
Temperature measurement of 24Mg atoms in a
MOT using time of flight measurement

Ludwig Hruza
ETH Zürich, hruzal@student.ethz.ch

June 20, 2018

Abstract

This is a guide on how to apply the time-of-flight measurement
method to determine the temperature of atoms in a MOT using my
python code ’analyze_cloudpicture.py’: First an expanding atom cloud
is simulated at different times t. Then these images are fitted to a 2d-
Gaussian fit function and the temperature of the atom cloud is obtained
from the fit parameters.

Contents
1 Introduction 1

2 Theory of time-of-flight measurement 2

3 Experimental setup 4

4 How the code works 5

5 Results 7

6 Acknowledges 8

1 Introduction
The aim of my project is to measure the temperature of a cloud of magnesium
atoms captured in a magneto-optical trap (MOT). A MOT traps atoms by
means of Doppler cooling together with a quadrupole magnetic field. Due

1

to the Zeeman effect the degenerate energy levels of the magnesium atoms
split up in such a way that the radiative force confines the atoms around
B = 0. A description of how a MOT works can be found in [1]. In the
present experiment carried out in the Trapped Ion Quantum Information
Group at ETH Zürich the MOT is used to provide a reservoir of cold atoms,
which are then used to load an optical trap. Since the trap depth is of the
order of a few millikelvin, it is important to determine the temperature of
the MOT.

The idea of behind the temperature measurement using a time-of-flight
(Tof) measurement method is the following: Upon turning off the trap at
time t=0 atoms will move into arbitrary dimensions with a mean kinetic
energy that is connected to the cloud’s temperature T by the equipartition
theorem with three degrees of freedom

⟨EKin⟩ =
1

2
m(⟨v2x⟩+ ⟨v2y⟩+ ⟨v2z⟩) =

3

2
kBT. (1)

Here vi is the mean absolute velocity of all atoms in dimension i (i = x, y, z).
Assuming isotropic velocity distribution (i.e. (⟨v2x⟩+ ⟨v2y⟩+ ⟨v2z⟩) = v̄2) this
is equivalent to v̄2 = kBT/m. Hence the temperature T can be calculated
by measuring v̄, which is found by comparing the expansion of the cloud
after different flight times t.

The theoretical derivation is presented in section 2. The main part of my
work was to write a program that fits a sequence of images of an expanding
cloud to the model derived in section 2 and extracts the temperature. This
was done using Python and is explained in section 4. At the time when I was
writing the program, no data from our MOT was available, so I implemented
a simulation of an expanding falling cloud. The results are presented in
section 5.

2 Theory of time-of-flight measurement
In this section I will derive how the temperature T depends on the expansion
of the cloud.

If we assume that the MOT beams have a Gaussian intensity distribution
we may then assume the atom cloud at t = 0 to have a Gaussian distribution,
too with an initial standard deviation σi,0 in the corresponding dimension
i = x, y, z. We choose the coordinate system such that the distribution is
centered at position r = 0. The probability to find an atom in a small

2

volume dr3 around r when t = 0 is

f(r, t = 0) ∝
∏

i=x,y,z

e−(ri)
2/2σ2

i,0 . (2)

At a later time t each individual atom with initial velocity v will have moved
w.r.t its initial position r0 by an amount vt. So we are tempted to modify
(2) by

f(r,v, t > 0) ∝
∏

i=x,y,z

e−(ri−vit)
2/2σ2

i,0 . (3)

However, not every velocity v is equally likely to occur. Hence in (3) we
should have respected the normalized velocity distribution g(vi, T) (Maxwell-
Boltzmann distribution), which is the probability that a non interacting
atom at temperature T has a certain velocity in dimension i. Later I will
use an algorithm to fit an image of the spatial distribution of atoms to the
function we are about to derive. To have more degrees of freedom in this fit,
I will assume that the temperature in each dimension Ti in principle could
be different, i.e g(vi, T) → g(vi, Ti), even though in the experiment the dif-
ferent temperatures would thermalize. This will make the fitting algorithm
more robust. When interested in the actual temperature T I will take the
average of the Ti’s. The spatial distribution at a later time is now obtained
by integrating over all possible velocities

f(r, t) ∝
∏

i=x,y,z

∫ +∞

−∞
dvi e−(ri−vit)

2/2σ2
i,0g(vi, Ti). (4)

What is g(vi, Ti)? Here I will give an outline of the derivation: Assume the
setup to be one dimensional and divide velocity space into k intervals of
lengths ∆v, each interval carrying an index j = 1, ..., k and yet unknown
number nj of particles with velocity vj and hence energy Ej = 1/2 mv2j .
It is assumed that the system of N =

∑k
j=1 nj particles takes the state

{n1, ..., nk} which has the biggest number of different ways one can assemble
it. This state {n1, ..., nk} then is obtained by maximizing the different ways
one can assemble it, P (nj) =

N !
n1!...nk!

, with the constraints N =
∑k

j=1 nj and
Etot =

∑k
j=1 njEj . Having done the maximization, the normalized velocity

distribution is just g(vj , T) = n(vj) := nj
1. From the maximization there

are two yet unknown Lagrange multipliers, which can be determined by the
1Note that vj is not a velocity component in dimension j, but just one specific velocity

of our one dimensional discretized velocity space.

