
EXPERIMENTAL CONTROL
AND BENCHMARKING

for

SINGLE-QUBIT TRAPPED-ION
TRANSPORT GATES

m

David P. Nadlinger

March 2016

MSc Physics Semester Project

completed in the

Trapped Ion Quantum Information Group
Institute for Quantum Electronics

ETH Zürich

�is thesis was typeset using the LATEX so�ware originally developed
by Leslie Lamport based on TEX created by Donald Knuth, and the
Minion Pro typeface designed by Robert Slimbach.

�e layout is inspired by Robert Bringhurst’s book�e Elements of
Typographic Style, and builds on a public-domain document class
by Erwin Uggedal. Plot �gures have been created using the Julia
programming language and the matplotlib package.

Abstract

Trapped atomic ions are currently one of the most promising
candidates for the large-scale realisation of quantum information
processing. �is report describes design and implementation of
systems for stable and precise control of 9Be+ and 40Ca+ ions,
in particular for shuttling them along the axis of a segmented
linear Paul trap, and techniques for characterising the �delity of
quantum operations.

�e static single-qubit logic gates in the present experimental
setup are analysed using randomised benchmarking and gate set
tomography. For the ∣S/,m = ⟩ ↔ ∣D/,m = ⟩ optical
qubit in 40Ca+, a �delity of .() per computational gate is
found, limited by decoherence due to magnetic �eld �uctuations.
Laser intensity noise limits the �delity of operations on the �eld-
insensitive ∣S/, F = ,mF = ⟩ ↔ ∣S/, F = ,mF = ⟩ qubit
in 9Be+ to .().

i

CONTENTS

Contents ii

1 Introduction 1

2 Background 3
2.1 Quantum States and Channels 3
2.2 Randomised Benchmarking 7
2.3 Gate Set Tomography 9
2.4 9Be+ and 40Ca+ in the TIQI Segmented Trap 12

3 Technical Improvements 17
3.1 Main Real-Time Control System 18
3.2 Direct Ethernet-Adjustable TransportHardware (DEATH) 25
3.3 Dashboard for Electronically Variable Interactive Lock-Boxes

(DEVIL) 35

4 Static Qubit Results 41
4.1 Randomised Benchmarking on 40Ca+ 41
4.2 Gate Set Tomography on 40Ca+ 49
4.3 Randomised Benchmarking on 9Be+ 51

5 Outlook 55

A EVIL Hardware Communication Glitches 57

B List of So�ware Repositories 59

Bibliography 61

ii

INTRODUCTION

When Yuri Manin and Richard Feynman �rst discussed the potential of
quantum computation in the early 1980s [1], the experimental realisation
of such schemes seemed all but impossible. In the thirty years since,
however, quite monumental advances in the control of quantum systems
have been made – indeed, experimental quantum information science
has turned from the once distant idea into a thriving and commercially
relevant �eld. �e creation and manipulation of single qubit states is
part of the standard repertoire of experiments in many di�erent systems
now, ranging from linear optics over superconducting electronics and
diamond lattice defects to single trapped atoms. [2] For trapped ions in
particular, all the elements necessary for universal computation in the
circuit model have been demonstrated, and to an accuracy exceeding
what is though to be the lower bound necessary to completely suppress
errors and decoherence using quantum error correction schemes. [3–5]
One big challenge for all experimental realisations of quantum com-

puting, and for trapped-ion experiments in particular, lies in scaling up
the systems. Increasing the number of qubits to values relevant for infor-
mation processing applications is technically challenging, as exquisite
control over each of the qubits as well as the coupling between them has
to be maintained. One approach for achieving this in trapped-ion qubits
has been proposed by the group around David Wineland at NIST. [4] It
consists of a two-dimensional array of micro-fabricated ion traps with
segmented electrodes, making up many “logic” zones between which
ions can be shuttled by changing the electric potentials applied to the
segments. �is can be used for physically transporting quantum infor-
mation between the di�erent zones, but has also been used to split ion
chains for individual addressing and other more complex operations. Ve-
locities of several tens of meters per second have been achieved without
signi�cant heating. [6]
Following a proposal by Dietrich Leibfried [7], Ludwig de Clercq has

led an e�ort in our group to directly utilise transport in the implemen-
tation of the quantum logic operations, which are conventionally done
with the ions at rest. [8] In this scheme, which we refer to as transport
gates, transport through a stationary laser beam is used to apply the
modulated classical light �eld instead of directly switching the beam
on and o�. We have demonstrated [9] that this scheme can be used to
recycle a single static laser beam to apply concurrent logic operations in
several trap zones. �is way, the requirements regarding laser sources

1

and acousto-optical control are lowered, which opens an avenue towards
scalable ion trap quantum computing.11. �e (classical) control of the elec-

trode voltages is inherently local
and can easily be scaled up using

standard integrated-circuit technol-
ogy.

�e work presented in this report comprises two main parts. �e
initial goal for the project was to implement branching functionality
for the custom digital waveform generator developed for transport ex-
periments in the group. To provide easy access to di�erent transport
sequences as part of the usual experimental work�ow, I also integrated
it into the main experimental control system. �is was the beginning
of a series of other improvements to the monitoring and sequencing
systems, which were used as part of the experiments described in [9–11].
�ese technical enhancements are discussed in more detail in chapter 3.
A large part of the these improvements were motivated by the desire

to better characterise the transport gate operations on 9Be+ ions. As a
�rst step, two applicable techniques, randomised benchmarking and
gate set tomography, were implemented for the conventional, static
operations on the 40Ca+ and 9Be+ qubits. A theoretical discussion of
their operation is provided in chapter 2 along with a short description of
the experimental setup used in our group. �e results of the experiments
on the static qubits are presented in chapter 4.
Together with the improved transport hardware, these results demon-

strate that experimental control can easily be performed to the level
necessary for carrying out a quantitative analysis of the performance of
the transport gates in our experiment.

2

BACKGROUND

To provide some context for the discussion of the improvements to
the technical control infrastructure and the experimental results in the
rest of this report, this chapter brie�y reviews the most commonly used
mathematical framework to describe quantumoperations, outlines some
techniques for their characterisation, and discusses one particular ex-
perimental setup in the Trapped Ion Quantum Information group.

2.1 quantum states and channels
Consider the state ∣ψ⟩ of a generic quantum system. If the system is
�nite-dimensional, states can be described1 1. A comprehensive treatment

of the following material can be
found in any textbook on quantum
information theory, e.g. [12].

as complex vectors of unit
length in a d-dimensional complex Hilbert space,

∣ψ⟩ ∈ H ≅ Cd , ∥ψ∥ = ⟨ψ∣ψ⟩ = . (2.1)

As per the postulates of quantum mechanics, the evolution of the state
under a given Hamiltonian follows the Schrödinger equation and can
be expressed using a unitary propagator U :

∣ψ(t)⟩ = U(t, t) ∣ψ(t)⟩ (2.2)

For a �nite-dimensional system, the propagator for a certain time inter-
val is simply given by a unitary matrix U ∈ U(d).

�e concept of density operators extends the description from pure
states to (classical) mixtures of such states, as they arise in situations
where there is incomplete knowledge about the system. A density opera-
tor ρ on a Hilbert spaceH is given by an endomorphism onH that is
normalised (in the Hilbert-Schmidt norm) and positive, i.e.

ρ ∈ End(H), ρ ≥ , tr ρ = . (2.3)

�e set of density operators onH will be denoted as S(H).
From the identi�cation of a pure state ψ with the orthonormal pro-

jector
Pψ = ∣ψ⟩ ⟨ψ∣ , (2.4)

it is clear that the transformation corresponding to the above unitary U
is given by

ρ ↦ UρU†. (2.5)

3

Unitary transformations of this form, however, do not cover all oper-
ations consistent with the postulates of quantum mechanics. An im-
portant example are the consequences of imperfect control of the in-
teractions used to manipulate an experimental system, whether due to
unwanted coupling to the environment or di�erences in the classical con-
trol parameters between di�erent realisations of a given operation. �e
most general class of physical operations is given by completely positive
trace-preserving (CPTP) maps.
Consider two Hilbert spacesHA andHB. A CPTP map between the

respective density operators is given by a linear operator

E ∈ Hom(End(HA), End(HB))
such that

trE(ρ) =  for tr ρ = , (2.6)

and for all Hilbert spacesHR

ρ′ = (E ⊗ idHR)(ρA ⊗ ρR) ≥  for (ρA ⊗ ρR) ≥ . (2.7)

Equation (2.6), the trace preservation property, is clearly necessary to
map density operators to density operators. Of course, a map between
density operatorsmust certainly also perserve their positivity. Somewhat
surprisingly, however, simple positivity of two such maps E and F is not
su�cent to guarantee positivity of the composed map E ⊗ F . Complete
positivity, as stated in (2.7), remedies this.
Such operations E are also referred to as superoperators or quantum

channels, processes or operations.22. Some authors also use one or
more of these terms to refer to op-
erators that might reduce the trace.

