 2.4 MHz in both directions.
In z direction we use either the isospaced potential in Equation 10 or a 6th order approximation
of it. These potentials are plotted in Figure 16.

When using mixed-species, the secular frequencies that each ion experiments will depend on
its mass according to Equation 4. If 40Ca+ is subject to a secular frequency ωsec,40 = 2.4 MHz,
44Ca+ will experiment ωsec,44 = 2.4

√
44/40 MHz = 2.52 MHz.

6.2 Equilibrium positions

The equilibrium positions of the ions are calculated by minimizing the potential energy according
to Equation 13. Figure 16 presents the computed equilibrium positions of the chain of 11 ions
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for three different potentials: harmonic potential, isospaced and a 6th order approximation. The
isospaced potential results in a equally spaced chain (this we verified by calculating the standard
deviation of distance between ions, which is zero). The 6th order expansion results in almost the
same configuration: the maximum deviation with respect of the ideal position is of just 0.26 µm
and the distribution has an associated standard deviation of the order of 10−9 µm. In contrast,
the std for the harmonic potential is of the order of 0.1 µm, indicating a non equally spaced
string.

Figure 16: Left: plot of different axial potentials (linear, isospaced for 11 ions
and 6th order approximation of the isospaced potential). Right: For each potential
the equilibrium positions are computed.

6.3 String dynamics of 1 configuration

6.3.1 Validation

To test a proper implementation of the code to calculate normal modes in a mixed-species
string, we first used it to calculate the normal modes of a berillium-magnesium ion chain in a
Paul trap with quadratic potential in z direction. The secular frequencies used for the single
berillium are [ωx, ωy, ωz] = 2π · [12.26, 11.19, 2.69] MHz and for the magnesium [ωx, ωy, ωz] =
2π · [3.72, 4.82, 1.65] MHz. The eigenfrequencies and the normalized eigenvectors are shown
in Table 2 and coincide with the calculations presented in [19]. Figure 17 shows plots of the
displacements in axial and radial direction for each of the eigenmodes.

Mode Frequency [MHz] 9Be+ 24Mg+

Radial (x)
12.1 1 0.02
3.52 -0.02 1

Radial (y)
11.0 1 0.02
4.67 -0.02 1

Axial (z)
4.04 0.93 -0.38
1.90 -0.38 0.93

Table 2: Normal modes of motion for a 9Be+ - 24Mg+ ion string. Each mode has
associated an axial or radial direction of movement and the second last columns
show the relative displacement of each ion in the mode. The modes were calculated
with the code and with the same data as in [19]. Obtaining the same results is a
validation of a correct implementation.
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Radial Axial

Be9 + Mg24 +

Figure 17: Normal modes of motion of a berillium-magnesium ion chain. In the
radial modes, one ion oscillates while the other is almost at rest. In the axial
modes both ions oscillate.

6.3.2 Normal modes of the isospaced string

Then we proceeded to the calculation of the normal modes for the longer string of 11 ions
under the isospaced potential. First we started with an homogeneous chain of 40Ca+ ions. The
resulting axial and radial displacements for the two lowest (ωz,0 and ωz,1) and highest (ωz,0 and
ωz,10) frequency modes are plotted in Figure 18. For example, we observe that for the low energy
modes the collective oscillation happens in the axial direction and the out-of-phase happens in
the radial while the inverse behaviour occurs for the higher frequency modes.

6.4 Comparison between configurations

Once we calculated the normal modes for a long and homogeneous isospaced chain, we analyzed
how they were affected by changing the ideal isospaced potential for a polynomial approximation
(practically implementable) and by replacing some of the ions for other species with different
mass. The comparison is done by plotting the difference in the displacement of the ions for the
various modes and the difference of frequency of each mode.

6.4.1 Polynomial approximation

Figure 19 shows how the radial modes change when the analytical isospaced potential is replaced
by a 6th order polynomial approximation. For each mode the difference in the displacement of
each ion is plotted in color scale from dark blue (no difference) to red (the most different) in the
left plot. The right plot shows the difference in frequency. We observe that the low frequency
modes are the most affected both in terms of displacement and frequency. These differences are
nevertheless not very strong. The ions that get differently more displaced are oscillating in both
potentials and the differences in frequency are of tenths of kHz in eigenfrequencies in the MHz
range.

