Simulation of high-purity circularly polarized light from a
waveguide ring resonator with azimuthal grating

Tom Schatteburg
Supervisor: Dr. Karan Kartik Mehta

Group leader: Prof. Dr. Jonathan Home
ETH Ziirich

July 30, 2018



Abstract

An integrated optics ring resonator with an angular emission grating was simulated using the
volume current method (VCM) and the finite-difference time-domain (FDTD) method. FDTD
simulations of the coupling of the feeding waveguide to a half ring as well as simulations of the
intensity decay through emission by a straight grating allow the selection of coupling gap width
and grating strength to achieve critical coupling of the resonator. The theory predicts the emitted
electrical field to be purely circularly polarized on-axis perpendicular to the waveguide plane if
the azimuthal mode index of the guided mode differs from the number of grating elements by 1.
Both methods confirm this, already an unoptimized structure reaches a purity of at least 99.95%.
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Chapter 1

Introduction

1.1 Motivation

Great research effort is put into exploiting quantum mechanical effects for simulation and cal-
culation purposes. One approach which is followed by this research group is to take transitions
in single ions as qubits, allowing for simple binary operations. A detailed review on quantum
computing with trapped ions can be found in reference [I]. In order to manipulate the single ions
in an isolated and controlled environment, they are held in an ion trap, which can be achieved
for example by a linear Paul trap.[2] Since the atomic transitions are induced by laser light, the
delivery of optical power to the exact trapping position of the ion is crucial. Here the techniques
of integrated optics come into play. Integrated optics devices to address single ions in a surface
electrode trap have recently been demonstrated and promise to allow for better large-scale quan-
tum information processing. [3] This research group is working on setting up a new ion trap where
waveguide structures are integrated into the wafer which contains the electrodes that generate
the trapping potentials.

For a controlled interaction of light with the trapped atom, the spin and orbital angular
momentum of each photon has to be well-defined. The spin angular momentum of a photon is
defined by its state of polarization, so each photon carries a spin of +A depending on whether
it is left- or right-handedly circularly polarized. Since linear polarization is a superposition of
left- and right-handed circular polarization, its photons will be in a superposition of both spin
states. To obtain a pure spin state, one thus has to use light with a pure state of polarization.
Linearly polarized light can be obtained for example by Brewster-angled reflection. Also from
integrated optics devices, it is possible to obtain linearly polarized light with more than 99.9%
purity at the focus.[4] For some operations however, it is necessary to use light with pure circular
polarization. For example during readout, light impurities due to photons with opposite spin
than desired may couple the atom to a different state as intended, which then decays into a
dark state.[5] Circularly polarized light is usually created by phase-shifting one component of
linearly polarized light by 7 in a quarter-wave plate. However, Cai et al. demonstrated the
emission of optical vortex beams carrying orbital angular momentum from an integrated optics
device.[6] Under certain circumstances, the radiation on-axis from such emitters corresponds to
pure circular polarization, which we try to exploit. In this project, the radiation emitted from
this ring resonator with azimuthal grating is simulated and analyzed with respect to circular
polarization at the center.

The ion used for this experiment is the hydrogen-like “°Ca™, whose upper state has a long
lifetime of about 1 s.[7] The S; /5 to D5/, transition is induced by 729 nm light, which is readily



available with current laser technology. This is why this simulation focuses on light of this
wavelength.
1.2 Propagation of light

From Maxwell’s equations in a source-free, non-magnetic medium follows that each of the com-
ponents of the electric and magnetic field £ and H has to satisfy the wave equation

- 1 0%u
2 —
U SE = 0, (1.1)
where u is the scalar wavefunction, ¢ = \/6170 = 2 is the speed of light in the medium and

n = /& is the refractive index of that medium. The wavefunction u(,¢) is real, however it is

convenient to use a complex wavefunction U(7,t), so that

u(r,t) = Re{U (7, t)}. (1.2)
With the Ansatz

U(7 t) = U(F) exp (i2wvt) (1.3)

follows from the wave equation that the complex amplitude U (7) satifies the Helmholtz equa-
tion:

(V2 + ) U =o. (1.4)
Here, k is the angular wavenumber

2y w 2w
k= === 1.5
c c A (15)
which should not be confused with the (linear) wavenumber 7 = %, which is often used in
Chemistry and spectroscopic applications. Note that k, ¢ and A are depending on the refractive
index of the material, whereas v and w are not. With the complex amplitude, the optical intensity

is given as

1(7) = [U(M)*. (1.6)
Two simple solutions to the Helmholtz equation are the plane wave
U(7) = Aexp (—iEF) (1.7)
and the spherical wave
U(7) = Aexp (—ikr). (1.8)

r = | is the distance from the origin and % is the wavevector so that k = |k|.



1.3 Gaussian and Laguerre-Gaussian beams

If you consider a geometry where light propagates generally along one direction (usually z), one
can make the approximation to express the complex amplitude as

U(F) = A(7) exp (—ikz) . (1.9)

This so called paraxial wave is similar to a plane wave travelling along the z direction, but

the carrier wave is modified by the complex envelope A(7), which is a slowly varying function of
position. From the Helmholtz equation then follows the paraxial Helmholtz equation

- HA
2A—i2%k— = 1.1
\% i kaz 0, (1.10)

where ﬁzT = 3‘9—; + 88722 is the transverse Laplace operator. One important solution to this
equation is the Gaussian beam, which gives for the complex amplitude

U = Ao%exp {—W’j(z)} exp {—m 5 g?z) + ig(z)} exp (—ik2) (1.11)

A(7)

with the beam width

W(z) = Woy/1+ <)2 (1.12)

1+ (;)2] , (1.13)

the Gouy phase ((z) = arctan (i) and the beam width at the waist Wy = 1/)‘273. The

parameter zg is called the Rayleigh range and together with the amplitude Ay determines all
parameters of the beam. zr and Ay themselves are fixed by the boundary conditions. p is
the radius in cylindrical coordinates (p,¢,z), which are useful for paraxial problems. Further
properties of Gaussian beams can be found in [g].

The Gaussian beam is not the only solution to the paraxial Helmholtz equation, but there are
whole families of solutions. The most commonly-known family are the Hermite-Gaussian modes,
which show the same change in phase as the Gaussian beam. This means the surfaces of constant
phase, called the wavefronts, are identical. However, the transverse intensity distribution is
different for each mode, given by Hermite-Gaussian functions along the x and y directions.
These contain Hermite polynomials, so that each mode is described by a pair of indices (n,m)
which stand for the order of the polynomials.

Another set of solutions are the Laguerre-Gaussian modes

the radius of curvature

R(z) ==z

Up(7) Mc;l(’z) (I/Iﬁf))ll exp [W’;iz)] Ll {V[/Qf(zz)} x

p
2R(z)

(1.14)

exp [—z’k + ig(z)] exp (—ile) exp (—ikz) ,



where W (z), R(z) and ¢(z) are defined the same as above, C; , is a normalization constant

depending on the mode indices [ and p and LLZ ‘() are the generalized Laguerre polynomials.
There are some important features to note about the Laguerre-Gaussian beams. For [ = p = 0,
equation reduces to the normal Gaussian beam as given by equation . This means
that the transverse intensity profile is given by a Gaussian shape, the wavefronts are planar at
the waist where z = 0 and spherical for larger distances. p gives the number of radial nodes
within the beam profile. With increasing [, it becomes clear from the second term that the
beam extends to larger radii. Also, the azimuthal phase factor exp (—il¢) is introduced. This
shapes the formerly planar or bent wavefronts to a helix, with the azimuthal mode index [ giving
the number of spiral arms. When following one round trip of the azimuthal angle ¢, the light
accumulates an additional phase of 2xl. Figure shows a schematic wavefront of such a beam
with { = 2. The Matlab script to create this figure can be found in listing [6.1]

—
Figure 1.1: Scheme of the wavefront of a Laguerre-Gaussian beam with azimuthal mode index
l=2.

The Laguerre-Gaussian modes as well as the Hermite-Gaussian modes are both complete
sets of solutions to the paraxial Helmholtz equation. This means that any solution can be
expressed as superposition of modes from one of these sets of solutions. Consequently, also
each Laguerre-Gaussian mode can be expressed as a complex-weighted superposition of Hermite-
Gaussian modes and vice versa, as has been shown by [9]. One reason to use the Laguerre-
Gaussian modes for certain problems is its convenient description of light’s orbital angular mo-
mentum. The momentum that electromagnetic radiation has is split into linear and angular
momentum. Angular momentum itself may have contributions from spin, which is associated
with the polarization of the field vectors, and an orbital part, which comes from the field’s spatial
distribution. In short, a Laguerre-Gaussian mode with azimuthal mode index [ carries orbital
angular momentum of L = [ per photon.

One has to pay attention to where to apply the description with Laguerre or Hermite-Gaussian
modes, though. They are a solution to the paraxial Helmholtz equation, which originates from
the scalar wave equation. This means that one single mode alone is not sufficient to describe
the vector nature of the electric field. Instead, each component of the field vector is individually
described by one mode or a superposition of modes. To treat this, one multiplies the scalar wave
with the unit vector of the polarization direction. Since the spatial distribution is totally included
in the scalar wave function, the unit vectors may not be position-dependent. This is valid for most
polarizations like linearly polarized light or circularly polarized light by superposition. However,
for example for a radially or azimuthally polarized beam, the field vector points in different
directions depending on position. Thus, it cannot be described by a single Gaussian mode alone.
Instead, one has to use a superposition of Gaussian beams with different polarization directions,
as will be done in section



1.4 Guided-wave optics

For a basic introduction of the concept of waveguides, we begin here in the ray optics picture.
This simplification yields useful results for waveguides with dimensions much larger than the
wavelength of the guided light, which support multiple modes. For waveguides with smaller
transverse dimensions like in this project, the approximations of ray optics are not sufficient
anymore. Instead, one has to base the theory of guiding light on solving the wave equation
with position-dependent refractive index. Also, for the understanding of the principles of
waveguides, the polarization of the electric field vector is left out. It is then discussed in section
21

Dielectric waveguides are formed by a dielectric material which is transparent at the wave-
length of interest, and a surrounding material with lower refractive index. For the basic principles,
we consider a two-dimensional structure where z is the general direction of propagation of light
and y is the second dimension, as can be seen in Figure [1.2

Figure 1.2: Two-dimensional scheme of a waveguide composed of the core material with refractive
index n; (blue) and the cladding material with refractive index ns < ny (light blue). For incident
angles 07 to the interface, the light is reflected a the same angle, and refracted at a smaller angle
02 governed by Snell’s law (equation ([1.15)). If the incident angle is small enough, this law
cannot be fulfilled anymore and the light is completely reflected. The maximum angle at which
this occurs is the critical angle ..

The guiding material is called the ”core” of the waveguide and has refractive index nq,
whereas the surrounding material is called the ”cladding” of the waveguide and has refractive
index no < ny. Darker colors denote higher refractive index. Rays hitting the waveguide interface
between core and cladding at an incident angle 6, are partially reflected at the same angle. The
other part is transmitted but refracted at an angle > governed by the refractive indices through
Snell’s law:



n1sinf; = ngsin by, (1.15)

where 6, /2 = 90° =0y /5 are the complementary angles as drawn in Figure Decreasing the
incident angle 6; with respect to the interface means increasing the angle 6. This also increases
the refracted angle ;. However, its maximum value is 90°, so that sin§; = 1. Then, the incident
angle 6; becomes the critical angle 6,:

61 =6, =90° — 4.

= 90° — arcsin (712)
ni

= arccos (712) . (1.16)
ni

For all incident angles 81 < 6., Snell’s law can not be satisfied and there is no refracted beam.
Instead, all the light is reflected, which is called total internal reflection. For parallel waveguide
interfaces, the reflected beam will hit the opposite interface at the same angle, so that it is totally
reflected again. This means that the light can propagate along the waveguide without losing any
power, provided that the material losses are negligible.

In this ray optics picture, it is clear why it is favourable to guide light making small angles
with respect to the waveguide boundaries. However, there are more limitations introduced by
the wave nature of light. The interested reader is referred to [§] for a more detailed discussion
and proper visualization of the introduced variables. In brief: For a twice-reflected wave to
propagate along the waveguide, it has to be consistent in phase with the original wave. This
imposes a condition on the incident angles, so that they can only take specific values 6,,, called
bounce angles. For a dielectric waveguide, they are not as straight-forward to obtain as for mirror
waveguides because the phase-shift ¢, introduced at the boundary is not m anymore.

A guided wave then consists of two plane waves with angles +6,,, with respect to the z axis
which is set parallel to the waveguide boundary. Both waves have the same z dependency, so
that any superposition takes the form E,, x e~ "% where

Bm = nikg cos b, (1.17)

2w
is called the propagation constant and kg = ~ is the angular wavenumber of the unguided

0
wave in vacuum. Since over longer distances, the wave effectively travels in the z direction, one
also defines the effective refractive index

Neff = N1 COS Oy, (1.18)

so that B,, = nesrko. The effective refractive index takes the role of the material refractive
index if one neglects the details of how the wave is guided in the structure. However, both should
not be confused. Additionally, the effective refractive index is not only dependent on both the
core and the cladding material, but also on the mode m in which the light propagates.

If several waves with different bounce angles are present, the resulting field is a superposition
of these modes:

E(y,z) =Y _ amum(y)e 7, (1.19)
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where a,, is the amplitude of the mth mode and w,, (y) is its transverse field profile. These can
become more complex depending on the exact shape of the waveguide and are later calculated
by a solver for waveguide modes. For this two-dimensional waveguide with parallel interfaces,
the transverse field profile inside the waveguide (|y| < %) is given by

9 s
cos %ﬂﬂmy , form=0,2,4,..

U (Y) X  [2rsingB,, (1.20)
sin fy , form=1,3,5,..

A
with A = 22, For a waveguide with mirror interfaces, the field is zero at the interfaces. As

ny
becomes clear from equation this is not the case for dielectric waveguides. Outside the
guiding layer (|y| > g), the field decreases exponentially, so it takes the form

U () o eIV (1.21)

Ym is the extinction coefficient, which decreases with m. This means that higher order modes
extend deeper into the surrounding material.

This reasoning can be applied analogously to a second transverse direction, thus introducing
a second mode index. For our problem, we assume only one contributing mode, which is the
fundamental mode with both indices zero.

1.5 Ring resonators

An optical resonator is a system in which light circulates and is fed back to its original state
without escaping. A simple setup is the Fabry-Perot etalon which is comprised of two opposing
mirrors. Other setups may also form a resonator, for example multiple mirrors arranged so that
rays follow a closed geometrical shape, or an optical fiber whose ends meet each other. Although
there are many ways to obtain a resonator, the underlying principles are similar. There is the
optical path length L which light rays travel until they reach their initial position again, and an
attenuation factor a which accounts for losses during one round-trip. Such losses could originate
for example from imperfect mirrors, which also transmit part of the light, or objects which
scatter some part into a spatial direction where it can escape. Although this occurs only at
specific positions in the resonator, one usually ’distributes’ the losses mathematically so that
they are averaged over one round-trip.

Optical resonators have resonant modes at particular frequencies. Additionally to spatial
feedback, light also has to have its original phase when it reaches its initial position again. Oth-
erwise, the light wave interferes destructively with itself so that these components are cancelled
out. This means that only electric fields with wavelengths by which the optical path length
is divisible without remainder are self-consistent and can exist in the resonator. In a circular
resonator, such electric fields are called whispering gallery modes (WGMs).

Figure shows a scheme of the coupling region at the gap between the feeding waveguide
and the ring resonator. As discussed in section [I4] the electric field in a dielectric waveguide
is not totally confined to the core. It also extends into the surrounding material, where it is
unguided and loses amplitude quickly (see equation ) However, in the coupling region, the
gap between ring and feeding waveguide is close enough so that the electric field extends into
the ring. There, it is guided again and does not lose amplitude by propagation. The different
electric fields at the coupling region are related by equation

11
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Figure 1.3: Scheme of the coupling region between feeding waveguide and ring resonator. The
electric fields before and after the coupling are related to each other via the transmission coeffi-
cient ¢ and the coupling coefficient r, according to equation (1.22)).

Ethrough o t R Ein
(Erl - 7!1* t* E’I"O ’ (122)

where Ejy, and Eyprougn are the electric fields in the feeding waveguide before and after the
coupling, F.o and E,.; are the electric fields in the ring before and after the coupling, t is the
transmission coefficient and & is the coupling coefficient.[I0] Energy conservation requires that
the transmission matrix is unitary, so that [t|? + |x|?> = 1. E,q follows only from E,.; due to
propagation of the electric field in the ring,

E.g = E.je” 32mRei? (1.23)

where « is the intensity decay rate due to loss in the resonator, R is the radius in the ring
and ¢ is the phase shift introduced in one round-trip. The transmitted field Eyprougn can thus
be expressed in terms of the input field F;,:

te—i(i) _ e—aﬂR

Ethrough =L (124)

Mro—i¢p _ pre—amR’

At resonance, there must be constructive interference between the field t*E,q which propa-
gates in the ring and the field F,; added by the feeding waveguide. This means arg{t*E,o} =
arg{E, } and thus ¢ = ¢; up to a shift of a multiple of 27, where @; is the phase of ¢. Then,

equation (1.24)) reduces to

. |t‘ _ e—oer
Ethrough = E’inellptm~ (125)
Looking at the numerator, it follows that the transmitted field becomes zero for
|t = e~ ", (1.26)

which is the critical coupling condition. For these pairs of parameters |t| and «, the field in the
feeding waveguide interferes destructively with the field coupled back from the ring. This means
all the input power is transferred into the ring, where it is lost through whatever mechanism
causes the intensity decay rate a.

12



For this project, critical coupling is the optimal state of operation because the loss mechanism
is emission of radiation, which should be maximized. The transmission coefficient ¢ is determined
by the coupling strength, which can be influenced by the width of the gap between feeding
waveguide and ring resonator. The loss rate depends on the grating strength, where parameters
like grating periodicity and shape are to be determined.

13



Chapter 2

Principle and simulation approach

Figure 2.1: Scheme of a ring resonator with a feeding waveguide. On the inner boundary of the
ring, grating elements are added to couple radiation out of the ring. Radiation is mainly emitted
into the z direction due to the circular symmetry of the emission grating.

A ring resonator with an angular grating as in Figure theoretically allows the emission of
almost purely circularly polarized light. This chapter is devoted to explaining why this can be
achieved by matching the azimuthal mode index m to the number of grating elements N by a
difference of 1.

2.1 Propagation of light in the ring resonator and emission
by the diffraction grating

Circular resonators support whispering gallery modes (WGMs). One uses angular propagation
constants vy = BR, which give the phase shift per unit azimuthal angle. R is the effective
radius of the WGM and f is the propagation constant of the guided mode (see section. On
resonance, the phase shift for one round trip has to be a multiple of 27, so that vyway = SR =

14



m. m is an integer which is called the azimuthal mode number and denotes the number of cycles
that the light goes through when propagating one round-trip through the resonator. The electric
field in the ring waveguide then takes the form Ey oc e/,

At the grating elements, a part of the light is reflected and removed from the guided mode.
According to Huygen’s principle, each point where this occurs is the source of a new spherical
wave. Each grating element can be regarded as quasi-point source for such a spherical wave.
There are different phase shifts between these waves from neighboring grating elements due to
different path lengths up to a given point in space. If the phase shift is an integer multiple of
27, constructive interference occurs and light is radiated into this spatial direction. Oppositely,
for uneven integer multiples of 7, destructive interference is observed.

