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Abstract

A promising way to implement fault-tolerant quantum computing is to encode qubit information in
more dimensional physical systems such as harmonic oscillators. We investigate dispersive coupling
between two such oscillators: the motion of an ion in a harmonic trap and an optical cavity. The
interaction is achieved by using an internal electrical transition of the ion driven by a coherent light
�eld. Such coupling e�ectively produces a beamsplitter interaction between the two oscillators. We
show that energy levels are modi�ed by a stark shift (which has to be taken into account if we want
that state transfer between cavity and motion has high �delity). We furthermore explore interaction
between individual optical cavities coupled via a running light �eld. Such a coupling could be used to
transfer quantum states from the motion of an ion in one cavity to a distant cavity and ultimately to
another ion in that cavity.
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1 Introduction

Motional states of ions trapped in harmonic potentials o�er various possibilities for creation and
study of nonclassical states [1, 2, 3] as well as quantum computing [4] (which includes actions such
as performing CNOT gate [5], initializing the qubit state [6], entanglement of two trapped ions [7]).
Moreover, motional modes can be used for quantum error correction protocols. Detection and cor-
rection of inevitable quantum errors demand redundancy, which can be conveniently encoded on the
state of a harmonic oscillator [8, 9, 10]. An example of a code that encodes qubits by utilizing many
dimensions of one physical system is cat code (which can protect against photon loss) [11]. A more
universal approach is the Gottesman, Kitaev, Preskill (GKP) code [12], which can correct all single
qubit errors. However, for building a quantum computer, we need communication (coupling) between
many physical qubits. This can be achieved by joining spatially separated ions in one common trap
using electric �elds (QCCD architecture [13]). An alternative approach would be the use of photons
as intermediary link between qubits, as proposed by Parkins and Kimble [14]. For this we �rstly
need to put a trapped ion in an optical cavity and investigate a simple state transfer between cavity
and motional modes. Once we understand this process, two such systems (oscillating ions inside the
cavity) could be coupled via decay from one cavity to another, since we already know how to transfer
a state from cavity to motion.

The aim of this report will be to simulate state transfer between optical cavity and motional modes
of a trapped ion while reproducing the results (but using a di�erent approach) from Parkins and
Kimble [14] so that we can also elaborate on them. We start by describing the system relevant for
state transfer and perform Schrie�er-Wolf transformation. To learn more about our Hamiltonian we
simulate transfer of a Fock and cat state and notice previously derived Stark shift due to coupling of
cavity and motion. Later, we expand our system by adding a second cavity which decays into the �rst
cavity. This enables us to simulate state transfer from second cavity to the motion of the ion. An
intuitive further step is to put an ion in the second cavity and study communication between di�erent
motional qubits, however, this is a topic of future investigations.

2 Model description

Our model consists of a two-level ion (or atom) con�ned in a harmonic trap. Atomic levels are sep-
arated by frequency ωa and are coupled via a Jaynes-Cummings interaction to an optical cavity at
frequency ωc. Furthermore, the atomic transition is driven by an external laser �eld of frequency ωL.
The system is shown on Figure 1. We describe our system in the interaction picture with respect to
~ωLa†a+ ~ωLσ+σ− and perform a rotating-wave approximation where we assume that we are inter-
ested in timescales much bigger than 1/ωL. This means that we can neglect fast rotating terms which
come from coupling of cavity to the atom:

(
σ̂+eiωLt + σ̂−e

−iωLt
)
and

(
â†σ̂+e

2iωLt + âσ̂−e
−2iωLt

)
, be-

cause they oscillate quickly compared to
(
âσ̂+ + â†σ̂−

)
in our reference frame. The resulting Hamil-

tonian is [14]:

Ĥ =
∑

i=x,y,z

~νi
(
b̂†i b̂i +

1

2

)
+~δâ†â+~∆σ̂+σ̂−+~

[
εL (x̂, ŷ, ẑ) σ̂+ + εL (x̂, ŷ, ẑ)

∗
σ̂−
]
+~g0 sin (kx̂)

(
âσ̂+ + â†σ̂−

)
(1)

where νi is the trap frequency in direction i = x, y, z. â and b̂i are annihilation operators for cavity �eld
and harmonic motion respectively while σ̂− is the lowering operator of the two-level ion. δ = ωc−ωL
is the di�erence between cavity and laser frequency and similarly ∆ = ωa − ωL denotes the di�erence
between atom and laser frequency. We will select our frequencies such that the motional and cavity
excitations have the same energy in the interaction picture. This condition will be determined later,
but it approximately holds:

ν ≈ δ = ωc − ωL. (2)
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The energy levels in our system are shown on the right side of Figure 1 where one can observe that
δ and ν ful�ll the approximate condition in equation (2). The amplitude of the laser electric �eld is
denoted by εL (x̂, ŷ, ẑ) . If the laser beam size is much larger than the ionic wave packet size, we can
assume that laser electric �eld is constant: εL (x̂, ŷ, ẑ) = εL. The cavity-atom dipole coupling strength
is given by g0 and the sine function describes the standing wave structure of the cavity electric �eld.
Here we made an assumption that the center of the trap is located at a node of the cavity �eld, with

k = 2π/λ being the wavenumber and x̂ =
√

~/2mν
(
b̂+ b̂†

)
the ion position operator, where m is the

mass of the ion. If the center of the trap was located at an anti-node, we would have used a cosine
function.