3

normalization condition
∫∞
−∞ f(v)dv = 1 and ⟨E⟩ :=

∫∞
−∞

1
2mv2f(v)dv =

1
2kBT (by the equipartition theorem). One finds

g(v, T) =

[
m

2πkBT

]1/2
exp (−mv2/2kBT). (5)

Until now the influence of gravity on the expanding atom cloud (in rz
dimension) was neglected. We fix this by substituting rz → rz+gt2/2 in (4).
This works because gravity does not affect the evolution of the cloud’s radius
(which I define to be the standard deviation σi(t) of the spatial distribution
f(r, t)) but merely shifts the center of the cloud. Inserting (5) into (4) and
performing the integration over vx, vy, vz2

f(r, t) ∝ e−x2/2σx(t)2e−y2/2σy(t)2e−(z+gt2/2)2/2σz(t)2 , (6)

where
σ2
i (t) = σ2

i,0 +
kBTi

mMg
t2. (7)

Hence, the task is to fit the obtained images of the expanding cloud after
time t to a 2d-Gaussian distribution with standard deviation σi(t).

3 Experimental setup
A schematic of the experimental setup is shon in Fig 1. The cloud of 24Mg
atoms inside the MOT chamber is observed through a viewport of diameter
16 mm using a CCD camera3. The CCD camera is oriented in y direction.
For some realistic initial configuration, e.g. a MOT-temperature of T =
Ti = 10 mK and an initial radius of 0.7 mm, according to our model of
an expanding cloud in (6) and (7) the cloud would take about tmax := 4.3
ms until its radius σ(t) has expanded beyond the field of view of the CCD
camera. So we have to keep in mind, that the geometrical constraints of the
viewport only allow an observation of an expanding cloud for a very short
time. The resonance beam passes through another view port in x direction,
i.e. orthogonal to the CCD camera. It is resonant with the 31S0 → 31P1

transition of the magnesium atoms and has the same diameter as the view
port.

2for better readability I will from now on use the simpler notation rx, ry, rz → x, y, z.
3The model used is pco.ultraviolet.

4

Figure 1: Schematic of the experimental setup. Relevant parts are labeled
bold. Image from [2].

4 How the code works
The code ’analyze_cloudpicture.py’ consists of two parts: simulation and
fitting.

Simulation is only needed to check how well the fitting algorithm works,
because no data from our MOT was yet available. It works as follows: Since
the CCD will capture a two dimensional image in the xz-plane and I assume
that the flash beam will cause all atoms in the MOT to florescence with the
same intensity, an image taken at time t should correspond to a plot of (6)
integrated over all y. Since (6) is a Gaussian, the resulting function will be
again a Gaussian

f(x, z, t) ∝ e−x2/2σx(t)2e−(z+gt2/2)2/2σz(t)2 . (8)

Furthermore one could imagine that a real cloud may not expand completely
spherically symmetric but (due to some imbalances in the environment) a

5

0 50 100 150 200 250
number of counts

0

5000

10000

15000

20000

25000
oc

cu
re

nc
e

of
 th

e
co

un
t

dark counts distibution
gaussian fit with mean 64.1 (4)
 and std. deviation 14.6 (4)

Figure 2: Histogram of a dark image take with our CCD. The CCD image
can be converted to a matrix with dimensions 374× 500 and the maximum
pixel count is 255. The histogram is fitted with a Gaussian with mean 46.1
(4) counts and standard deviation 14.6(4). The rather great error on the
mean is because the Gaussium was fitted to the bins of the histogram and
not the 374× 500 pixels in the first place.

bit faster in one direction than another. This is accounted for by allowing
different temperatures Tx and Tz as well as a correlation ρ := cor(x, z) =
cov(x, z)/(σxσz) between x and y, such that the function modeling a cloud
at time t becomes a 2d bivariate Gaussian

f(x, z, t) = Ae
−
(

(x−x0)
2

2σx(t)2
+

(z−z0+gt2/2)2

2σz(t)2
− 2ρ(x−x0)(z−z0)

σx(t)σz(t)

)
/2(1−ρ2)

, (9)

where the amplitude A is chosen to equal the maximal pixel count of the
CCD camera, which is 255 counts per pixel, and (x0, z0) is the initial posi-
tion, which until now we have set to the origin. This function is now plotted
on a grid of xz-values at different times t with initial data that should corre-
spond to our real MOT (e.g. Ti = 10 mK and σi,0 = 700 µm). Then I added
noise to each of the plots according to a dark image taken with the CCD
camera. A histogram of this dark image is shown in Fig. 2. Consequently
the noise was modeled as a Gaussian with the corresponding mean of the
dark image and a tunable standard deviation σnoise. To allow the possibility
of saturated images, I included an option for saturation, which increases
the amplitude A above 255 counts per pixel and then clips all values above

6

255 back to 255. For testing the algorithm I generated a sequence of im-
ages which simulate an expanding cloud with given initial condition after
different expansion times t. An example of such a sequence is shown in Fig.
3.