In a linear grating, if the grating elements are uniformly spaced, the phase shift is the same
between each neighboring spherical wave. This means that for a certain angle of emission, there
is a plane on which the light has the same phase at every point, called wavefront. Note that in
principle, there can be more than one wavefront, if the angle is high enough so that the phase
difference is a multiple of 27, which is called the diffraction order. This depends on the effective
wavelength in the waveguide and in the propagation medium, as well as the spacing of the grating
elements. For the parameters in this project, only first order diffraction is possible.

If the grating is not linear anymore, but formed into a ring, these wavefronts are bent. Due
to the circular symmetry of the problem, the wavefront does not show a discontinuity at any
point, but rather forms a helical structure. Beams with such wavefronts are described by an
azimuthal dependence of E,.qq o €?, where [ is an integer. Similar to the Laguerre-Gaussian
modes described in section they carry an orbital angular momentum of [A per photon. The
azimuthal dependence manifests itself in a helical wavefront, similar to the scheme for [ = 2 in
Figure

To derive the form of the emitted electric field more rigorously, a coupled mode analysis
goes as follows: Which radiation modes are excited by a waveguide mode is determined by their
coupling coefficient «. It is given by

KO(/ EradAeE)odV, (2.1)
1%

which is an overlap integral of the unperturbed field in the waveguide Ej with the radiated
field Emd, mediated by the dielectric perturbation Ae. The angularly dependent parts are
evaluated separately, and Ae is expanded in a Fourier series. Considering only the first term, it
is given by Ae o sin (N¢), where N is the number of grating elements. Then, each of the electric
field vector components contributes to the coupling coefficient like the following:

2m
KO(/ e'(m+ N —1)+e'(m— N —1)do. (2.2)
0

For this integral to be non-zero, one of the exponents has to become zero. This gives the
condition [ = m + N. Since the radius of the radiation modes increases with [, a small structure
like the azimuthal grating only overlaps with modes with small values of I. m and N are both
numbers in the order of 10 to 100, so only the difference condition produces significant overlap.
Thus, the azimuthal mode index [ of the radiation is given by the difference between the azimuthal
mode index m and the number of grating elements NV:

l=m—N. (2.3)

Then, the propagation constant of the radiation in z direction Byq4,. is given by

15



Brad,z = \/(ﬂrad)2 - (ﬂrad,¢)2

_ \/(27””;1‘)2 ~ (yaaR)?, (2.4)

where ngy. is the refractive index off the medium surrounding the waveguide and A is the
free-space wavelength. Because of the circular symmetry, the general propagation is along the z
direction.

Now we consider the state of polarization of light inside the waveguide. The geometry of
the waveguides in this study is close to the one of a planar dielectric waveguide. The modes in
this waveguide are quasi-TE modes, so that the electric field vector lies within the waveguide
plane. As have been shown by simulations,[6] in the center of the waveguide where the intensity
of the guided mode is highest, the electric field vector is transverse, which corresponds to radial
polarization for a ring waveguide. In contrast, at the inner sidewall of the waveguide, which
is where the grating is placed, the electric field vector has both transverse and longitudinal
components. In fact, due to strong confinement, the longitudinal components at the waveguide
boundary can be of comparable strength as the transverse components.|[I1] From the perspective
of a ring, this means a mixture of radial and azimuthal polarization. As will be shown in the
following section, the exact emitter state of polarization is not important for the reasoning to
obtain purely circularly polarized light at one point. However, it does determine the overall ratio
of the amplitudes of left-handed and right-handed circular polarization.

2.2 Circular polarization of the emitted field

There are different conventions about the terminology of circular polarization. Here we use the
1

unit vectors 4 = —5 (Z 4 19) for left-handed circular polarization (LHCP) and 6_ = % (T —19)
for right-handed circular polarization (RHCP).

From the reasoning in the previous section follows that the transverse components of the
radiated field are

—

Erad,transverse = ar(r, Z)eil(z)f + Cl¢(’l“, Z)eiwév (25)
where 7 = cos ¢z + sin ¢y and gf) = —sin¢x + cos ¢y are the unit vectors in radial and
azimuthal direction, respectively. a,(r,z) and ae(r, z) are amplitudes determining the ratio of
radial to azimuthal polarization. Due to circular symmetry, they are independent of angle ¢, but
in principle they do depend on position. The radiated field in principle also has a longitudinal
component along the z direction which will be discussed in section [2.3]
The transverse components of the radiated field E,uq,transverse can also be expressed in the
basis of circular polarization:
Erad,transverse - E+&+ + E_o6_. (26)
64+ and 6_ are the basis vectors for left-handed and right-handed circularly polarized light,

respectively, £ and E_ are the corresponding amplitudes. Then, by projection onto the basis
vectors of circular polarization, £y and F_ are given by equations (2.7)) and (2.8].

16



E, =¢l (ar(r, 2)F - 64 + ag(r, 2)¢ - 6+>

— ¢ilo (ar(r,z)ew n ag(r, z) ,L-eiqb)
V2 V2

= a (r,z)eltHD)e (2.7)

B — gile (ar(T7 2)F -6 + ag(r, 2)p - 6_)

_ g ar(r,2) —i¢ | Q¢ T, z) . —i¢>)
=e —F€ + ——=1e
( V2 V2
=a_(r,z)el-1? (2.8)

where a+(r,z) = %\/Z;”’(m Although a(r, z) is complex, it does not vary with angle ¢
or with time, so its phase stays constant. It is important to note that the amplitudes of left- and
right-handed circularly polarized light do not have to be the same, but are determined by the
relative amplitudes and phases of the radial and azimuthal components in the waveguide.

We now consider the case where [ = 1. E_ becomes independent of angle ¢. For E,, the
angular dependence is given by €*??. With non-zero intensity, there would be a discontinuity
at 7 = 0. Because this is unphysical, the intensity at the center of the r-¢ plane must vanish.
This applies more generally, so that all Laguerre-Gaussian modes with [ # 0 have zero intensity
on axis. In this case, this means that the 6, component vanishes at this point. Instead, all
contributions which are not in the z direction, must be purely right-handedly polarized. The
analogous argument leads to the conclusion that for [ = —1, the transverse components of the
light must be purely left-handedly polarized at the center of the r-¢ plane.

2.3 Longitudinal component of the emitted field

The different components of the electric field are related to each other via Gauss’s law in the
absence of electric charges:

O P ok, +3Ey +8Ez
Ox Oy 0z
A longitudinal component F, can then only be present if the electric field varies strongly
along the x- and/or y-direction. The point of our interest is at the center of the r-¢ plane
where only one circularly polarized component contributes to the field at this point, as has been
discussed in the previous section. This component does not vary with angle ¢ but only with
radius r. The trapped ion will be several tens of micrometers above the waveguide plane. For
ring dimensions of 10 to 20 micrometer diameter, this is not in the near-field regime anymore but
rather in the far field, which indicates a more slowly amplitude. From this follows that we have
reason to expect the z component to be small, possibly negligible. To which extent it contributes
is calculated in more detail in the 2D and 3D simulations and will be discussed in chapter [3]

= 0. (2.9)

2.4 Volume Current Method

The Volume Current Method (VCM) is a method to calculate the radiation loss of dielectric
waveguides.[12] Initially it was intended to allow the minimization of radiation from structures
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like bends, branches or tapers, but here it is applied to obtain the radiated field from the angular
grating at the inner boundary of the ring waveguide, as can be seen in Figure

2.4.1 Theoretical background

Radiating structures are modeled by treating them as perturbation de (¥) = €; (7) — €2 to the
surrounding dielectric constant e;. Then, the polarization current density is defined as

Jp = %1; = iwde (F) E (7), (2.10)
where E (7) is the electric field in the waveguide, which is usually unknown. However, it can
be approximated by the field of the mode in the waveguide, which is obtained from numerical
solutions or from waveguide theory as in section
In Maxwell’s equations, the electric and magnetic fields can be expressed in terms of the
magnetic vector potential /T, so that

B=VxA (2.11)
and
. . oA
E=-Vyo— — 2.12

where ¢ is the scalar potential. Using the Lorentz gauge V-A+ c%%—f = 0 and assuming a

time-dependency of A x et the electric field takes the form
ﬁ(ﬁqﬂ
1Wip€g

Also, then the Helmholtz equation in a dielectric medium assuming no free or magnetic
current density is given by

E = —iwA+ (2.13)

(62 + OJ2,U()62) /T: —ﬂojp. (214)

The solving vector potential Aisa superposition of spherical waves caused by the polarization
current density:

exp (—iks|7 — 7])

An =12 [ Jo)

where ko is the angular wavenumber in the surrounding material. Note that although the
integral goes over the whole space, it only needs to be evaluated over the waveguide structure
because outside, de (7) and thus Jp (7) is zero.

Thus, the procedure is as follows: One models the structure of interest with a perturbance
de (F) to the surrounding refractive index, and together with an assumption for the electric
field in the waveguide obtains the polarization current density Jp according to equation .
Integration over the waveguide structure according to equation gives the vector potential
A (7), so that equation yields the radiated field E (7) at any point in space 7.

av’, (2.15)

=7
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2.4.2 Modeling of the ring resonator with azimuthal grating

The most important assumption using the volume current method in this project is that the
waveguide structure is treated as only two-dimensional. As mentioned earlier in section [2:3]
we are interested in the radiated field several tens of micrometers above the waveguide plane.
So for a simplified treatment, the extent of the waveguide into this direction, which we denote
as the z direction, is neglected. Instead, this allows for less a less detailed description of the
waveguide in term of its dielectric constant and additionally simplifies the integral in equation
@‘ . Mathematically, the polarization current density Jp (7), also called volume current, is
replaced by K (p,9)d (z), a surface current times the Dirac delta distribution along z. The
two-dimensional treatment also means that any cover above the dielectric which is part of the
waveguide is neglected here. Instead, the surrounding medium in which the radiation propagates
is assumed to be vacuum, which is a good approximation since any cover in the real structure
would only be a few micrometers thick.

For the volume current method, only the radiating structures are modeled. This means
that the feeding waveguide is left out completely, and of the ring resonator only the grating is
included. After setting the parameters of the ring, which are radius and width, the grating is
approximated as de (1, ¢) x €psin (N¢) at the radii where the ring is and to zero elsewhere. So
there is no grating at the inside of a ring waveguide, but only a grating in which there is still the
electric field of a guided mode. This might result in a deviation in the radial distribution of the
electric field, but not at the center due to the exactly circular symmetry of the model. Instead
of the rectangular shape of the grating elements, they can be described well in this sinusoidal
form because in the Fourier decomposition of the dielectric perturbance for the derivation of
equation , it is shown that only the fundamental component can couple to the radiation
modes.[6] Although this depends on parameters like the free-space wavelength of interest, the
refractive index of the surrounding, the waveguide refractive index and the grating periodicity,
the condition is fulfilled for the parameters in this project, too.

The electric field E (r, ¢) in the waveguide has an angular dependence of E o €™, as pointed
out in section For the radial dependence, one has to implement the transverse field profile
inside a dielectric waveguide, as introduced in equation . For a first simple description, it
is not taken into account that there may be multiple modes propagating. Also, instead of the
exact profile, the simple sinusoidal form u(r) = cos ({(r — R)) is chosen, where R is the ring
radius and W is the ring width. Similar to the argument for de (r, ¢), this can only have an effect
on the radial distribution of the radiated field due to the circular symmetry of the deviation.
The polarization of the electric field in the waveguide was modeled to be radial. For a further
discussion, see section [2.1

With these assumptions, first calculations can be made. However, in order to speed up
the computation time to obtain the electric field from the vector potential, equation is
inserted into equation . Then, the divergence of the vector potential and the gradient of the
resulting scalar field are evaluated analytically. For these spherical waves, this is easily possible
and saves expensive and inaccurate numerical derivations. In the Appendix in section [6.1.1] a
Mathematica notebook can be found which evaluates all necessary derivatives. These analytical
formulas were then used for the numerical calculations.

Numerical calculations were performed with MATLAB R2017a, the analytical derivations
were evaluated with Wolfram Mathematica 11.2.
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2.5 Finite-Difference Time-Domain Method

The finite-difference time-domain method is based on solving Maxwell’s equations in the time-
domain numerically until a steady state is reached. From the resulting electric and magnetic
fields for each time, their frequency components are obtained via Fourier transformation.

For the numerical solution, Maxwell’s equations are replaced by a set of finite-difference
equations. This approximates the derivatives in the differential equations. Since both space
and time are discretized, one has to chose the spacing between the points on the numerical grid
as well as the interval at which time is sampled. Usually the structure of interest determines
the grid spacing, also called the mesh size. Then the time interval is derived from this via the
speed of light in the medium of interest because it takes a certain minimum time for light to
propagate through a mesh cell. Before running the calculations, also the boundary conditions
have to be set. This includes the electric and magnetic fields at every point of the mesh grid at
the starting time, and how the fields are treated when they reach the limits of the computational
domain. Usually the boundaries are set to be absorbing, so the energy present within the domain
decreases continuously until it reaches a certain threshold which will terminate the calculations.
The finite-difference equations are solved in a leap-frog manner, so at one point in time, the
equations are solved for the electric fields at all points in space. At the next point in time, these
electric fields are used to calculate the magnetic fields at all points in space. This alternating
procedure is repeated and thus the fields propagate in time.

There are commercial solutions which are designed to solve this problem, for this project the
program lumerical FDTD Solutions release 2017b was used. The geometry of the ring resonator
was inputted and the boundary conditions were all set to absorbing. The initial electric and
magnetic fields are distributed according a guided mode in the feeding waveguide, which was
calculated with the integrated mode solver. Additionally, there are fields following up, so that
at the feeding waveguide, there is a pulse input from the simulation boundary. This pulse is
very short, typically in the femtosecond range. This is necessary for a feasible computational
effort but also advantageous. Owing to the inverse relation of pulse duration and bandwidth, the
fields cover a wide range of frequencies. Thus, the response of the structure to many different
frequency components is simulated at one go. This is one large advantage of simulations in the
time-domain over the frequency domain. Moreover, this is a necessary feature for this project,
because due to the perturbance of the ring waveguide by its bend and by the emission grating,
an accurate estimation of its resonance frequencies is difficult.

The structure is modeled as follows: The waveguides are formed by Silicon nitride with a
refractive index of 2.007, surrounded by Silicon dioxide with a refractive index of 1.454. Between
the waveguide and the air, the layer of Silicon dioxide is 1 pgm thick. The feeding as well as the
ring waveguide are 450 nm wide and 180 nm in height and an initial ring radius of 10 ym was
chosen. This profile yields an effective refractive index for the waveguide of 1.67. Figures to
show the x, y and z components of the mode at the input port, which lies in the y-z plane.

The gap width and the width that each grating element adds to the waveguide, here called
grating tooth height, have to be matched to achieve critical coupling (see section . Rough
initial values are 100 nm and 50 nm, respectively. The number of grating teeth is set with respect
to the azimuthal mode number m according to equation . Since the desired wavelength of
the emitted radiation is 729 nm, the azimuthal mode number can be estimated via the effective
waveguide index. Then the number of grating elements is matched to this number. The grating
periodicity is chosen to match the effective wavelength of in the waveguide. The length of each
grating element is determined by the duty cycle, which is chosen to be 0.5 in order to maximize
the radiation. One can choose between different settings for the mesh accuracy. Here, the setting
3 was selected because it was the highest that could be handled with the installed amount of
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memory on the computer which performed the calculations. It corresponds to a mesh grid size
of about 25 nm in the waveguide. The mesh is non-uniform and adapted to the refractive index
of the corresponding medium, and changes gradually at the interfaces. The electric fields are
monitored throughout the simulation in the waveguide plane, and in the air above. From the
monitor in the air, the diffracted field will be calculated.

-« & -

(a) x component (longitudinal) (b) y component (transverse) (¢) z component (transverse)

Figure 2.2: Electric field components of the waveguide mode at the input port, plotted is a
cut through the y-z plane. At the center of the waveguide, the transverse y component is
clearly dominant. At the interfaces, also the other transverse component in z direction and the
longitudinal component in x direction are present.
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Chapter 3

Results and Discussion

3.1 Volume Current Method

The Matlab scripts used to implement the volume current method can be found in listings [6.2]
3.1.1 Angular intensity distribution

to[6.6] in section [6.1.2.1] in the Appendix.
m i i

(a) 1 =2 (b)l=1 () 1=0

Figure 3.1: Magnitude squared of the vector potential A (7) in the x-z plane at the venter of the
ring. The ring has a radius of 10 pm, so the waveguide is located at z = +10 pm.

Although the vector potential itself is not a measurable quantity, it is used here to give an
intuition about the angular distribution of the electric field. As discussed in section [2.3] the
second term of equation is expected to be small, so the electric field is approximately
proportional to the vector potential. Figures to show the magnitude squared of the
vector potential A (7) in the x-z plane, the ring resonator is placed in the x-y plane. The Figures
show A (7) for different values of [, the azimuthal phase variation of the radiated field.

For | = 1, there is intensity on-axis, while for [ = 2 or [ = 0, there is not. This matches
the reasoning based on equations and in section that only for [ = £1, the field at
the center of a plane transverse to the propagation direction is non-vanishing. In addition to a
central lobe, there are regularly spaced lobes at higher angles with respect to the propagation
axis, which come from the repeated local maxima of the Laguerre polynomials which describe the
transverse field distribution of the Laguerre Gaussian beams. The radius of the ring resonator
here is 10 pm, which manifests itself in the increase in intensity in the near field at + = £10um.
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The maximum of the vector potential is close to the waveguide plane, but still at a certain
distance. It is conceivable that this can be influenced by parameters like ring radius and grating
width.

3.1.2 Electric field in the observer plane

Table [3.1] shows the components of the simulated electric field in a plane 50 pm above the
waveguide plane for different values of the azimuthal mode index I. Yellow and blue stand for
positive and negative values, respectively. Green denotes an electric field close to zero.

Of the circularly polarized components, the most striking feature is that for [ = 1 the right-
handed, and for [ = —1 the left-handed component is circularly symmetric. This follows from
the reasoning in section [2:2]that for those components, the dependence of the electric field on the
azimuthal angle ¢ vanishes. This also means that these are the only cases where the field on-axis
is non-zero. In all the other cases, the phase varies along the angle ¢, which manifests itself in
a change from positive values to negative and back again. One of those cycles corresponds to a
phase shift of 2. The number of such cycles for one round-trip of ¢ is given by |l — 1| for the
right-handed, and |l + 1] for the left-handed component, respectively, which also becomes clear
from equations and .

The z component has highest symmetry for I = 0. As expected, it does not have an angular
phase dependency, but is circularly symmetric. This mode is the only one which has intensity
on-axis, but it also has pronounced outer lobes. For the other values of [, there is no z component
at the center of the r-¢ plane. This means that for the [ = +1 modes, there is purely circularly
polarized light on-axis according to the volume current method.

