SEMESTER THESIS
TRAPPED ION QUANTUM INFORMATION GROUP

(TIQI)

Implementation of a Python DDS
communication protocol to drive

AOMs

Danny Kun
14-994-896
dkun@student.ethz.ch
Supervisor: Matt Grau

Abstract

In this thesis, we developed a python class to control a Direct Digital Synthesiser
(DDS) with a Raspberry Pi mini-computer (RPi). The DDS creates a digital signal,
which is converted into an analogue signal and fed into an Acousto-Optic Modulator
(AOM). The discussion will centre on the code behind this protocol and the hardware

used to develop the communication.

ETH Zurich
October 29, 2017

Contents
1 Introduction

2 Theoretical Background

21 Qubits

2.2 Magneto-Optical Trap (MOT)
2.3 Acousto-Optic Modulators (AOMs)

3 pyDDS Implementation

3.1 Hardware

3.1.1 AD9959 DAC converter i

3.1.2 Raspberry Pi . . .

3.2 pyDDS library (Software)
4 ”Library in Action”
5 Conclusion
Appendices
A DDS Registers

B pyDDS Functions

10

11

11

11

11

1 Introduction

In the study of quantum systems, it is often impossible to compute the solutions of a cer-
tain model. By this, we don’t mean that these models don’t have an analytical solution,
such as the three-body problem in classical mechanics for example. What we mean is that
there are so many equations to solve in the model due to the quantum interaction of the
particles, that it becomes impossible with the available technology to numerically compute
the solutions to all equations. In fact, the (computational) complexity of quantum systems
increases exponentially with the size of these systems, and so one needs a computational
machine based on the same laws and techniques to effectively be able to simulate them
[1]. To solve this problem we use so-called quantum simulators, which are set up in a way
to exactly mimic the behaviour described in the model and then observe the behaviour of
these simulators. This is why the study of quantum systems has motivated the develop-
ment of quantum simulators.

The construction of such a quantum simulator is based on an elementary unit called the
”quantum bit” or "qubit”, in analogy to a classical computer. However, such a qubit
differs dramatically to a classical bit in several ways. First and foremost, the quantum bit
can be in a superposition of a ’0’ and a 1’ state, whereas a classical bit can only be in
either of the two states at any one time. Like with any quantum system, the qubit then
has certain probabilities to be measured in one of the two states. This goes to show, that
the elementary building block of a quantum computer would be a quantum system. A
second big difference is the possibility to have entanglement between multiple qubits. This
has no analogue in classical physics and is one of the features, which makes a quantum
computer so much more powerful than a classical one.

In theory, qubits can be represented by any quantum two-state system. In the Trapped
Ion Quantum Information (TIQI) Group at ETH Ziirich, qubits are represented by the
electronic states of ions. By choosing two distinct states of ions and using a laser, which
is tuned to the transition between these two states, the qubit can then be controlled. Be-
cause of the nature of some of these transitions, the lasers involved in the control of these
qubits have to be very sensitive, i.e. the setup must allow for the laser frequency to be
calibrated on a very small scale.

Moreover, since the idea is to work with specific states of ions, these must first be under
the complete control of an experiment. Specifically, the energy of those ions must be so
low, that specific energy levels can be addressed. This means that the ions must first be
trapped in some way, before they can be manipulated. One technique to do this is called
Magneto-Optical Trapping (MOT), which is what is used by one team within the TIQI
group. There again, the laser must be tuned to the appropriate energy levels.

To fine-tune the laser used in the MOT, a so-called Acousto-Optic-Modulator (AOM) is
used. This AOM also needs a signal to be driven, which is what has been done in this
paper. More precisely, we implemented a communication protocol (i.e. a python library)
to drive AOMs with a specific type of digital to analogue converter (DAC), namely the
AD9959.

In the next section (Section 2), we will give a very brief theoretical description of qubits,
MOTs and AOMs, while in Section 3, we discuss the hardware and software used for the
implementation of the protocol, as well as the developed protocol itself. In Section 4 we
then show some specific examples of how the library is used in the lab.