In the following, we will restrict our
discussion to CPTP endomorphisms, that isHA = HB = H. Such maps
naturally lend themselves to describing operations on a �xed number of
qubits in the laboratory.

2.1.1 Representations of CPTP Maps
Particularly in abstract treatments, CPTP maps are o�en speci�ed in
their operator-sum or Kraus representation. For {Mk}k ⊂ End(H) with∑k Mk

†Mk = 1, the map E ∈ End(H) given by
E(ρ) = ∑

k
Mk ρ Mk

† (2.8)

is completely positive and trace preserving. Moreover, all CPTP maps
can be written in this form, which is analogous to the post-measurement
state for a set of POVM elements Mk or the weighted average of a set
of unitary transformations (2.5). �e operator-sum representation is
not unique: Another set of Kraus operators {Nk}k describes the same
operation E i� Nk = ∑l Vkl Ml for some unitary matrix V .

�e Kraus representation has several convenient properties; for
instance, it naturally guarantees positivity irrespective of the choice

4

for {Mk}k. For numerical computations, however, it can be more ap-
propriate to view the map E directly as an endomorphism on the d-
dimensional vector space End(H). In this representation, density opera-
tors are simply column vectors in Cd , and CPTP maps are described by
d × d matrices. Application of the map is then given by matrix-vector
multiplication E(ρ) = E ρ, (2.9)

where E is the matrix corresponding to E . �is is sometimes referred to
as the superoperator or natural representation, and has the convenient
property that the matrix for a composite operation E = E ○ E is simply
given by the product E = E ⋅ E.
Considering the isomorphism End(H) ≅ H∗ ⊗H, the map describ-

ing pre- and post-multiplication with two given matrices,

ER,S(ρ) = R ρ S , (2.10)

can be expressed in the chosen coordinates as

ER,S = ST ⊗ R. (2.11)

In particular, the application of a unitary propagator U as in (2.5) thus
corresponds to the superoperator

EU = U ⊗U . (2.12)

2.1.2 Example: π/- and π-rotations
As basic building blocks for single-qubit quantum operations (where the
Bloch sphere picture is used to representH = C), the gates that rotate
the Bloch state vector by angles of π/ and π radians about the coordinate
axes are of particular interest for quantum information experiments (see
section 2.2). Referred to as π-pulses in the tradition of the early nuclear
magnetic resonance experiments, the π-rotations are given by the Pauli
matrices

σx = ∣⟩⟨∣ + ∣⟩⟨∣ = ( 
 )

σy = −i ∣⟩⟨∣ + i ∣⟩⟨∣ = ( −i
i )

σz = ∣⟩⟨∣ − ∣⟩⟨∣ = ( 
 −)

. (2.13)

�e Pauli matrices (scaled by /) are also the generators of arbitrary
rotations around the axes

Ri(θ) = e− i θσi for i = x , y, z, (2.14)

from which the unitaries for π/-rotations can be derived as Ri(π
).

�e explicit matrix form of the corresponding superoperators de-
pends on the choice of basis for S(H). A commonly used convention

5

 X Y Z

1


X
Y
Z

 X Y Z

Rx(π/2)

 X Y Z

Ry(π/2)

 X Y Z

Rx(π) −1
0

+1

Figure 2.1: Superoperator matrices in the Pauli basis for some common single-qubit
rotations.

is to regard S(C) as a real vector space, endowed with the Hilbert-
Schmidt norm and the orthonormal basis {1, σx , σy , σz}/√. In this
basis, the π/- and π-rotations take a particularly simple form. �e
entries of the superoperator matrices for a selection of them are shown
in �gure 2.1.

2.1.3 Fidelity Measures
To evaluate how close a given experimental operation is to an ideal target
gate, it is useful to de�ne some kind of distance measure between di�er-
ent quantum channels. One widely used distance (or rather closeness)
measure starts from the �delity33. Some authors understand the

term to refer to the square root of
this de�nition. Notably, Michael
Nielsen uses the latter in his semi-
nal textbook [12], but has since ad-
vocated use of (2.15) in publications

such as [13].

between two pure states ∣φ⟩ and ∣ψ⟩,
F(φ,ψ) = ∣⟨φ∣ψ⟩∣ . (2.15)

�is de�nition can be li�ed into the density operator framework using
the trace norm,

F(ρ, σ) = ∥√ρ
√

σ∥, (2.16)

where ∥S∥ = tr√S†S. Restating this as

F(ρ, σ) = (tr√√
σρ

√
σ) (2.17)

one easily evaluates the �delity to a pure state σ = ∣ψ⟩⟨ψ∣ as
F(ρ, ∣ψ⟩⟨ψ∣) = ⟨ψ∣ ρ ∣ψ⟩ . (2.18)

By itself, F is not a metric, but can be used to de�ne one in multiple
straightforward ways (cf. [13]).
A natural interpretation of the �delity as de�ned in (2.15) is the

probability to observe the system ∣φ⟩ in a given target state ∣ψ⟩. �e
quantity

rE(∣ψ⟩) =  − F (E(∣ψ⟩⟨ψ∣), ∣ψ⟩⟨ψ∣) =  − ⟨ψ∣ E(∣ψ⟩⟨ψ∣) ∣ψ⟩ (2.19)

can thus be interpreted as the error probability for an operation E with
respect to the identity operation, given an input state ∣ψ⟩. �e average

6

error probability or process in�delity of E with respect to the identity can
thus be de�ned analogously as

rE =  − FE =  − ∫H ⟨ψ∣ E(∣ψ⟩⟨ψ∣) ∣ψ⟩dψ, (2.20)

where the integration is performed over the unit sphere of pure states
in H with the normalised Haar measure dψ. As shown in [14], the
average �delity for an operation G compared to an ideal unitary target
gate U ∈ U(n) can be calculated accordingly as

F(G ,U) = FU†GU

= 
n(n + ) (tr(∑

k
Mk

†Mk) +∑
k
∣tr (Mk)∣) , (2.21)

where the {Mk}k are derived from a set of Kraus operators {Gk}k for G
asMk = U†Gk.

�e (squared) �delity, however, is not the only possible way of mea-
suring the similarity of quantum states. Another prominent metric is
that of the trace distance between quantum states, which is based on
their distinguishability, and its extension to the entanglement-assisted
(single-shot) distinguishability of CPTP maps, the diamond norm. Due
to its relation to worst-case behaviour, it is frequently used in threshold
statements about the feasibility of quantum error correction. [15] While
there currently does not seem to be a single clearly superior measure, it
is o�en possible to bound one metric by a combination of others. [13]

2.2 randomised benchmarking
Once all the parameters describing a quantum operation are known,
derived quantities such as its �delity or diamond norm distance to a
given target operation can easily be calculated. Techniques for estimat-
ing the coe�cients for a given quantum state or process are known as
tomography, and one such example is discussed in section 2.3. However,
O(n) real parameters are required to describe a CPTP map between
density operators of a n-qubit system (C)⊗n. Consequently, tomogra-
phy is an involved process even for a small number of qubits and outright
infeasible for larger systems in the general case.
In many experimental settings, however, the performed operations

are already known to good approximation and can be calibrated to
match a set of target gates by independent means. In such cases, the
most interesting quantity is o�en the overall process in�delity or error
rate, particular to provide a point of comparison to theoretical bounds
on fault-tolerant quantum computing techniques. It stands to reason
that it might be easier to directly determine this quantity without fully
reconstructing the constituent quantum operations �rst.

�ere indeed exists a family of techniques that achieves this, ran-
domised benchmarking. It relies on long strings chosen at random from a

7

C 1 C Ry(− π
) C Rx(+ π

) Rz(− π
)

C Rx(π) C Rz(− π
) C Rz(π) Ry(− π

)
C Ry(π) C Rz(π) Rx(+ π

) C Rz(+ π
) Ry(− π

)
C Rz(π) C Rz(π) Rx(− π

) C Rz(− π
) Ry(+ π

)
C Rx(+ π

) C Rz(+ π
) Rx(π) C Rz(π) Ry(+ π

)
C Ry(+ π

) C Rz(− π
) Rx(π) C Rz(− π

) Rx(+ π
)

C Rz(+ π
) C Rz(+ π

) Rx(+ π
) C Rz(+ π

) Ry(+ π
)

C Rx(− π
) C Rz(+ π

) Rx(− π
) C Rz(− π

) Rx(− π
)

Figure 2.2: �e 24 elements of the single-qubit Cli�ord group C, decomposed into π- and
π/-rotations along the coordinate axes of the Bloch sphere. [17]

certain set of gates, and has risen to wide-spread popularity in the exper-
imental quantum information community due to its relative simplicity
and robustness a�er having �rst been demonstrated in trapped ions at
NIST. [16]

2.2.1 �e Pauli and Cli�ord Groups
Together with the identity, the Pauli matrices form a group under multi-
plication, the Pauli group

P = {±1,±σx ,±σy ,±σz}, (2.22)

which can be represented by the π-rotations on the Bloch sphere. π/-
rotations are not elements of the Pauli group, but can be taken to be
members of its normaliser, the Cli�ord group C:

C = {C ∈ U() ∣ C P C† = P } / U(). (2.23)

In other words, the Cli�ord group permutes the elements of the Pauli
group when it acts on it by conjugation – its elements permute the six
states on the coordinate axes of the Bloch sphere, the eigenvalues of the
Paulimatrices. C consists of 24 elements, which are enumerated explicitly
in �gure 2.2. �e de�nition can be extended analogously to multi-qubit
systems starting from the n-qubit Pauli group Pn = P ⊗ . . . ⊗P .