We will work in the Lamb-Dicke limit and assume the size of the ionic wavepacket (in all directions)
is small compared with the optical wavelength of light in cavity (λ), which means that we can do an

expansion: sin (kx̂) ' kx̂ = η
(
b̂+ b̂†

)
. Here η � 1 is the Lamb-Dicke parameter. If the optical cavity

couples to only one mode of motion, the problem becomes one-dimensional and we only have one

frequency (ν) and one motional annihilation operator
(
b̂
)
despite having a three dimensional trap.

We arrive to:

Ĥ = ~ν
(
b̂†b̂+

1

2

)
+ ~δâ†â+ ~∆σ̂+σ̂− + ~εL [σ̂+ + σ̂−] + ~g0η

(
b̂+ b̂†

)(
âσ̂+ + â†σ̂−

)
. (3)

With this Hamiltonain we will simulate transfer of a cavity state to the motional mode of the ion. The
terms that are responsible for state transfer come from the last term in equation (3) and are of the

form âb̂† + â†b̂ meaning that they create one excitation in motional mode on account of annihilating
a quantum of energy from cavity and vice versa. The interacting terms can be resonantly driven by
selecting appropriate frequencies ∆, ν and δ which will be shown in the next section.
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1. Introduction

The quantized motional states of atoms or ions in confining
potentials offer interesting possibilities for a variety of
applications, such as the preparation and study of nonclassical
(i.e. manifestly quantum) states [1–5], and the storage
and manipulation of quantum information (e.g. ‘qubits’),
with particular reference to quantum logic operations and
quantum computing [6–12]. These possibilities stem from
the relatively long coherence times that can be achieved
with motional states (due to the absence of strong damping
mechanisms) and the precision with which transformations
between motional states can be controlled using laser-light-
induced transitions.

However, while motional states are well suited to
the storage and manipulation of quantum states, for the
communication of quantum information from one physical
location to another it is clear that photons are the preferred
carriers of the information. For this reason, it is necessary
to provide and examine configurations in which motional
states can be efficiently and reliably transferred to states of
light, and vice versa. Here enters the field of cavity quantum
electrodynamics (cavity QED); in particular, configurations
in which a single mode of the electromagnetic field supported
by an optical cavity is strongly coupled to a transition in a
single atom. It is possible, via the internal atomic transition,
to also couple the cavity field to the external (quantized)
motion of the trapped atom or ion [13–15], and in this
paper we examine such a coupling that enables the above-
mentioned state transfer.

2. Model

Our model consists of a single two-level atom (or ion)
confined in a harmonic trap located inside an optical cavity.

Figure 1. Schematic of experimental set-up and excitation
scheme for state transfer between the motion of a trapped atom/ion
and a quantized cavity mode of the electromagnetic field.

The atomic transition of frequencyωa is coupled to a single
mode of the cavity field of frequencyωc and is also assumed
to be driven by an external (classical) laser field of frequency
ωL—the cavity and laser field frequencies will be chosen
so as to drive Raman transitions that couple neighbouring
vibrational levels of the external motion. The physical set-
up and excitation scheme are depicted in figure 1. The cavity
is aligned along thex-axis, while the laser field is incident
from a direction in they–z plane (i.e. perpendicular to the
x-axis).

The Hamiltonian describing the internal and external
atomic degrees of freedom plus the atom–cavity and atom–
laser couplings takes the form (in a frame rotating at the laser
frequency)

Ĥ0 =
∑

j=x,y,z
h̄νj (b̂

†
j b̂j + 1

2) + h̄δâ†â + h̄1σ̂+σ̂−

+h̄[EL(ŷ, ẑ, t)σ̂+ + EL(ŷ, ẑ, t)
∗σ̂−]

+h̄g0 sin(kx̂)(â†σ̂− + σ̂+â). (1)

Here, {νx, νy, νz} are the harmonic oscillation frequencies
along the principal axes of the trap,b̂j andâ are annihilation

1464-4266/99/040496+09$30.00 © 1999 IOP Publishing Ltd

Figure 1: Sketch of our system of interest: a two-level ion (or atom) is trapped inside a harmonic
potential. The cavity is aligned along the x−axis, while the laser is incident from a direction in the
y − z plane. The two atomic levels are coupled to a laser �eld and a single mode of an optical cavity.
Initially, we assume that the cavity decay rate κ is zero. On the right side, we can see energy levels
of our system in the interaction picture.
Taken from [14].
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3 Schrie�er-Wolf transformation

We notice that our equation (3) is of the form: Ĥ = Ĥ0 + ĤI . Here H0 = ~ν
(
b̂†b̂+ 1

2

)
+ ~δâ†â +

~∆σ̂+σ̂− describes the system without coupling, while all the interaction terms are described by

ĤI = ~εL [σ̂+ + σ̂−]+~g0η
(
b̂+ b̂†

) (
âσ̂+ + â†σ̂−

)
. If the term ĤI is small compared to Ĥ0, we can ap-

proximate our Hamiltonian up to third order in ĤI by doing a Schrie�er-Wolf transformation [15, 16].