2 Theoretical Background

2.1 Qubits

The smallest building block of a quantum computer, in analogy to a classical computer,
is the qubit. Theoretically, any kind of quantum two-level system can be used as a qubit.
However, since we want to perform measurements on these qubits, we want them to have a
long coherence time, i.e. we want them to remain isolated for a time that is long enough,
so we can make our measurements on them. When using the electronic states of ions,
there are two ways of implementing a qubit: One can either use the hyperfine level split-
ting (called hyperfine qubits) or simply use an electronic ground state and a metastable
excited electronic state of the ion (optical qubits). The advantage of the former is that it
is very long-lived and has a very strong frequency stability. There are many other ways of
representing a qubit, such as using electron spin states or photon polarizations, to name
a few.

One of the main advantages of qubits over normal bits are their ability to be in a super-
position state, which means that they can be both 0 and 1 at the same time, which would
give the quantum computer as a whole much more calculation capability.

To induce the coupling between the states in an ion qubit, one must use an appropriate
energy source such as lasers or microwaves, in the case of shorter transitions, which are
tuned to the wavelength of the transition between those two states. Using the hyperfine
structure of the ground state of an 2Mg™ ion, for example, this transition frequency is
1.8 GHz [2]. We could thus drive this transition with a radio-frequency source, or with
a virtual two-photon transition, using a laser of a certain frequency to move from one
ground level state, 2P, /2, to a virtual excited state 25, 2 and then, using a laser which
is detuned by 1.8 GHz from the first laser, the ion would be set to the other hyperfine
ground state.

wu 7,)

w w

o o

— e A

Q ~

O LN

"I\Il o~

B J =
c

= El |~

[c m

(e))]

~ &

™~ o

351/

Figure 1: The fine structure of the 2?Mg* ion at zero magnetic field, with an indicated
hyperfine structure in the ground state: We can use a virtual excited state of the ion
to cycle between the two hyperfine ground states using two lasers, which are detuned by
1.8 GHz with respect to each other. [3]

2.2 Magneto-Optical Trap (MOT)

A Magneto-Optical Trap (MOT) is used to produce very cold, trapped atoms. As the
name suggests, a MOT consists of both optical and magnetic components and the whole

setup is built within a vacuum chamber. The optical component is made up of three
circularly polarised laser beams - one for each coordinate axis. A mirror retro-reflects the
beam at the other side of the chamber, which creates the opposite beam polarisation.

The laser beams provide the radiative (scattering) force, which push back the atoms
towards the origin of the trap, i.e. the region where the three beams intersect. The asym-
metry of this force - which makes it position-dependent - is produced by the magnetic
field. The splitting of atom energy-levels within a magnetic field is due to the Zeeman
effect. By tuning the lasers to a frequency slightly beneath the transition frequency of
the atoms, they create a potential well. When an atom begins to move away from the
centre of the trap, it experiences a restoring force due to the Doppler Shift: the atom
scatters more photons because it receives photons closer to its transition frequency and is
thus forced back towards the origin.[4] A schematic of a MOT setup can be seen in Figure 2.

Figure 2: The MOT consists of a pair of Helmholtz coils with opposite currents and three
orthogonal pairs of laser beams with respectively circular polarisation states. The small
arrows indicate the direction of the quadrupole magnetic field produced by the coils. The
MOT is able to keep atoms in its centre due to the selection rules for transitions between
the Zeeman states, which lead to an imbalance in the radiative force from the laser beams
that pushes the atom back towards the centre of the trap. [4]

Since the MOT lasers need to be tuned to the correct transition frequencies and these are
often sensitive or close to one another (such as in the hyperfine state splitting example),
the laser frequencies need to be stabilised to the specific frequency. This is done with the
use of acousto-optic modulators (AOMs) and other stabilising devices. The present work
focused on the setup of an AOM to do precisely that. In our case, the 2?Mg™ hyperfine
levels are in a range of 1.8 GHz and the linewidth given is I' = 27 - 80 MHz.

2.3 Acousto-Optic Modulators (AOMs)

As mentioned earlier, AOMs are useful devices to fine-tune laser frequencies. We will now
give a brief overview of the theory behind AOM:s.
The two main components of an AOM are a piezo-electric transducer, which generates a

sound wave of a certain frequency, €, (usually in radio-frequency range), and some ma-
terial (e.g. glass or quartz), into which the wave is fed. Due to the periodic contraction
and rarefaction of the material, the sound wave creates periodic changes in the refractive
index of the material. Thus, a form of grating is created and acts much like a lattice for
an orthogonally incoming light wave, as seen in Figure 3.

-
T Diffracted light -

Incident light

Transmitted light

"""" ~Sound

Figure 3: Theory of an AOM [5]. A sound wave is introduced into a medium (e.g. glass
or crystal) and acts as a grating for an incoming light beam. The light is diffracted into
several different orders and some part of it is simply transmitted in its Oth order.