�eCli�ord group elements are of particular interest for fault-tolerant
quantum computation because they are su�cient to implement state
preparation and decoding for a widely-studied class of quantum error
correction codes, the so-called stabiliser codes. Additionally, augment-
ing it with just one other single-qubit rotation (e.g. the π/-gate) is
enough to obtain a universal set of gates. At the same time, however, the
stabiliser formalism still allows e�cient simulation of such circuits as
per the Gottesman-Knill theorem. [18]

2.2.2 �e Randomised Benchmarking Protocol
A randomised benchmarking experiment on a single qubit executes a
number of individual sequences that consist of state preparation in ∣⟩,
8

qubit manipulation and readout in the computational (i.e. σz) basis. For
each such sequence, a number of gates (G, . . . ,GL−) ⊂ C is �rst chosen
at random from the Cli�ord group. �e last gateGL is then selected such
that the �nal stateGL ⋅ . . . ⋅G ∣⟩ again is an eigenvalue of σz.4 4. �e expected outcome (∣⟩ or

∣⟩) can be randomised to avoid sys-
tematic errors due to asymmetric
measurement imperfections. Equiv-
alently, the process could also be
described as choosing GL such that
the gate sequence is strictly equal to
the identity, followed by a random
measurement.

If the gates
Gi were indeed implemented perfectly, the subsequent measurement
would thus by construction take one �xed value.

�e probability of obtaining that expected outcome (estimated from
a certain number of repetitions) is then averaged over a number N of
di�erent gate sequences of the same length. If the quantum circuit is
not implemented perfectly, the outcome will sometimes deviate from
the expected result, either because a di�erent state is produced due to a
stationary error (e.g. due to miscalibration of the gate rotation angles),
or because of �uctuations between individual realisations of the given
experiment. Intuitively, the random selection of gates ensures that any
such errors are sampled fairly. �is can be formalised starting from the
observation that the Cli�ord group is a unitary two-design, and thus
twirling a given error map Λ over it,

∣C∣ ∑k Ck
† ○ Λ ○ Ck = Λdep, (2.24)

yields the depolarising channel Λdep with the same average �delity F as
Λ. Randomised benchmarking can be viewed (in the limit of large N)
as the L-fold concatenation of such twirls. [19]
If the procedure is repeated for a number of di�erent lengths L,

the average gate �delity can thus be estimated independent of state
preparation and measurement errors by �tting an exponential model
to the observed mean probabilities (discussed more carefully in [19]).
Since the estimate is obtained from the decay between di�erent sequence
lengths and not the absolute observed error, it is notably insensitive to
errors in state preparation and measurements. �e protocol can be
implemented e�ciently for large number of qubits. [20]
When attempting to make rigorous statements about the achieved

gate �delities and their uncertainties, though, the e�ects of �nite sam-
pling (N < ∞) cannot be ignored. �is is particularly important in the
presence of non-Markovian noise, as discussed in [17] and [21].

2.3 gate set tomography
For operations on one or two qubits, full estimation of all parameters
in the CPTP description of a gate is computationally feasible and o�ers
additional insights5 5. �at are, of course, limited to the

linear quantum operation model,
which can notably not describe
strong non-Markovian noise.

into the imperfections at play, for example allowing
to distinguish between coherent and incoherent errors. Conceptually, a
quantum state can be reconstructed to arbitrary precision by repeated
preparation followed by measurement in a complete set of bases. In
the simplest example for quantum state tomography, a density opera-
tor ρ is obtained by linear inversion from the measured probabilities

9

pk ≈ tr(Mkρ).66. In this and the following, “≈” ex-
presses the fact that the probability
estimates are obtained from a �nite
number of repeated measurements.

State tomography methods can be adapted for quantum
process tomography of an operation E in a straightforward manner by
analysing the resulting states E(ρi) for a complete linearly independent
set of input states ρi . [22]
Reliable and accurate tomography is surprisingly di�cult to realise

experimentally, however. While full state tomography of up to eight
qubits has been demonstrated (e.g. in [23]), the measurements in the
di�erent required bases were assumed to be ideal in most early exper-
iments. Similarly, it is assumed that the di�erent input states can be
prepared perfectly in standard program tomography.
To ignore state preparation and measurement errors is not a good

approximation in most experimental systems, however. Usually, there is
only one preferred initial state and one measurement basis, and other
states and bases are realised by applying the very same rotation that are
to be characterised in the case of single-qubit process tomography. �is
self-referential approach has been shown to severely limit the quality of
tomography estimates, particularly for high-�delity operations. [24]

Gate set tomography (GST) is a relatively recent technique that ad-
dresses these systematic issues. It was initially developed and demon-
strated in trapped ions at Sandia National Laboratories [25] and has been
used to characterise a variety of systems since. [26, 27]
Let, for clarity of notation, ∣ρ⟫ denote a density operator ρ inter-

preted as a column vector like in (2.9), ⟪E∣ the same for a POVM element
E (so that the associated Born rule probability reads ⟪E∣ρ⟫ = tr(Eρ))
and let CPTP maps be represented by their superoperator matrices G in
the same basis. GST estimates the parameters of a gate set

G = (∣ρ⟫ , ⟪E∣ , {G, . . . ,GK}) (2.25)

on some Hilbert space H consisting of an initial state ∣ρ⟫, a POVM
measurement {⟪E∣ , ⟪1 − E∣} and a number (K) of gates {Gk}k, from a
series of experiments of the form ⟪E∣Gk . . .Gkm ∣ρ⟫.
In conventional process tomography, the parameters for a gate G are

estimated from measured probabilities pk∣l ≈ ⟪E∣Gk G Gl ∣ρ⟫, where
the various ⟪E Gk ∣ and ∣Gl ρ⟫ are assumed to be known. A seemingly
straightforward way to avoid the latter would be to use maximum-
likelihood estimation (MLE) while allowing all the parameters for ⟪E∣,
Gk and ∣ρ⟫ to �oat. To match a model gate set to a number of gate se-
quences Si = Gs i Li

. . .Gs i  of some length Li for which a given outcome
was observed in nS i of NS i experiments, the likelihood function

l(G) =∏
i

pS i(G)nSi ( − pS i(G))NSi−nSi (2.26)

would be maximised, where pS(G) denotes the outcome for S predicted
by a given candidate gate set G, i.e.

pS(G) = ⟪E∣GsL . . .Gs ∣ρ⟫ . (2.27)

10

However, the level sets of the likelihood function are highly non-convex
even for short single-qubit gate sequences, which makes the numerical
optimisation very computationally intensive. [24]
One key aspect of gate set tomography is that it is able to provide a

closed-form estimate forGwith only a minimal set of prior assumptions
(namely, that d = dimH is known, and that the result of state preparation
is indeed described by a density operator, the measurement by a POVM,
and the gates by CPTP maps). �is estimate can in turn be used as a
starting point for the full MLE optimisation problem (2.26).

2.3.1 Linear GST
To perform gate set tomography on a given gate set G, �rst n = d short
�ducial sequences F, . . . , Fn ⊂ {Gk}k are chosen. �eir purpose is to
expand ∣ρ⟫ and ⟪E∣ into a full set of initial states and measurements that
spans all of S(H). Consequently, the set should be chosen in a linearly
independent fashion, which is easy ifG is known to approximate an ideal
target gate set, but can also be achieved without any a priori knowledge
by trial and error.

�en, (n + )(K + ) experiments (with a certain number of repeti-
tions each) are performed to obtain an estimate for the matrices

(G̃k)i j ≈ ⟪E∣ FiGkF j ∣ρ⟫ ,
g̃i j ≈ ⟪E∣ FiF j ∣ρ⟫ , and
r̃i ≈ ⟪E∣ Fi ∣ρ⟫ .

(2.28)

As shown in [28] and [29], an approximation for G, the linear GST
estimate

Ĝ = (∣ρ̂⟫ ,⟪Ê∣ , {Ĝ, . . . , ĜK}) ,
can be obtained from the results as follows:

Ĝk = g̃− G̃k∣ρ̂⟫ = g̃− ∑
i

r̃i ∣i⟫
⟪Ê∣ = ∑

i
⟪i∣ r̃i .