After writing our Hamiltonian in a di�erent basis (�dressed� state basis): Ĥ ′ = exp
(
Ŝ
)
Ĥ exp

(
−Ŝ
)

and conveniently choosing an anti-Hermitian Ŝ of the form:

Ŝ = g0η

(
â†b̂σ̂−

−ν + δ −∆
− âb̂†σ̂+

−ν + δ −∆
+

â†b̂†σ̂−
ν + δ −∆

− âb̂σ̂+

ν + δ −∆

)
+
εL
∆

(σ̂+ − σ̂−) , (4)

we arrive at an approximate Hamiltonian:

Ĥ ′ = Ĥ0 +
1

2

[
Ŝ, ĤI

]
+O

([
Ŝ,
[
Ŝ, ĤI

]])
. (5)

Caution is needed when neglecting higher order Schrie�er-Wolf terms, namely

[
Ŝ,
[
Ŝ, ĤI

]]
. This

means that we should be aware of possible divergences at ∆ = δ ± ν. Furthermore to neglect higher

order terms produced by ŜRSB = g0η

(
â†b̂σ̂−
−ν+δ−∆ −

âb̂†σ̂+

−ν+δ−∆

)
the coe�cient (g0η)

3
/ (−ν + δ −∆)

2 ∝[
ŜRSB ,

[
ŜRSB , ĤI

]]
needs to be small, which we should keep in mind when selecting ∆. Similar

consideration holds for other terms in Ŝ.

The �rst two terms in equation (4) are the red sideband terms and are resonant when δ = ν, while third
and fourth terms represent blue sideband with resonance at δ = −ν. The resonance condition comes
from going into the interaction picture with respect to bare Hamiltonians of cavity and harmonic

oscillator
(
~νb̂†b̂+ ~δâ†â

)
and neglecting time dependent terms. We select δ = ν which means that

only the �rst, second and �fth term in equation (4) contribute signi�cantly to the commutator [S,HI ]
in equation (5). Additionally, we assume that the atom starts the ground state. We arrive at the
Hamiltonian (up to a constant factor):

Ĥ ′ = H0 +
1

2

g0η

(
â†b̂σ̂−
−∆

− âb̂†σ̂+

−∆

)
+
εL
∆

(σ̂+ − σ̂−) , ĤI

 =

Ĥ ′ = ~ν
(
b̂†b̂+

1

2

)
+~

(
δ − g2

0η
2

∆

)
â†â−~Ω

(
â†b̂+ âb̂†

)
− ~g2

0η
2

∆
â†âb̂†b̂− 1

2

~g2
0η

2

2∆
â†â

(
b̂2 +

(
b̂†
)2
)
(6)

with Rabi frequency Ω of cavity-motion coupling de�ned as:

Ω =
g0ηεL

∆
. (7)

In equation (6) we can see that the third term resembles a beamsplitter where the two input modes
are cavity �eld and motional modes of the ion (alternative derivation of the beamsplitter interaction
is in [14]). The second terms tells us about the stark shift of cavity levels if the initial state of motion
is the ground state. The cavity is shifted by −~g2

0η
2/∆ and consequently we have to tune the laser

to:

δ = ν +
(g0η)

2

∆
(8)
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if we want the cavity and motion to be in resonance. If the initial state of one of the subsystems
(motion in our case) is not the ground state, the fourth term in equation (6) is signi�cant and our
prediction (8) is wrong. We would have to adjust the detuning according to the motional occupation
as described in the fourth term. The last term describes double excitations and deexcitations of mo-
tional modes depending on occupation of cavity. They contribute to lower �delities.

We still have to look at the remaining terms in H ′ which come from the blue sideband terms. They
produce anti-Jaynes-Cummings interaction together with Stark shift. Both can be neglected when
δ = ν (because they rotate quickly with time in the interaction picture with respect to bare cavity
and motional Hamiltonian):

Ĥ ′BSB =
1

2

g0η

(
â†b̂†σ̂−
2δ −∆

− âb̂σ̂+

2δ −∆

)
, ĤI


= −1

2
~g0ηεL

(
1

∆
+

1

∆− 2δ

)(
âb̂+ â†b̂†

)
− ~g2

0η
2

∆− 2δ
â†âb̂†b̂− 1

2

~g2
0η

2

∆− 2δ
â†â

(
b̂2 +

(
b̂†
)2
)
. (9)

These terms reduce the �delity of our state transfer. The �rst term does not transfer excitations from
cavity to motion, but either creates or annihilates one excitation in both cavity and motion. Another
e�ect which can reduce our �delity is the stark shift described by the second term, but we can take
it into account when tuning parameter δ. We neglect it in our simulations because it is small (of the
second order in η and time dependent). The last term creates or annihilates two quanta of energy
analogously to the last red sideband term (but with ∆− 2δ instead of ∆).