When the light beam enters at an angle 6, satisfying the Bragg condition,

) A
sin 0 = A (1)
where A is the wave length of the light and A represents the distance between two wave
fronts, the light gets partially reflected by the medium.
As the light passes through the medium, the reflected light receives a frequency shift
through a form of Doppler shift. The shift in frequency 2, equals the frequency of the

sound wave [5]. Thus, the reflected light frequency w,, will be given by

wr:w+Qa (2)

where w is the initial frequency of the light. This is how the frequency of the light can
then be tuned very precisely. The precision is due to difference of orders of magnitude
between the light frequency (~ 10'%) and the sound frequency (~ 10%).

We can achieve a downshift of the frequency in the same way as we’ve achieved the upshift,
simply by changing the sign of the incoming angle, i.e. by having the beam come in from
the other side of the normal axis, but with the same angle. We would then get a new
reflected light frequency of

wr =w — . (3)

The next section will explain, how we designed the control of the signal, which was to be
fed into the AOM as an acoustic wave.

3 pyDDS Implementation

3.1 Hardware
3.1.1 AD9959 DAC converter

Theory of Operation For the implementation of this library, the AD9959 digital to
analogue (DAC) converter was used. The AD9959 is a set of four direct digital synthesisers
(DDS) cores, which allow independent modulation of frequency, phase and amplitude on
each of the four channels. Each of these DDSs is connected to an integrated, high-speed
10-Bit DAC, which in turn creates the synthesised signals. These are the signals we then
use to drive the AOMs.

To create a signal for the DAC, the DDS needs a reference signal, which is fed into its
reference clock (REFCLK) input. To create a more stable output signal (i.e. a smooth
signal, without sudden increases of the amplitude), it is better to have a high frequency
source. In case of a low frequency source, we can increase the frequency with the internal
DDS reference clock multiplier (PLL), which we can do by addressing the corresponding
DDS register (as explained in Section 3.2). To create a signal, we then need to send
the appropriate commands (or signals) to the appropriate DDS registers (using our micro-
controller presented below). This signal is then output on the channel(s) we have indicated.
Several DDS functions require specific pins to be toggled. These are, for example, passing
the programmed information to the DDS chip (toggle ioupdate pin), initiating the linear
sweep (use the channel profile pins - Pins 0, 1, 2, 3 - set high for rising sweep, set low for
falling sweep) or resetting the DDS (toggle reset pin). The connections of these pins are
explained below and the pyDDS functions use these pins to implement the desired effects.

Implementation We connect to the AD9959 using the general purpose input/output
(GPIO) pins of the Raspberry Pi (RPi) and use Serial Peripheral Interface protocol (SPI)
to communicate with it. In our implementation we set the communication mode to 3-wire
mode, which configures the Secure Digital Input Output (SDIO) pins unidirectionally,
using pin SDIO_0 as the input and SDIO_2 as the output pin [6].

To clock the DAC, we use the internal clock of the RPi. Using the ”Minimal Clock
Access” script provided with the pigpio library [7], we use the oscillator of the RPi as our
REFCLK source (in our experiment, we set it to 50 MHz). We then toggle the reference
clock multiplier on the AD9959 to generate a high frequency clock signal on the DAC,
which allows us to output a stable signal in the desired frequency range (approx. 80 MHz).
The subsequent communication with the DAC will be implemented through simple read
and write commands to the AD9959 chip. The chip holds a total of 25 registers to program
all of its functionality. Depending on the register size (in bytes), the correct amount of
information is sent to the according registers to program a specific functionality. The
exact information pertaining to the chip and the registers can be found in [6].

3.1.2 Raspberry Pi

The Raspberry Pi (RPi) is a small single-board computer, which is very useful for small
scale control and DIY-project applications. It is powered by a 5V Micro-USB connection
[8]. Using the GPIO connections on the RPi, we connect the RPi to the DAC and obtain
direct access to the Chip. The connections can be seen in Table 1.