3.2 FDTD Simulations for parameter estimation

As mentioned in section the transmission coefficient ¢ has to be matched to the intensity
decay coefficient a according to equation for the critical coupling condition to be met,
which leads to full power transfer into the ring. ¢ depends on the coupling coefficient x, which
itself is determined by the width of the gap between feeding waveguide and ring resonator,
whereas « depends on the strength of the emission grating. For both ¢ and «, the relations can
be estimated by individual simulations.

3.2.1 Coupling of the feeding waveguide to the ring

To estimate the connection between coupling gap width and transmission coefficient ¢, a structure
where the feeding waveguide couples to a half ring with similar radius, width and height as the
one in the real structure is simulated. The lumerical script for the structure generation can be
found in listing the MATLAB script to generate and analyze the following plots can be
found in listing Figure shows the magnitude of the electric field in the waveguide plane
for an exemplary coupling gap width of 0.1 pm.

It is important that the ring resonator is not closed, so that no radiation is fed back into the
feeding waveguide from the resonator. In the terminology of section [1.5] E.o = 0. Then, the
transmission coefficient can be calculated from the electric fields before and after the coupling
region by

Ethrough

t =

(3.1)
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Figure 3.2: Magnitude of the electric field in the waveguide plane for a structure that consists of a
straight waveguide coupled to a half ring. The power inside the waveguide is partially transferred
to the half ring, which before hosted no power. The red dashed line indicates the middle of the
waveguide, where a slice of the field profile is plotted in Figure

Figure [3:3] shows a slice through the electric field in the middle of the feeding waveguide,
which is marked in Figure [3.2] with a red dashed line. Since apart from the coupling, no electric
field can escape the waveguide, it is fitted with horizontal lines before and after the coupling
region, respectively. Here, a value of ¢ = 0.8645 was obtained. From the transmission coefficient
t, one can then get an estimate for the intensity decay coefficient a which would satisfy the
critical coupling condition. For this gap width of 0.1 um, that would be a@ = 4633 m~!. In
general, the coupling strength decreases with increasing gap width, which matches the intuition
that for a large gap, the waveguides should not be influenced by each other.

A possible source of error here is that the ring waveguide is modeled without the emission
grating. One can think that if there are grating elements present in the vicinity of the cou-
pling region, the power transfer might behave slightly differently than for the simulated plain
waveguide.

3.2.2 Power loss from a straight grating

In order to obtain values for the intensity decay parameter «, the intensity decay caused by the
emission grating has to be simulated and evaluated quantitatively. Since we neglect bending
loss, a straight waveguide with a similar emission grating as in the ring serves this purpose. The
lumerical script for the structure generation can be found in listing [6.24] the MATLAB script to
generate and analyze the following plots can be found in listing

Figure [3:4] shows the magnitude squared of the electric field in the waveguide plane of such a
straight grating. From this intensity profile, one can take a slice in the middle of the waveguide,
indicated by a red dashed line, similar to section [3.2.1} The difference is that here, the intensity
does not decrease in a step-wise manner, but as an exponential decay, as can be seen in Figure
5.0

From fitting the intensity profile as indicated with a red dashed line, one obtains the intensity
decay parameter «. However, the profile is not exactly an exponential decay, but exhibits
oscillatory features, which one could already observe in Figure At the grating elements, the
light wave is partially reflected, which also causes counter-propagating WGMs in the waveguide.
They locally form standing waves with intensity maxima and minima. The feature of reflection
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Figure 3.3: Normalized magnitude of the electric field in a straight waveguide which couples to a
half ring waveguide at = 0. The electric field is reduced because power is transferred into the
half ring. Due to no backcoupling into the feeding waveguide, the transmission coefficient ¢ can
be obtained as ratio between the transmitted and the input electric field, according to equation
(3.1). The black dashed lines indicate the horizontal fits to obtain the magnitudes before and
after the coupling, the red dashed lines indicate the region which was omitted for the fitting.

at the grating elements will be observable at a later point, too. Additionally to this, there is a
feature like a beating, but this actually is a result of the repeated shift in intensity maximum
along the y axis, as observed before in Figure Since the grating tooth height is is not a weak
perturbation to the waveguide anymore with 0.21 pm, higher order waveguide modes may start
to contribute, which causes the oscillation in intensity maximum tranverse location.

For the Figures presented here, the grating tooth height was 210 nm, which resulted in a large
a = 21363 m~!. The procedure of simulating a straight grating with specific grating strength and
following calculation of o was repeated for several other grating tooth heights, the correlation is
presented in Figure 3.6 This allows to pick a grating tooth height which matches the coupling
gap width so that the resonator is critically coupled and the emitted power is maximized. For
example for the simulation of the full structure, a gap width of 130 nm was chosen so that the
grating tooth height can be set to a relatively small value of 44 nm, which reduces deviations
caused by reflection from the emission grating.

3.3 FDTD Simulations of the full structure

3.3.1 Transmission spectrum

The lumerical script for the structure generation can be found in listing [6.25] the MATLAB
script to generate and analyze the following plots can be found in listing

Figure [3.7 shows the transmission spectrum of the ring resonator structure. It is obtained in
a similar way as the transmission coefficient ¢ in section only that ¢ is defined as the ratio
of the electric field magnitudes, whereas a transmission spectrum typically shows the relative
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Figure 3.4: Magnitude squared of the electric field in a straight waveguide with an emission
grating of 210 nm thickness. The intensity maximum moves along the y axis, which is caused by
contribution from higher order waveguide modes due to the large additional grating. Reflections
at the grating elements cause counter-propagating waves, which form oscillatory features of
standing waves in the intensity profile. The red dashed line indicates the middle of the waveguide,
a slice through the profile at this plane is plotted in Figure

intensities. Also, the fitting procedure of the electric field before and after the coupling was
repeated for a range of wavelengths to cover enough relevant resonator modes. In particular, the
ones for which the azimuthal propagation constant m matches the number of grating elements
N exactly or by a difference of 1 or 2 are of particular interest.

For a wavelength to be a resonant mode, its multiple must match the effective radius of
the whispering gallery mode. If this is the case, the wave is self-consistent within the ring.
As explained in sections [3.2.1] and [3.:2:2] based on the coupling theory in section the ring
resonator is designed to be critically coupled. This means that on resonance, the transmission
drops (close to) zero. In Figure this can be observed for five modes within the wavelength
range, which are the modes with [ = 2 to | = —2. Shorter wavelengths have a higher [ since
the light can undergo more cycles during one round-trip through the resonator, i.e. m is higher.
The modes can be identified by analyzing the radiated electric fields, which will be presented in
section [3:3:2] When designing the ring resonator structure, the number of grating elements was
selected via estimating m by taking the ring radius as the effective radius of the whispering gallery
mode, which is not exactly known at first. This explains why the mode with I = m — N =0
is not the one closest to the target wavelength A = 729 nm. The transmission does not vanish
completely at the resonant modes because due to the spacing of the wavelength sample points,
they might not match the exact resonance wavelength. Probably more importantly though, the
resonator structure differs from the one used to determine the parameters for critical coupling
by the addition of the emission grating. This might affect the coupling coefficient, as has been
mentioned in section [3.2.1] Still, the resonator can be regarded critically coupled since the vast
majority of the power is transferred into the ring instead of being transmitted through the feeding
waveguide. Another factor to keep in mind is that during fabrication, fluctuations in the exact
width of the coupling gap or in the strength of the grating elements may be much more significant
than the deviations in this simulation.

One feature in this transmission spectrum, which one might not find in usual transmission
spectra of other resonators, is the split of the [ = 0 resonance near 724 nm. This has been
observed before,[6] and stems from the reflection of the electric field waves at the grating elements.
Then the whispering gallery mode couples to its counter-propagating self, causing a split in
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Figure 3.5: Normalized magnitude squared versus position along the straight waveguide (blue
line) with a 210 nm thick grating. The intensity decays due to emission of power out of the
waveguide by reflection at the grating elements which is overall well described by an exponential
decay, as indicated with a red dashed line. However, there are also oscillatory features caused
by counter-propagating waves which were reflected are the grating. What could be mistaken as
beating is actually the shifting of the intensity maximum about the y axis, as observed in Figure

B4

frequencies.[I3] Both waves are also coupled back into the feeding waveguide, so this feature is
visible in the transmission spectrum. However, here this split is only observable for one mode,
which is the [ = 0 mode. At this wavelength, the wavelength in the waveguide matches the
grating periodicity exactly, so that Bragg reflection occurs and reflected waves from neighboring
grating elements add up constructively to form a much stronger counter-propagating wave than
for other wavelengths. It is important that this effect of reflection is small for the [ = +1 modes
because the addition of strong counter-propagating waves implies that the azimuthal mode index
m is not well defined anymore. This would cause the emitted field to be a superposition of modes
with different [ values, so that the circularly polarized field on-axis would not be pure anymore.

At the resonances, the fraction of the input power which is emitted through the monitor in
the air above the waveguide cover is about 16-20%. Half of the power is radiated downwards
into the opposite direction, but still this value is unexpectedly low. In Figure |3.8| one can
see that the majority of the emission seems to be captured with the air monitor. From the
transmission spectrum becomes clear that almost no power is lost by transmission through the
feeding waveguide. Possibly a large portion of the power is lost into unmonitored directions at
the coupling region.

3.3.2 Electric field in the observer plane

The lumerical script for the structure generation can be found in listing [6.27] Since monitoring
the whole frequency range of the pulse requires a lot of memory, the emitted fields were only
saved around the resonance wavelengths obtained in section both in the waveguide plane
and in the air above. However, the different monitor geometries resulted in slightly different mesh
grid positions, which caused a shift in the resonance wavelengths of about 1 nm. An exemplary
intensity profile of the electric field in the air at 720.474 nm corresponding to the [ = 1 mode in
shown in Figure[3.8] From such a field monitor, the diffracted field is calculated. The MATLAB
script to caluclate and analyze the radiated electric field can be found in listing [6.10]

Table shows the electric field in the observer plane 50 pm above the waveguide plane for
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Figure 3.6: Intensity decay rate « versus grating tooth height h. More protruding grating
elements increase the grating strength, which in turn lowers the intensity of guided electric fields
faster.
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Figure 3.7: Transmission spectrum of the ring resonator obtained by fitting the magnitude of
the electric field squared before and after the coupling similar to section but repeated for
a range of wavelengths.

different wavelengths, simulated from the three-dimensional structure. The different wavelengths
correspond to different [ modes, only the two patterns near 724 nm are from the same mode which
is split, as pointed out in section [3.3.1] The field patterns can be compared to the ones obtained
using the volume current method, which were presented in Table The general features
are similar, which is that for the | = 1 mode the right-handed, for the | = —1 mode the left-
handed and for the I = 0 mode the z component is the only one with circular symmetry, and
thus the only one with intensity on-axis. The respective other modes exhibit an angular phase
dependency visible by one or multiple cycles through positive (yellow) and negative (blue) field
when following a path around the origin. The two different wavelengths for the [ = 0 mode only
differ in a circular shift, but not in a change of general features.

A major difference to the results of the volume current method can be noticed in these plots
already. For the modes with | # 0, there are irregularities in the shape of the left-handed
component which are not present in the right-handed component. These come from the fact
that the LH component is about one order of magnitude weaker than the RH component, which
can also be seen in the different colorbars. This means that artifacts from the numerical grid or
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Figure 3.8: Intensity profile of the electric field at 720.474 nm in the air directly above the
waveguide cover. The coupling from the feeding waveguide causes a blur at y = 11 pm.

noise from the coupling region are more visible than for stronger fields. The contributions of the
individual field components to the overall intensity are compared in section [3.3.3

3.3.3 Polarization contributions to overall intensity

Figure[3.9|shows the average contributions of the different polarization components to the overall
intensity for the [ = 1 mode, plotted versus the radius p. The right-handed component dominates
the others by far. As pointed out in section the z component is expected to be generally
small. The difference in left-handed and right-handed circular polarization can be understood
from equations and in section The different strengths of the circular components
stem from a difference in their respective amplitudes a (r,z) = Wz)i—\/%%(m) They are de-
termined by the relative magnitude and phase of the radial and azimuthal components in the
ring waveguide. With the volume current method, a pure radial polarization was assumed, but
the behaviour in the real structure is different, as already pointed out in section [2.1} Also in
the source mode profiles in Figures to one can see that the waveguide profile causes
longitudinal fields at the interface, which is where the emission grating is located. The relative
phase of the radial and azimuthal field components can be understood by a simplified analysis
based on Gauss’s law in a dielectric with no free charges:

V.-D=0, (3.2)

where D = €E is the electric displacement field in a dielectric with permittivity e. In a
two-dimensional single-mode waveguide along the z direction, D is of the form

D = ay(z,9)e"%2 + a.(x,y)e'?* 2, (3.3)

where f is the propagation constant of the mode, and a,(z,y) and a,(x,y) are the transverse
amplitude profiles of the transverse and longitudinal components, respectively. Inserting this
form into equation (3.2)) yields
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At the interface going into the waveguide, the transverse component increases with z, so that
the derivative in equation is positive. This means that the longitudinal field component in a
dielectric waveguide is phase-shifted by 7 with respect to the transverse component. Identifying
the longitudinal component in the ring waveguide as ay(r, 2), and the transverse component
as ar(r,z), it follows that ay(r,z) o ia,(r,z) at the inner interface of the ring. Now, going
back to the amplitudes of the emitted left- and right-handed circularly components a4 (r,z) =

ar(r2)Eias(nz) it hecomes clear that the behaviour of the electric field in the ring waveguide

causes the right-handed (6_) component have greater amplitude than the left-handed one. The
fact that the observed difference between both components is so large implies that radial and
azimuthal components in the ring are of comparable magnitude. Note that an emission grating
at the outer interface of the ring would produce the opposite behaviour, with the left-handed
circularly polarized component being the overall dominant one. The volume current method
results were obtained on the basis of pure radial polarization in the ring, but the observed
behavior here could be reproduced using the appropriate superposition of radial and azimuthal
polarization.

Going back to the observed field profiles, especially at the center for p = 0, other components
than the RHCP vanish almost completely. More than 99.95% of the overall intensity is pure right-
handed circularly polarized light, in accordance with the theory presented in section [2.2] Purity
is defined here as the ratio of the intensity of the dominant component to the total intensity at
p = 0. However, it is important to note that the numerical grid does not necessarily have a data
point exactly at the origin. In fact, for the volume current method this had to be avoided since
radial and azimuthal polarization are not defined at the origin. Instead, one could use a different
grid for the far field calculations than for the simulation of the structure. Or like here, the data
point for p = 0 is obtained by interpolation of the surrounding points. This then means that if
there is a local minimum at the origin, the data is overestimated by the interpolation. A finer
grid would decrease this error, and it would approximate the circular symmetry of the structure
even better, thus approaching the analytical result of 100% purity. However, there are also other
sources of non-ideality: The coupling waveguide breaks the circular symmetry which is the basis
of the argument for pure circular polarization. Also the simulation domain introduces artifacts
if the guided electric field is significantly non-zero at the boundary. This can be seen in Figure
as yellow intensity maxima at the vertical and horizontal edges of the ring. Still in general,
to obtain reliable values at this level of accuracy, one should probably perform experimental
characterization instead of basing on numerical simulations.

An estimate can be made of the size of the central area in which the radiated field is high-
purity circularly polarized. A single trapped ion has a translational ground state wave function
with an extend of about 10 nm. Within this range, the dominant polarization still well exceeds
the impurities by three orders of magnitude. With increasing distance from the origin, the z
component soon becomes the dominant impurity.

Figure shows the contributions of the intensity of the | = —1 mode. Analogously, on-
axis there is only contribution from the left-handed component. But since also for this mode,
the right-handed component generally dominates, the purity at the center is lower with 98.94%.
Figures to show the contribution distributions for the other modes. Interestingly,
the right- and left-handed components have comparable intensities for the [ = 0 mode, but for
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Figure 3.9: Average radial intensity profile for the [ = 1 mode of each component and of the total
intensity, plotted on a logarithmic scale. The right-handed component dominates the left-handed
one due to constructive versus destructive superposition of radial and azimuthal polarization
components in the ring waveguide. At the center, there is almost only contribution from the
right-handed component, in agreement with the theory outlined in section

the others, the right-handed component is always dominant. This specialty of the [ = 0 mode
could not be reproduced with the volume current method, so it is thought to be an effect of the
Bragg reflection at the grating elements which creates counter-propagating WGMs.

Also, the contributions to the overall intensity are not the same for both resonances of the
! = 0 mode. The circularly polarized components differ slightly, but the z component is much
stronger at for the 724.473 nm resonance, especially at the center.
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Figure 3.10: Average radial intensity profile for the | = —1 mode of each component and of
the total intensity, plotted on a logarithmic axis. Analogous to Figure [3.9] there is now almost
only the left-handed component contributing to the overall intensity at the center. However, the
right-handed component is still much stronger for the outer lobes.
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Figure 3.11: Average radial intensity profiles of each component and of the total intensity for
different azimuthal modes [, plotted on a logarithmic axis. Except for the I = 0 modes, the
right-handed component always dominates the intensity. This exception might be an effect of
the Bragg reflection which occurs only for this mode.

32



l RHCP LHCP

V4

oors
oot
oos
o
ous
001
o0ts

2
oo
1 .
e
e
0

00t
0.005
o
002
0008
004
008
001
008
006 002
0015
004
001
002
0005
1 ’ ‘
oo 0005
001
004
0015
006 ooz
006 008
o015
006
004
™ 001
002
00z 0005
2 o o o
002 0005
002
004 001
004
008 0015
008 008
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azimuthal modes [, obtained with the volume current method. The x and y extend are 10 pm.
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Chapter 4

Conclusions and Outlook

The radiation emitted by a ring resonator with an angular grating as sketched in Figure was
simulated by two different methods. The volume current method was adapted semi-analytically in
a two-dimensional domain where the structure is implemented as perturbation to the surrounding
dielectric constant. The finite-difference time-domain method allowed a more detailed study in
three dimensions, implementing the real geometry of the ring resonator. For this geometry,
structural parameters like the width of the coupling gap and the grating tooth height were
optimized to achieve critical coupling. Despite the major differences of both methods, they
confirm the key theory that for an azimuthal mode in the resonator with its index differing from
the number of grating elements by 1, the resonator emits almost purely circularly polarized light
at the symmetry axis of the ring. Depending on the relative strengths of the radial and azimuthal
polarization components in the ring - corresponding to transverse and longitudinal components
in the waveguide picture - one circular polarization component may be generally dominant over
the other, leading to even higher purity.

Using the implementation of these methods, one can simulate structures with varying param-
eters like ring radius, waveguide dimensions, and differences in the shape of the grating elements.
Their effects on the purity of the circularly polarized light as well as the spatial extent of the
desired central area can be simulated. Another factor to optimize is the intensity of the central
spot compared to radiation emitted in other directions. This also applies to the distribution of
intensity along the emission axis z, which attains a maximum at a certain distance. Since the
aim is to induce a certain transition in a trapped ion, the device has to be designed to sup-
port exactly this wavelength. Ideally, one device would allow to be tuned to support a range of
wavelengths, potentially by means of temperature change or by applying a static electric field
to an electro-optic waveguide material. This tuning is also necessary to compensate for possible
fabrication errors which shift the resonance wavelength. One might also try to design the ring
waveguide and its grating in such way that the longitudinal and transverse field components are
of equal magnitude and precisely phase-shifted to maximize the radiation of only the one desired
circular polarization component.

