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Chapter 1

Introduction

In the emerging field of quantum computation, perfoming single and two qubit
gates with high fidelities is fundamental, since a combination of these gates is
sufficient to approximate arbitrary unitary evolution[1]. One of the first pro-
posal for the experimental realisation of a two qubits entangling gate is the
Cirac-Zoller gate[2] that allows the operation of a Control-NOT between two
ions. However this gate had many drawbacks, for example it requires having
both ions in the lowest vibrational state, a condition experimentally difficult
to realize. For this reason many alternative schemes have been explored and
particularly interesting ones are the phase gates. In this type of gates a mode
of the two-ion system is displaced around a closed path in the phase space
depending on the internal states of the ions. In this way the two ion state
obtains a geometric phase proportional to the area enclosed in the phase space.
This process does not depend from the vibrational state and is robust against
changes in the vibrational motion during the operations.
In this work we have theoretically analysed the phase gate in the xy basis
proposed by Mølmer and Sørensen in 1999 [3], commonly known as MS gate.
We have studied a new configuration, based on standing waves, with which
is possible to remove the carrier term and increase considerably the speed of
the gate. Moreover we have shown how using pulse-shaping technique we can
handle the remaining off-resonant terms and obtaint high fidelities. It is im-
portant to notice that the configuration presented in this work is particularly
suited for an experimental implementation with the integrated optics used in
[4], while can be hard to achieve with classical optical schemes.
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Chapter 2

The Ms Gate

The MS gate is a multi-ions entangling gate that displace the motional state
of the ions through the application of two fields, one detuned from the car-
rier frequency by ∆ωblue = ωCM + δ where ωCM is the centre of mass(mode
in which the ions oscillate in phase) frequency and the other detuned by
∆ωred = −ωCM − δ as we can see in fig 2.1. As a starting point we study
the Hamiltonian describing the coupling between a single laser and one mo-
tional state of the ion. We will then generalize this description including two
lasers and motional modes, for now we will generically write ∆ω since the
analysis is the same for blue and red detuning. The Hamiltonian describing
the system is given by:

HI =H0 +Hint

H0 = h̄ωCM (a†a+
1
2 ) + h̄ω0

σz
2

Hint =
h̄Ω
2 (σ+e

i[η(a+a†)−wLt] + h.c)

(2.1)

We then go in the interaction picture with respect to H0 by doing HI =

e
iH0t
h̄ Hinte

−iH0t
h̄ and we have:

HI = h̄σ+e
−i(∆ωt−ϕ)ei[η(a

†eiωCMt+ae−iωCMt)] + h.c (2.2)

where ωCM is the centre of mass mode motional frequency, ∆w = ±(wCM +
δ) = wL −w0 is the detuning of the laser frequency wL from the carrier term
frequency w0, σ+ is the raising operator for the spin in the z basis, such that
σ+ |↓〉z = |↑〉z, ϕ is the phase and Ω is the Rabi frequency of the laser. The
Lamb-Dicke parameter η is defined as η = k cos θ

√
h̄

2MωCM
, where k is the

wavevector, θ is the angle between k and the direction in which the ion moves,
and M is the ion mass. The Lamb-Dicke parameter represents the strength
of the coupling between the field and the normal mode. In the Lamb-Dicke
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2. The Ms Gate

regime η
√
〈n〉+ 1 � 1, where 〈n〉 is the average photon number, we can

expand the exponential:

HI ' h̄σ+e
−i(∆wt−ϕ)[1 + iη(a†eiwCM t + ae−iwCM t)] + h.c (2.3)

Following [5] we can generalize the Hamiltonian to the case in which we con-
sider two lasers with frequencies ωb = ω0 + ωCM + δ and ωr = ω0 − ωCM − δ.
We can define ϕs = ϕb+ϕr

2 and ϕm = ϕb−ϕr
2 where ϕr and ϕb are the

phase of the lasers (respectively red and blue detuned). Using the formula
σϕ = (cos(ϕ)σx + sin(ϕ)σy) (rotated basis) and σ± = 1