The library we build to access the DAC’s functionalities is written in Python, which is one
of the primary supported languages of the RPi. We use the spidev and RPi. GPIO python
libraries as the building blocks of the library and time for potential timing of repeated
initialisations and function calls (e.g. linear sweeping of signal frequency). The spidev

| 00
PIN Function A[()zgiiZéESDBZ conlr?ei{cion e @
Pin O 15 15 e e
in
Pin 1 16 13 QQ
Pin 2 17 11 @ Q
Pin 3 18 12 00
IO_UPDATE 19 16
CSB 20 24 0 e
SCLK 21 23 @ e
RESET 22 18 @ 0
00

Table 1: AD9959 GPIO connections to the RPi.

library is the implementation of the SPI protocol in Python, allowing for easy access to
the AD9959 register. It forms the basis for reading and writing commands to the chip.
The precise reading and writing procedure will be discussed below.

The RPi.GPIO library allows the manual toggling of pin states on the RPi, allowing
indirect manual control of the DAC chip. This is especially useful, as the DAC requires a
supplementary 1/0 update command for programmed settings to take effect.

3.2 pyDDS library (Software)

In this section, we describe the functionality and implementation of the pyDDS library.
For a quick overview of the functionality of the library, please consult Table 3 in the ap-
pendix (pyDDS functions and functionality).

At the beginning of the script, we first define all the necessary pin numbers, which can
be read out from Table 1. We also define several dictionaries, attributing the correct pin
numbers as well as register names and lengths for latter use. We also select the BOARD
mode for the GPIO library so that the pin numbering corresponds to the board numbers
and finally we set all the relevant pins as output pins.

The registers (names and lengths) we define in the dictionaries, correspond to the registers
on the DDS, which are carefully explained in the AD9959 data sheet [6]. Here we give a
brief explanation of their functionality. The basic idea is to write all settings we want the
DDS to execute to its respective registers. Each register is made up of a certain number
of bytes, where every byte consists of 8 bits, which often have to be addressed separately.
In Table 2, we list all registers and give a very brief idea of their use. For a more detailed
explanation of the full register functionality, please consult pages 36-43 of the data sheet
[6].

Within the class, we first set up the DDS device and the class. We define system state
variables, e.g the REFCLK, the PPL and the clock frequency and channel state variables,
e.g. the currents, amplitudes, phases and frequencies that have been set. In this experi-
ment, we decided to automatically initialise the REFCLK with 50 MHz. Finally, we reset
the DDS, activate channel 0 and set all currents to maximum output.

IToupdate, reset and init functions These functions all use the GPIO library to set
pin states. The ioupdate function toggles the RPi IOUPDATE pin twice to set it low -

high - low. This way we ensure that the commands sent to DDS since the last update
are passed into the registers. Every set_ function (which will be discussed later) has an
ioupdate option, which allows the user to automatically push the values into the DDS
register after having passed them to the function.

The reset function simply toggles the RESET pin to reset all registers on the DDS to their
default values.

The init function has the same effect as the reset function on the DDS but additionally
resets all class variables to their default values too, since they serve as the class memory.
It also resets the PPL to 10 and deactivates all channels except for channel 0 as a default.
The latter two settings can be customised.

Read and Write Functions The basic functions to input data to the DDS chip are
the read and write functions. These are implemented using the spidev library functions
readbytes and writebytes.

The read function takes the register name as an input (defined in a dictionary at the
beginning of the script) and sends the read command as well as the register number in
one byte using writebytes. Then, using readbytes and inputting the length of the selected
register (in number of bytes), we read out the information stored in the selected DDS
register.

The write function works in a similar fashion, only instead of the read we use the write
byte and the register name. The function takes the data to be written into the register
as an input in the form of a list of bytes. Here it is important to ensure that the correct
number of bytes is sent. Otherwise, the next byte will be interpreted as the next command,
which leads to undefined behaviour. This is what we do in the assertion.

Fundamental set_ functions The most fundamental things that need to be set in the
class as well as the DDS itself are REFCLK frequency, the PPL, as well as the channel,
which one wants to address any changes to. These three features are implemented through
set_refclock, set_fregmult and set_channels respectively.

The set_refclock function simply sets the class variable for the REFCLK frequency to the
given value and updates the clock frequency of the class taking into account the current
PPL value set. The function also warns the user if the clock frequency lies out of the
functionality range of the DDS, which is between 100 MHz and 500 MHz.

The set_fregmult sets the PPL value and also updates the clock frequency variable. It
also warns the user if the clock frequency lies within the range of 160 MHz and 255 MHz,
because the AD9959 data sheet doesn’t guarantee operation in this range. Note that,
since it is necessary to always give the correct number of bytes to every DDS register,
even if we only want to change parts of the contained information, we have to copy its
initial state and specify the unchanged information again within the "new” state. This
is implemented in the same fashion for all registers that contain bits that shouldn’t be
changed by a specific set. function.