The next step is to fabricate such a device and experimentally test it. As mentioned in section
[3:33] however, systematical errors in the fabrication of the waveguide and grating structure can
be significant enough to impair critical coupling. Thus, a set of ring resonators with different
parameters should provide enough variety to achieve good power transfer for some of them.
Then, the emitted radiation can be characterized by microscopical methods, and the results can
be compared to similar simulations. Important is not only whether these devices can achieve the
desired pure radiation, but also how accurately the simulations predict their properties.
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If the ring resonators with azimuthal grating fulfill the purity requirements and deliver enough
optical power to the desired location, they may be used in an integrated optics ion trap to induce
different atomic transitions than linearly polarized light. The use of integrated optics for this
purpose is advantageous as compared to external laser beams due to the ability to easily deliver
optical power to a desired point in space accurately.
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Chapter 6

Appendix

6.1 Scripts/Code

6.1.1 Mathematica
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VCM Simplifation of eq (2.6)

Ar[X_, Y_, z_] :=Sqrt[(x-x1) 22+ (y-y1)~2+2"2]
Fla_] :=Exp[-ixk+a] /a
d2dx2f = D[F[Ar[X, ¥, z]], {X, 2}]
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2 | VCM_eq_2.6_simplification.nb
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6.1.2 MATLAB

Listing 6.1: helix.m

70{
helix .m
stom ETH Zurich 05.07.2018

Script to create a surface plot of a helix with 1 = 0.

%}
syms s t

fig = figure ();
fsurf(sxsin(t),—sxcos(t),t,[—5 5 0 4xpi], 'EdgeColor"', 'none'")
axis off

savefig (fig, 'helix.fig')

6.1.2.1 Volume Current Method

Listing 6.2: ring resonator_4.m

7{
ring_resonator_2.m
stom ETH Zurich 23.05.2018

Based on ring_resonator_2.m. Calculation with different parameters in order
to have best comparability with the lumerical simulations. The other
functions are just copied

Script to run the radiation calculation of the ring resonator specified in
function my_radiation_fct.m for different parameters.

Scalars are usually denoted with small letters , matrices are capitalized.
Matrices describing vectors have a 3rd dimension, whose 1st and 2nd are
the x and y components of the vector, respectively.

70}

clear variables
clear global

%% natural constants
% source: Wikipedia
% in SI base units (except microm)

global ¢0 epsO mu0

% vacuum speed of light
cO0 = 299792458 *x 1076; % [microm s”—1]

% vacuum permittivity
epsO0 = 8.854187817 x 10" —18; % [s"4 A"2 kg"—1 microm” —3]
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40

60

80

% vacuum permeability
mul = eps0°—1 % c0"—2; % [s"—2 A"—2 kg microm]

%% parameters
% all length units are micrometer
path = sprintf(
"./01 results sm0.1 obss0.1 z50 xmax10'); % ADJUST PATH REGULARLY

wg_spacing _multiplier = 0.1; % stepsize of coordinates in waveguide
% plane compared to lambda0 ( called sm)
obs_z = 50; % distance of view
obs_xmax = 10; % size of viewing plane, independent of waveguide
5| obs_ymax = obs_xmax; % plane
obs_spacing = 0.1; % spacing of points in viewing plane
lambda0 = 0.729; % wavelength in vacuum
epsl = 1.67 * epsO; % " permittivity” of the waveguide, is eps in vem!

% actually this is just the effective index of the
% waveguide

eps2 = eps0; % permittivity of the surrounding, is epsl in vem!
mN = —2; % difference of m and N_grating, this used to be Im

radius = 10; % waveguide radius

width = 0.45; % waveguide width
s| what_to_calculate = '"A _vec';

% string whether to calculate the far field approximation, the X-Y plane
% without approximation, or the X—Z plane without approximation, or just
% J_vec

% options: "A_vec_ff', 'A_vec', "AvecXZ', 'J_vec'

%% calculation
% looping over the different values of the parameters, do one calculation
% of 'what_to_calculate ' each

% cell array to store the results
results = cell(length (mN),length (radius));
for i = 1l:length (mN)
for j = 1l:length(radius)
for k = 1:length (width)
tic
[wg-X,wg_Y,obs_X,0bs_Y ,obs_Z ,wg_Rhat , wg_Phihat , ...
obs_Rhat ,obs_Phihat ,obs_Rhat3D ,obs_Phihat3D ,
Eps, J_vec,A_vec,A _vec XZ] = ..
my-radiation_fct (wg_spacing_multiplier ,
obs_xmax ,obs_ymax ,obs_spacing ,lambda0 ,epsl ,eps2,
obs_z ,mN(i),radius(j),width(k),what_to_calculate);

toc

if strcmp(what_to_calculate, "A_vec_ff')
results{i,j,k} = A_vec_ff;

elseif strcmp(what_to_calculate, 'A_vec')

results{i,j,k} = A_vec;

filename02 = sprintf (...
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"%s /A _vec /A vec.mN%.0f_r %.0f_-w%.2f . mat ',
85 path, mN(i), radius(j), width(k));
save (filename02, 'A_vec','obs.X','obs.Y'")
elseif strcmp(what_to_calculate, '"A_vec XZ')
results{i,j,k} = A_vecXZ;
figure ()
90 surf (obs_X ,obs_.Z, mag2_fct(A_vec.XZ))
shading interp
filename03 = sprintf (...
"%s /A _vec XZ /A vec. XZ_mN%.0f_r%.0f_-w%.2f . mat ',
path, mN(i), radius(j), width(k));
95 save (filename03 , 'A_vec.XZ','obs X', 'obs Z")
else
results{i,j,k} = nan;
end
end
100 end
end

%% Electric radiation field

if strcmp(what_to_calculate, 'A_vec')
% with the three—dimensional gradient
tic
[E_.vec.3D, El_vec.3D, E2_vec.3D] = ..
110 E_vec_3D_fct (lambda0 ,eps2 ,wg-X,wg-Y,obs_X ,0bs_Y ,obs_z ,J_vec ,A_vec);
toc
% save the results
filenamel = sprintf('%s/E_vec.3D/E_vec.3D.mN%.0f_r%.0f_w%.1{.mat "',
path, mN(i), radius(j), width(k));
115 save (filenamel , 'E_vec.3D ', 'obs X', 'obs. Y ")
end

%% Plots

% % Rhat
% quiver (X,Y,Rhat (:,:,1) ,Rhat(:,:,2))

% % Phihat
125/ % quiver (X,Y, Phihat (:,:,1) ,Phihat (:,:,2))

% % Rhat3D
% quiver (X,Y,Rhat3D (:,:,1) ,Rhat3D (:,:,2))

130| % % Eps

% surf(X(1,:),Y(:,1) ,Eps)
% colorbar

% shading interp

135| % % waveguide_E_vec
% surf(waveguide_E_scal)
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% colorbar
% shading interp

120|% % waveguide_E_vec

% contour (X,Y, waveguide_E_scal)

% hold on

% quiver (X,Y,waveguide_ E_vec (:,:,1) ,waveguide_E_vec (:,:,2))
% hold off

145
% % J_vec

% plot_all_components_fct (J_vec, wg X, wg. Y, wg_Rhat, wg_Phihat)

% % A_vec_ff
50|% figure (1)
% quiver (X,Y,abs(A_vec_ff(:,:,1)),abs(A_vec_ff(:,:,2)))

—

% A_vec
% plot_all_.components_fct (A_vec,'A\_vec',obs_X ,obs_.Y ,obs_Rhat,obs_Phihat)

% % A_vec XZ

% figure (1)

% quiver (obs_X ,obs_Z ,real (A_vec.XZ(:,:,1)) ,real (A_vec.XZ(:,:,2)))
% axis equal

160|% figure ()

% surf(obs_.X,obs.Z,mag2_fct (A_vec_XZ))

% shading interp

% title ({'A\_-vec\XZ',sprintf('mN = %.0f"' ,mN) })
% axis equal

165|% % compare multiple results

% for i=1:length (width)

% figure (1)
% quiver (obs_ X ,obs_Z ,real (results{i}(:,:,1)),real(results{i}(:,:,2)))
% end

170

% % E_vec_3D

plot_circular_components_fct (E_vec.3D ,sprintf( 'mN = %.0f"' mN),
obs_X ,0bs_Y)

% plot_all_components_wo_phases_fct (E_vec_.3D,'E\ _vec\.3D"',

175 % obs_X ,0bs_-Y ,obs_Rhat3D ,obs_Phihat3D)

% plot_all_components_fct (E_vec.3D,'E\_vec\.3D",

% obs_X ,0bs_Y ,;obs_Rhat3D ,obs_Phihat3D)

% plot_all_.components_wo_unwrap-_-fct (E_vec_.3D , 'E\_vec\3D",

% obs_X ,0bs_Y ,obs_Rhat3D , obs_Phihat3D)

Listing 6.3: my_radiation_fct.m

1| %{
my_radiation_fct.m
stom ETH Zurich 23.05.2018

o

Based on the function from ring resonator_2, here, Im is now mN, and m is
now depending on N, not the other way round. This is similar to the
lumerical simulaitons, where the modes are chosen according to their
wavelengths.
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Function to run what was initially just a script for different parameters.

First calculation of the radiation out of a periodically modified ring
resonator using the volume current method (vem, Kuznetsov, Haus 1983 —
Radiation Loss in Dielectric Waveguide Structures by the Volume Current
Method). Also gives back the basis of calculation, that is the matrices
wg-X, wg.Y, Rhat and Phihat because the calculation domain is based on
waveguide dimensions, which are intended to be parameters to be changed at
will. Also gives back the coordinates at which the radiation is defined,
that is obs_.X and obs.Y or obs_Z.

Scalars are usually denoted with small letters , matrices are capitalized.
Matrices describing vectors have a 3rd dimension, whose 1st and 2nd are
the x and y components of the vector, respectively.

70}

function [ wg-X,wg-Y,obs_X,obs_.Y ,obs_Z,wg_Rhat,wg_Phihat ,
obs_Rhat ,obs_Phihat ,obs_Rhat3D ;obs_Phihat3D , Eps,
J_vec,A_vec,AvecXZ | = ...
my._-radiation_fct ( wg_spacing_multiplier , obs_xmax, obs_ymax,
obs_spacing , lambda0, epsl, eps2,
obs_z, mN ;| radius, width, what_to_calculate )

%% global variables
% get from running script

global c0 epsO
%% parameters
% all length units are micrometer

omega0 = 2xpixc0/lambda0;

circumfence_inner = 2xpix(radius —0.5%xwidth);
circumfence_outer = 2xpix(radius+0.5%xwidth);
N_lower = ceil (circumfence_inner/lambda_fct (epsl,lambda0)); % just an
N_upper = floor (circumfence_outer/lambda_fct (epsl,lambda0)); % estimate

N = floor ((N_upper+N_lower) /2);

% N is the number of cyclic variations of waveguide permittivity , this
% models the grating teeth

m = N + mN;

% m is the number of wavelengths in the resonator for constructive

% interference —> the mode number

%% calculation basis: waveguide domain
wgxmax = (radius + 0.1);

wg_ymax = Wg_Xmax ;
% npts has to be even, or else there are NaN @ origin

47




8

90

100

110

npts_wg_x = ceil (wg.xmax/wg_spacing_multiplier /lambda0/2) x2;
npts_.wg_.y = npts_.wg_x-+2;

5|% 2D

[wg-X,wg_.Y] = meshgrid(linspace(—wg_xmax, wgxmax, npts_-wg._x),
linspace(—wg_ymax, wg.ymax, npts-wg.y));

wg-R = sqrt ((wg-X."2 4+ wg Y. 2));

wg_Rhat = cat (3,wgX./wgR,wg.Y./wg_R); % unit vector

wg_Phi = atan2 (wg.-Y,wg-X);

wg_Phihat = cat(3,—sin (wg_Phi), cos(wg_Phi)); % unit vector

%% calculation basis: observer domain

% npts has to be even, or else there are NaN @ origin
npts_obs_x = ceil (obs_xmax/obs_spacing/2)*2;
npts_obs_.y = npts_obs_x+2;

% 2D

[obs_X ,0bs_Y] = meshgrid(linspace(—obs_xmax, obs_xmax, npts_obs_x),
linspace(—obs_ymax, obs_ymax, npts_obs.y));

obs_R = sqrt ((obs_X."2 + obs_.Y."2));

obs_Rhat = cat (3,0bs_X./obs_.R,obs_Y./obs_R); % unit vector

5| obs_.Phi = atan2(obs.Y ,obs_X);

obs_Phihat = cat(3,—sin(obs_Phi), cos(obs_Phi)); % unit vector
% 3D (cylindrical coordinates, so just add zeros for the 3rd component)

obs_Rhat3D = cat (3,obs_Rhat,zeros(size(obs_.R))); % unit vector
obs_Phihat3D = cat (3,obs_Phihat ,zeros(size (obs_Phi))); % unit vector

%% setting up waveguide

5|% set delta_eps everywhere to zero, then set to epsl—eps2+variation where

% the waveguide is
delta_Eps = zeros(size (wgX)) ..
+ (epsl—eps2 + eps0x%0.2xsin (Nxwg_Phi))
.+ (wg_R >= (radius —0.5%width)) .*(wg.R <= (radius+0.5%xwidth));

% set Eps everywhere to eps2, then add delta_Eps where the waveguide is
Eps = ones(size (wgX)) * eps2 + ..
delta_Eps.*x(wg-R >= (radius —0.5%xwidth)).x(wg-R <= (radius+0.5xwidth));

%% Electric field in the waveguide

% scalar amplitude
% set everywhere to zero, then set to half a sine where the waveguide is
wg_-E_scal = zeros(size(wgX)) ..

+ sin (pi/width*(wg-R—(radius —0.5%width)))

.#(wg.R >= (radius —0.5%width)) .*(wg-R <= (radius+0.5%xwidth));

% introducing field vector with phase
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15| wg-E_vec = wg_Rhat .x wg_E_scal .x exp(lismxwg_Phi);

%% polarization surface current density
% equation (2.4) in vem

J_vec = 1i * omegal .x delta_Eps .x wg_E_vec;

%% Radiation field

if strcmp(what_to_calculate, 'A_vec')

% without far field approximation (equation (2.7) in vem)

% in the observer X-Y plane for a fixed z value:

A_vec = A_vec_fct (lambda0,wg-X,wg-Y,obs_-X ,obs_Y ,obs_z,J_vec);
130 obs_Z = nan;
A _vec_XZ = nan;

elseif strcmp(what_to_calculate, 'A_vec XZ')
% in the X—Z plane for a fixed y
135 obs.y = 0;
[obs_X, obs_.Z] = meshgrid(linspace(—obs_xmax ,obs_xmax ,npts_obs_x),

linspace (0.5, obs_z, 2«npts_obs_x));
% start z from 0.5 micrometers to avoid singularities
% still use npts_obs_x for comparable calculation time

140

obs_.Y = nan;
A _vec.XZ = A_vec_XZ_fct (lambda0,wg-X,wg_Y,obs_X ,obs_Z ,0obs_y, J_vec);
A _vec = nan;
elseif strcmp(what_to_calculate, 'J_vec')

145 obs_X = nan;
obs_Y = nan;
obs_Z = nan;
A_vec = nan;

A _vec_XZ = nan;
50| else

obs_X = nan;
obs_Y = nan;

obs_Z = nan;
A_vec = nan;
155 A _vec_XZ = nan;
end
end
Listing 6.4: A_vec_fct.m
1| %{

A _vec_fct.m
stom ETH Zurich 29.03.2018

5| Based on the one in ring_resonator_1, but modified to allow for an observer
plane with different size than the waveguide plane.

Calculates the vector potential A_vec at the observer coordinates obs_X,
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obs_.Y, obs_z from the propagation wavelength lambda, the waveguide
coordinates wgX, wg.Y and the polarization current density J_vec,
according to equation (2.7) in vem. Note: The integral is evaluated for
every combination of coordinates X and Y, but all the time for the one
fixed z.

o}
function [ A_vec | = A_vec_fct( lambda,wg.X,wg.Y,6obs_ X, obs_.Y ,obs_z,J_vec )
global mu0
[i-obs_X ,i_obs_Y] = meshgrid (1:size(obs.X,2) ,1:size(obs_.Y ,1));
prefactor = mu0/(4*pi);
integral X = @(i_obs_x ,i-obs_y) trapz(wgY(:,1) ,trapz(wgX(1,:),
J_vec(:,:,1) .* exp(li*2+pi/lambda ...
.x sqrt ((obs-X(1,i_obs_x)—wg-X)."2 ..
+ (obs_Y(i_obs_.y ,1)—wg_-Y)."2 4+ obs_z"2))
./ sqrt ((obs.X(1,i_obs_x)—wgX)."2
+ (obs-Y(i-obs_.y ,1)—wg_-Y). "2 + obs_z"2),
2) 71)§
integral 'Y = @Q(i_obs_x ,i_obs_y) trapz(wgY(:,1) ,trapz(wgX(1,:),
J_ovec(:,:,2) . exp(li*2xpi/lambda ...
.x sqrt ((obs_X(1,i_obs_x)—wgX). "2 ..
+ (obs_Y(i-obs_y ,1)—wg_.Y). "2 + obs_z"2))
./ sqrt ((obs-X(1,i_obs_x)—wg-X)."2 ..
+ (obs_.Y(i_obs_.y ,1)—wg_.Y)."2 + obs_z"2)
:2),1)5
A_vec = cat (3,
prefactor.xarrayfun (integral X ;i_obs_X ,i_obs_Y),
prefactor.xarrayfun (integral-Y ,i_obs_X ,i-obs_Y));
end
Listing 6.5: A_vec_XZ_fct.m
7{
A_vec_XZ.m

stom ETH Zurich 29.03.2018

Based on the one in ring_resonator_1, but modified to allow for an observer
plane with different size than the waveguide plane.

Radiation field vector from the popagation wavelength lambda, the
coordinates wgX, wg.Y of the polarization current density vector J_vec,
the observer coordinates obs_X, obs_Z and obs_y at which the integral shall
be evaluated, according to equation (2.7) in vem. Note: The integral is
evaluated for every combination of coordinates obs_X and obs_Z, but all
the time for the one fixed obs_.y.