(2.29)

Note, however, that Ĝ is not necessarily close to the ideal target
gate set G.7 7. �is can be seen immediately by,

for example, directly substituting
(2.28) into (2.29).

�is is due to a residual “gauge” degree of freedom in the
de�nition of a given gate set: Let T ∈ GL(d) and set

G′ = (∣ρ′⟫ , ⟪E′∣ , {G′
k}k) = (T ∣ρ⟫ , ⟪E∣ T−, {TGkT−}k) .

G′ is physically equivalent to G, as the only experimentally accessible
quantities are the measurement outcomes for a particular gate sequence
S, but

pS(G′) = ⟪E′∣G′
sL
. . .G′

s ∣ρ⟫= ⟪E∣ T−TGsL T− . . . TGsT−T ∣ρ⟫= ⟪E∣GsL . . .Gs ∣ρ⟫ = pS(G). (2.30)

11

In particular, since T is an arbitrary invertible matrix, these gauge trans-
formations do not even conserve positivity of the gate set elements. To
obtain a meaningful gate set, Ĝ thus has to be subjected to a gauge opti-
misation process �rst (choosing T numerically to minimise for instance
the amount of violation of complete positivity, or the distance to a given
target gate set).

2.3.2 Extended GST

As mentioned earlier, the linear GST estimate (2.29) is mainly useful as
a starting point for other techniques such as full maximum-likelihood
estimate. In particular, it is not necessarily physical (i.e. might violate
positivity) due to the error inherent to the probability estimates (2.28),
or in the presence of non-Markovian noise.
However, the simple maximum-likelihood approach is not the limit

of gate-set tomography. Several extensions have been developed, notably
extended (linear) GST (e(L)GST), where repeated strings of short “germ”
sequences are used between the �ducial sequences instead of single
gates. �is allows the technique to reach a level of precision scaling with
/L (where L is still the overall sequence length), greatly improving on
the /√N shot noise scaling of traditional process tomography. eGST
and similar techniques are discussed in [28]. �e improved precision
also makes it easier to quote con�dence intervals for the obtained to-
mographic results. Providing reliable error bars is di�cult in standard
maximum-likelihood tomography, as enforcing positivity makes it a
biased estimator and thus renders resampling techniques unsuitable.
[30, 31]
An Open Source implementation of basic linear gate set tomography

aswell as some of these advanced techniques in the Pythonprogramming
language is available in the pyGSTi package [32], which at the time of
writing still underwent active development.

2.4 9be+ and 40ca+ in the tiqi
segmented trap

In trapped-ion quantum information experiments, qubit systems are
implemented using the electronic energy levels of atomic ions. �e
atoms are con�ned spatially using a combination of static (DC) and time-
dependent (radio-frequency, RF) electrical potentials. �e coupling of
the internal states of the atoms as well as their motion to resonant laser
and microwave �elds is well understood and can be used to perform
the required incoherent operations like cooling and state preparation
as well as coherent operations on the qubit states, while the Coloumb
interaction betweenmultiple ions trapped in the same potential provides
a natural foundation for multi-qubit operations. [33]

12

Figure 2.3: Transversal cut through the center of the
stack of wafers making up the segmented-electrode
trap built by Daniel Kienzler. (�gure from [34])

0 50 100 150 200 250 300 350
Time [µs]

0

3

6

9

Vo
lta

ge
 [V

]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 2.4: Time varying trap electrode voltages for transporting an
ion from − µm to  µm over the course of  µs. Opposing
pairs are assigned the same potential and numbered along the trap
axis. (�gure from [35])

�e Trapped Ion Quantum Information group operates several ion
trap setups. �e “segmented trap” used as part of this project is a linear
Paul trap, equipped to con�ne andmanipulate Beryllium-9 and Calcium-
40 ions. It consist of a stack of gold-plated, laser-machined aluminium
wafers, as shown in �gure 2.3. Notably, the electrodes that form the RF
ground for the rotating quadrupole potential have been subdivided into
15 segments. Each segment is shunted to ground via a capacitor, forming
a low-impedance path for the trap RF drive, while their DC potential
can be controlled individually between ± V using a custom digital
waveform generator system (see chapter 3.2). �is makes it possible to
shape the axial con�ning potential over time in a controlled fashion, for
example to split a chain of several ions intomultiple harmonic potentials,
or to transport ions along the trap axis. Figure 2.4 shows an example
for the voltages applied to adiabatically transport an ion from − µm
to  µm, keeping it approximately at the minimum of a harmonic
potential at all times.
A diagram of the experimentally relevant energy levels in 40Ca+

is shown in �gure 2.6. A�er a two-stage photoionisation process, the
short-lived dipole transitions between the S/ and P/ levels at
 nm are used for Doppler cooling, followed by electromagnetically-
induced-transparency (EIT) cooling of the motional modes near their
ground state using the ∣S/,m = ± ⟩ and ∣P/,m = − ⟩ sublevels.
Following the cooling process at the beginning of each experimental
sequence, the population is pumped into the ∣⟩ = ∣S/,m = + ⟩
state, which forms the optical qubit used in this project together with
the ∣⟩ = ∣D/,m = + ⟩ state. �e states are connected by a  nm
quadrupole transition, which is driven using a sub-kHz linewidth laser
system consisting of a external cavity diode laser locked to a high-�nesse
cavity (the transmission of which is used to inject a two-stage diode
tapered ampli�er [36]). �e qubit is read out using state-dependent �uo-
rescence at  nm, a�er which the qubit is reset using a  nm laser
connecting the ∣⟩ state to the P/manifold. A repump laser at  nm

13

(B = 11.96 mT)

Cooling/Detection
313.13 nm

FIQ
FDQ

F = 1

−2
−1

−1

0

0

1

1

2

F = 2

2S1/2

2P3/2

2P1/2

Repump
313.20 nm

Raman
313.27 nm

≈250 GHz

Figure 2.5: Level structure of 9Be+ with the di�erent lasers
around  nm used in the experiment. �e qubit states in
the hyper�ne ground state manifold are driven using Raman
beam pairs detuned by ≈  GHz from the P/ manifold.

(B = 11.96 mT)

32D3/2

Δ = 201 MHz

Δ = 134 MHz
397 nm

729 nm

866 nm

854 nm

32D5/2

42S1/2
Δ = 335 MHz

42P3/2
Δ = 223 MHz

42P1/2
Δ = 112 MHz

Figure 2.6: Experimentally relevant levels of 40Ca+ and the
wavelengths of the di�erent laser beams used to couple
them.

avoids trapping population in the dark D/ states during cooling and
detection. �e di�erent operations, as well as the experimental setup for
implementing them, are described in more detail in Daniel Kienzler’s
PhD thesis. [34]

�e level scheme for 9Be+ is shown in �gure 2.5. Here, all the rel-
evant operations are performed using UV lasers near  nm. For
Doppler cooling, the ∣S/, F = ,mF = ⟩ ↔ ∣P/, F = ,mF = ⟩ cy-
cling transition is is used, followed by state initialisation in ∣FDQ⟩ =∣S/, F = ,mF = ⟩ by optical pumping via the P/manifold. ∣FDQ⟩
and ∣FDQ⟩ = ∣S/, F = ,mF = ⟩ make up the �eld-dependent qubit
(FDQ), which can be manipulated coherently using a Raman process
stimulated by a pair of laser beams detuned ≈  GHz to the red of the
transitions to the P/ manifold and read out using state-dependent
�uorescence on the transition also used for Doppler cooling. At B =
. mT, the energy splitting of the optical qubit in 40Ca+ depends
on the magnetic �eld by ≈ . kHz/µT and the 9Be+ FDQ slightly
stronger than that, ≈ . kHz/µT. However, the �eld-independent
qubit (FIQ) between ∣FIQ⟩ = ∣FDQ⟩ = ∣S/, F = ,mF = ⟩ and ∣FIQ⟩ =∣S/, F = ,mF = ⟩ is insensitive to it to �rst order, which is the moti-
vation behind that particular choice of �ux density.88. In many other trapped-ion ex-

periments, the magnetic �eld
serves only to li� the degener-
acy between Zeeman sublevels

and de�ne a quantisation axis, for
which much weaker �elds su�ce.

For initialisation
and readout of the FIQ, ∣FIQ⟩ is mapped to ∣FDQ⟩ by applying a FDQ
π-pulse. �e readout �delity can be improved by shelving the population
in ∣FIQ⟩ to the ∣S/, F = ,mF = −⟩ state. �eory and experimental
setup for these operations are discussed further in Hsiang-Yu Lo’s PhD
thesis. [37]
For both ion species, all the laser beams required in the experimen-

tal sequences are controlled using acousto-optic modulators (AOMs)
driven by a set of RF synthesisers, in turn managed by the main experi-

14

mental control system, which is (partly) described in the next chapter.
�e photons scattered by the ions are collected by a high-numerical-
aperture imaging system and detected by photomultiplier tubes and (for
diagnostic purposes) two CCD cameras.