Simple set_ functions The DDS is able to independently set frequency, phase and
amplitude of the signal it outputs for ever channel. It can also set one of four predefined
values for the current it outputs on every channel. These set functions work by passing a
list of channels (or a single channel number), which one wants to set these values to and
the respective value that should be set. The channels should be selected from [0, 1, 2, 3].
Each of these functions first activates the desired channels.

The frequency, phase and amplitude functions then proceed to first assert, whether the
given values lie within the allowed ranges and then to encode the value into their respective
tuning words, i.e. frequency tuning word (FTW), which consists of 32 bits, phase offset

word (PTW) consisting of 14 bits, and the amplitude scale factor (ASF) consisting of 10
bits. Finally they encoded data is written to the respective DDS register.

Additionally, the set_frequency and set_amplitude functions turn off the linear sweep mode
in case it was turned on previously, since otherwise the channel won’t output the given
value.

The set_current functions works slightly different to the others. Since only four settings
can be chosen, namely 1/1, 1/2, 1/4 or 1/8 of the full output current, the functions takes
the divider as an input i.e. a value from [1, 2, 4, 8] and makes sure that one of these has
been chosen. It then encodes it into the correct bits and writes the new information to
the register.

Finally, every one of these set_ functions writes the given value into the appropriate class
variable, saving the value for every selected channel. This can be used for later retrieval
and read-out of the current state of the channel.

get_ functions Every set. function also has a respective get_ function, (except for
set_refclock, since this value can be read out directly from the refclock variable). In
the case of the fundamental functions, the get_ function reads out the value stored in the
respective register, e.g. for the PPL value or the active channels and returns the values it
read. The get_ functions for the set_ functions in the previous paragraph do two things:
On the one hand they simply return the values stored in the state variable during the
latest use of the respective set_ function. On the other hand, they also print out the value
currently stored in the respective DDS register, which only contains the value but not the
information pertaining to the channels. This was implemented as a testing feature but
can also be used to check for consistency, i.e. at least one value from the state variable
should be equal to that value.

Finally, there is also a get_state function, which simply reads out all values stored in the
DDS registers. By default, this function prints out the data in hexadecimal representation,
but it also has the option to print in binary representation.

Sweep functions These functions program the DDS for linear sweeps. In our pyDDS
script, we have focused on sweeps of frequency (set_fregsweep) and amplitude (set_ampsweep).
For a linear sweep, the DDS requires information about the start and end value of the
sweep as well as a rising and falling delta tuning word (RDW, FDW) and rising and falling
interval step size (RSI, FSI). The latter determine the rising and falling slope of the linear
sweep. As usual, the function needs a list of channels to which to write the commands and
also has the option of directly triggering an ioupdate. Additionally, the DDS supports a
'no-dwell’ mode, which resets the swept value to its starting point after the rising sweep
finishes. Finally, there is also a ’trigger’ option, which, if set to "True’, automatically
pushes the information to the DDS and triggers the first sweep.

There are several constraints imposed on the functionality of the sweep functions by the
DDS characteristics. Since the frequency and amplitude values are encoded in 32 and 10
bits respectively, this sets a minimum step size. Same holds for the time interval, which is
limited to 8 bits. Thus, at a clock frequency of 500 MHz, the time interval can be chosen
to be between 8ns and 2.048 ps, which sets a limit to the total duration of a linear sweep
as a function of the RDW/FDW.

Specifically, we may want to sweep through a specific region in an experiment, (we will
see such an example below), which could be limited to, say, 5 MHz. In this case, choosing
the smallest possible RDW and largest possible RSI would still produce a very fast sweep.
This is even more the case for the amplitude, which offers significantly less space than the
frequency, in terms of number of bits, for encoding its RDW.