%}

function [ A_vec.XZ | = A_vec_-XZ_fct( lambda,wgX,wg.Y,
obs_X ,obs_.Z ,obs_.y ,J_vec )
% note that the components of A_vec_XZ are still in the x— and
% y—direction
global mu0
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% indices of the coordinate grid
[i-obs_X ,i_obs_Z] = meshgrid (1:size(obs.X,2) ,1:size(obs.Z,1));
prefactor = mu0/(4xpi);

% calculate the components of A_vec individually
integral . X = @Q(i_obs_x ,i-obs_z) trapz(wgY(:,1), trapz(wg-X(1,:),
J_vec(:,:,1) .* exp(li*2xpi/lambda ...
.+ sqrt ((obs.X(1,i_obs_x)—wg.X)."2
+ (obs_.y—wg-Y)."2 + obs_Z(i-obs_z ,1)"2))
./ sqrt ((obs_X(1,i_obs_x)—wgX)." 2
+ (obs_.y—wg.Y)."2 + obs_Z(i_obs_z ,1)"2),
2),1);
integral .Y = @(i_obs_x ,i_obs_z) trapz(wgY(:,1), trapz(wgX(1,:),
J_vec(:,:,2) .* exp(li*2+pi/lambda ...
.x sqrt ((obs-X(1,i_obs_x)—wg-X)."2
+ (obs_.y—wg.Y)."2 + obs_Z(i-obs.z ,1)"2))
./ sqrt ((obs.X(1,i_obs_x)—wgX)."2
+ (obs_.y—wg-Y). 2 + obs_Z(i-obs_z ,1)"2),
2) 71)§

A_vec.XZ = cat (3,
prefactor.xarrayfun(integral X ;i_obs_X ,i_obs_Z),
prefactor.xarrayfun (integral Y ,i_obs_ X ,i_obs_Z));
end

Listing 6.6: E_vec_3D_fct.m

ot
E_vec_3D_fct.m
stom ETH Zurich 09.04.2018

Calculation of the electric field vector E_vec in the obs_.X-Y plane at
distance obs_z from the wavelength lambda, the propagation dielectric
constant eps2 and the vector potential A_vec according to eq. (2.6) in vecm.
However, to try to reduce calculation time, instead of doing ”brute force”
numerical divergence and gradient , they are applied analytically to the
vector potential A_vec of eq. (2.7), which also requires the polarization
current density J_vec and its coordinates in teh waveguide plane wg X-Y.
This is done partially on paper, the second derivatives are calculated in
the Mathematica notebook vcm_simplification.nb.

The two terms of eq. (2.6) are denoted as El_vec and E2_vec, respectively.

%}

function [ E_vec, El_vec, E2_.vec | = ...
E_vec_3D_fct( lambda0,eps2,wg.X,wg.Y,obs_X ,obs_.Y ,obs_z ,J_vec ,A_vec )
global c0 epsO
omega = 2%pixc0/lambdal;
n = sqrt(eps2/eps0);
k = 2xpi*n/lambda0;

% split equation 2.6 into two terms: El and E2

%% E1
A_vec(:,:,3) = 0; % add the z—dimension to A_vec
El_vec = —1i * omega .x A _vec;
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77 E2
% instead of using arrayfun, this time use for—loops. This allows to
% reduce unnecessary multiple calculations/function calls (e.g.

% distance).

= zeros (size (A_vec(:,:,1)));

= E2x;

= E2x;

i_obs_x = 1l:size (obs_-X,2)

obs_.x = obs_-X(1,i_obs_x);

E2x
E2y
E2z
for

end

tic

fprintf('i_x is %.0f of %.0f.\n',i_obs_x,size(obs_X,2))

for

end
toc

i_obs.y = 1l:size (obs_Y,1)
obs_y = obs_Y(i.obs_y ,1);

% analytical formulas for the derivatives from Mathematica
% mnotebook VCM _simplification.nb
distx = (obs_x—wg-X);
disty = (obs_.y—wg.Y);
distx2 = distx . 2;
disty2 = disty . 2;
z2 = obs_z "2;
dist = sqrt(distx24+disty24z2);
d2dx2f = ... % from d2dy2f but distx2 <—> disty?2
(1./(dist."5)) .xexp(—lixkxdist).x*
(—disty2 + 2xdistx2 — z2 4+ 2x1lisxkxdistx2.xdist
— lixkxdist.x(disty2 4+ 22 — lixkxdistx2.xdist));
d2dy2f = ... % from Mathematica
(1./(dist."5)).xexp(—1lixkxdist).x
(—distx2 + 2xdisty2 — 2z2 4+ 2x1lixkxdisty2.xdist
— lixkxdist.x(distx2 + 22 — lixkxdisty2.xdist));
ddxddyf = (1./(dist."5)).xexp(— 1i*k*dist).*distx.*disty.*...
(3 + li*k*(?)*dlst + lixkxdist. 2));
ddzddxf = (1./(dist."5)).xexp(— ll*k*dist).*distx*obs,z.*
(3 + 1i*k*(3*dlst + lisxkxdist. 2));
ddzddyf = (1./(dist."5)).xexp(— ll*k*dist).*disty*obs,z.*
(3 + lixk*(3xdist + lixkxdist." 2));

integrand_x = J_vec (:,:,1).xd2dx2f + J_vec (:,:,2) .xddxddyf;
integrand_y = J_vec (:, 1) xddxddyf + J_vec (:,:,2).xd2dy2f;
integrand_z = J_vec (:,:,1).xddzddxf + J_vec (:,:,2) .xddzddyf;
E2x(i-obs_.y ,i_obs_x) = trapz(wg-Y(:,1), trapz(wgX(1l,:),

(:

)
integrand_x ,2) ,1);

E2y(i_obs_y ,i_obs_x) = trapz(wg.Y(:,1), trapz(wgX(1l,:),
integrand_y ,2) ,1);

E2z(i_obs_y ,i_obs_x) = trapz(wg.Y(:,1), trapz(wgX(1,:),
integrand_z ,2) ,1);

prefactor = 1/(1i*omegax4*pixeps2);
E2_vec = prefactor * cat (3, E2x, E2y, E2z);
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E_vec = El_vec + E2_vec;
end

6.1.2.2 Analysis of FDTD Results

Listing 6.7: transmission_coeflicient.m

76{

transmission_coefficient .m
stom ETH Zurich 27.04.2018

Script to fit the Electric field magnitude along the x dimension, once
before coupling with a half ring, and once after the coupling. From the
ratio of the two fields , the transmission coefficient t is calculated.

The data come from lumerical simulations and are imported as .mat files.
This creates the variables x, y, Ex, Ey, Ez and waveguide_y.

Scalars are usually denoted with small letters , matrices are capitalized.
Matrices describing vectors have a 3rd dimension, whose elements are
the x, y and z components of the vector, respectively.

5| %0}

clear variables
clear global

path = 'data';

gap = 0.13e—6;

infilename = sprintf('%s/E_field_gap %.2f_ma3.mat', path,gapxle6);
load (infilename) ;

[X,Y] = meshgrid(x,y);

x0 = —2e—6; % beginning of coupling
x1 = 4e—6; % end of coupling

y0 = waveguide_y;

clear waveguide_y

% transpose E field matrices to fit the matlab mesh

Ex = Ex.';
Ey = Ey.';
Ez = Ez.';

E_vec = cat(3,Ex,Ey,Ez);
Emag = sqrt (mag2_fct (E_vec));

% find the indices of the x vector where the coupling begins and ends
[7,i-x0] = min(abs(x—x0));
[7,i-x1] = min(abs(x—x1));

% find index where y is in the middle of the waveguide
[7,i-y0] = min(abs(y-y0));

% take slice at yO
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Emag_slice = Emag(i_y0 ,:);

% fit
myfittype = fittype({'1','0xx"'}, 'coefficients',{"'a','b'});
myfit0 = fit (x, Emag_slice.', myfittype,
"Exclude' ,[1:8,(i-x0+1):1length (Emag_slice)]) ;
myfitl = fit (x, Emag_slice.', myfittype,
"Exclude ' ;1:(i-x1-1));

% get coefficient results
coefsO0 = coeffvalues (myfit0);
coefsl = coeffvalues (myfitl);

a0 = coefs0(1);
al = coefsl(1);

% get transmission coefficient t
t = al/a0;
alpha_target = —log(t)/pi/10e—6;

s|results = sprintf('t = %.4f\nalpha = %.0f m"{—1}\n',t,alpha_target);

% plot Emag with surf

my_variable_surf_fct (X,Y,Emag, 'Emag', 'gap',gap,le—6, 'um')

line (x*1e6,y0%le6xones(size (x)) ,Emag(i-y0 ,:),
"Color','red','LineStyle','—");

% plot slice

figure ()

plot (xx1e6, Emag_slice);

xlabel('x / um');

ylabel ( 'normalized E_{mag} / a.u.');
x]l = xlim;

yl = [0 1.2];

ylim(yl); % set ylim so that it is not changed by adding the vertical lines
line ([x0,x0]*1e6,yl, 'Color"','red', 'LineStyle",'—"');

line([xl x1]x1le6,yl, 'Color','red"', 'LineStyle','—");

line ([x1(1) ,x(i-x0)*1le6],[a0,a0], " 'Color', ' 'black','LineStyle','—");

line ([x(i-x1)*1le6,xl(end)],[al,al], 'Color', "black', 'LineStyle','—");

text (x1(2) —8,1,results);

Listing 6.8: grating_strength.m

%o{
grating_strength .m
stom ETH Zurich 11.05.2018

Script to fit the Electric field intensity along the x dimension, where the
grating is. This is fitted with an exponential decay, and the intensity

decay constant alpha is correlated with grating tooth height/thickness h.

The data come from lumerical simulations and are imported as .mat files.
This creates the variables x, y, Ex, Ey, Ez and waveguide_y.

Scalars are usually denoted with small letters , matrices are capitalized.
Matrices describing vectors have a 3rd dimension, whose elements are
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the x, y and z components of the vector, respectively.

5| %)

clear variables
clear global

20/ path = 'data/0.005—-0.21/";
h = [0.005:0.0025:0.015,0.02:0.01:0.21]%1e—6;

x0 = —50e—6; % beginning of grating

250x1 = —x0; % end of grating

myfittype = fittype ('axexp(—bx*(x—x0))", 'problem','x0", " "independent','x");
s0| alpha = zeros(size(h));

for k = 1l:length (h)

infilename = sprintf('%sE_field_h%.4f_ma3.mat"',path h(k)*1e6);
35 load (infilename) ;

[X,Y] = meshgrid(x,y);

% transpose E field matrices to fit the matlab mesh

40 EX:EX.';
Ey = Ey.';
Ez = Ez.';

E_vec = cat (3,Ex,Ey,Ez);

15 E2 = mag2_fct (E_vec);

% take slice in the middle, where y=0
[7,i-y0] = min(abs(y—0));

E2_slice = E2(i_y0 ,:) ;

50 % find the indices of the x vector where the coupling begins and ends
[7,i-x0] = min(abs(x—x0));
[7,i-x1] = min(abs(x—x1));

% fit
55 myfit = fit (x, E2_slice.',myfittype, 'problem ' ,x(i-x0),
"Exclude ' ,[1:(1-x0—-1),(i-x1+1):length(x)]);

% get coefficient results
coefs = coeffvalues (myfit);
60 alpha (k) = coefs (2);

end
save('results/alpha_vs_h','h' 'alpha');
65 figure()

plot (h*le6,alphaxle—3);
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% title ('intensity decay rate alpha versus grating tooth height h');
xlabel('h / um'");
ylabel ('alpha / 10°3 m"{—1}");

my_variable_surf_fect (X,Y,E2, 'E2','h' /h(k),le—6, 'un')
line (xx1e6,y(i-y0)*le6xones(size(x)),E2(i_y0,:),

"Color','red','LineStyle','—");
% plot slice
figure ()
plot (myfit, '—r ' ,x, E2_slice , '=b');
ax = gca;

ax.XTickLabel = {'—60','—40','=20",'0",'20"','40",'60"'};
xlabel('x / um');
ylabel ('E2 / a.u.");

Listing 6.9: transmission_spectrum.m

7o{
transmission_spectrum .m
stom ETH Zurich 26.04.2018

Based on transmission_ratio.m, similar to transmission_coefficient .m.

Script to loop over differenct frequencies to create a plot of transmission
ratio SQUARED versus wavelength —> a transmission spectrum.

Script to fit the Electric field magnitude along the x dimension, once
before coupling with a half ring, and once after the coupling. From the
ratio of the two fields , the transmission ratio is calculated.

The data come from lumerical simulations and are imported as .mat files.
This creates the variables x, y, Ex, Ey, Ez.

Scalars are usually denoted with small letters , matrices are capitalized.
Matrices describing vectors have a 3rd dimension, whose elements are
the x, y and z components of the vector, respectively.

%}

clear variables
clear global

gap = 0.13e—6;
h = 0.044e—6;
ma = 3; % mesh accuracy of the simulation

path_data = sprintf('data/gap%.2f_h%.3f_ma%.0f_only wg/',gap*le6 ,h*xle6 ,ma);
path.E = sprintf('%sE_ring/',path_data);
path_monitor_data = sprintf('%smonitor_data/',path_data);

% load general monitor data
load (strcat (path_monitor_data , 'lambda'));
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load (strcat (path_monitor_data, 'x"));

load (strcat (path_monitor_data,'y'));

load (strcat (path_monitor_data , 'waveguide_y '));
40
[X,Y] = meshgrid(x,y);

x0 = —3e—6; % beginning of coupling
x1 = 4e—6; % end of coupling

y0 = waveguide_y;

5| clear waveguide_y

% fit type
myfittype = fittype({'1l"','0xx'}, 'coefficients',{'a','b'});

% find the indices of the x vector where the coupling begins and ends
[7,i-x0] = min(abs(x—x0));
[7,i-x1] = min(abs(x—x1));

o

% find index where y is in the middle of the waveguide
[7,i-y0] = min(abs(y-y0));

o

transmission = zeros(size (lambda));

for frequency_point = 1:length (lambda)

60 infilename = sprintf('%sE_ring_lambda%.3f . mat',...
path_E ,lambda(frequency_point)*1e9);

load (infilename) ;

% transpose E field matrices to fit the matlab mesh
1.

65 Ex = Ex.';
Ey = Ey. ';
Ez = Ez.';

E_vec = cat(3,Ex,Ey,Ez);
70 E2 = mag2_fct (E_vec);

% take slice at y0
E2_slice = E2(i-y0,:);

75 % fit
myfit0 = fit (x, E2_slice.

"Exclude ' ,[1:8,(i-x0+1):1length (E2_slice)]);
myfitl = fit (x,E2_slice.',myfittype,

"Exclude ' ,1:(i-x1-1));

,myfittype,

80
% get coefficient results
coefsO0 = coeffvalues (myfit0);
coefsl = coeffvalues (myfitl);
a0 = coefs0(1);

85 al = coefsl(1);

% get transmission t°2 and add to vector
transmission (frequency_point) = al/a0;
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end

% clear variables which were created in the loop so that they do not cause
% any confusion afterwards

clear frequency_point infilename Ex Ey Ez E_vec Emag Emag_slice

clear myfit0 myfitl coefsO coefsl a0 al

% find the resonances

[7,i-modes] = findpeaks(—transmission ,'MinPeakHeight',—0.5,
"Annotate ', 'peaks');

lambda_modes = lambda(i_modes);

% save transmission spectrum data

outfilename = sprintf(...
'results/v2_transmission_spectrum_gap%.2f_h%.3f_.ma%.0f_only_wg .mat"',...
gapxle6 hxle6 ma);

save (outfilename , 'transmission ', 'lambda');

% save mode information

outfilename =sprintf(...
'"results/v2_modes_gap%.2f_-h %.3f_ma%.0f_only_wg.mat' ...
gapxle6 hxle6 ,ma);

save (outfilename , 'lambda’','i_modes');

5|% plot transmission spectrum

figure ()

plot (lambda*1e9 , transmission , 'LineWidth ' 1) ;

ylim ([0,1.2]);

xlabel ('lambda / nm');

ylabel ('|E_{through}|"2 / |E_{in}|"2");

% line (1e9«[lambda(i-modes) ,lambda(i_modes)],[0,1.2],

% '"LineStyle','——""Color ', 'black ', 'LineWidth',0.3) ;
mode_numbers = [2,1,0,—-1,—2];

mode_labels_xpos = le9xlambda(i_modes ([1:3,5,6]));

5| for i = 1:length (mode_numbers)

text (mode_labels_xpos (i) ,1.1,sprintf('l = %.0f' ,mode_.numbers(i)));
end

% save figure

outfilename = sprintf(...
"figures/v2_transmission_spectrum_gap%.2f_h%.3f_.ma%.0f_only_wg. fig',..
gap*le6 ,hxle6 ,ma);

savefig (outfilename) ;

Listing 6.10: evaluate_E_ff.m

%{
evaluate_E_ff .m

stom ETH Zurich 25.06.2018

Script to evaluate the electric field. That is to plot the indivudual
components and to analyze the purity at (x,y) = (0,0).
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Also the data is compared quantitatively to the simulations results from
the volume current method (VCM)

The data come from lumerical simulations and are imported as .mat files.
This creates the variables obs_x, obs.y, Ex_ff, Ey_ff, and Ez_ff.

Scalars are usually denoted with small letters , matrices are capitalized.

5| Matrices describing vectors have a 3rd dimension, whose elements are

the x, y and z components of the vector, respectively.

70}

clear variables
clear global

% parameters

path.E = 'data/E_ff/v2.2/";

% path_modeinfo = '../ring_resonator_v2/results/"';
gap = 0.13e—6;

h = 0.044e—6;

ma = 3;

obs_z = 50e—6;

lambda = 720.474e—9;

mymode = 1; % mode of VOM which is taken

% % load mode information data, variables lambda, and i_modes
% % this does not work for v2.2 since not the whole structure is monitored,
% % i.e. there is no transmission spectrum obtained.

5|% infilename = sprintf('%sv3_-modes_gap%.2f_-h%.3f_.ma%.0f . mat' ...

% path_modeinfo ,gap=*1le6,h*le6 ,ma);
% load (infilename);
% lambda = lambda (i_-modes (mymode) ) ;

infilename = sprintf ('%sE_ff_gap%.2f_h %.3f_ma%.0f_2z%.0f_lambda%.3f.mat' ...
path_E  gapxle6 ,h*le6 ,ma, obs_zx*1le6,lambdax1e9);
load (infilename);

% transpose E field matrices to fit the matlab mesh

5|% additionally they have to be complex conjugated because lumerical uses

% the different sign convention for the propagation of a wave in space

% the command ' does the complex conjugate transpose, the simple transpose

% would be .'
E.x = Ex_ff';
E.y = Ey_ff';
E.z = Ez_ff';

clear Ex_ff Ey_ff Ez_ff
% concatenate to one variable
E.vec = cat (3,E.x,E.y,E.z);

% calculation basis

[X,Y] = meshgrid (obs_x,obs_y);

R = sqrt ((X."2 +Y.72));

Rhat3D = cat (3,X./R,Y./R,zeros(size(R)));
Phi = atan2(Y,X);
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Phihat3D = cat(3,—sin (Phi), cos(Phi),zeros(size(Phi)));

% normalize for later comparison to VCM

% so the magnitude squared of the electric field integrated over the whole
65|% area should be equal to one.