To sum up, lower �delities are produced by o�-resonant excitation of blue sideband Hamiltonian, which
can be suppressed by enhancing δ = ν resulting in faster rotations. The second source of errors are

the terms that destroy our motional state: η2

(
b̂2 +

(
b̂†
)2
)
and can be reduced by making the Lamb-

Dicke parameter (η) smaller. This also makes Ω ∼ η smaller which means that state transfer takes
longer, but the �delities are better. Finally, higher order terms in the Schrie�er-Wolf transformation(

1/2 ·
[
Ŝ,
[
Ŝ, ĤI

]]
+ ...

)
also contribute to the transformed Hamiltonian and can be diminished by

lowering η and increasing ∆.

4 Simulations of state transfer between cavity and motion

To gain a better understanding of a rather complicated Hamiltonian in equation (3) (or in equations
(6) and (9)), which couples three systems, we will perform some simulations with the Python package
Qutip [17]. We will explore di�erent characteristics of our system (oscillations of occupation numbers,
AC stark shift of energy levels, beamsplitter interaction between cavity and motional modes) under
time evolution of various initial states.

4.1 Fock states

We will start by analyzing the evolution of Fock states for which we expect energy transfer between
cavity and motional excitations. The system parameters in our simulation are: δ = 2 · 2πs−1, ∆ =
20 · 2πs−1, ν = 2 · 2πs−1, g0 = 0.25 · 2πs−1, εL = 1 · 2πs−1, η = 0.1, ~ = 1. Our initial state is |ψ0〉 =
|5〉cavity⊗|0〉atom⊗|0〉motion , where |N〉 denotes a Fock state N . The calculated expected occupation
numbers of atom, cavity and motion versus dimensionless time τ = tΩ/π (with Ω = g0ηεL/∆ being
the Rabi frequency of cavity-motion coupling derived de�ned in equation (7)) can be seen in Figure
2.
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Figure 2: Exchange of energy between cavity and motional modes in the system initialized in state:
|ψ0〉 = |5〉cavity ⊗ |0〉atom ⊗ |0〉motion.

We can notice that at τ = 0.5 the whole population is not transferred from cavity to motion and
similarly at τ = 1 the transfer back to cavity is not perfect. The reason is that the eigenenergies of
our system become slightly modi�ed due to the interaction between subsystems as derived in section
3. This phenomenon is called the AC Stark shift [18]. Consequently δ = ν as proposed in equation (2)
is not the resonant case. This can be seen in Figure 3 where we plot the highest achieved occupation of
the motional mode versus the normalized detuning of cavity: δ/ν− 1. The peak is not at δ/ν− 1 = 0,
as one might naively expect by equating cavity and motional energies in equation (3), but rather at
some δ/ν − 1 > 0.

In Figure 3 we only looked at expected population of states. We ignored the distribution of population
over di�erent Fock states (e.g. Fock state one and coherent state one have the same expectation number
but di�erent distribution over Fock states) and that quantum states also have phases. Both phases
and distribution over Fock states can be taken into account by looking at �delity of state transfer.
For density matrices ρ, σ it is de�ned as:

F (ρ, σ) =

(
tr
√√

ρσ
√
ρ

)2

. (10)

For pure states equation (10) simpli�es to:

F (ρ, σ) =
∣∣〈ψrho|ψσ〉∣∣2 . (11)

We look at maximum �delity of state transfer F
(
ρm, ρc,0

)
, which means that we compare the motional

density matrix with the highest motional occupation number ρm and the cavity density matrix at time
zero ρc,0.We get a partial density matrix of a subsystem by tracing out components of the full system.
For example, we get ρc,0 by tracing out motional modes and spin: ρc,0 = trspin,motion

(
|ψ0〉 〈ψ0|

)
. We

then plot F
(
ρm, ρc,0

)
with respect to δ/ν − 1 in Figure 4. The highest �delity is at δ/ν − 1 > 0 and

is lower than one, which can be expected because the transfer of energy quanta is not perfect. Based
on the derivation and discussion in section 3, this comes from higher order terms in Schrie�er-Wolf
transformation, o�-resonant excitation of the blue sideband and motional relaxation terms produced

by the red sideband which include

(
b̂2 +

(
b̂†
)2
)
.
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Figure 3: The highest achieved motional occupation 〈nm〉max =
〈
b̂†b̂
〉
max

versus δ/ν − 1 in the

system with 5 quanta of energy. Due to the Stark shift coming from coupling between cavity and
motional modes, the perfect resonance is not achieved at δ = ν but rather at some other frequency
δ > ν.
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Figure 4: Maximum �delity F
(
ρm, ρc,0