In the fitting part of my code a sequence of noisy and saturated cloud
(such as the right column of Fig 3) is fitted back to (9), where A, x0,
z0, σx(t), σz(t) and ρ are now free fitting parameters. The information
about the temperature is contained in σx(t) and σz(t) via (7) with T =
1
2(Tx + Tz). Introducing a constant offset as a further fitting parameter
to (9) (to account for the dark counts) has shown to improve the fitting a
lot. Another improvement for the fitting of saturated images is achieved
by excluding all pixels from the data that have a pixel count equal to the
maximal pixel count of 255.

5 Results
Fig. 4 (a)-(c) show the fits to the simulated images shown in the right column
of Fig. 3. They give a first evidence that the fitting part works quite well.
However, when the information about σ(t) from Fig. 4 (a)-(c) is plotted in
(d) the error bars are much too small to explain the deviation from the fit
line (also the case in Fig. 5). The errors calculated from my Python code
stem from a in-built Python function which returns the statistical variance
of the ”curve_fit” algorithm, usually implemented as a least square problem.
A reason for the discrepancy with the error bars could be that my fitting
function has more parameters than there are physical degrees of freedom
for an atom cloud with definite temperature and hence isotropic velocity
distribution. E.g. the fitting function includes an offset, different standard
deviations in x and z dimension and a correlation between x and z. However,
these additional parameters are needed, to make sure that Python fitting
algorithm ”curve_fit” converges reliably.

Next I considered how well the fitting works for sequences of clouds with
different observation times. In section 3 we defined the maximal observation
time tmax = 4.3 ms as the time at which the maximal field of view can
capture one standard deviation of the spatial distribution of the cloud. One
may wonder whether a field of view of one standard deviation is already to
small to have a precise estimate for the cloud’s radius. This is indeed the
case as seen by comparing Fig. 5 (a) to (b).

To sum up, one should aim to record images before tmax/2 (which is
approximately when the cloud’s radius σ(t) has expanded to half the field

7

of view) and rethink how to define sensible error bars.

6 Acknowledges
I would like to thank my supervisor, Christoph Fischer, for his support
and his patient explanations on all kinds of MOT related questions and
especially for fixing the mirrors if I had messed up with it (I had started to
experimentally realize the flash beam, but due to problems with our acusto-
optical modulator this did’t lead to results in the time available).

References
[1] J. C. Foot. Atomic Physics. Oxford University Press, 2005.

[2] Nils. Rehbein. Realisierung neuer laserkühlverfahren und spek-
troskopielaser für einen optischen magnesium-frequenzstandard, 2006.

8

(a) (b)

(c) (d)

(e) (f)

Figure 3: Left column: Secuence of clouds with initial values Tx = 10
mK, Tz = 20 mK, ρ = 0.3 and σi,0 = 700 µm. The saturation level
is A/(max. pixel count) = 1.2 and no noise is added yet. Right col-
umn: noise is added to the left column with a signal to noise ratio
(maximum signal)/(2σnoise) = 0.5.

9

(a) (b)

(c)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time of flight squared, t2[s2] 1e 5

0

1

2

3

4

5

6

7

8

Cl
ou

d
ra

di
us

 sq
ua

re
d,

(t)

2 [
m

]

1e 5
Fit with T = 0.0123 ± 0.0008 K
 and sig0 = 0.00101 ± 0.10997 m
 original values were T = 0.0150 K
 and sig0 = 0.00070 m

(d)

Figure 4: (a)-(c): Plot of a sequence of clouds with parameters obtained
from a fit of Fig. 3 (b),(d),(f). (d): σ(t) = (σ2

x(t) + σ2
y(t))/2 as obtained

from (a)-(c). It should have a linear dependency on t according to (7).
The fit (green line) gives a temperatur of 12.3 (0.3) mK, while the original
temperature was T = (10 + 20)/2 mK = 15 mK. (See Fig. 3). The error
bars calculated by my algorithm still seem to be far to small.

10

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time of flight squared, t2[s2] 1e 5

0

1

2

3

4

5

Cl
ou

d
ra

di
us

 sq
ua

re
d,

(t)

2 [
m

]
1e 5

Fit with T = 0.0082 ± 0.0003 K
 and sig0 = 0.00101 ± 0.08730 m
 original values were T = 0.0100 K
 and sig0 = 0.00070 m

(a)

0 1 2 3 4
Time of flight squared, t2[s2] 1e 6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cl
ou

d
ra

di
us

 sq
ua

re
d,

(t)

2 [
m

]

1e 5
Fit with T = 0.0092 ± 0.0000 K
 and sig0 = 0.00072 ± 0.01576 m
 original values were T = 0.0100 K
 and sig0 = 0.00070 m

(b)

Figure 5: Result of fitting for initial values Tx = Tz = 10 mK, ρ = 0 and
σi,0 = 700 µm. (a) represents 6 data points, corresponding to 6 images
taken evenly spaced between tmax/5 and tmax. For (b) only three images
were taken evenly spaced between tmax/5 and tmax/2.

11