2 (σx ± iσy) we can
write the Hamiltonian for using two lasers:

HI =2 h̄Ω cos(∆ωt−ϕm)σ−ϕs
− h̄ηΩσπ

2−ϕs(a
†ei[(ωCM−∆ω)t+ϕm] + ae−i[(ωCM−∆ω)t+ϕm]

− h̄ηΩσπ
2−ϕs(a

†ei[(ωCM+∆ω)t+ϕm] + ae−i[(ωCM+∆ω)t+ϕm]

(2.4)

In the rest of our analysis we will fix ϕr = −ϕb , thus we will have ϕs = 0
and ϕm = ϕ, the Hamiltonian will be:

HI =2 h̄Ω cos(∆ωt−ϕm)σx
− h̄ηΩσy(a†ei[(ωCM−∆ω)t+ϕm] + ae−i[(ωCM−∆ω)t+ϕm])

− h̄ηΩσy(a†ei[(ωCM+∆ω)t+ϕm] + ae−i[(ωCM+∆ω)t+ϕm])

(2.5)

Looking at our Hamiltonian we can notice that the first term, namely the
carrier term, is not in the same basis as the other two, therefore does not
commute. We can also notice that this term is not multiplied for η and thus
its resonant coupling is 1

η stronger than the others. At this point we do the
Rotating Wave Approximation(RWA), discarding terms in the Hamiltionian
whose frequency is high(namely those with ω = ±(ωCM + ∆ω)). Notice that
to do RWA δ has to be small such that ∆ω ' ωCM . As a matter of fact, if
we want to achieve fast gates for which ωCM tg =

2πωCM
δ = 1, where tg is the

gate time, RWA breaks down and we cannot neglect the carrier term anymore.
Using phase gate in the z basis, this term can be handled using pulse shaping,
as done in [6]. This is not possible in the MS gate and, since it does not
commute, we would like to delete the carrier contribution. To do so, we can
create a standing wave using two laser beam and put our ions in the null of
this wave. These beams will have the same frequency ωL, what we call laser
in our Hamiltonian, will be made by these two beams.
To create the standing wave the two beam will need to have opposite k vectors:
eikzz − e−ikzz = 2i sin(kzz) where kzz = η(a†eiwzt + ae−iwzt). Notice that we
have assumed that the ion moves in the z direction and ωz = ωCM and
kz = |k| cos θ.

Now Hamiltonian (2.2) describing the interaction of a single laser with one
ion is given by:

HI = h̄Ωσ+e−i(∆ωt) sin([η(a†eiwCM t + ae−iwCM t)]) + h.c (2.6)
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We can now expand this expression and in the first order we have:

HI = h̄Ωσ+e−i(∆ωt)[η(a†eiwCM t + ae−iwCM t)] + h.c (2.7)

Thus we have eliminated the carrier term. It is important to notice that this
method is quite challenging to realize experimentally without using the system
described in [4]. The optical scheme normally used are sensitive to variation in
optical path length, due to air current or vibrations, therefore precisely fixing
the ions in the null is not usually possible.
This is the starting point of our calculation and we will then generalize this
expression by looking at both the center of mass and stretch mode of the two
ions. It’s important to notice that while in Hamiltonian 2.2 the expansion of
the exponential leads to odd and even terms that don’t commute, when we
look at the expansion of the sin we just have odd terms that commute.