)
between reduced density matrix of cavity at time zero (ρc,0)

and motion (ρm) versus δ/ν − 1 for transferring the state |ψ0〉 = |5〉cavity ⊗ |0〉atom ⊗ |0〉motion . The
�delity stays below 1 as can be expected from Figure 3, because the transfer of population is not
perfect. The reasons are higher order terms in Schrie�er-Wolf transformation, o�-resonant excitation
of the blue sideband and motional relaxation terms produced by the red sideband.
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4.2 Higher Fock states

At higher Fock states the �delities and maximum motional occupation decreases, which will be ob-
served in a transfer of Fock state 15 from cavity to motional modes (the dimension of the Hilbert space
we use in simulation is 20). Fidelities on Figure 5a compared to Figure 3 are lower by more than
0.01 (1%). This is no surprise because the relative number of transferred excitations is lower, which
can be observed on Figure 5b. The reason is higher order terms in Schrie�er-Wolf transformation.
If we compare Fock and cat states, maximum �delity of Fock state transfer is correctly predicted by
equation (8). Fock states do not have precisely de�ned phase therefore stark shift will not a�ect the
phase as it does with cat states.

9



0.00001 0.00000 0.00001 0.00002 0.00003 0.00004
/ 1 

0.960

0.965

0.970

0.975

0.980

0.985

0.990
(

m
,

c,
0)

Fock state 15
Fock state 5
/ 1 = (g )2/( )

(a)

0.00001 0.00000 0.00001 0.00002 0.00003 0.00004
/ 1 

14.88

14.89

14.90

14.91

b
b

m
ax

 

/ 1 = (g )2/

(b)

Figure 5: Maximum �delity (a) and the highest motional occupation number (b) with respect to
δ/ν − 1. If we compare the two lines for Fock state 5 and Fock state 15, we can observe that the
quality of state transfer for Fock state 15 is lower than for Fock state 5 due to higher order terms in
Schrie�er-Wolf transformation.
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4.3 Cat states

We initialize our system in the state 1/N ·
(
|α = 1〉+ |α = −1〉

)
cavity

⊗ |0〉spin ⊗ |0〉motion , where for
cavity |α = 1〉 and |α = −1〉 denote coherent states 1 and −1 respectively, while for spin and motion
|M〉 means Fock state M (additionally a factor N comes from normalization). We get time evolution
of expected occupation number in Figure 6.
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Figure 6: Time evolution of cavity, motion and spin population if the initial state is
1/N ·

(
|α = 1〉+ |α = −1〉

)
cavity

⊗ |0〉spin ⊗ |0〉motion

By doing a partial trace on the density matrix of the full system which includes cavity, motion and
spin degrees of freedom, we get the density matrix of a particular component of our system. When the

expected motional occupation number
〈
b̂†b̂
〉
is the largest (this happens at τ = 0.5), we do a partial

trace and plot the Wigner function in the frame rotating at the frequency of the harmonic trap ν in

Figure 7a. We have used the transformation ρm → U†(t)ρmU(t) with U(t) = exp
(
−iνtb̂†b̂

)
to move

into the frame rotating at the trap frequency. We rotate the state by π/2 which is a phase gained

by unitary evolution of Hamiltonian ~Ω
(
â†b̂+ âb̂†

)
for time τ = 1/2 and get Figure 7c. It can be

compared with the initial state of the cavity (the state we want to transfer to the motion) on Figure
7b. We can notice that picture 7c is not symmetric under the re�ection over the imaginary axis, but
is slightly rotated (and distorted) compared to 7b. We can improve this by taking into account the
Stark shift.
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(a) ρm,max when δ/ν = 1 in a frame rotating at ν (b) ρc at time 0

(c) Plot from Figure 7a rotated by π/2 (d) ρm,max when δ/ν = 1 + (gη)2 /(∆ν) in a frame

rotating at ν and rotated by π/2

Figure 7: Plots of Wigner function for di�erent density matrices. The color scale on the right
represents the values of a Wigner function W (x, p), where for reduced motional density matrix x and

p are dimensionless position and momentum: x̂ = 1/2 ·
(
b̂† + b̂

)
, p̂ = i/2 ·

(
b̂† − b̂

)
. Analogously, for

reduced cavity density matrix x and p are �eld quadratures: x̂ = 1/2 ·
(
â† + â

)
, p̂ = i/2 ·

(
â† − â

)
.

(a) Wigner function of the reduced motional density matrix when the motional occupation number
is the highest ρm,max at δ/ν = 1. This is in a frame rotating at the trap frequency. We can
notice a shift of π/2 which comes from the beamsplitter interaction. (b) Wigner function of the
reduced cavity density matrix at time 0. (c) The Wigner function from Figure (7a) rotated by π/2
so that we can compare it to (7b). (d) Wigner function of the reduced motional density matrix for

δ/ν = 1+(gη)
2
/(∆ν) in the frame rotating at the trap frequency and rotated by π/2. The resemblance

to Figure 7b is higher than resemblance of Figures 7b and 7c which means that accounting for the
Stark shift improved our �delity.