C = get_normalization_constant_fct (X,Y,E.vec);

E.x =C *x E.x;

E.y =C x E.y;

E.z =C % E.z;
w|E.vec = C x E.vec;

% get the circular components
[E.th, E.lh] = circular_.components_fct (E.vec);

get the intensity for each component
.th2 = mag2_fct(E.rh);

.1h2 = mag2_fct(E.lh);

.z2 = mag2_fct(E.z);

.E2 = mag2_fct (E.vec);

HHEEE R

80
% integrate over all angles to get a radial distribution. Do this for all
% individual components of the basis. The returned rho only depends on X
% and Y, so it will be the same for these three calls

[E_phiint.rh2 ,rho] = integrate_phi_fct (E.rh2 ,X,Y);
ss| [E_phiint .1h2 ;7] = integrate_phi_fct (E.lh2 ,X,Y);

[E_phiint.z2,”] = integrate_phi_fct (E.z2,X,Y);

[E_phiint .E2,7] = integrate_phi_fct (E.E2,X,Y);

% get radial slices using the rho obtained from integrate_phi_fct
90| E_rslice.th2 = interp2(X,Y,E.rh2 rho,zeros(size(rho)));
E_rslice.lh2 = interp2(X,Y,E.1h2 ,rho,zeros(size(rho)));
E_rslice.z2 = interp2(X,Y,E.z2 ,rho, zeros(size(rho)));

E_rslice .E2 = interp2 (X,Y,E.E2,rho, zeros(size(rho)));

95|% calculate some purity of the circular components at the center
purity = max(E_rslice.rh2(1),E_rslice.lh2(1))/E_rslice .E2(1);

% average radial slices

% will yield the same rho as before, because it only depends on X and Y,
100|% provided that the number of points chosen within both functions is the
% same

E_avg_rslice.rh2, = average_phi_fct (E.rh2 ,X,Y);

[ "]

[E_avg._rslice.lh2 ;7] = average_phi_fct(E.1h2 ,X,Y);

[E_avg_rslice.z2,”] = average_phi_fct(E.z2,X,Y);
5| [E_avg_rslice .E2,7] = average_phi_fct (E.E2,X,Y);

% calculate some average purity of the circular components at the center
avg_purity = max(E_avg_rslice.rh2(1),E_avg_rslice.lh2(1)) ..
/ E_avg_rslice . E2(1);

110

%% Comparison to VOM
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% load data to compare to

5|path.VCM = '../../VCM2D/ring_resonator_4/";

path.VCM = sprintf('%s01 results sm0.1 obss0.1 z50 xmax10/', path.-VCM);
path.-VCM = sprintf('%sE_vec.3D /', path.VCM);

infilename = sprintf ('%sE_vec.3D mN%.0f_r10_w0.5.mat"', path.-VCM,mymode) ;
VCM_data = load (infilename);

% convert coordinates to micrometers
VCM_data.obs_-X = le—6 % VCM_data.obs_X;
VCM_data.obs.Y = le—6 x VCM_data.obs_Y ;

5|% interpolate the data to fit the lumerical mesh points

EVCM.x = interp2(VCM_data.obs_-X ,VCM_data.obs_.Y ,
VCM_data.E_vec_3D (:,:,1) ,X,Y);

EVCM.y = interp2(VCM_data.obs_-X ,VCM_data.obs_.Y ,
VCM_data.E_vec.3D (:,:,2) ,X,Y);

EVCM.z = interp2(VCM_data.obs_ X ,VCM_data.obs_ Y ,
VCM_data.E_vec-3D (:,:,3) ,X,Y);

EVCM.vec = cat(3,EVCM.x,EVCM.y ,EVCM.z) ;

% normalize the VCM data over the lumerical area

55|CVCM = get_normalization_constant_fct (X,Y,EVCM. vec) ;

EVCM.x = CVCM x EVCM.x;
EVCM.y = CVCM % EVCM.y;
EVCM.z = CVCM % EVCM. z;
EVCM. vec = CVCM x EVCM. vec;

% get the circular components

[EVCM.rh, EVCM.1lh] = circular_components_fct (EVCM. vec) ;

% get the intensity for each component

5| EVCM.rh2 = mag2_fct (EVCM.rh);

EVCM.1h2 = mag2_fct (EVCM. 1h);
EVCM.z2 = mag2_fct (EVCM.z);
EVCM.E2 = mag2_fct (EVCM. vec) ;

% intensity differences
E_diff.1h2 E.lh2 — EVCM. 1h2;
E_diff.rh2 = E.rh2 — EVCM.rh2;
E_diff.z2 = E.z2 — EVCM.z2;
E_diff .E2 = E.E2 — EVCM.E2;

%% Plots

% % plot all components

% % intensity

% my_surf_fct (X,Y,E.E2,'E2' lambda)

% my_surf_fct (X, Y,EVCM.E2, 'VCM E2' lambda)

%

% % z component

% my_surf_fct(X,Y,real (E.z),'Ez', lambda)

% my_surf_fct(X,Y,real (EVCM.z) ,'VCM Ez', lambda)
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% circular components

% rh

my._surf_fct (X,Y,real (E.rh),'Erh', lambda)
my_surf_fct (X,Y, real (EVCM.rh) ,'VCM Erh', lambda)
% 1h

my_surf_fct (X,Y, real (E.1h) ,'Elh', lambda)
my_surf_fct (X,Y, real (EVCM.1h) ,'VCM Elh', lambda)

% 7z component intensity
my_surf_fct (X,Y,E.z2,"'Ez2"' lambda)
my_surf_fct (X,Y,EVCM.z2,'VCM Ez2' lambda)

% circular component intensities

% rh

my_surf_fct (X,Y,E.rh2,'Erh2"' lambda)
my_surf_fct (X,Y,EVCM.rh2,'VCM Erh2', lambda)
% 1h

my_surf_fet (X,Y,E.1h2,"Elh2' lambda)
my_surf_fct (X,Y,EVCM.1h2 ,'VCM Elh2', lambda)

% plot radial slices
fig = figure ();
plot (rhoxle6,real ([ E_rslice.rh2;E_rslice.lh2;E_rslice.z2; E_rslice.E2]));
legend ('|E_{rh}| 2", "|E{lh}| 2", "|Ez|"2","|E|"2");
xlabel ('x / um');
ylabel ('Intensity / a.u.');
title ({'Radial Intensity slice at y=0', ...
sprintf ('lambda = %.3f nm',lambdax1e9)});
text (rho(end)*0.5e6,0.9*max( E_rslice .E2),
sprintf ('purity = %.4f',purity));
outfilename = sprintf('figures/new/E2_rslice_-lambda%.3f.fig ', lambdaxle9);
savefig (fig ,outfilename ,'compact')

% plot averaged radial distributions
fig = figure();
plot (rhox1le6,real ([E_avg_rslice.rh2;E_avg_rslice.lh2;
E_avg_rslice.z2;E_avg_rslice .E2]));
legend ('"|E_{rh}| 2", "|E{lh}| 2", "|Ez|"2","|E|"2");
xlabel ('\rho / um');
ylabel ('Intensity / a.u.');
title ({'Averaged radial Intensity ', ...
sprintf ('lambda = %.3f nm',lambdax1e9)});
text (rho(end)*0.5e6,0.9%max(E_avg_rslice .E2),
sprintf ('purity = %.4f',avg_purity));
outfilename = sprintf( .
"figures /new/E2_averaged_rslice_.lambda%.3f.fig ' ,lambdax1e9);
savefig (fig ,outfilename ,'compact')

plot averaged radial distributions with logarithmic y axis

fig = figure();
semilogy (rhoxle6,real ([E_avg_rslice.rh2; E_avg_rslice.lh2;
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E_avg._rslice.z2;E_avg_rslice .E2]))
legend ('|E_{rh}|[ 2", "|E{lh}|"2","|E_z
xlabel ('\rho / um");
ylabel ('Intensity / a.u.');
title ({ 'Averaged radial Intensity', ..
sprintf ('lambda = %.3f nm',lambdax1e9)});
text (rho(end)*0.2e6,0.5*max(ylim) ,
sprintf('at rho = 0: purity of RHCP = %.4f' avg_purity));
outfilename = sprintf( ..
"figures /new/E2_averaged_rslice_ylog_lambda%.3f. fig',lambdax1e9);
savefig (fig ,outfilename , 'compact ')

|72, T E[72 )

% % plot integrated radial distributions
% fig = figure();
% plot (rhoxle6,real ([E_phiint.rh2; E_phiint.lh2;E_phiint.z2; E_phiint.E2]));

205(% legend ('|E_{rh}|" 2" '[E_{Ih}|"2' '[Ez| 2" '[E["2");

% xlabel ('x / um') ;
% ylabel ('Intensity / a.u.');
% title ({'Integrated radial Intensity ',

% sprintf ('lambda = %.3f nm',lambdax1e9)});
% outfilename = sprintf( :
% "figures /new/E2_integrated_rslice_.lambda%.3f.fig ',lambdax1le9);

% savefig(fig ,outfilename ,'compact')

215|% % plot differences

o

10

% my_surf_fct (X,Y, E_diff .E2,'E2 difference ',lambda)

% % % z component intensity

% my_surf_fct (X,Y, E_diff.z2,'Ez2 difference ',lambda)
%

% % circular components

% % rh

% my_surf_fct (X,Y, E_diff.rh2,'Erh2 difference ', lambda)
% % 1h

% my_surf_fct (X,Y, E_diff.1h2,'Elh2 difference ', lambda)

6.1.2.3 Helper functions
These are useful functions called in one or more of the scripts listed in the previous subsubsections.

Listing 6.11: average_phi_fct.m

7o{
average_phi_fct.m
stom ETH Zurich 26.06.2018

Script to average radial slices through the input field over the azimuthal
angle phi.

The output is a vector along the radial direction.

Scalars are usually denoted with small letters , matrices are capitalized.

%}

function [ F_avg_rslice ,tho ] = average_phi_fct( F,X,Y )
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% set the number of points for the radial and angular dimension.
npts_.rho = length (X) x2; % takes the largest dimension
npts_phi = 201; % take some value

% assume that the origin is somewhere in the middle
% find the maximum radial distance which is defined for all angles.
rho.max = min(abs ([X(1,1),X(1,end),Y(1,1),Y(end,1)]));

% set the polar coordinates

rho = linspace (0,rho.max,npts_rho);

phi = linspace (0,2%pi,npts_phi+1);

phi = phi(l:end—1); % delete last element because it is equal to first

% add up all slices
F_avg_rslice = 0;
for i = 1l:length(phi)
F_avg_rslice = F_avg_rslice + ..
interp2 (X,Y,F,rhoxcos(phi(i)),rhoxsin(phi(i)));
end

% divide by the number of slices taken
F_avg_rslice = F_avg_rslice/npts_phi;

5| end

Listing 6.12: integrate_phi_fct.m

7f
integrate_phi_fct.m
stom ETH Zurich 14.05.2018

Script to integrate the input field over the azimuthal angle phi. The
output is a vector along the radial direction.

Scalars are usually denoted with small letters , matrices are capitalized.

70}

function [ F_rslice ,rho ] = integrate_phi_fet( F,X,Y )
% set the number of points for the radial and angular dimension.
npts_rho = length(X)*2; % takes the largest dimension
npts_phi = 201; % take some value
% assume that the origin is somewhere in the middle
% find the maximum radial distance which is defined for all angles.
rho_max = min(abs ([X(1,1),X(1,end),Y(1,1),Y(end,1)]));
% set the polar coordinates
rho = linspace (0,rho_max,npts_rho);
phi = linspace (0,2%pi,npts_phi);
[Rho, Phi] = meshgrid(rho, phi);

% get the field at the polar coordinates (has to be interpolated)
F_polar = interp2(X,Y,F,Rho.*xcos(Phi) ,Rho.*xsin (Phi));

% integrate over the angular coordinate phi
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F_rslice = trapz (Phi(:,1) ,Rho.*F_polar,1);
end

Listing 6.13: circular_components_fct.m

7o{
circular_components_fct.m

stom ETH Zurich 14.03.2018

Calculating the circular components F_vec_.rh and F_vec_lh of a vector field
F_vec by dot product with the circular unit vectors RHhat and LHhat.
o}

function [ F_vec_rh, F_vec_.lh ] = circular_components_fct( F_vec )
% there are different conventions, I use this one:

RHhat = 1/sqrt(2) .x [1, —1i];

LHhat = 1/sqrt(2) .x [1, 1i];

1
F_vec.rh = F_vec(:,:,1) .x RHhat(1) + F_vec(:,:,2) .x RHhat(2);
F_vec_.lh = F_vec(:,:,1) .x LHhat(1) + F_vec(:,:,2) .x LHhat(2);
end
Listing 6.14: get_normalization_constant_fct.m
76{

get_normalization_constant_fct.m

stom ETH Zurich 20.06.2018

Script yields a normalization constant C, which is the inverse of the
magnitude of the input field vector F_vec integrated over the whole
area given by X and Y.

Scalars are usually denoted with small letters , matrices are capitalized.
Matrices describing vectors have a 3rd dimension, whose elements are
the x, y and z components of the vector, respectively.

70}
function [ C ] = get_normalization_constant_fct( X,Y,F_vec )
integrand = 0;
for i = 1:size(F_vec,3)
integrand = integrand + abs(F_vec (:,:,1i))."2;
end

C = 1/sqrt(trapz(Y(:,1), trapz(X(1l,:),integrand,2),1));
end

Listing 6.15: mag2_fct.m

7f
mag2_fct.m
stom ETH Zurich 22.03.2018

Magnitude squared of the complex vector field F_vec.
Matrices describing vectors have a 3rd dimension, whose elements are
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the x, y and z components of the vector, respectively.

7}
function [ mag2 | = mag2_fct( F_vec )

mag2 = 0;

for i = 1:size(F_vec,3)

mag2 = mag2 + abs(F_vec(:,:,1))."2;
end
5| end
Listing 6.16: my_surf_fct.m

76{

my _surf_fct.m
stom ETH Zurich 28.05.2018

plots the field F as function of X and Y with the plot title made up of
plot_title and the wavelength lambda. Then saves the figure.
0}
function [ ] = my._surf_fct( X,Y,F,plot_title ,lambda )
fig = figure();
surf(X«le6,Y«1le6 ,F)
shading interp
title ({ plot_-title ,sprintf('lambda = %.3f nm',lambdaxle9)})
xlabel('x / um');
ylabel('y / um');

outfilename = sprintf('figures/new/%s_lambda%.3f. fig"',
plot_title ,lambdax1e9);
savefig (fig ,outfilename , 'compact ')
end

Listing 6.17: my_variable_surf_fct.m

%{
my_surf_fct.m
stom ETH Zurich 20.06.2018

plots the field F as function of X and Y with the plot title made up of
plot_title a variable descibed by its name, its value, its order of
magniture and its unit.
Then saves the figure.
%0}
function [ | = my_variable_surf_fct( X,Y,F,plot_title ,

var_name , var_value ,var_order_of_magnitude , var_unit )

fig = figure();

surf (X*1le6,Y*le6 ,F)

shading interp

title ({ plot_title ,sprintf('%s = %.2f %s',var_name,

var_value/var_order_of_magnitude , var_unit) })
xlabel ('x / um');
ylabel('y / um');

outfilename = sprintf('figures/new/%s %s%.2f.fig',plot_title ,
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var_name , var_value/var_order_of_magnitude);
savefig (fig ,outfilename , 'compact')
end

Listing 6.18: prepare_figure_for_report_fct.m

7{
prepare_figure_for_report_fct.m
stom ETH Zurich 22.06.2018

Deletes the title of the current figure and adds axis labels, or deletes
whole axis, maybe add colorbar, modify as needed.
Is intended for plots of the usual field profiles in the x—y plane.
7o}
function [ | = prepare_figure_for_report_fct( )

ax = gca;

% to make colors 'symmetric':
clim_max = max(abs(ax.CLim));
ax.CLim = [—clim_max ,clim_max |;

% modify as needed:
delete (ax. Title);

colorbar;
% cb = colorbar () ;
% cb. Ruler . Exponent = 0;
axis equal
axis off
view (2) % sets viewpoint from above
% xlabel ('x / um') ;
% ylabel ('y / um');

% this is to have tight figure margins:

outerpos = ax.QOuterPosition;

ti = ax.Tightlnset;

left = outerpos(1l) + ti(1);

bottom = outerpos(2) + ti(2);

ax_width = outerpos(3) — ti(1l) — ti(3);

ax_height = outerpos(4) — ti(2) — ti(4) — 0.05;

ax.Position = [left bottom ax_width ax_height];
end

Listing 6.19: save_current_figure_to_pdf_fct.m

[0y
of
save_current_figure_to_pdf_fct.m

stom ETH Zurich 15.06.2018
Script to save the current figure to a pdf with the filename being chosen
via gui.

I Note that this script will still save the file to the current folder!!

The alternative would be to use the save button in the figure window itself

and then selecting .pdf as type. But that would use A4 as paper size which
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is not what one usually wants.

A note on the resolution of pdf files: a ”"normal” 2D plot is saved as
vector graphic anyway, which is the advantage of pdfs. However, 3D plots
like generated by the function surf will be saved as bitmaps (except one
forces to take a different renderer, google if needed). For those, one sets
the resolution with the 'r300' option, where 300 is the resolution in dpi.

%}

function [ | = save_current_figure_to_pdf_fct( )
h = gecf;
set (h, 'Units ', 'Inches ') ;
pos = get (h, "Position');
set (h, 'PaperPositionMode ', 'Auto', 'PaperUnits','Inches',
"PaperSize ' ,[pos(3), pos(4)])

filename = uiputfile('x"');
print (h, filename , '—dpdf','=r300")
end
Listing 6.20: save_current_figure_to_png_fct.m
7{

save_current_figure_to_png_fct.m
stom ETH Zurich 15.06.2018

Script to save the current figure to a png with the filename being chosen
via gui.

I Note that this script will still save the file to the current folder!!
s

function [ ] = save_current_figure_to_png_fct( )
h = gecf;
set (h, 'Units ', 'Inches');
pos = get(h, 'Position');
set (h, 'PaperPositionMode ', "Auto', 'PaperUnits', 'Inches'
"PaperSize ' ,[pos(3), pos(4)])

)

o

filename = uiputfile('x"');
print (h, filename , '—dpng ', '=r300 ")
end
Listing 6.21: save_figure_to_pdf_fct.m
7o{

save_figure_to_pdf_fct.m
stom ETH Zurich 03.07.2018

Script to save a figure to pdf. The figure is chosen via gui.

A note on the resolution of pdf files: a ”"normal” 2D plot is saved as

vector graphic anyway, which is the advantage of pdfs. However, 3D plots
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like generated by the function surf will be saved as bitmaps (except one
forces to take a different renderer, google if needed). For those, one sets
the resolution with the 'r300' option, where 300 is the resolution in dpi.

%}

5| function [ ] = save_figure_to_pdf_fct( )

[filename , pathname] = uigetfile;

filename = sprintf('%s%s',pathname, filename);

clear pathname

h = open(filename);

set (h, 'Units','Inches');

pos = get(h, 'Position');

set (h, 'PaperPositionMode ', 'Auto','PaperUnits
'"PaperSize ' ,[pos(3), pos(4)])

,'Inches

filename = strrep (filename,'.fig','. pdf');
print (h, filename , '=dpdf"','=r300")
end
Listing 6.22: save_figure_to_png_fct.m
7{

save_figure_to_png_fct.m
stom ETH Zurich 29.06.2018

Script to save a figure to png. The figure is chosen via gui.