�e operations in both 9Be+ and 40Ca+ can be driven by transport-
ing the ions through stationary laser beams instead of the traditional
scheme of using pulsed beams. However, in the current experimental
setup, high-�delity coherent operations are only within reach for the
9Be+ FIQ. For 40Ca+, the  nm qubit manipulation beam is aligned
at an angle of approximately π/ to the transport axis, making the re-
sulting dynamics extremely sensitive to small velocity deviations (an
e�ect further discussed and utilised in [9]). Furthermore, both the 40Ca+
qubit and the 9Be+ FDQ are sensitive to variations of the magnetic �eld
along the transport path, which have been estimated to cause qubit fre-
quency shi�s of several kHz along distances typical for implementing
transport gates. While this is purely a technical and not a fundamental
physical restriction, it makes the 9Be+ FIQ a much better candidate for
demonstrating high-�delity transport gates.

15

TECHNICAL IMPROVEMENTS

As the scope and complexity of schemes accessible in ion trap exper-
iments grows, so does their demand on the techniques used in their
implementation. To brie�y put this statement into perspective and moti-
vate the work described in this chapter, let us brie�y consider two facets
of the experimental setup used in and developed by our group:
Firstly, due to the high susceptibility of quantum-mechanical e�ects

to noise, it is necessary to actively stabilise many parameters of the
environment and control devices. �e demand for ever higher levels
of stability continues to grow especially since individual realisations of
most important quantum operations have already been demonstrated in
trapped ions with remarkable �delity. [5] To this end, upwards of twenty
closed-loop controllers need to be active and stable if both 9Be+ and
40Ca+ ions are to be used in one of our experiments. Without adequate
tools, even just tracking down degradation and faults quickly as they
occur becomes a challenge.
Secondly, we are always interested in realising the quantum oper-

ations of interest as quickly as possible, both to combat decoherence
as well as to decrease the duration of experiments1 1. And in the long run, to increase

the performance of a quantum in-
formation processor – the constant
factors involved will have a direct
impact on the feasibility and perfor-
mance of quantum error correction.

. �ere are direct
consequences of those timing granularity and stability requirements for
the necessary electronics on many levels, but of particular importance
for this work is the generation of trap electrode voltages for ion transport.
�ere are currently 16 independent channels for this, the voltage levels
for each of which are speci�ed at a resolution of  bit and an update
rate of  MHz.2 2. For unrelated reasons, the chan-

nel data is currently only clocked
out at  MHz, using the built-in
× interpolation o�ered by the
DAC chip to oversample it. �is
restriction is only applied very late
in the FPGA pipeline, though, and
could easily be li�ed.

�us, the total rate of data �owing through the DAC
system is . Gbit s−. While not exceedingly high by the standards of
today’s global communication, it is certainly more than a single desktop
computer can stream over a commodity network link. Among other
factors, such as stringent latency and timing stability requirements, this
is one fundamental reason why custom, “intelligent” hardware projects
are routinely pursued in the group.
As the experiments performed as part of and/or concurrently to

this work pushed the boundary of what has been done in our group
in terms of sequence complexity, a considerable amount of e�ort was
spent on improving the technical infrastructure. Along with various
general improvements to the control system so�- and hardware, the two
main e�orts concern the digital PID controller platform developed in
our group and the aforementioned DAC system.

17

DEVIL controllers

Cavity-tuning DACs

Shim DACs

Ionizer

electrode outDEATH

rf out

TTL out

U
SB

low-latency network

ge
ne

ra
l l

ab
 n

et
w

or
k

(G
bE

)

(GbE)

×4

×4

PMT in
ZedBoard

DDS

Figure 3.1: Schematic overview of the experimental control system used for the
segmented trap experiment.

3.1 main real-time control system

�e system used for real-time control of the experiments in the Trapped
Ion Quantum information group is centred around a combined ARM
CPU and FPGA platform, currently the Xilinx Zynq-7010 chip on an
Avnet ZedBoard. �e main experimental sequencing core runs in its
FPGA fabric, which controls all the logic-level signals (many of which
toggle RF switches to drive AOMs) and photo-multiplier acquisition
windows. �is core also triggers a number of direct-digital synthesis
(DDS) RF generation cards that are programmed by the main CPU over
a custom backplane. �ey provide phase-coherent RF signals, which are
mostly used to control AOMs for phase-sensitive qubit operations or
where frequency agility is required. �e ZedBoard also programs and
triggers custom DAC hardware for generating trap electrode voltages,
as will be discussed in section 3.2.
To de�ne a particular experimental sequence, the experimenter

writes a piece of C++ code to run on the ARM CPU as part of a stan-
dalone program that is altogether referred to as IonPulse. It uses standard
programming interfaces to control real-time peripherals such as theDDS
cards and the electrode waveform generators, handles any custom result
processing or in-sequence branching, and also contains a list of parame-
ters for the user to modify. All these experiments with their associated
controls are aggregated by a custom PC so�ware, Ionizer. It runs on a
desktop computer that is connected to the ZedBoard via Ethernet, and
provides a graphical user interface to control the various parameters and
additional, “slow” peripherals like auxiliary control electrodes and piezo-
electric elements for tuning reference cavities. It also allows the user to
launch various experiments, schedules them for concurrent execution

18

on the hardware, and displays and archives their results.
Over the course of this project, a number of technical improvements

were made to Ionizer, IonPulse as well as their network communication
layer. �e version control system shows more than 600 individual com-
mits and several tens of thousands of modi�ed lines, so the changes will
not be described in much detail here. Instead, I will discuss a few major
design decisions in the following subsections in the hope of informing
future control system work.

3.1.1 Uni�ed Network Communication Protocol
When initially considering how to integrate the DEATH custom DAC
hardware with the other network-enabled components of the control
system (see section 3.2), it became apparent that the choice of network
protocols at that time was a major impediment for future expansion of
the system, both in terms of new hardware and in terms of additional
functionality.

�e communication between Ionizer and IonPulse was based on
messages with a �xed size of  bytes, consisting of a header made up
of several �ags and a completely opaque collection of bytes in the body.
�ere were several problems with this scheme: First, it was in�exible
– from a user’s point of view, the only supported payloads were either
a single 32 bit integer, a pair of them, or an arbitrary string of bytes
–, making it hard to encode more complex data structures. For the
latter reason, it was also error-prone, since client code was expected to
directly read and write binary data from/to arbitrary memory o�sets
to express such structures as a byte string. Furthermore, the �xed size
meant that the protocol was highly ine�cient in that small requests
would be padded into huge messages, while at the same time limiting
themaximum amount of data being transmitted at once, as eachmessage
was expected to arrive as a single Ethernet frame3

3. With TCP being a stream-based
protocol, no such guarantees can
be made in the �rst place. Below
a certain message size, there just
happens to be little chance for
packet fragmentation on a local
network.

.
Other hardware used various ad-hoc protocols, some of them textual,

and some using a similarly rigid binary encoding. �is made implement-
ing defect-free network interfaces hard, as evidenced by the fact that
new hardware was o�en not properly integrated with the system at all,
or using serial/USB interfaces instead4 4. At the time, the fact that such

consumer-grade serial port links
and USB connections su�er from
issues with issues with signal in-
tegrity over longer distances and
di�erences in ground potential was
growing into a major problem for
the reliability of the experiment,
motivating a shi� towards Ethernet
wherever possible.

. All these protocols were not par-
ticularly well-suited for the event-driven programming model o�ered
by lwIP, the IP stack used on those applications running directly on
hardware without an operating system layer, as done for IonPulse on
the main ZedBoard.

�us, a network protocolwas carefully chosen for theDEATHproject
with the idea that it would also be used as the future default choice
when developing other pieces of hardware for the laboratory control
system. Perhaps the most important goal was to come up with a solution
that would be easy to use from many programming environments, in
particular C++ andPython. It also had to support rich data types (such as
structures of arrays of numbers, lists of strings, etc.) and error conditions

19

body size 0 msg id method name
request

parameters…

body size 2 noti�cation name
noti�cation

parameters…

body size 1 req. id error message (or nil)
response

return value (or nil)

Figure 3.2: Schematic representation of the TCP-basedmsgpack-rpc networking
protocol. An initial header containing the message body size as a four byte little-
endian integer is followed by a variable-sized MessagePack array. �ere are three
message-types, each signi�ed by a �xed number, followed by the respective contents.
Requests and responses are always exchanged in matching pairs, and usually only
initated by one of the parties (the client). Noti�cations require no response and can
be sent by either party.

in a straightforward manner, while o�ering enough e�ciency so that
all network communication (including high-frequency experimental
result data) could be handled over this one protocol. As possible target
platforms, modern / bit CPUs (or at least reasonably powerful so�-
cores) were assumed, with the caveat that the implementations would
have toworkwell in purely event-driven environments with small bu�ers
sizes, as would be the case when not running an operating system.
Libraries developed for high-performance remote-procedure calls

(RPC) in, for example, the distributed backing infrastructure of modern
web applications are a good match for these requirements. �e RPC
programming model, in which network communication is conceptually
equivalent with invoking a function with a set of parameters and return
values on a remote peer, is easy to grasp for non-experts, and when
extended with “one-way” messages to allow occasional communication
outside the strict request/response dialog is certainly powerful enough
for our purposes.55. An example for a more involved

model could be that of a gen-
eralized message passing sys-
tem with central queues, bro-

kers, broadcast functionality, etc.