Figure 2.1: Energy levels of the two-ions system and visualization of the ap-
plied red and blue fields. ωCM is the vibrational frequency of the centre of
mass mode, while δ is the detuning from the red and blue sidebands. |g〉
and |e〉 are in the z basis, at the end of the gate the populations of the ions
is changed i.e if initially they where in |gg〉 they end up in |ee〉. In the xy
basis the population is left unchanged, but the state acquires a phase. Notice
however that the motional state of the ions is unchanged at the end of the
gate.
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2. The Ms Gate

Figure 2.2: Using the system in [4] is possible to create a standing wave and
confine the ions in the null of the field. In the first figure we can see the two
beams applied to the ions, while the second image is a zoom in, showing the
standing wave. The beam in the figure has a waist of 8µm and comes up of the
chip at an angle of 36◦ from the vertical. The colors in the figure represents
the intensities of the laser, with black and yellow being the minimum and
maximum. Integrated optics is fundamental to achieve this goal, because the
optical schemes generally used are too complex and introduce inevitable errors
in the phase of the lasers.
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Chapter 3

MS Gate Mechanism

The MS gate is a phase gate, namely its action is to displace the state of the
system in the phase space. The propagator that gives the evolution of the
state ψ(t) = U(t)ψ(0) is given by:

U(t) = exp{−i
h̄
(
∫ t

0
HI(t

′)dt′ +
1
2

∫ t

0
dt′

∫ t′

0
[HI(t

′),HI(t
′′)]dt′′ + ..)} (3.1)

Considering only the first term in the expansion above, this operator is equiv-
alent to the displacement operator defined as:

D(α) = eαa
†+α∗a (3.2)

Following [5] we have that α is given by:

α(t) = 2iηΩ(σ(1)y + σ(2)y )eiϕm
∫ t

0
eiδt

′
dt′ (3.3)

In this case we are considering a time-independent pulse Ω, we will see that
changing this condition will help us reaching higher fidelities. The displace-
ment operator translates the quantum state in phase space without changing
its shape. Solving the integral we have:

α(t) = 2iηΩ(σ(1)y + σ(2)y )eiϕm(1− eiδt) (3.4)

We can see that the direction of the displacement depends from the qubit
state in the σy basis and that in any case after t = 2π

δ the state returns to
its original position. If the spins are in different states then σ

(1)
y + σ

(2)
y = 0

therefore we don’t have a displacement. However in this approximation we
have not considered the higher order terms in (3.1) that are caused by the
non-commutativity of the Hamiltonian with itself at different times. To solve
this problem we can look at the displacement operator for each small interval
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3. MS Gate Mechanism

of time dt and use the property D(α)D(β) = D(α+ β)eiIm(αβ∗). In this way
we can write equation (3.1) as U(t) = D(α(t))eiϕ(t) The phase is given by:

ϕ(t) = Im

∫ t

0
α(t′)dα(t′) =

4(σ(1)y + σ
(2)
y )2η2Ω2t

δ h̄2 (3.5)

Following [7] we can use the massless definition of position and momentum
operators x = a+a†√

2 , p = a−a†
i
√

2 to relate the total geometric phase to the Area
in phase space.

ϕ(t) = Im

∫ t

0
α(t′)dα(t′) =

∫
A

dxdp

h̄
=
A

h̄
(3.6)

and again following [5] we fix the parameters such that 4η2Ω2t
δ = π

2 . Notice
that this condition implies that, to close the loop in the phase space at the
end of the gate, when t = 2π

δ , we have to set Ω = δ
4η . Therefore the evolution

operator at the end of the gate is :

UCM = ei
π
2

(σ
(1)
y +σ

(2)
y )2

h̄2 (3.7)

Applying this operator on the two-ion state, we have:

UCM |↑↑〉y = |↑↑〉y e
iπ2

UCM |↑↓〉y = |↑↓〉y
UCM |↓↑〉y = |↓↑〉y
UCM |↓↑〉y = |↓↑〉y e

iπ2

(3.8)

Notice that in this case we are driving the Centre of Mass mode of the two-ion
system, in which we have a displacement in phase space if both the Ions are in
the same spin state. We can also choose to drive the stretch mode, in which
we have displacement in phase space if the ions are in opposite spin state. In
this case the evolution operator at the end of the gate will be given by:

US = ei
π
2

(σ
(1)
y −σ

(2)
y )

h̄

2

(3.9)

and the action on the two-qubit state can be seen as:

US |↑↑〉y = |↑↑〉y
US |↑↓〉y = |↑↓〉y e

iπ2

US |↓↑〉y = |↓↑〉y e
iπ2

US |↓↑〉y = |↓↑〉y

(3.10)

A phase gate implementation that uses the stretch mode was done in [7],
Notice that in this case the phase gate was in the z basis not in the xy.
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For slow gates we can drive a single mode frequency, this is possible because
using RWA we consider only the resonant terms. However, as we have seen
before, for fast gates(ωCM tg = 1) RWA does no hold and thus driving just
one mode will be impossible, thus to achieve high fidelity we have to change
our implementation.
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Chapter 4

Simulations

In our programme we have simulated the system, computing the density ma-
trix starting with both spin in the ground state of the z basis ρ = |↓↓〉z 〈↓↓|z ⊗
ρvib. We computed the density matrix at different times solving the Heisenberg
equation:

dρ(t)

dt
= −i[H(t), ρ(t)] (4.1)

We have used a medium order method (ode45 in Matlab) base on an explicit
Rung-Kutta formula, the Dormand-Prince pair [9][10]. We then traced out the
vibrational degree of freedom to obtain the spin density matrix: ρspin(t) =
Trvib[ρ(t)] and we could therefore look at the population of the different levels
at each step as plotted in (4.1). In the simulations we have normalized every
parameter with the common mode frequency, that we fixed as ωCM = 1. We
are considering optical transition with 40Ca+ therefore the carrier frequency is
ω0 = 411THZ. The frequency of the centre of mass mode is around 2−5MHz
and the ion are addressed with beams forming an angle of θ = 30◦, the
detuning in figure (2.1) is δ = 0.025, the pulse is constant Ω = 0.1786 and
the Lamb-Dicke parameter is η = 0.0707, which corresponds to 0.7 MHz for
an angle θ = 30◦ and an ion of Ca(40 atomic mass) m = 40 · 1.67 · 10−27kg .
We have also checked the Fidelity of our gate at each time. In the z basis the
action of the gate on the state |↓↓〉z is [8]

|↓↓〉z →
1√
2
{|↑↑〉z + iei(ϕs1+ϕs2) |↓↓〉z} = |ψexpected〉z (4.2)

Therefore the fidelity at each time is given by :

F (t) = 〈ψexpected| ρspin(t) |ψexpected〉 (4.3)

Generally we will look at the infidelity at the end of the gate, which is simply
defined as IF = 1− F . Using the parameters of (4.1), including only the
common mode and without the carrier term we achieved infidelities below
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4. Simulations

IF = 1 · 10−5. Due to intrinsic numerical error of the computer we cannot
trust results that are below IF = 1 · 10−5, therefore we fix this as the best
achievable result . Another thing that we can do to check that our code works
properly is to fix the detuning from the carrier as zero ∆ω = 0. In this case(if
we include the carrier term in the Hamiltonian) we see Rabi flopping between
the states |↑↑〉z and |↓↓〉z as expected.
We have also verified that, as expected by equation 2.4, having the carrier
term strongly affects the Fidelity that can be reached. In figure 4.2 we have
plotted the fidelities that we found for different gate time (expressed as number
of Common mode period) and δ with and without the carrier term for a
single pulse. Noticeably, while the fidelity without the carrier and with only
the common mode remains almost constant, when we include the carrier the
infidelities are higher for small values of α(number of COM mode period) and
are never below 0.35 for α < 5. Therefore to reach high values of the fidelity
for fast gate the elimination of the carrier term is central.