70}

function [ ] = save_figure_to_png_fet( )
[filename , pathname] = uigetfile;
filename = sprintf( '%s%s ',pathname, filename);
clear pathname
h = open(filename);

set (h, 'Units ', 'Inches');

pos = get(h, 'Position");

set (h, 'PaperPositionMode ', 'Auto', 'PaperUnits','Inches',
"PaperSize ' ,[pos(3), pos(4)])

filename = strrep (filename,'.fig','.png');
print (h, filename , '—dpng ', '=r300 ")
end

6.1.3 Lumerical FDTD Solutions

Listing 6.23: ring_gap.lsf

# ring_gap.lsf
# stom ETH Zurich
# 27.04.2018

#
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# script to make a half a ring resonator with a feeding waveguide

clear ;
groupscope (7 ::model” ) ;
deleteall;

# parameters

path = "matlab_results/”;
lambda0 = 0.729e—6; # wavelength
n_waveguide = 2.007;

sl n_surrounding = 1.454;

n_eff = 1.67; # approximate effective waveguide index
# from source port neff, Karan told me 1.65
gap = 0.13e—6;

# ring properties
ring_radius = 10e—6;
ring_width = 0.45e—6;
ring_height = 0.18e—6;

s|# waveguide properties

waveguide_span = 28e—6;

waveguide_width = 0.45e—6;

waveguide_height = 0.18e—6;

waveguide_.y = ring_radius+0.5*xring_width+gap+0.5xwaveguide_width ;

# FDID properties

fdtd_mesh_accuracy = 3;

fdtd_simulation_time = 10xwaveguide_spanxn_eff /2.9979e8;
fdtd_span = 2xring_radius+4e —6;

fdtd_ymin = 2e—6;

fdtd_ymax = ring_radius+0.5%ring_width+gap+waveguide_width+le—6;
fdtd_-height = waveguide_height+2e —6;

# port properties

port_.x = —(0.5«xfdtd_span —0.2e—60);

port_ymin = ring_radius+0.5%ring_width+gap—1le—6;

port_ymax = ring_radius+0.5%ring_width+gap+waveguide_width+le—6;
port_height = fdtd_height;

s|# add waveguide

groupscope (7 :: model”) ;
addrect ;

select ("rectangle”);

set ("name” ,” waveguide” ) ;

set ("x”7,0);

set ("x span” ,waveguide_span);

(
(
("y” ,waveguide_y) ;
set ("y span” ,waveguide_width);
(727,0);
(”z span” ,waveguide_height);
(7index” ,2.007) ;
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# add half ring
groupscope (7 :: model”) ;
addobject (7180 _bend_-wg”) ;

set ("x”7,0);

set ("y”,0);

set (7z”7,0);

set ("radius” ,ring_radius);

set ("base width” ,ring_width);
set ("base angle” ,90);

set ("base height” ,ring_height);

set ("material” ,;”<Object defined dielectric>");
groupscope (7 :: model :: bend_180");

selectall;

set ("material” ,;”<Object defined dielectric>");
set ("index” ,2.007);

111(1selec‘call7

s|# add FDID region

groupscope (7 :: model” ) ;

addfdtd ;

set (”background index” ,n_surrounding);

set ("mesh accuracy” ,fdtd-mesh_accuracy);

set (”z min bc” ,” Symmetric”); # using the vertical symmetry to reduce
calculation time

set (”simulation time” ,fdtd_simulation_time);
set ("x”7,0);

set ("x span” ,fdtd_span);

set (’y min” ,fdtd_ymin);

set ("y max” ,fdtd_ymax) ;

set (7z”7,0);

set (7z span”,fdtd_height);

# add ports

addport;

groupscope (7 :: model : :FDTD” ) ;

select ("ports”);

set (”source port”,”port 17);

set (”source mode” ,”mode 17);

set ("monitor frequency points” ,500);
setglobalsource (”wavelength start” ,lambda0);
setglobalsource (” wavelength stop” ,lambda0) ;
groupscope (7 :: model : :FDID:: ports”);

select ("port 17);

set (7x” port_x);

set (”y min” ,port_ymin);

set(”y max” ,port_ymax) ;

set (7z7,0);

set(7z span ’,port._ height);

set ("injection axis” ,”x—axis”);

set (”direction” ;”Forward” ) ;

set (”mode selectlon ,”fundamental mode”) ;
set (" frequency pomtb 1)
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110|# add monitors

groupscope (7 :: model”) ;
addtime; # field time monitor for 1st port
set ("name” ;7 t_in”);

set ("x” ,port_x);
s set (7y” ,(port_ymintport_ymax)/2);
copy; # for 2nd port
set ("name” ,” t _through”);
set ("x”7,—port_x);
addprofile7 # frequency—domain field monitor
120] set ("name” ;7 full _profile”);
set (7x”7,0);
set (7 span ,fdtd_span);
(77
(
(

set (7y max” ,fdtd_ymax);

) ) ;

x”
X

set (”y min” fdtd_ymin);
y
2"

”

125 set

## run simulation , usually do this by hand because otherwise the program
crashes

F#run ;

130|# get and save results

E = getresult (" full_profile” ,”E”);

Ex = pinch (E.Ex);

Ey = pinch(E.Ey);

Ez = pinch(E.Ez);

135 x = pinch(E.x);

y = pinch(E.y);

filename = path4+” E _field_gap”’4+num2str(gap*1e6);

filename = filename+” _ma”’+num2str (fdtd_mesh_accuracy )+’ .mat”;
matlabsave (filename ,x,y,Ex,Ey,Ez, waveguide_y);

Listing 6.24: straight_grating_sweep.lsf

1|# straight_grating_sweep . Isf
# stom ETH Zurich
# 18.04.2018
#

5|# Based on straight_grating.lsf, which is a
# script to make a straight waveguide with a
# grating on one side. Here it is sweeped over
# different grating strengths, that is tooth
# heights, here called tooth thicknesses

10
clear;
closeall;
groupscope (7 :: model”) ;
deleteall;

# parameters

path = "matlab_results/”;
lambda0 = 0.729e—6; # wavelength
n_waveguide = 2.007;

20| n_surrounding = 1.454;
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n_eff = 1.67; # approximate effective waveguide index
# from source port neff, Karan told me 1.65

# waveguide properties

25| waveguide_span = 110e—6;
waveguide_width = 0.45e—6;
waveguide_height = 0.18e—6;

# grating properties

s0| grating_span = 100e—6;

grating_period = lambdaO/n_eff;

duty_cycle = 0.5; # to maximize radiation

tooth_length = duty_cyclexgrating_period;

tooth_thicknesses = 1e —6%[0.005:0.0025:0.015;0.02;0.03:0.01:0.21];
35| N_grating = ceil (grating_span/grating_period);

# FDID properties
fdtd_-mesh_accuracy = 3;
fdtd_simulation_time = 10xwaveguide_span*n_eff/2.9979e8;
w| fdtd_span = grating_span-+4e —6;

fdtd-width = waveguide_-width+1.5e —6;

fdtd_height = waveguide_height+1.5e—6;

15|# loop over different tooth thicknesses
for (k=1l:length(tooth_thicknesses)){
tooth_thickness = tooth_thicknesses(k); # ”h” in filenames

’

# switch back to layout mode
50 switchtolayout ;

groupscope (7 :: model”) ;

deleteall;

55 # add waveguide
groupscope (7 :: model”);
addrect ;
select ("rectangle”);
set ("name” ,” waveguide” ) ;

60 set(”x” ,0);
set ("x span” ,waveguide_span);
set ("y”,0);
set (7y span” ,waveguide_width);
set (72”7 ,0);

65 set ("z span” ,waveguide_height);
set (7index” ,2.007) ;

# add grating
groupscope (7 :: model”);
70 addstructuregroup;

set ("name” ,” grating”);
set ("x”7,0);

set ("y"0);
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set (727 ,0);
groupscope (7 :: model :: grating”);
for (i=1:N_grating){
x_-tooth = —0.5%xgrating_span+(i —0.5)«grating_period;
addrect ;
select ("rectangle”);
set ("x” ,x_tooth);
set (7y min” ,(—0.5xwaveguide_width—tooth_thickness));
set ("y max” ,(—0.5%xwaveguide_width));
set ("name” ,” reactangle”’4+num2str(i));
}
selectall;
set (”X span” ,tooth_length);
set (72”7 ,0);
set (7 z span ,waveguide_height);
set (7index” 2.007);

unselectall;

# add FDID region

groupscope (7 :: model”) ;

addfdtd ;

set ("background index” ,n_surrounding);

set ("mesh accuracy” ,fdtd_-mesh_accuracy);

set (7z min be” ,” Symmetric”); # use the vertical symmetry to reduce
calculation time

set (”simulation time” ,fdtd_simulation_time);
set (7x”7,0);
set ("x span” ,fdtd_span);
set ("y”,0);
set (7y span”,fdtd_width);
set (7z”7,0);
("2

span” ,fdtd_height);

# add ports

addport ;

groupscope (7 :: model : :FDTD” ) ;

select (" ports”);

set ("source port” ,”port 17);

set (”source mode” ;”mode 17);

set ("monitor frequency points” ,500);
setglobalsource (”wavelength start” ,lambda0) ;
setglobalsource (” wavelength stop” ,lambda0) ;
groupscope (7 :: model : :FDTD:: ports”);

select (”port 1735

set (” 7, —(0.5%xfdtd_span —0.2e—6)) ;

set ("y”,0);

set ("y span ,fdtd_width);

set (72”7 ,0);

set (7z bpan ,fdtd_ height);

set (7 1nJect10n axis” ,"x—axis”);

set ("direction” ,” Forward” ) ;

set ("mode sclcctmn ,”fundamental mode”) ;
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set (7 frequency points” ,1);

# add monitors

groupscope (7 :: model”);

addtime; # field time monitor for 1st port
set ("name” ,”7 t_in”);

set ("x”,—(0.5«xfdtd_span —0.2e—60)) ;

set ("y”,0);

copy; # for 2nd port

set ("name” ;7 t_through”);

set ("x” ,(0.5%fdtd_span —0.2e—6)) ;

addprofile; # frequency—domain field monitor

set ("name” ,” full _profile”);
set ("x”7,0);

set ("x span” ,fdtd_span);
set ("y”,0);

set ("y span” ,fdtd_width);

set (72”7 ,0);
setglobalmonitor (7 frequency points” ,1);

# run simulation
run;
# get and save results
E = getresult (7 full_profile” ;7E”);
Ex = pinch(E.Ex);
Ey = pinch (E.Ey);
Ez = pinch(E.Ez);
E2 = pinch(E.E2);
x = pinch(E.x);
y = pinch(E.y);
#image (xx1e6 ,yx1e6 ,E2,”7x / um”,”y / um” ,"E27);
filename = path+” E_field_h”+num2str(tooth_thicknessx1le6);
filename = filename+” _ma”’+num2str(fdtd_-mesh_accuracy )+’ .mat”;
matlabsave (filename ,x,y,Ex,Ey,Ez);
}
Listing 6.25: ring_resonator_v2.lsf
# ring_resonator_v2.lsf
# stom ETH Zurich
# 07.05.2018
#
# based on ring_resonator.lsf
#
# Includes just a layer of oxide above, then going into air. This
# resembles the geometry of the structure (but without substrate).
#
# additionally includes the far field calculations, that is a call
# to ff.lsf.
#
# script to make a simple ring resonator with a feeding

(0]
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# waveguide and a grating inside the ring
clear ;
groupscope (7 ::model” ) ;

deleteall;

# parameters

path = "results/new_results/”;
lambda0 = 0.729e—6; # wavelength
n_eff = 1.67; # approximate effective waveguide index

# from source port neff, Karan told me 1.65

# ring properties
ring_radius = 10e—6;
ring_width = 0.45e—6;
ring_height = 0.18e—6;
gap = 0.13e—6;

# waveguide properties

waveguide_material_index = 2.007;

waveguide_span = 28e—6;

waveguide_width = 0.45e—6;

waveguide_height = 0.18e—6;

waveguide_.y = ring_radius—+0.5*%ring_width+4+gap+0.5«waveguide_width;

# grating properties

grating_period = lambda0/n_eff;

duty_cycle = 0.5; # to maximize radiation

tooth_length = duty_cyclexgrating_period;

tooth_thickness = le —6%0.044;

N_grating = ceil (2«pi*ring_radius/grating_period)—1;

phi_grating = linspace (0,2%pi,(N_grating+1));

# delete last element because it is the same as the first (0=2pi)
phi_grating = phi_grating (1: N_grating);

radius_grating = ring_radius —0.5%ring_width —0.5%tooth_thickness;

# oxide properties
oxide_index = 1.454;
oxide_thickness = le—6;

# monitor properties

ring_monitor_-name = " monitor_ring”;

ff_monitor_.name = "monitor_air”;

ff monitor.z = 0.5*xwaveguide_height+oxide_thickness+0.3e—6;
monitor_lambda_center = 725e—9;

monitor_lambda_span = 20e—9;

monitor_frequency_points = 242;

# FDID properties

fdtd_mesh_accuracy = 3;

# simulation time: factor 100 is to ensure that the shutoff condition
reached

5| fdtd_simulation_time = 100%2*pi*ring_radiusxn_eff/2.9979e8;
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fdtd_span = 2xring_radius+6e —6;

fdtd_ymin = —(ring_radius+0.5%xring_width+2e—6);
fdtd_-ymax = ring_-radius+0.5%ring_width+gap+waveguide_-width+2e —6;
fdtd_zmin = —(0.5xwaveguide_height+le—6);

70| fdtd_zmax = ff_monitor_z+0.3e—6;

# air properties

air_index = 1;

air_span = waveguide_span;

75| air_ymin = fdtd_ymin — 2e—6;

air_.ymax = fdtd_.ymax + 2e—6;

air_.zmin = 0.5xwaveguide_height+oxide_thickness;
air_zmax = fdtd_zmax + 2e—6;

so|# port properties

port_.x = —(0.5xfdtd_span —0.2e—6);

port_ymin = ring_radius+0.5*%ring_width+gap—1e —6;

port_ymax = ring_radius+0.5%ring_width+gap+waveguide_width+1le—6;
port_zmin = fdtd_zmin;

s5| port_zmax = fdtd_zmax;

# add waveguide

groupscope (7 :: model”) ;
ool addrect;
select ("rectangle”);
set ("name” ,” waveguide” ) ;
set ("x”7,0);
set ("x span” ,waveguide_span);
os| set ("y” ,waveguide_y) ;
set ("y span” ,waveguide_width);
set (7z”7,0);
set (7z span” ,waveguide_height);
set (7index” ,waveguide_material_index);

# add two half rings

groupscope (7 ::model”);

addobject (7180 _bend_wg”);

set (”name” ,“ring_top”);
105 set(’ )

set ("y”,0);

set (7z”,0);

set (7 rddlus ,ring _radius);

set (" base Wldth ,ring_width);
10| set ("base angle” ,90);

("D

set ase height” jring_height);

set ("material” ;”<Object defined dielectric>");
groupscope (7 ::model:: ring_top”);

selectall;

5] set ("material” ;”<Object defined dielectric>");
set (7index” ,waveguide_material_index);
unselectall;

groupscope (7 :: model”) ;

7




select ("ring_top”);

120| COPY ;

set ("name” ,”ring_bottom”);
set (7 first axis”,”727);

set ("rotation 17 ,180);

# add grating
groupscope (7 :: model”);
addstructuregroup ;

set (”namc” “grating”);

130 set( ),
set ("y”,0);
set ("z” ,0)7

groupscope (7 grating”);
for (i=1:N_grating){

135 x_grating = radius_gratings*cos(phi_grating(i));
y_grating = radius_gratings*sin(phi_-grating(i));
addrect ;

select ("rectangle”);
set ("x” ,x_grating);

140 set (y” ,y-grating);
set (7 first axis”,”z”);
set ("rotation 1”7 ,(180%phi_grating(i)/pi));
set ("name” ,” tooth”4+num2str(i));

}

15| selectall;
set ("x 5pan” tooth_thickness);

set (7 y spdn ,tooth_length);
set (7z”7,0);
set (7z 5pan ,ring_height);
150] set (7 index” Waveguide,material,index) ;

# add air

groupscope (7 :: model”) ;
addrect ;

55| select ("rectangle” ) ;
set (”namc” ,air”);

set ("x”,0);

set ("x span” ,air_span);

set (7y min” ,air_ymin);
60| set (7y max” ,air_ymax);

set (7z min” ,air_zmin);

set (7z max” ,air_zmax);

set (7index” ,air_index);

165
# add FDID region

groupscope (7 ::model” ) ;

addfdtd ;

set (”background index” ,oxide_index);

70| set ("mesh accuracy” ,fdtd_mesh_accuracy);

set ("simulation time” ,fdtd_simulation_time);

”
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min” , fdtd_zmin
max” ,fdtd_zmax

I

set ("x7,0);

set ("x span” ,fdtd_span);

set (7y min” ,fdtd_ymin);

set (”y max” ;
(" :
("z

)
,fdtd_ymax) ;

)

)

’

# add ports

addport ;

groupscope (7 ::model : :FDID:: ports”);
select ("port 17);

set ("name” ,” port_through”);

set ("x”,—port_x);

set (”y min” ,port_ymin);

set (”y max” ,port_ymax) ;

set (7z min” ,port_zmin);

set (7z max” ,port_zmax) ;

set (7injection axis”,”’x—axis”);

set (7 direction” ,” Backward”) ;

set ("mode selection”,”fundamental mode”);

set (" frequency points” ,1);

copy ;

set ("name” ,” port_in”);

set ("x” ,port_x);

set (" direction” ,” Forward”) ;

groupscope (7 :: model : : FDTD" ) ;

select ("ports”);

set (”source port”,”port_in”);

set (”source mode” ,”mode 17);

set ("monitor frequency points” ,500);
setglobalsource (”wavelength start” ,lambda0);
setglobalsource (” wavelength stop” ,lambda0) ;

5|# note on ports: somehow the input port is not determined by the ”source

port”
# option , but by which port was added last. At least that is how to explain
# the results of some small tests.