We vary δ/ν − 1 (near the value δ ≈ ν) and try to �nd the best �delity and highest motional occu-
pation in Figure 8 for two di�erent Hamiltonians. One Hamiltonian (blue color) includes o�-resonant
excitations (which are small when δ is near ν, but would be resonant when δ ≈ −ν) in the interaction

part (last term) of equation (3):
(
b̂+ b̂†

) (
âσ̂+ + â†σ̂−

)
. The other (green color) only has resonant

terms: â†σ̂−b̂+ âσ̂+b̂
†. In Figure 8a we can see that equation (8) corresponds to the maximum of the

highest achieved motional occupation. To calculate the �delity, we take the partial density matrix
of motion when the motional occupation number is the highest. The corresponding state is shown
on Figure 7a. Then we rotate the plot by phase gained due to beamsplitter interaction which is π/2

12



(Figure 7c) and calculate the �delity with respect to the initial state in the cavity on Figure 7b. The
�delity we get is plotted on Figure 7b.

The Hamiltonian with o�-resonant terms included produces lower quality state transfer, because ad-
ditional blue sideband terms that do not conserve energy are present as discussed in section 3. For
example, the term âb̂ decreases the total number of excitations and â†b̂† creates them. They can be
suppressed by making δ larger. The �delity at δ/ν − 1 = (gη)2/(∆ν) for the resonant Hamiltonian is
1� higher compared to the o�-resonant Hamiltonian which can be used as an estimate of how blue
sideband terms a�ect �delity. The Hamiltonian with only resonant terms also has �delity below 1
due to higher order corrections in Schrie�er-Wolf transformation. However, the previously performed
transformation is di�erent for the resonant Hamiltonian due to the lack of âb̂σ̂+ + â†b̂†σ̂− in the in-
teraction part.

Regardless of the Hamiltonian our prediction from equation (8) corresponds to the maximum in Figure
8a, and is slightly incorrect for Figure 8b, because the state is still rotated (and asymetric) even when
accounting for Stark shift caused by red sideband interaction as visible on Figure 7d. The reasons for
rotation are higher order corrections in Schrie�er-Wolf transformation, the blue sideband Stark shift

and errors caused by â†â

(
b̂2 +

(
b̂†
)2
)

terms. The phase of our state becomes more similar to the

initial state of cavity if the detuning δ/ν is slightly higher than predicted and �delity goes up. The
results can be interpreted visually. The Wigner function for δ/ν = 1+(gη)2/(∆ν) is plotted in Figure
7d. The similarity to state on Figure 7b is higher than similarity of density matrix when δ/ν = 1
(Figure 7c), so our �delity is better.
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Figure 8: We initialize our system in: 1/N ·
(
|1〉+ |−1〉

)
cavity

⊗ |0〉spin ⊗ |0〉motion and ob-

serve dynamics of two di�erent Hamiltonians. One includes only resonant terms in the interac-
tion part: â†σ̂−b̂ + âσ̂+b̂

† and is colored green. The other has additional o� resonant terms:(
b̂+ b̂†

)(
âσ̂+ + âσ̂†−

)
and is shown in blue.

We look at two plots: (a) The highest expected motional occupation number versus δ/ν − 1 (b) Fi-
delity of the state with highest motional occupation number with respect to δ/ν − 1. The maximum
of �delities does not correspond to maximum of occupation number, which is due to higher order
terms in Schrie�er-Wolf transformation. Consequently, the states are still deformed a little when the
energy transfer reaches maximum. The alignment with initial state gets better at higher δ/ν− 1 even
though the maximum population is smaller and this contributes to better �delity. We can conclude
that o�-resonant terms reduce the quality of state transfer which can be expected from section 3.
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5 State transfer between two cavities and motion

We can expand our system by unidirectionally coupling (this can be achieved with the use of Faraday
isolators) a new cavity (also referred to as the �second cavity�) to the already existing cavity in our
system as can be seen on Figure 9. Quantum state transfer between motion and light

Figure 2. Schematic of the cascaded system for transfer of
statistics from a squeezed light field to the motional state of a
trapped atom. Faraday isolators (F) facilitate a unidirectional
coupling between the squeezed light source and the atom–cavity
system.

νx/κa = 10, �/κa = 0.1, κc/κa = 1 and ε/κc = 0.3
(corresponding to 71% maximum squeezing in the input
light field). These parameters are in the regime for which
the master equation (15) should be valid and, indeed, we
find the steady state of the motion to be approached on a
timescale0−1 = (�2/κa)

−1 = 100κ−1
a . Characteristic

squeezed state features are evident in the figure (e.g. only
even number states are populated) and the fidelity with which
the predicted ideal squeezed state is achieved is computed to
be〈0|Ŝ+ρsim

m Ŝ|0〉 ' 0.99 for the appropriate values ofN and
M in the theory.