For ease of use, we included associated sweep timer functions, set_ampsweeptime and
set_freqsweeptime, which allow to select an arbitrary sweeptime i.e. the length of the

sweep in seconds, instead of manually inputting the RDW and RSI. This is implemented
by manually selecting an RSI in the function (this should be changed in future versions
of the script) and then calculating the number of steps by dividing the time by this RSI.
Finally, the step size, i.e. the RDW, is calculated by simply dividing the end-to-start range
by the computed number of steps. However, this function did not allow us to extend the
maximum possible sweeptime. Future versions should try to find a solution for this.

sweep_loop and select_ CHPINS functions The final two additions made in this first
version of the script were the sweep_loop and the select_CHPINS functions. The latter
function is used in all sweep functions and serves as a way for the functions to know,
which GPIO pins on the RPi to trigger, i.e. what DDS channels to trigger the sweeps on.
These functions serve as a way of executing several sweeps in regular intervals. Short of a
more sophisticated implementation at this point, we used the python time package for the
interval timing. This has the clear drawback, that the communication speed of the RPi
using this package is not fast enough compared to the speed of the DDS. For real use, a
better solution for timing will need to be found, such as connecting directly to an FPGA.

4 ”Library in Action”

The idea for this particular AOM in the TIQI lab is to detune the MOT, which is used
to capture magnesium ions. Due to the fact, that lasers can naturally drift, laser-locking
methods need to be employed to stabilise the laser frequency. In short, locking requires a
reference frequency, which in our setup is a specific transition of iodine, and an error sig-
nal, which is given by the difference between the iodine and laser signal when performing
spectroscopy of iodine with the laser. By changing the AOM frequency, we modulate the
frequency of said laser, thereby changing the error signal. Below in Figure 4 some pictures
of a laser-locking program in operation. Specifically, we can see the change of the output
signal in the lower part of the two pictures, i.e. by comparing Figures 4(a) and 4(b). This
corresponds to two different frequencies set on the DDS, namely once to 2 = 75 MHz and
then Q@ = 80 MHz.

(a) Q = 75MHz (b) Q = 80 MHz

Figure 4: Laser lock and Output signal at different AOM frequencies: In the lower parts of
the two figures, we can clearly see the shift of the error signal with respect to the reference
frequency, induced by the change in AOM frequency. When we increase the frequency, €2,
of the AOM, the laser frequency is shifted and has thus a wider gap to the iodine transition
frequency. This is the difference seen in the lower parts of the figures. The units on the
vertical axis are arbitrary.

The ability to program frequency ramps on the new pyDDS allows a smooth transition
from one signal to another, which pre-empts the need to manually relock the laser. If
the frequency were to jump suddenly, the lock would need to be recalibrated to the new
frequency, whereas the smooth transition allows the locking mechanism to continuously
account for the drifting frequency. This is one of the main advantages of the new DDS
system. By gradually changing the AOM frequency and therefore also the laser frequency,
the lock program has time to calculate the new output signal and therefore keeps the laser
locked. This is important for keeping the MOT operational and thus keeping the ions
trapped.

10

5 Conclusion

This thesis discussed the implementation of a Python DDS communication protocol to
drive AOMs. Utilising the SPI protocol to communicate with the DDS, we are able to
input precise settings to the DDS and generate customised signals. The possibility of out-
putting frequency ramps in our signal is an advantage specific to this new DDS system, as
it allows for a smooth signal transition. This is important for the locking of the laser the
AOM is modulating, as the laser in question in the present setup was a MOT laser, i.e.
for trapping ions. It is thus paramount, that the laser remains at a very precise frequency.

What has not been covered during this work, was the development of a remote access
interface to the RPi, which would allow easy configuration of the DDS settings, without
the need for command-line coding. This should be considered the immediate next steps.
On the other hand, there is clear scope for improvement in the pyDDS code, particularly

with respect to pulsing ramps i.e. using a faster time function than the python time library
or extending the ramp profiles from purely linear to more arbitrary ramps.

Appendices

A DDS Registers

Table 2: ”DDS Registers”

B pyDDS Functions

Table 3: pyDDs Functions And Functionality”

11

pyDDS Register DDS Length

Code (string) Address (hex) (in bytes) Short (Partial) Description

Register Name

Enables and sets

Function Register 1 FR1 0x01 3 reference clock multiplier value.

Cha.nnel Function CFR 0x03 3 Linear sweep mode. and
Register output current settings.

Channel Phase Phase value
Offset Word 0 CPOWO 0x05 2 (start value for sweep)

Linear Sweep Rising and Falling step
Ramp Rate LSR 0x07 2 (time) intervals for sweep

LSR Falling step size
Falling Delta Word FDW 0x09 4 (freq, phase, amp) for sweep

Not used in pyDDS

Channel Word 2 cTW2 0x0B 4 (for arbitrary intermediate steps)

Channel Word 4 ?