# add monitors

groupscope (7 ::model” ) ;

addtime; # field time monitor for 1st port
set ("name” ;7 t_in”);

set ("x” ,port_x);

set ("y” ,(port_ymin+port_ymax) /2);

copy; # for 2nd port

set ("name” ,” t _through”);

set ("x”7,—port_x);

addprofile; # frequency—domain field monitor in the waveguide plane
set ("name” ,ring_monitor_name) ;

X7 ,0);

x span” ,fdtd_span);

y min” ,2xwaveguide_y—fdtd_ymax) ;

y max” ,fdtd_ymax);
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set (7z”7,0);

s|#addprofile; # frequency—domain field
## uses too much memory with mesh accuracy 3,
#set ("name” ,ff_monitor_name) ;

(

(”x span” ,fdtd_span);
#set (7y min”  fdtd_ymin);

(7y max” ,fdtd_ymax) ;

(

setglobalmonitor (" use source
setglobalmonitor ("use linear
setglobalmonitor (" wavelength
setglobalmonitor (" wavelength

in the air
that is the reason

monitor

limits” ,0);

wavelength spacing” ,1);

center” ;monitor_lambda_center);
span” ,monitor_lambda_span);

for v2.2

setglobalmonitor (" frequency points” ;monitor_frequency_points);

## run simulation , usually do this by hand because otherwise the program

crashes
240| F#run ;
# get and save results of monitors
E_ring = getresult (ring-monitor_-name ,”E”);
#E _air = getresult (ff_monitor_name ,”E”);

245|# x,y and lambda are the same for both monitors
lambda = pinch(E_ring.lambda);

matlabsave (path+” monitor_data/lambda” ;lambda) ;
x = pinch(E_ring.x);

matlabsave (path+” monitor_data/x” ,x);

y = pinch(E_ring.y);

matlabsave (path+” monitor_data/y” ,y);

matlabsave (path+” monitor_data/waveguide_y” ,waveguide_.y) ;

¥
o

# ring monitor

255 Ex_ring = pinch(E_ring.Ex);
Ey_ring = pinch(E_ring.Ey);
Ez_ring = pinch(E_ring.Ez);
filename = path4+” monitor_data/ring_monitor_gap”+num2str(gap=*le6);
filename = filename+” _h”4+num2str(tooth_thicknessxle6)+”’ . mat”;
260| filename = filename+” ma”’+num2str (fdtd_-mesh_accuracy)+” .mat”;

matlabsave (filename ,x,y,lambda,Ex_ring ,Ey_ring , Ez_ring , waveguide_y ) ;

## far field monitor (in air)
#Ex_air = pinch(E_air.Ex);

265| #Ey_air = pinch (E_air .Ey);
#Ez_air = pinch(E_air.Ez);
#filename = path+"monitor_data/air_monitor_gap”’+num?2str(gap=*le6);
#filename = filename+”_h”+num?2str(tooth_thicknessxle6);
#filename = filename+”_ma’+num?2str (fdtd_mesh_accuracy)+".mat”;

270| #matlabsave (filename ,x,y,lambda, Ex_air , Ey_air , Ez_air , waveguide_.y) ;

# save fields at individual wavelengths
for (m = 1:length (lambda)){
monitor_lambda = lambda (m) ;

275
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Ex = pinch (Ex_ring ,3 ,m);

Ey = pinch(Ey_ring,3 ,m);

Ez = pinch(Ez_ring ,3 ,m);

filename = path+” E_ring/E_ring_lambda”+num2str (monitor_lambdax1e9)+" .
mat” ;

matlabsave (filename ,Ex,Ey,Ez) ;

#Ex = pinch (Ex_air ,3 ,m);

#Ey = pinch(Ey_air ,3 ,m);

#Ez = pinch (Ez_air ,3 ,m);

#filename = path+”E_air/E_air_lambda”+num2str (monitor_lambda=*1e9)+”.mat

» .

#matlabsave (filename ,Ex,Ey ,Ez);

}

# clear the workspace variables so that they are not confused
clear (Ex,Ey,Ez, filename ,m) ;

## calculate and save the far field
## 1! frequency point is chosen in script ff.1sf!!
#1f . 1sf;

Listing 6.26: ff.Isf

ff.lsf
stom ETH Zurich
30.04.2018

script to calculate the far field radiation from

a field monitor using the farfieldexact3d function.

uses the existing workspace variables after a run of ring_resonator_v2.
Isf

or ring_resonator_v2.2.l1sf

path_E_ff = path+” E_ff/”;

# choose the resonance/mode according to its mN value
mN = —2;

5| monitor = air_monitor_name+num2str(—mN+3); # !adapt this depending of v2 or

v2.2!

# choose frequency point

frequency_point = 11;

E = getresult (monitor ,”E”);

obs_lambda = pinch(E.lambda(frequency_point));
clear (E);

# observer plane properties

obs_res_.x = 101;

obs_res_.y = 100;

obs_x = le—6xlinspace(—10,10,0bs_res_x);
obs_y = le—6xlinspace(—10,10,0bs_res_y);
obs_z = 50e—6;
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# calculate the far field
# Note: By default takes the refractive index at the monitor center
# as the propagation refractive index. This is correct for us since
# the monitor is in air.
E_ff = farfieldexact3d (monitor,obs_x,obs_y,obs_z ,frequency_-point);

# extract field components

Ex_ff = pinch (E_ff ,4,1);

Ey_ff = pinch(E_ff ,4,2);

Ez_ff = pinch (E_ff ,4,3);

E2_ff = abs(Ex_ff)"2 + abs(Ey_ff)"2 + abs(Ez_ff) "2;

for (1 = 1:length(obs_z)){
image_title = "Intensity at z = 74num2str(obs_z(1)*1le6)+’ um”;
image (obs_x*1e6,0obs_y*le6,E2_ff ,”x (um)”,”y (um)”,image_title);
filename _ff = path+” E_ff/E _ff_gap”+num2str (gap*1e6);
filename_ff = filename_ff+” _h”+num?2str(tooth_thicknessxle6);
filename_ff = filename_ff+’ _ma’+num2str(fdtd_-mesh_accuracy);
filename _ff = filename_ff4+” _z”’4+num?2str(obs_z(1)x1eb6);
filename_ff = filename_ff4+” _lambda”’+num2str (obs_lambdax1e9)+” .mat” ;
matlabsave (filename_ff ,obs_x ,obs_.y ,Ex_ff |Ey_ff ,Ez_ff);

Listing 6.27: ring_resonator_v2.2.Isf

# ring_resonator_height_sweep_v2.2.1sf

# stom ETH Zurich

# 22.05.2018

#

# based on ring_resonator_v2.lsf

#

# includes multiple monitors to record data only at the resonance
frequencies.

#

# Includes just a layer of oxide above, then going into air. This

# resembles the true geometry of the structure.

#

# additionally includes the far field calculations, that is a call

# to ff.lsf.

#

# script to make a simple ring resonator with a feeding

# waveguide and a grating inside the ring

#

# usually after loops, clear the workspace variables so that they are not
confused

clear;

groupscope (7 :: model”) ;

deleteall;

# parameters

5| path = 7results/new_results/”;

lambda0 = 0.729e—6; # wavelength
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n_eff = 1.67; # approximate effective waveguide index
# from source port neff, Karan told me 1.65

# ring properties
ring_radius = 10e—6;
ring_width = 0.45e—6;
ring_height = 0.18e—6;
gap = 0.13e—6;

# waveguide properties

waveguide_material_index = 2.007;

waveguide_span = 28e—6;

waveguide_width = 0.45e—6;

w| waveguide_height = 0.18e—6;

waveguide_.y = ring_radius—+0.5*%ring_width+4+gap+0.5«waveguide_width;

# grating properties

grating_period = lambda0/n_eff;

15| duty_cycle = 0.5; # to maximize radiation

tooth_length = duty_cyclexgrating_period;

tooth_thickness = le—6%0.044;

N_grating = ceil (2«pi*ring_radius/grating_period)—1;

phi_grating = linspace (0,2%pi,(N_grating+1));

so|# delete last element because it is the same as the first (0=2pi)
phi_grating = phi_grating (1: N_grating);

radius_grating = ring_radius —0.5%ring_width —0.5%tooth_thickness;

# oxide properties
551 oxide_index = 1.454;
oxide_thickness = le—6;

# monitor properties

ring_monitor_-name = " monitor_ring”;

60| air_monitor_name = ”"monitor_air”;

air_monitor_z = 0.5%xwaveguide_height+oxide_thickness+0.3e—6;

# set wavelengths manually, according to the transmission spectrum obtained
from v2

ring_monitor_lambda_center = 1le —9%[716.5,720.5,724.55,728.7,732.86];

ring_monitor_lambda_span = 2e —9%[0.5,0.5,1,0.5,0.5];

65| ring_monitor_frequency_points = 2x%[10,10,20,10,10];

number_ring_monitors = length(ring_monitor_lambda_center);

air_monitor_lambda_center = ring_monitor_lambda_center;

air_monitor_lambda_span = ring_monitor_lambda_span;

air_monitor_frequency_points = ring_monitor_frequency_points;

7ol number_air_monitors = length (air_-monitor_lambda_center);

# FDID properties

fdtd_mesh_accuracy = 3;

#fdtd_simulation_time = 40e—15;

75| fdtd_simulation_time = 100%2xpixring_radius*n_eff/2.9979e8;
fdtd_span = 2xring_radius+6e —6;

fdtd_ymin = —(ring_radius+0.5%xring_width4+2e—6);

fdtd_ymax = ring_radius+0.5%ring_width+gap+waveguide_width+2e—6;
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fdtd_zmin = —(0.5xwaveguide_height+le—6);
s0| fdtd_zmax = air_monitor_z+0.3e—6;

# air properties

air_index = 1;

air_span = waveguide_span;

s5| air_ymin = fdtd_ymin — 2e—6;

air_.ymax = fdtd_.ymax + 2e—6;

air_.zmin = 0.5*xwaveguide_height+oxide_thickness;
air_zmax = fdtd_zmax + 2e—6;

90|# port properties

port_.x = —(0.5xfdtd_span —0.2e—6);

port_ymin = ring_radius+0.5*ring_width+gap—1le—6;

port_ymax = ring_radius+0.5%ring_width+gap+waveguide_width+1le—6;
port_zmin = fdtd_zmin;

95| port_zmax = fdtd_zmax;

# add waveguide
groupscope (7 :: model”);
100 addrect;
select ("rectangle”);
set ("name” ,” waveguide” ) ;
("x".0)
("x span” ;waveguide_span) ;
05| set ("y” ,waveguide_y ) ;
set ("y span” ,waveguide_width);
(
(
(

z
z span” ,waveguide_height);
index” ,waveguide_material_index) ;
110
# add two half rings
groupscope (7 ::model”);
addobject (7180 _bend_wg”) ;
set (”name” ,“ring_top”);
115 set(’ )
set (7y”,0);
set (7z”7,0);
set (7 rddlus ,ring _radius);
set (" base Wldth ,ring_width);
20| set (" base angle” ,90);
set ("base height” ,ring_height);
set ("material” )’ <Objoct defined dielectric>");
groupscope (7 ::model:: ring_top”);
selectall;
125] set ("material” ;”<Object defined dielectric>");
set ("index” ,waveguide_material_index);
unselectall;

groupscope (7 :: model”) ;
select ("ring_top”);

130] CODPY ;
set ("name” ,”ring_bottom”);
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set (7 first axis”,”727);
set ("rotation 17 ,180);

# add grating
groupscope (7 :: model”);
addstructuregroup ;

set ("’namo” "grating”);

140 set( ),
set ("y”,0);
set (7z ,0);

groupscope (7 grating”);
for (i=1:N_grating){

145 x_grating = radius_gratings*cos(phi_grating(i));
y-grating = radius_gratings*sin(phi_-grating(i));
addrect ;

select ("rectangle”);
set ("x” ,x_grating);

150 set (7y” ,y-grating);
set (7 first axis”,”z”);
set ("rotation 1”7 ,(180%phi_grating(i)/pi));
set ("name” ,” tooth”4+num?2str(i));

55| selectall;

set ("x 5pan” tooth_thickness);

set (7 y spdn ,tooth_length);

set (7z”7,0);

set (7z 5pan ,ring_height);

160 set (7index” Waveguide,material,index);

# add air
groupscope (7 :: model”) ;

addrect;
65| select (7 rectangle );
set ("name” ,” air”);
set ("x”,0);
set ("x span” ,air_span);
set (7y min” ;air_ymin);
70| set (7y max” ,air_ymax);
set (7z min” ,air_zmin);
set (7z max” ,air_zmax);
set (7index” ,air_index);

# add FDID region

groupscope (7 ::model” ) ;

addfdtd ;

set (”background index” ,oxide_index);

50| set ("mesh accuracy” ,fdtd_mesh_accuracy);
set ("simulation time” ,fdtd_simulation_time);
set ("x”,0);
set ("x span” ,fdtd_span);
set (7y min” ,fdtd_ymin);
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set (7y max” ,fdtd_ymax) ;

set (7z min” ,fdtd_zmin);

set (7z max” ,fdtd_zmax) ;

# add ports

addport ;

groupscope (7 :: model : :FDID:: ports”);

select ("port 17);
set(”name” "port_through”);
set ,—port_x);

set min” ,port_ymin
set ,port_ymax) ;

(7

( );

( )3
set ( ,port_zmin);

( )3

(

(

(

”
I
”

” ”

min
set (7 ,port_zmax

set njection axis”,”x—axis”);

set (" direction” ”Backward”);

set ("mode selection”,”fundamental mode”);
set (7 frequency pmnts”,l);

copy ;

set ("name” ,” port_in”);
set ("x” ,port_x);

set (" direction” ,” Forward”
groupscope (7 ::model
select ("ports”);

set (”source port” ,”port_in”);
set (”source mode” ,”mode 17);
set (" monitor frequency points”

max”’

”

x”
y
y max”
z
z
1 ”

”

”

7
77)
I

”

,500) ;

setglobalsource (”wavelength start” ,715e—9);

setglobalsource (” wavelength stop”
# setting this global
(as
in v2)
transmission
spectrum from the ports,
wavelengths.

,735e—9);

will

as they are

somehow the input port

port”
option ,
the results of some small tests.

#
#
#
# note on ports:
#
#
#

add monitors

groupscope (7 :: model” ) ;

addtime; # field time monitor for 1st port
set ("name” ;7 t_in”);

set (” ,port_x);

set ("y” ,(port_ymin+port_ymax) /2);

copy;

set ("name” ,” t _through”);

set ("x”7,—port_x);

# monitors in the waveguide plane for

for (k = l:number_ring_monitors){
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235 addprofile,

set ("name” ,ring_monitor_.name4+num?2str(k));
set (7x”7,0);
set ("x span ,fdtd_span);
set (”y min” fdtd_ymin);
240 set ("y max” ,fdtd_ymax) ;
set (72”7 ,0);
set ("override global monitor %ettinge” ,1) 5
set ("use linear wavelength spacing” ,1);
set (”wavelength center ,rlng_monltor_lambda_center(k));
245 set ("wavelength span” ,ring_monitor_lambda_span(k));
set ("frequency points” ,ring_monitor_frequency_points(k));
set ("spatial lnterpolation”,"‘nearest mesh cell”);
}
clear (k) ;
250
# monitors in the air for different wavelengths/resonances
for (k = l:number_air_monitors){
addprofile7
set ("name” ,air_monitor_name4+num?2str(k));
255 set ("x”7,0);
set ("x span” ,fdtd_span);
set (”y min” fdtd_ymin);
set ("y max” ,fdtd_ymax) ;
set (7z” ,air_ monltor z);
260 set (7 OVCI‘I"ldC global monitor settings” ,1);
set ("use linear wavelength spacing” ,1);
set (" wavelength center ,air_monitor_lambda_center (k));
set (" wavelength span” a1r_monitor_1ambda_span(k));
set ("frequency points” jair_monitor_frequency_points(k));
265 set ("spatial lnterpolation”,"‘nearest mesh cell”);
}
clear (k) ;
## run simulation , usually do this by hand because otherwise the program
crashes
270 | F#run ;

## save results
275

matlabsave (path+” monitor_data/waveguide_y” ,waveguide_y) ;

# ring monitors

for (k = l:number_ring_monitors){

280 # monitor data

E_ring = getresult (ring_-monitor_-name+num?2str(k) ,”E”);

lambda_ring = pinch (E_ring.lambda) ;

matlabsave (path+” monitor_data/lambda_ring”4+num2str (k) ,lambda_ring);
x_ring = pinch(E_ring.x);

285 matlabsave (path+” monitor_data/x_ring” ,x.ring);

y_ring = pinch(E_ring.y);
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}

matlabsave (path+” monitor_data/y_ring” ,y_ring);

# fields

Ex_ring = pinch(E_ring.Ex);
Ey_ring = pinch(E_ring.Ey);
Ez_ring = pinch(E_ring.Ez);

filename = path+” nlonitor,data/ring”—i—nqustr(k)+” _monitor”;
filename = filename+” _gap”’+num?2str(gap*le6);

filename = filename+” _h”+num2str (tooth_thickness*le6);
filename = filename+" _ma”’+num2str(fdtd_-mesh_accuracy )+’ .mat”;

matlabsave (filename ,x_ring ,y_ring ,lambda_ring , Ex_ring ,Ey_ring , Ez_ring ,
waveguide_y ) ;

# save fields at individual wavelengths
for (m = 1l:length(lambda_ring)){
monitor_lambda = lambda_ring (m);

# frequency/wavelength is 4th dimension

Ex = pinch(E_ring.Ex,4 m);

Ey = pinch (E_ring .Ey,4 ,m);

Ez = pinch(E_ring .Ez,4 ;m);

filename = path+” E_ring/E_ring”4+num2str (k) ;

filename = filename+” lambda”4+num2str (monitor_lambdax1e9)+” . mat” ;
matlabsave (filename ,Ex,Ey,Ez) ;

}

clear (lambda_ring , Ex_ring , Ey_ring , Ez_ring , monitor_lambda ,Ex,Ey,Ez, filename ,

k) ;

# air monitors

s15| for (k = l:number_air_monitors){

# monitor data

E_air = getresult (air_monitor_.name4+num2str(k),”E”);

lambda_air = pinch(E_air.lambda);

matlabsave (path+” monitor_data/lambda_air’+num2str (k) ,lambda_air) ;
x_air = pinch(E_air.x);

matlabsave (path+” monitor_data/x_air” ,x_air);

y-air = pinch(E_air.y);

matlabsave (path+” monitor_data/y_air” ,y_air);

# fields
Ex_air = pinch(E_air.Ex);
Ey_air = pinch(E_air.Ey);
Ez_air = pinch(E_air .Ez);

filename = path4+” monitor_data/air’4+num2str(k)+” monitor”;
filename = filename+” _gap”’+num?2str(gap=*le6);

filename = filename+” _h”4+num2str(tooth_thickness*le6);
filename = filename+4” _ma”’4+num?2str(fdtd_mesh_accuracy )+’ . mat”;

matlabsave (filename , x_air , y_air ,lambda_air , Ex_air , Ey_air , Ez_air ,
waveguide_y ) ;

# save fields at individual wavelengths
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for (m = 1l:length(lambda_air)){
monitor_lambda = lambda_air (m) ;

340 # frequency/wavelength is 4th dimension
Ex = pinch(E_air.Ex,4 ,m);
Ey = pinch(E_air.Ey,4 ,m);
Ez = pinch(E_air .Ez,4 m);
filename = path4+” E_air/E_air”4+num2str (k) ;
345 filename = filename+” lambda”+num2str (monitor_lambdax1e9 )+’ . mat” ;
matlabsave (filename ,Ex,Ey,Ez);
}
}

clear (lambda_air , Ex_air , Ey_air , Ez_air ,monitor_lambda ,Ex,Ey,Ez, filename , k) ;

350

## calculate and save the far field
## 1! frequency point is chosen in script ff.1sf!!
#1I1f . 1sf;

Listing 6.28: coupling_fraction.lsf

i|# coupling _fraction.Isf
# stom ETH Zurich
# 29.06.2018
#
5|# based on Karan's integrate_power.lsf
#
# script to determine the power radiated through specific monitors
# at specific wavelengths (set by monitor numbers and frequency
# points)
10
#clear ;
#closeall;
monitor_.number = [1,2,3,3,4,5];
frequency_points = [10,10,19,23,10,11];
15| for (i = 1:length (monitor_-number)){
monitor_name = "monitor_air’+num2str (monitor_number (i));
P_ring = getdata(monitor_-name ,” power”);
P_ring = P_ring(frequency_points(i));
f = getdata(monitor_name ,” {”);
20 P_input = sourcepower (f(frequency_points(i)));
?” Coupling fraction: "+num2str(P_ring/P_input);

clear (P_ring , P_input);
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