Some of these libraries, like Google Protocol Bu�ers or Apache/-
Facebook�ri�, rely on code generation to provide the user with an
interface to a certain data structure or network service that has been
previously described in an extra �le using a special interface de�nition
language. �is might be nice to start quickly, especially as e.g. �ri�
can automatically generate client and server code for a given interface,
and would also guarantee a certain level of robustness, as error checking
would automatically be inserted where there is potential for mismatch-
ing data formats, missing parameters and so on. However, having to
use an external tool to generate source code would complicate the build
process for new users. Additionally, some of the features such as the
automated generation of server code would only be of limited use in
our situation, as they are mostly geared towards high-throughput server
applications running on an operating system (in contrast to constrained
environments like our “bare-metal” ARM devices).

20

�us, a solution was chosen that does not rely on code generation.
In particular, the new network protocol is based on MessagePack as
the serialization layer. MessagePack, ormsgpack in short, is a serialisa-
tion format that comes with libraries for many programming languages,
among them also C++ and Python. In contrast to Protocol Bu�ers
and �ri�, its C++ implementation makes extensive use of modern
C++11/C++14 features to provide a convenient high-level interface for
(de)serialising user-de�ned data structures and o�ers built-in support
for many C++ standard library types. It has been shown to compile on
the embedded ARM platform without any major adaptions, and can
be tweaked in its handling of memory allocations and object lifetimes
where necessary for performance.
MessagePack is only a data serialization format, so additional spec-

i�cation on top of it is needed to use it as an RPC protocol. For this,
themsgpack-rpc protocol has been chosen. As shown in �gure 3.2, its
messages consist of a simple msgpack array on the top level that identi-
�es the message type and, depending on the that type, also carries extra
metadata such as the name of the method to invoke or a slot for an error
message. To make the protocol easier to handle in event-driven environ-
ments such as an lwIP-based server implementation, the messages are
pre�xed with an explicit packet length �eld. �e latter design decision
is somewhat debatable, as it makes existing msgpack-rpc libraries less
straightforward to use in the laboratory network. But to cater to the
resource constraints and simplicity goals, it was necessary to implement
the protocol several times for di�erent environments anyway.6 6. For example, many of the exist-

ing msgpack-rpc implementations
mandate the use of some kind of
asynchronous networking frame-
work.

Fortu-
nately, this is made easy by the MessagePack libraries; for example, a
complete implementation of a generic msgpack-rpc client requires only
about 50 lines of Python code.

�e protocol ended up being successfully deployed in a number of
networking nodes in the laboratory. It is of course used in the DEATH
DAC system (see section 3.2) and the new control system scripting im-
plementation (see next subsection). Together with Matteo Marinelli I
also converted the main Ionizer/IonPulse interface to it, which led to
improvements in network performance by allowing us to easily coalesce
a number of smaller commands into bigger messages (e.g. when updat-
ing a list of parameters), and made it simpler to implement propagation
of run-time errors in the experiments back to Ionizer7 7. �e ability to send “out-of-band”

update noti�cations from Ion-
Pulse back to Ionizer was also
(re)implemented as part of this
transition, although this is more
an improvement on the lower lwIP
networking layer than an advantage
of the protocol.

. �e DEVIL plat-
form, discussed in section 3.3, also makes extensive use of the protocol
(albeit wrapped into ZeroMQmessages), and so do two other control
system peripherials.
For ease of (re)use in new projects, various implementations have

been collected in a single tiqi-rpc repository. Among the currently sup-
ported platforms are C++/Qt, C++/Boost.Asio (including a version
for ZeroMQ), Python/PyQt, Python/ZeroMQ and Python/raw sock-
ets. Each of the implementations comes with documentation and short
source code examples. �is way, it should be easy to add networking
capabilities to new hardware projects developed in the group, whether

21

User script process

Logging

IonPulse

(slow) hardware

ScriptingPage

ScriptHost

ScriptApiServer

Ionizer

user
start/stop

launches,

opens RPC connection,
invokes API methods

terminates
Plots

Real-time alerts

Custom �tting

Figure 3.3: �e Ionizer scripting model. User scripts are started as separate processes that communicate with Ionizer over a
TPC socket. �ey can access all parameters set in Ionizer, but also display a custom user interface if needed.

they use an embedded CPU or a more fully-featured system like the
Raspberry Pi.

3.1.2 Control System Scripting Support
In our current control system architecture, the user-speci�ed experi-
ments executed on the IonPulse CPU only ever acquire “a single data
point” consisting of a number of repetitions of a given experiment. All
higher-level scheduling decisions – for instance to execute a certain
experiment a number of times with varying parameters, or to interleave
several experiments for purposes of periodic recalibration – are made
by Ionizer, which contains no experiment-speci�c code and is usually
not modi�ed by experimenters. �is was problematic in so far as the
only possible mode of data acquisition was to execute a scan in one or
two parameters that would be iterated according to a prede�ned, lin-
early spaced grid. As the complexity of the experiments performed in
the group rose, these restrictions resulted in a number of contortions
where experiments with a higher-dimensional or irregularly shaped pa-
rameter space were forced to �t 1D- or 2D-scan model, making it o�en
prohibitively involved to automate a given data acquisition or calibration
process. �e rigid calibration routines also started to show their limits
where non-trivial calculations or adaptive calibration schemes would
have been useful.
It was thus decided to add scripting support to Ionizer, with the goal

of allowing user-supplied programs to control experiment execution to
circumvent these restrictions (see �gure 3.3). Given its popularity in the
scienti�c computing domain and its mature ecosystem with tools for
numerical calculations, �tting data and displaying plots, Python was an
obvious choice for the main programming language to support for user
scripts. In order not to let faulty user scripts compromise the system
stability as well as to make it easy for scripts to present their own user
interface in a blocking fashion, each script runs in its own process. �e
communication between Ionizer and the scripts is based on local TCP
connections, following the uni�ed networking protocol described in
the previous section. �e overhead incurred by this is negligible, and it

22

import ionizer

def main(host):
while True:

host.run_exp("detect Ca")

ionizer.run_script(main)

Figure 3.4: A minimal example for an Ionizer Python script, which in this case
simply executes a certain experiment in a loop.

provides a generic interface that could be used from other programming
languages and remote computers in the future, while also being able to
reuse functionality developed for the main IonPulse/Ionizer connection.

�e elementary operations available to scripts mirror the actions
possible in the user interface: Setting certain parameters or reading
their values, triggering custom actions de�ned remotely by the Ion-
Pulse experiment code, or running one- or two-dimensional scans. �e
server interface in Ionizer runs in a fully non-blocking fashion on the
main user interface thread, so that there is no possibility for con�icts
between scripted and manual user interaction on a programmatic level8 8. Although, of course, it would

still be confusing for the user if
they tried to manually change a
parameter as it was being updated
by a script.

.
Ionizer launches each script process with a command line argument
describing the TCP/IP address/port of its scripting server interface. As
shown in �gure 3.4, a small library is provided for user scripts that reads
this argument, establishes the connection to Ionizer, and exposes the
functionality as simple method calls.
As an extension to what is available via the user interface, scripts

can also directly launch an experiment on the hardware, bypassing all
the usual parameter/scan setup and result archival. �is can be used to
implement entirely custom sequences of experiments, for example for
adaptive calibration search routines, or for acquiring tomography data
as discussed in chapter 2.3. �e throughput of this “raw” API, which
is limited by its end-to-end latency (a script invoking the appropriate
RPC call, Ionizer forwarding the command to IonPulse, receiving the
results and retuning them back to the script), reaches on the order
of thousand experiments per second on the particular con�guration
used in our laboratory. Unless only very few repetitions of a particular
experimental sequence are being run, this indirect interface is thus
unlikely to become a bottleneck. In situations where this is the case, it
would likely be bene�cial to implement the algorithm in question directly
on the ZedBoard so that the latency over the Ethernet connection is
entirely avoided, since the latter will typically dominate any processes
local to the PC.
At the time of writing, the scripting system is running reliably and

has for example been used to acquire the data presented in [11]. �ere
are still a number of clear-cut opportunities for improvement, though.
From a very practical point of view, it is desirable to have commonly

23

used auxiliary functionality beyond the low-level Ionizer programming
interface discussed here shared between scripts as well. For example,
other group members have developed helper functions for setting up
scan parameters in certain ways and reading back the results, etc. One
particular aspect that is still missing at this point is a common abstrac-
tion for creating log �les: While Ionizer saves the usual result archives
also when scans are triggered from scripts (to avoid losing large quanti-
ties of data due to mistakes in scripts, and to help with reconstructing
the course of action a�er the fact), it is o�en desirable to save extra in-
formation about �ts, decisions made, and so on. Another related aspect,
particularly concerning long-running experiments, is that of sending
real-time noti�cations to the experimenter. During the course of this
project, I implemented a small script that can be used to send out alerts
(e.g. when the script detects a laser went out of lock, etc.) via email,
the Slack chat platform, and SMS. Integrating this more tightly with the
logging system would likely be useful.