6.5 Adding another ion species

The addition of an ion with different mass also affects the normal modes of motion. In the first
comparison we change the middle 40Ca+ for a 44Ca+. A shift of the radial frequency is observed
in all the modes. This shift is larger for the low frequency modes and in general the odd modes
are less affected. Regarding the displacements, the odd modes are almost non-perturbed by the
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Figure 18: String dynamics in the axial and radial direction for the two eigen-
modes with the lowest and highest frequency under the isospaced potential. The
string consists of 11 40Ca+ ions with secular frequency in the radial direction of
2.4 MHz.

presence of a more massive ion in the middle of the chain. We can explain this by recalling that
the center ion remains fixed for the odd modes, and thus its role in these modes in not very
relevant. For the even modes, in which the middle ion does move, the center ions change more
their amplitude of oscillation since they are more affected by the presence of a 44Ca+ in the
center.

If instead of just the middle ion, the three middle ions are replaced for 44Ca+, more noticeable
changes in all the modes occur. Figure 21 shows the difference in the displacement and frequency
of the modes of such chain under the 6th order potential with respect to the homogeneous case
with the analytical isospaced potential. Again, the low frequency modes are the ones that shift
more in frequency but here we don’t observe the parity pattern seen before. The addition of
more massive ions in positions 4th and 6th alter much more the dynamics of the chain (before
just the ion in the highly symmetrical 5th position was changed).

For completeness, in Figure 22 we present plots of the axial and radial displacements together
with their frequencies for the two lowest and two highest frequency modes for the string with
3 44Ca+ ions under the 6th order polynomial approximation. Comparing with Figure 18, we
conclude again that the dynamics are appreciably affected despite they follow the same trend.
Moreover, now we can also infer that the replacement of the 3 ions in the middle for 44Ca+ is
what contributes the most to the change and not using an approximation of the potential.

27



0 0 10 20 301 2 3 4 5 6 7 8 9 10

Ion
Frequency

difference [kHz]

Displacement difference

0

1

2

3

4

5

6

7

8

9

10

M
od

e

0.00 0.02 0.04 0.06 0.08

Figure 19: Comparison of the radial modes of a chain of 11 40Ca+ ions under
the analytical isospaced potential versus its sixth order polynomial approximation.
The left color plot shows the difference in displacement for each mode and ion and
the plot in the right shows the difference in frequency of the modes.

7 Outlook

In this second part we explored the static and dynamical behaviour of a string of ions under
a potential constructed to keep the ions equally spaced. We reviewed of the derivation of such
potential and proceeded with the calculation of its equilibrium positions and normal modes of
motion. To study an implementable scenario, we approximated the analytical potential for a
6th order polynomial and showed that both the equilibrium position and the normal modes are
essentially the same. Then we extended the calculations to mixed-species strings of ions, argued
the invariance of the equilibrium positions and studied how a mixed-spicies chain produced more
notable changes in the normal modes.
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Figure 20: Comparison of the radial modes of a chain of 10 40Ca+ ions with 1
44Ca+ in the middle (total of 11 ions) under the 6th order polynomial approxi-
mation (the comparison is done with respect to the homogeneous chain under the
analytical isospaced potential). The color in the 2D plot indicates the difference in
displacement for each mode and ion and the plot in the right shows the difference
of the frequency mode.
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Figure 21: Comparison of the radial modes of a chain of 8 40Ca+ ions with 3
44Ca+ in the middle (total of 11 ions) under the 6th order polynomial approxi-
mation (the comparison is done with respect to the homogeneous chain under the
analytical isospaced potential). The color in the 2D plot in the left indicates the
difference in displacement for each mode and ion and the plot in the right shows
the difference of the frequency mode.
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Figure 22: String dynamics in the axial and radial direction for the two eigen-
modes with the lowest and highest frequency of a mixed-species ion string of 11
ions (8 40Ca+ ions with 3 44Ca+ ions in the middle) under the 6th order polyno-
mial. approximation of the isospaced potential.
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