0 0.5 1 1.5 2 2.5 3 3.5
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Figure 4.1: Populations as a function of time. The system is initially in
|gg〉, the detuning is δ = 0.025, Omega is Ω = 0.1769 and the Lamb-Dicke
parameter η = 0.0707. Notice that each parameter is normalized by the CM
mode frequency.
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4.1. Inclusion of Stretch Mode and Time Dependent Pulse

2 4 6 8 10 12 14 16

t (COM mode periods)

10-5

10-4

10-3

10-2

10-1

100
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fid

el
ity

Infidelities

Normal
Carrier

Figure 4.2: Infidelities as a function of gate time with and without the carrier
term. We can see that when we consider the carrier term we cannot reach
good infidelities, because this term does not commute with the rest of the
Hamiltonian. We fix 1 · 10−5 as the best achievable infidelities due to intrinsic
numerical error of the computer.

4.1 Inclusion of Stretch Mode and Time Dependent
Pulse

Having eliminated the carrier contributions, the next most important off-
resonant term is the stretch mode. As we will see this term is quite important
when we want to have fast gates in which ωCM tG = 1 where tG is the gate
time, as a matter of fact we cannot reach high fidelities even without the car-
rier term if we don’t handle properly the stretch mode. Notice that in our
simulation we have fixed ωCM = 1 and the frequency of the stretch mode is
ωstretch =

√
3ωCM =

√
3. The Lamb-Dicke parameter for the stretch mode is

given by ηstretch = ηCM

3
1
4

[8]. As we can see from figure (4.1) the inclusion of
this mode affects the fidelity that we can reach for fast gate if we consider a
constant Ω. To understand why this is the case we have to look back to the
displacement in the phase space. The condition that we asked for closing the
loop was that at the end of the gate α(tg) = 0. We can view the application
of our lasers as the action of a time-dependent force that acts on an harmonic
oscillator with frequency equal to the CM mode frequency. We can write this
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4. Simulations

force as f(t) = Ω(t)cos(ωt+ ϕ) and rewrite equation 3.3 as:

α(t) =
∫ t

0
f(t′)eiωCM t

′
dt′ =

∫ t

0
Ω(t′)cos(ωt′ + ϕ)eiωCM t

′
dt′ (4.1)

where f(t) is the state-dependent force applied to our system by the lasers.
In this case the condition corresponds to having a null at ωCM in the fourier
space. Now the problem is that, since the detuning δ scales as the inverse of
the gate time tG = 2π

δ , it will be high when we consider fast gates and therefore
our lasers can excite not only the CM mode but also the stretch mode, because
ωL − ω0 − ωCM ' ωL − ω0 − ωstretch where ωL is the frequency of the applied
laser, ωL = ω0 + ωCM + δ. Notice anyway that for fast gate the dependence
is not completely linear. The fact that we excite two modes means that we
have two integral of the form (4.4) that we want to put equal to zero. This
means that we want to have the fourier transform of f(t)cos(ωt) equal to zero
in the points ωCM and ωstretch. However till now we had Ω = constant and
the fourier transform of a rectangular signal is a sinc function which has nulls
only at integer values. Since ωstretch =

√
3ωCM it is impossible to close both

loops in phase space. To overcome this problem we can take a time-dependent
Ω(t).
We used symmetric sequences of pulses as in fig (4.2),(4.3), varying their
intensities and spacing. To optimize the pulses we have used the fminsearch
function in Matlab, which is based on the simplex search method of Lagarias
et al.[11]. The parameters of the optimization where the length of the single
pulses, their amplitude, the spacing between them, the total gate time and
the detuning, in total we had (n+2) parameters for a symmetric n-segment
pulse. We have tried combination with different numbers of sequences and
look at how this affects the achievable fidelities. In fig (4.4) we have plotted
the results obtained using symmetric sequences of 2, 3 and 9 pulses. Each
point in the graph is the result of an optimization over the parameters of the
pulses, the detuning and the gate time. We can see that even with series of
three pulses we achieve high fidelities and fast gates. In figure (4.5) we can
see the action of the gate in phase space using a pulse of three series, as we
can see that loops corresponding to both modes are closed.
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4.1. Inclusion of Stretch Mode and Time Dependent Pulse
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Figure 4.1: Infidelities achievable considering only the CM mode(blue) and
including also the stretch mode(red), in both cases we are not considering
the carrier term. We can see that for fast gate (ωCM 2π