3.3. Entanglement transfer from light fields to separated
trapped atoms

The scheme outlined above can be extended to the transfer
of quantum mechanical entanglement from light fields to
motional states of two or more trapped atoms at physically
separated sites. Consider, for example, the pair of output
fields from anondegenerate parametric amplifier(the fields
may be nondegenerate in polarization or in frequency) [22].
At the output from the parametric amplifier, these fields
could be separated in space and then made to impinge upon
two cavities containing trapped atoms in the configuration
described above. The quantum mechanical correlations that
exist between the two light fields generated by parametric
downconversion could thus be transferred (in steady state) to
correlations between motional states of trapped atoms at two
distinct sites.

3.4. Quantum teleportation of motional states

An exciting recent development in the field of quantum
communication has been the experimental investigation
of schemes for the teleportation of quantum states [29–
31]. Of particular interest in the present context is the
demonstration by Furusawaet al [31] of unconditional
quantum teleportation of optical coherent states using
squeezed-state fields and entanglement of the sort discussed
above. By incorporating cavities containing trapped ions in
the state transfer configuration of this work (in the bad cavity
limit), it should be possible to employ the scheme of [31] for
the teleportation ofmotionalstates.

In particular, a motional state could be ‘mapped’ onto
a light field which enters the configuration of [31] at the
‘sending’ station. This field is teleported to a ‘receiving’
station where it is made to impinge upon a second trapped-
ion plus cavity system in the state transfer configuration. The

teleported light field is thus mapped onto the motional mode
of the second trapped ion and teleportation of the motional
state is completed. We will examine teleportation of motional
states in more detail in a future paper.

3.5. Motion-to-light state transfer: generation of
nonclassical output light fields

Given the variety of, and efficiency with which, nonclassical
motional states of single trapped atoms have been
experimentally realized [1–3], it is worth noting the potential
of our scheme as asourceof nonclassical output light fields.
The output light field is related to the input and internal cavity
fields by [24,25]

ãout(t) = ãin(t) +
√

2κã(t), (20)

which in the overdamped limit becomes (using (10))

ãout(t) ' −ãin(t)−
√

20(t)b̃x(t), (21)

where we assume that�(t) > 0. Hence, given a vacuum
field input to the cavity, the output field is determined by the
motional state of the trapped atom. Further, depending on
the nature of the motional state preparation, the output may
be pulsedor continuous; for a continuous output one would
have0(t) = 0, a constant, and the motional state preparation
scheme would have to operate in a continuous manner also.
As an example, consider squeezed motional states, which
may be generated by applying an electric field gradient with
a frequency 2νx to the ion [17], or by irradiating the ion with
two laser beams differing in frequency by 2νx [1].

Note that in [1] squeezed states of the motion were
produced exhibiting a reduction in the variance of the
squeezed quadrature by a factor of 40. Such quadrature noise
reduction has yet to be approached via traditional optical
means, suggesting that the present state transfer configuration
is worthy of further investigation†.

4. Transfer of a motional state between separated
trapped atoms

Recently, Ciracet al [32] (see also [33–35]) demonstrated
how quantum transmission of a qubit between two nodes of
a quantum network can be implemented in a physical system
using light as the carrier of the quantum information. In
particular, they showed how the transformation

(c0|0〉1 + c1|1〉1)⊗ |0〉2→ |0〉1 (c0|0〉2 + c1|1〉2) (22)

can be achieved where|0〉1 and|1〉1 are internal states of an
atom at node 1 and|0〉2 and|1〉2 are the corresponding states
of a second atom at (the spatially separated) node 2. At each
node, the atom is located within a cavity supporting a single
mode of the electromagnetic field, with which it is made to
undergo a controlled time-dependent interaction via a laser-
assisted Raman process. With suitably chosen laser pulses
at the two nodes, the transmission described by (22) can be

† Note, however, that large squeezing implies population of large-nnumber
states and a broader spread of the atomic wavefunction, which makes the
Lamb–Dicke assumption of our scheme more restrictive.

499

Cavity 1Cavity 2 =

Figure 9: A picture of our setup for generating squeezed states in the motional modes of an ion.
Instead of the parametric oscillator, one could also use di�erent drive (for example coherent) to
generate a di�erent state.
Taken from [14].

The equation describing time evolution of the total density matrix ρ is [14]:

dρ

dt
= − i

~

[
Ĥab + Ĥc, ρ

]
+κa(2aρa†−a†aρ−ρa†a)+κc(2cρc

†−c†cρ−ρc†c)−2
√
κaκc

([
a†, cρ

]
+
[
ρc†, a

])
.

(12)
Here Hab describes e�ective beamsplitter coupling between motion of the ion and cavity light �eld as
derived in [14]. We can also arrive at the same interaction terms by taking only the �rst order terms
in η in equations (6), (9). Then we go into the interaction picture with respect to bare Hamiltonians
of harmonic trap and cavity and arrive at:

Ĥab = ~Ω
(
â†b̂+ âb̂†

)
+ ~Ω

(
â†b̂†e2iνt + âb̂e−2iνt

)
. (13)

The Hamiltonian of our second (driven) cavity is labeled as Ĥc. For example to simulate generation of
coherent states one should use Ĥc = ~ω

(
ĉ+ ĉ†

)
. Operator â is annihilation operator of the cavity �eld

in the �rst cavity and ĉ is the annihilation operator in the second cavity. The �rst term in equation
(12) describes the unitary evolution of our system, the second and third term are non-unitary and
represent decay of �rst cavity at decay rate κa and second cavity at the rate κc. The source of decay
is thermalisation of the cavity mode. The last two terms describe the coupling between two cavities
and are non-unitary, which is a consequence of breaking the re�ection invariance of our system with
the use of Faraday isolators (light can only travel in one direction from cavity 2 to cavity 1) [19].