�ere currently is another big limitation regarding the �exibility of
scripting, which in some sense is a fundamental property of the current
control system architecture: Each experiment (as exposed by the Zed-
Board) can only be submitted to the Ionizer time-slice scheduler once;
there cannot be several instances of a given experiment running in par-
allel. �is is a major hassle for automatic recalibration of experimental
parameters – for example, if a certain experiment page is used as part of
a procedure for periodically calibrating a pulse time, this experiment
cannot be as part of the actual data collection. In other words, it is
not possible to treat a script as a building block that realizes a certain
experimental procedure and that can then be seamlessly composed with
other such building blocks. All those scripts implicitly share a large
amount of global state, of which the run/stop states and parameters of
the experiments are one part.

�e most attractive solution to this seems to be to rework the ex-
periment scheduling system such that instead of just sending a launch
command to the experimental page, an instance or copy of the experi-
ment is created and submitted to the scheduler, with its own immutable
set of parameters and scan settings.99. Of course, this is never quite true

in a control system for a physical
experiment; at least as long as there

parameters not managed by it.
For example, if one experiment
loses the ion from the trap, other
experiments will also be a�ected
unless the control system knows
to detect this and re-load the trap.

In an elementary programming
context, this would be analogous to changing a runexp() function that
reads parameters from global values to a function runexp(params)
that takes all this state as an explicit argument. Of course, the hardware
might still only have a �xed global list of pulse sequences with certain
parameters each for performance reasons. But multiplexing several
“logical” experiments onto that would automatically be handled by the
higher layers of the control system (e.g. Ionizer).
Another (quite possibly easier) option to work around this problem

for scripts only would be to implement a scheduler that grants each
script exclusive access to all the resources in Ionizer. If a long-running
experimental script is then interrupted by a periodic calibration script,
the former would need to explicitly yield control by stopping all the

24

running experiments and resetting parameters as appropriate before
the latter could start to execute. �is manual approach seems to be
rather brittle and limiting in the long run, though, and might again
make composing more complex experiment structures out of smaller
units hard. Similar to how virtually all computer operating systems
implement pre-emptive context switching to hide from user code the
fact that many processes are using the same CPU, it seems like it should
be the role of a quantum optics operating system to hide the fact that
certain pulse sequence templates and so on exist only once in the FPGA
hardware from the experimenter.

3.2 direct ethernet-adjustable
transport hardware (death)

As discussed in chapter 2.4, in order to transport ions along the trap
axis fast control over the electrical potential at a number of electrodes
is required. Currently, they are arranged into 16 pairs which are each
supplied with a voltage between ± V. In order to avoid heating the mo-
tional degrees of freedom of the trapped ions there are rather stringent
requirements on the noise performance of the voltage sources. In addi-
tion to that, realising more complex experiments (such as combinations
of transport gates and their evaluation) requires �exible sequencing and
branching capabilities with low and deterministic latency. In our group,
Ludwig de Clercq has developed a custom hardware solution to meet
these requirements, which is discussed in more detail in [8]. Named
DEATH (short for “Direct Ethernet-Adjustable Transport Hardware”),
the project consists of a custom backplane-mounted PCB that integrates
four analogue output channels with a commercial Zynq-based CPU/F-
PGA daughter-board, theAvnet MicroZed (a similar, but smaller, version
of the ZedBoard used for the main control system).
For initial hardware testing and the very �rst transport experiments,

a basic set of �rmware and so�ware tools had been developed by Lud-
wig de Clercq; it is described in some detail in the aforementioned
thesis. Crucially, though, no support for having more than one sequence
available at a given time and branching between them was present. Fur-
thermore, the system was not at all integrated with the rest of the ex-
perimental control system. Waveforms and sequences were de�ned
using a separate graphical user interface and the user code on IonPulse
would only output simple binary TTL trigger signals for them. Since
setting up the sequences had to be done manually every time, this made
switching between di�erent experiments involving transport tedious
and error-prone. �e lack of integration with the control system also
made it unrealistic to realise experiments where the sequence would
change on the �y (such as with randomised benchmarking).
In order to hide internal details like memory locations from the

25

Sequences

Waveformsid:
branch target sequences:
steps:

2 4 / /
1

id: 3

slowdown: 0

1 “Load to Exp” b5173ca6

2 “A to B” 7f345c12

42 “B to C” c4511e84

dir.: forward trig.: no
wfm. 42
wfm. 1

slowdown: 216 dir.: reverse trig.: yes …
…

Figure 3.5: �e DEATH sequencing model. �e user uploads a number of waveforms, which consist of a list of samples
(output voltages) and informational metadata. �ey can then be referenced from sequences that contain one or more
waveform playback steps together with triggering and branching information.

network client and address several of the network implementation issues
discussed in section 3.1.1 and some additional subtle bugs, a completely
new �rmware was developed both for the FPGA and the CPU part (with
the exception of the DAC line interface driver).1010. Note: �is makes most of the

discussion of RAM contents and
data structures in [8] obsolete.

Detailed information on the new
implementation can be found in the
�rmware project documentation.

Its design is discussed
in more detail in the following two sections. Supporting measurements
regarding the Ethernet connection latency are presented in section 3.2.3
and section 3.2.4 discusses the output stage calibration, which is now
applied by the FPGA during waveform playback.

3.2.1 High-Level Design Considerations
�e primary goal behind the new �rmware project was to o�er more
�exible sequencing and triggering capabilities. To that end, the user can
con�gure sequence and waveform objects, as shown in �gure 3.5. Wave-
forms are sets of output voltage data for all the channels (electrodes) in
the system. �ey can also have additional associated metadata, such as a
human-readable description or a generation time stamp. �is data is con-
venient for the user when manually triggering waveforms or developing
new experiments, but otherwise ignored by the control system.

�ese waveforms can be referenced by an arbitrary number of se-
quences. A sequence is conceptually a unit of linear execution during
which no branches occur. It consists of up to  steps (limited by the avail-
able hardware memory), each of which references a certain waveform.
Along with �ags indicating whether the waveform should be played in
reverse and/or that an external trigger signal should be awaited before
starting playback, the user speci�es a system clock divider (“slow-down
factor”) for each step. �e latter allows quick coarse adjustments to the
transport speed. At the end of each sequence, a set of other sequences can
be speci�ed (currently: 4) that act as �xed branching targets. Whereas
branching to arbitrary sequences – for example, when switching to a dif-
ferent experiment, or entering a general recovery mode – might require
network communication, the �xed targets can be selected by the main
control system using dedicated hardware logic lines.
Note that branches between sequences are only followed at the end of

26

Figure 3.6: Screenshot of the manual waveform playback interface in Ionizer, which queries the DEATH hardware for
metadata on the currently loaded waveforms and displays a summary of them in a list. Two buttons allow triggering any
waveform manually (both in forward and reverse direction) with a con�gurable slow-down factor.

sequences. For instance, even if a branch override command is sent while
a multi-step sequence is running, execution of the new sequence will
only start a�er the current one has reached its end. �is is a deliberate
design choice: If network communication is required to trigger a branch
that is not pre-programmed, it is advantageous to do so as soon as the
branch target is known (to hide the associated delays). �is requires the
control system to be able to determine when the branch command will
be honoured, even though the network latency is not deterministic. In
the absence of another reference, such as a clock globally distributed
within the laboratory, the TTL trigger lines constitute the only means
of synchronisation between the DEATHs and the main control system,
making sequence boundaries a natural choice with useful granularity. To
verify that the hardware followed the intended control �ow, a checksum
of all executed sequences is computed on the FPGA, which can later be
veri�ed by the control system.11 11. A�er the timing-critical part (i.e.

a sequence of coherent operations
on the ion) has been �nished, the
control system can simply wait for
some time such that the DEATHs
are certainly idle and then fetch
and compare the checksum in a
blocking network request.