Channel Word 6

Channel Word 8 CTWS8 0x11 4 ?

Channel Word 10 CTW10 0x13 4 ?

Channel Word 12 CTW12 0x15 4 ”

Channel Word 14 CTW14 0x17 4 ?

Table 2: DDS Registers

12

“11 998 0} YPIYM 07 (S)Iaquuinu [uuer (Jo 3sI) ®©
pue uSisse 03 Aouenboij e ur soye],

Aouonbeay ‘souueyd Adusnboaajjes

“Aouenbaiy oo serepdn Afreoryemuoiny
‘S 2y uo serdiymur Aousnbaiy oy s10G

- Juwboiy ymuboaay jes

"9AT)OR A[JUSLIND BIR [DIYM S[QUURYD [[R JO IS SWINjey (9SI]) s[euuRyD S[ouueYIIAI}OR)93

‘TRWIIDOPRXAY UI ynejop Ag

- - 97e1s7 193
"JRULIOJ Ul IO XOY IS0 UI SI9)SISal Q(I(] Ul SomnfeA [[e sjuLl]

"199S1801 91} 0} 9IIIM 0} S93£q JO IoquUuNU
orerrdoidde Jo (9s1]) vyep pue 03 91LIM 07 (SULI)S) SUWRU 19)SIS0I B So¥R],

- RJep ‘193SI301 931IM

J[NeJop 07 SALIYUD ISISISAI [$30S ‘Q(I(T YY) JO SnIe)s oY) SS9y

100 SwInjoy spuomuNS Iy uorjoung

"POIROIPUL 9IR Son[eA JNRJOP IO} PUR () JSLIDISR UWR [IIM POYIRUI oIr so[qelieA [RUOI}dO [y “A[9IRIPOUIMIT S9INIOXS PURIITIOD 9T} ‘9L, 07 19S ST Se[J oY) JT
‘as[e, 09 19s SI JNejop Aq PIYM ‘Sej ayepdnor [euorjdo ue aary (Jpo[Jar1as 1dedxs) suorouny ~jes [[y “Ajeuonounyg puy suorpung SqAd :¢ o[qer,

13

"SNId orgoid [puueyd pajod[as 0f SUrpuodsariod sIoquINU NJJ JO ISI[& SUIN)oy (3s1]) SNIJ S[ouuetD SNIdHD 29908

"$918807) Uvam)a([eAIajuUl Ogroads ' gim so[330) NI sdax Jo doof ' sejernuf rearoyur ‘sdaa ‘spuuryd door~deams
‘doomsbaryjes se aures oty suorpd() os[eJ=108311, ‘os[e] =ojepdnor,
‘owrydoams uoryeInp yim Aousnbeiy pus 03 11e)s wol Surdoomg - ‘osreJ=[[omp ou, ‘ourrjdooms owrjdeamsboay-jes
‘opout deoms Aduenbal) IeoUI] SOJRATIOY ‘boxypus ‘baayjrels ‘spuueryd
os[e [=108811),, ‘es[eJ=ojepdnor,
‘A1yuo doomsdure 10s o1} 09s ‘s8uUI})os o) Jo UOdLIOSOP € I0g) ‘osreg=[[oMmp-ou,, ‘oures =JS doomsbog-18
:possed se sguryjes o) swrergord pur apowr deoms resur] Aousnboiy uo swng, ‘owres, =§S 1, ‘ISY ‘SSY
‘barypus ‘baryrels ‘spuuerd
doomsdurejes se aures ot} a1e suonydQ as[e=1038311),, ‘os[eq =ojepdnor,
‘owr}dooms JO UOIJRIND € YIIM S[RIS™PUD 0] 9[RIS 1IR)S WOy Furdoomg = ‘osre=[[omp ou, ‘ourrjdooms swrpdeamsdure jos
‘opowr dooms apnirjdure IROUI] S9JRAIIOY ‘91eOS PUo ‘9[RdS }IR)S ‘S[QUURTD
‘A[oyerpatiul seInoaxe deams ‘(a)epdnor 9)eATIOR OS[R JSIUL) PIJRAIIDR ST 19SSLI) J] os[e] =1083119,,
‘dooms o1} I03je oneA JIels 0} swinjal spnjdue ‘pojearjoe SI [[pMp-ou I ‘osreq =orepdnor,,
ISY pue gy 1enbo 03 j0s axe Aoyy ‘passed jou are [pue §Sq I - ‘osreI=[[oMp-ou,, ‘OS[BI=[Sd« deamsduwre jos
‘TeAIojuI owr) Surfre]/Jutsit pue ozis dogs urfjej/Sursit ‘opnjdwre pus/jre)s ‘oseI=SS . ‘TSY ‘SSY
:s8urgyes o) swrersold pue spowt dooms reour] opnjridure Uo swInf, ‘9[ROS™PUD ‘O[RIST)IR]S ‘S[OUURYD
*)SI[@ Ul S[oUURYD INOJ [[B 0} PousIsse AJuorimd s3ospo oseyd oy) suInjoy (3s17) seseyd = aseyd 103
‘(s)[puurRyD Pajodes 10§ (9P LRG 6GE PUR () WoomIaq Ioqunu se) jaspo aserd s30Q - aseyd ‘sfouuerd aseyd-jes
"ISIT[® SR S[PUURYD [[& UI 39S S1010€] o[eds apnjrjdure oejjoa o) swnay (3s1]) sepnjrdure = opnyrjduwre 303
‘ndino [Ny jo 1 pue () uvamjoq opnjrdure 98e}[oA oY)) T — opnyrdure-1os
SO[ROS "9°1 ‘S[OUURYD USALS 0} 1090%] d[eds apnjrdure s1og :
*)SI[@ SR S[OUURYD [[® UL }9S SON[RA JUSIIND S} SUINJOY (3s1]) spuerIND = JUBIIND 393
“Juarmod ndino [0y oy jo /T 10 ¥/1 ‘¢/1 ‘1/1
:s8ury9es oqrssod Inoj Jo ouo 0} Juermd INdINo (s)[Puueyd 9y} SI9G - IOPIAID ‘S[oUURD JUOIIND)9S
“(s)poutreyd (3o 4SI[) PUre IOPIATP UL SOYR],
1990 suaInjoy syuawIN3Iy uorjoung