Generation of non classical states of motion

We assume (as in [14]) that our second cavity con�nes a parametric oscillator used to generate squeezed
states of light. The corresponding Hamiltonian with ε being the amplitude of coherent �eld driving
the oscillator is:

Ĥc =
1

2
i~
(
ε∗ĉ2 − ε

(
ĉ†
)2
)
. (14)

The parameters for our simulation are taken from [14] (up to the arbitrary choice of κa since only the
ratios with respect to κa were given): ν = 10 ·2πs−1, ωc = 10 ·2πs−1, ωa = 20 ·2πs−1, Ω = 0.1 ·2πs−1,
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κa = κc = 1·2πs−1, ε = 0.3·2πs−1. The steady state of motion is approached on a timescale τ = κa/Ω
2

according to [14]. For our parameters this characteristic time is approximately 4 seconds, so we must
make sure to observe our dynamics for longer than this, so that the system reaches a steady state.
Time evolution of the ground state of our system with respect to dimensionless time t/τ is plotted in
Figure 10.
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Figure 10: Time evolution of expected occupation numbers for di�erent subsystems if we start in
the ground state. A squeezed state is generated in the parametric oscillator, which is unidirectionally
coupled to the cavity via decay. The state from cavity is then further transferred to the motional
mode through the beamsplitter-like coupling.

To check if our parametric oscillator really produced a squeezed state we can look at the elements of a
steady state reduced density matrix of the motional mode in Figure 11. Characteristics of a squeezed
vacuum states are evident since only even number states are populated. We can also observe the
squeezing by looking at the Wigner function on Figure 12. The squeezing corresponds to the �tted
parameters s = 0.6060 and θ = 3.141, which we get by maximizing �delity between reduced density
matrix of a motional mode and Ŝ

(
seiθ

)
|0〉 while varying parameters s and θ (Ŝ is the squeezing

operator). The �nal states in parametric oscillator and cavity are also squeezed.
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Figure 11: Absolute value of elements of the steady state reduced motional density matrix(∣∣∣(ρm)i,j

∣∣∣) when our system is driven by a parametric oscillator. The color bar on the right shows

absolute value of matrix elements. We can see that matrix elements with either i or j odd are not
populated which is a characteristic of a squeezed vacuum state. The distribution agrees with the one
in Kimble's paper [14].
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Figure 12: Wigner function W (x, p) of the �nal state in the motional mode of the ion. x and p

are the dimensionless position and momentum: x̂ = 1/2
(
b̂† + b̂

)
, p̂ = i/2

(
b̂† − b̂

)
. The squeezing

corresponds to squeezed state Ŝ
(
seiθ

)
|0〉 with s = 0.6060 and θ = 3.141. The parameters were chosen

such that �delity between steady-state reduced density matrix of motion and squeezed state Ŝ
(
seiθ

)
|0〉

is the highest

(
F
(
ρm, Ŝ

(
seiθ

)
|0〉 〈0| Ŝ†

(
seiθ

))
≈ 0.999

)
.

We can in�uence the degree of squeezing by changing the parameter ε in equation (14). Dependence
of squeezing parameter s relative to ε is plotted on Figure 13. Squeezing increases with ε.
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Figure 13: Dependence of squeezing parameter s on the strength of the parametric oscillator ε.

6 Conclusion

Optical cavity and motional mode of a trapped ion in a cavity can be coupled by driving internal
transition of the two-level ion with a laser beam. This results in beamsplitter-like interaction between
cavity and motion which is responsible for state transfer. Other terms reduce �delity and have to be
treated carefully. Firstly, we need to be in a regime where higher order terms of Schrie�er-Wolf trans-
formation can be neglected. Secondly, blue sideband (anti Jaynes-Cummings) terms can be neglected
if δ is su�ciently large. Moreover, Stark shift (from red sideband terms) of energy levels should be
compensated by the detuning of the laser. If all of this requirements are ful�lled, our state transfer
can achieve high �delities regardless of inevitable errors arising from Lamb-Dicke approximation and
slow (second order in Lamb-Dicke parameter) relaxation of the motional state.

After investigating state transfer between cavity and motion of the ion, we proceeded by coupling
another cavity (parametric oscillator) to our system and simulated generation of squeezed states of
motion. A further step would be to put an ion in the second cavity (which was previously used as
parametric oscillator) and investigate state transfer between two physically separated ions. Ultimately
this could be bene�cial in scaling up quantum computers because photons could mediate coupling
between spatially distant qubits.
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