δ ' 1) the effect of
the Stretch mode becomes relevant and we cannot achieve infidelities lower
than 1 · 10−2, whereas in the ideal normal case we have infidelities of 1 · 10−5

because there is no off-resonant coupling with the carrier. This figure refers
to a single pulse sequence i.e the value of the pulse was constant for the all
duration of the gate.
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4. Simulations
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Figure 4.2: Symmetric series of three pulses. On the x axis we have the time
of the gate express in COM mode periods.
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Figure 4.3: Population for a symmetric series of three pulses as shown in (4.2)
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4.1. Inclusion of Stretch Mode and Time Dependent Pulse
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Figure 4.4: We have compared the fidelity that can be achieved using se-
quences made by a different number of pulses when we include at the first
order both centre of mass and stretch mode, without the carrier. As we can
see, three pulses are enough to achieve IF = 1 · 10−5.
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4. Simulations
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Figure 4.5: Effect of the gate in the phase space. For fast gates we excite
both the stretch and COM mode. We can see that we have a state-dependent
displacement and at the end of the gate the state goes back in the center. The
figure refers to a symmetric sequence of three pulses with no carrier.

4.2 Other sources of error
Until now we have studied the two main contributions to the infidelities, the
carrier term and the stretch mode, however others mechanism can affect our
precision. Here we have studied two of them, namely third order terms in
the expansion of sin([η(a†eiwzt + ae−iwzt)]) and residual carrier effects. As
a matter of fact, our method is based on keeping the ion in the null trough
a standing wave, we have looked at the effect of a small drift of the ions
due to an imbalance in the lasers intensities of 5% that gives a small carrier
contribution. We have also looked at how, considering the carrier zero to
the first order but not to the second(like taking expansion of exponential
without first term), affects our results and we found that we loose two order
of magnitude in precision. The results for the case of a three pulses sequence
are plotted in (4.1). Notice that the values of infidelity including the third
order expansion and imbalance in the intensities are not optimized. This is
because it’s difficult to know the precise experimental error that we will have
and thus doing an optimization does not make much sense. As we can see in
the figure (4.1), if we don’t have a perfect standing wave, the resulting small
carrier term can strongly influence our achievable infidelities, with a loss of
3 order of magnitude in their values. However we must say that imbalance
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4.2. Other sources of error

much lower than 5% should be possible using [4], therefore our method should
guarantee high precision.
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Figure 4.1: We have analysed the effect that a small carrier term(red) and
the third order terms(yellow) can have on the achievable fidelities of our gate.
In particular, we can see that the small carrier term caused by an imbalance
in the laser beam, can considerably influence our precision, increasing the
infidelity of 3 orders of magnitude.
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Chapter 5

Conclusion

We have studied the basic working principle of the MS gate and analysed how,
using a standing wave, we can strongly improve both fidelity and gate time,
through the elimination of the carrier term. We have also studied how, for fast
gate, we excite both the common and stretch mode and how this affects the
achievable fidelity. To solve this problem we have simulated the performance
of the gate using series of pulses instead of a single one and we have found
that infidelities of the order of 10−5 should be possible for series of 3 pulses.
We have then looked at how imperfection in the experimental apparatus, like
imbalance in the laser intensities and consequent non complete elimination of
the carrier, can impact our implementations and found that we can anyway
reach infidelities of around 10−3 for 5% imbalance(lower values should be
experimentally possible). Moreover we have also looked at the effect of third
order terms, finding that their contribution can lower the fidelity of one order
of magnitude maximum. Further analysis can be done considering how the
radial modes affect the achievable infidelity.
In conclusion we have shown that fast(3 COM period), low infidelities(around
10−3) and robust MS gate can be theoretically achieved using series of three
pulses and standing wave elimination of the carrier term.
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