‘POYRIIPUIL oIk SON[RA J[NRJOD IIOY) PUR () YSLIOISR UR [[}IM PosIRW oIe so[qeLre [euoljdo [[y "A[9IRIPOWWI S9)NI0X0 PURTINIOD 1) ‘ONI], 0} 39S ST e[oY) JT
"as[R] 09 10S ST Jnejap Aq ypIym ‘Sefy ayepdnor reuorpdo ue aaey (Fpo[djar jes 1deoxs) suorjouny ~jes [[y “Ajeuonoung puy suoipung SqAd :¢ oiqer,

14

References

1]

2]

R.P. Feynman, Simulating Physics with Computers, Int. J. Theoret. Phys. 21 (6-7),
467-488 (1982)

W.M. Itano, D.J. Wineland Precision measurement of the ground-state hyperfine con-
stant of »Mg™, Physical Review A, 24 No.3 (1981)

M. Marinelli, High finesse cavity for optical trapping of ions, Master Thesis, ETH
Zirich (2014)

C.J. Foot, Atomic Physics, Oxford University Press, (2005)
B.E.A. Saleh, M.C. Teich Fundamentals of Photonics, Wiley & Sons, (1991)

Analogue Devices AD9959 DataSheet [Online] August 2017
http://http://www.analog.com/media/en/technical-documentation/
data-sheets/AD9959. pdf

Minimal Clock Access script [Online] August 2017 http://abyz.co.uk/rpi/pigpio/
examples.html#Misc_code

Raspberry Pi Wiki, Hardware [Online] September 2017 https://elinux.org/RPi_
Hub#Hardware_.26_Peripherals

15

http://http://www.analog.com/media/en/technical-documentation/data-sheets/AD9959.pdf
http://http://www.analog.com/media/en/technical-documentation/data-sheets/AD9959.pdf
http://abyz.co.uk/rpi/pigpio/examples.html#Misc_code
http://abyz.co.uk/rpi/pigpio/examples.html#Misc_code
https://elinux.org/RPi_Hub#Hardware_.26_Peripherals
https://elinux.org/RPi_Hub#Hardware_.26_Peripherals

	Introduction
	Theoretical Background
	Qubits
	Magneto-Optical Trap (MOT)
	Acousto-Optic Modulators (AOMs)

	pyDDS Implementation
	Hardware
	AD9959 DAC converter
	Raspberry Pi

	pyDDS library (Software)

	"Library in Action"
	Conclusion
	Appendices
	DDS Registers
	pyDDS Functions