In order to make it straightforward to implement the sequencing
mechanism as a hardware state machine in the memory-constrained
FPGA environment, both waveforms and sequences are assigned to
a �xed hardware “slot” and referenced throughout the system by the
respective index of that slot. Currently, 8-bit numbers are used for
indexing waveforms as well as sequences. �is limits the number of
objects that can be concurrently active on the hardware to  = 
each. By simply increasing the bit width of the indices and the size of the
corresponding address tables, more slots could easily be added. However,
since the hardware implementation currently uses only FPGA-internal
RAM (see next section), the size of the available sequence/waveform
memory is going to be more of a restriction for most applications than
the number of slots to index it.
Given such a system of numerically indexed slots, one important

design decision is how to associate the actual waveform data with the
experimental sequences that use it. One initial idea would have been to
integrate the waveform data into the user code running on the ZedBoard
and have the system automatically upload it to the hardware. �is way,
there would be no potential for mismatch; e.g. that another waveform is
loaded into a given slot than the IonPulse code de�ning a given sequence
expects. However, this scheme would be cumbersome for iteratively
tweaking transport waveforms, as a new ZedBoard so�ware would have
to be compiled and uploaded for every small change. �us, the deci-

27

Sequence data

Sequence table

DAC

Processing
System (ARM)

Zynq system-on-a-chip

branch
select in

trigger
in

Waveform table

analog
out

DAC SPI control

DAC reset

SPI

EMGPIO

GPIO Sequencer
Lin. transform

Clock & Interleav.
Lin. transform

Waveform data

Waveform data

DAC analog
out

Lin. transform
Clock & Interleav.

Lin. transform

Waveform data

AXI bus memory address data block RAM

Waveform data

Figure 3.7: A high-level block diagram of the �rmware for the DEATH Zynq ARM/FPGA chip. �e sequencer core reads
data from the sequence table/data and the waveform table memories to generate a stream of waveform data addresses. Four
identical channel pipelines then derive the output values from this, which are then combined to drive the parallel buses to
the two dual-channel DAC chips. AXI buses connect the FPGA cores to the CPU, which provides the network interface for
management and uploading data.

sion was made to separate waveform management entirely from the
experimental sequence code.
Instead, the waveform data is now uploaded manually by the user

from within Ionizer. �is it is convenient from a user’s point of view, as it
can be integrated with manual triggering functionality1212. For hardware testing, sequences

can also be triggered from so�ware.
However, a system with multiple
DEATHs will be a�ected by net-

work jitter this way. �us, hardware
trigger lines driven by the Zed-
Board are exclusively used in the

laboratory.

(see �gure 3.6)
and information about the loaded waveforms can be archived as part
of the usual experiment result data folders. To help avoiding situations
where the set of loaded waveforms does not match the experimental
code, a “unique id” �eld has been added to the waveform metadata.
�e id is set when the waveform is �rst generated (MATLAB, etc.), and
IonPulse experiments can query it for each hardware slot to compare it
to the expected value.

3.2.2 Firmware and So�ware Design

Figure 3.7 illustrates the architecture of the DEATH �rmware, as loaded
onto the Zynq chip on the MicroZed board. To provide deterministic
timing, most functionality is implemented on the FPGA level. �e
central piece of the design is the custom sequencer core which is shared
between all four channels.

�e sequencer core derives its con�guration from two sets of wave-
form and sequence memories, both of which are organised in a two-tier
scheme. �e -bit slot id that represents the waveform/sequence is used
to index a tablememory, which contains the address range in the cor-
responding datamemory. When a given sequence slot is triggered by
the user, the sequencer core �rst accesses the sequence table memory
to obtain the corresponding start address in the sequence data mem-

28

ory. From the latter, it then reads a �xed-length header describing the
branching information for the sequence, and a variable number of step
entries. For each of the steps, it queries the waveform table memory for
the waveform data address range corresponding to the desired wave-
form slot, and iterates over this range in the given direction and with
the desired speed.

�e output of the sequencer core is this continuous stream of ad-
dresses that represent a location in each of the four channel waveform
data memories. For each of the channels, the 16-bit value stored at that
address is converted into aDACword by passing it through a stage which
applies an a�ne transformation with con�gurable coe�cients. Since
the DEATH hardware uses two dual-channel DACs that are updated in
an interleaved fashion, the respective pairs of output streams are �nally
merged into one and sent to the DAC chips along with the required
clocks and channel selection lines over di�erential links.
Currently, all the memories involved are realised using the on-chip

FPGA block RAM cells, which makes it trivial to implement the se-
quencer with low latency and deterministic timing. �e waveform data
memories are  ×  kiB in size, which corresponds to   -bit
samples of output voltage data per channel. �e memory storing the
sequence de�nition data is also  kiB in size. As a sequence header is
 byte in size and a single step occupies  byte (waveform slot, direc-
tion/trigger �ags, slowdown factor), this corresponds to a total maxi-
mum sequence length of approximately 8100 transport events.13 13. In practice, this is unlikely to

be a signi�cant limitation, since a
transport experiment of that length
would be composed of several
shorter subsequences. Using hard-
ware branches, these could then be
concatenated on the �y by the main
control system to form the longer
sequence.

�eARM core on the chip is mostly responsible for providing a high-
level network interface for setting the hardware parameters. It manages
the assignments of address blocks to waveform and sequence slots, and
stores additional metadata about the current waveforms that is not re-
quired by the hardware in its associated DDR RAM.�e con�guration
interface, which is based on the protocol discussed in section 3.1.1, also
allows the user to con�gure the output transformation stage (see section
3.2.4) and read back the data currently sent to the DAC outputs. During
startup, it also resets the DAC chips and con�gures them over an SPI
interface.
Unfortunately, no additional unused FPGA pins are accessible on the

�rst-generation DEATH circuit boards beyond the main trigger signal.
Because of this, the “PMOD” header on the MicroZed board was the
only viable way to add hardware branch selection lines to the existing
system. �ese pins, however, are routed to a part of the �xed GPIO pins
on the Zynq chip which are not directly accessible from the FPGA fabric.
To circumvent this problem for the current board revision, an edge-
triggered interrupt handler on the CPUmirrors the signals to the EMIO-
accessible part of the GPIO controller. �is of course introduces a hard-
to-predict amount of delay and jitter to the signal, which is particularly
undesirable for fast branching. �is GPIO-forwarding latency has been
measured to be approximately  ns for an otherwise unloaded CPU
with relatively small jitter, but other hardware interrupts (e.g. triggered

29

by the network adapter) might introduce additional latency on a non-
idle CPU. In preliminary tests, a delay of  µs between changing the
branch selection lines and asserting the trigger signal has been used,
and no timing issues have been observed. �e functionality has yet to
be used as part of a more complex experiment, though. In either case,
dedicated FPGA inputs are available on the second hardware revision.
Arbitrary branches, beyond those pre-programmed and indexed by

the hardware lines, can be triggered using a separate UDP-based network
interface, the performance of which is discussed in more detail in the
next section. To implement this branch override and the checksum read-
back, the sequencer core is mapped into the ARM CPU address space
over an AXI4 bus along with all the block RAMs and the output transfor-
mation stages. �e CPU is the only AXI bus master, the sequencer core
accesses the memories using a second port for cycle-accurate timing.
To encapsulate all the required hardware details and network com-

munication, a C++ client library has been written. �e full functionality
is available both on top of the lwIP and Qt networking layer, allowing
the same code to be used in IonPulse experimental code and the user
interface implementation in Ionizer. However, the Ionizer client only
modi�es waveform data and reads status information, whereas all the
sequencing manipulations are performed on the ZedBoard. Keeping
all the sequence manipulation in one place is actually required in the
current design, as the list of slots is managed by the client. �e system
con�guration (number of boards, IP addresses) is set within IonPulse,
and exported as a set of parameters to Ionizer. �is proved especially
useful for switching between di�erent con�gurations during testing.

3.2.3 Network-Based Branching
As described in the above, the newly developed DEATH �rmware sup-
ports pre-con�gured branches betweendi�erent sequences. If the branches
were to be selected over a standard serial link, its bandwidth would have
to be relatively high to achieve low latency. For example, transmitting
an  bit sequence id in  µs requires a raw transmission rate of at least
 Mbit s−, even if extra latency incurred by bu�ering is ignored. Consid-
ering this and ease of integration with the main control system (which
currently has no provisions for integrating high-speed data links), the
current system simply uses two logic lines to select between up to four
pre-programmed “fast” branches.

�e Gigabit Ethernet connection between IonPulse and DEATHs
is used for all other branches, including that to initially start a given
sequence. As the requirements are quite di�erent from the main con-
�guration interface (since timing is critical, the reliability features of
TCP are counter-productive), a simple UDP-based protocol is used. Its
two-byte messages consist of a byte of �ags and a byte with the id of the
target sequence, and are designed to be broadcast to all DEATH boards
on the local subnet14

14. To support multiple indepen-
dent DEATH installations on the

same network, the range of ports to
use can be individually con�gured. .

30

Scenario Latency

Direct connection .() µs
Level One GSW-0807 .() µs
Netgear GS108 .() µs
Raw NIC receive .() µs

Figure 3.8: Mean latencies for 1-byte UDP
packets sent from a ZedBoard to a MicroZed
over a Gigabit Ethernet connection.

30 32 34 36 38 40
roundtrip latency / µs

100

101

102

103

104

oc
cu
re
nc
es

Figure 3.9: Distribution of round-trip latencies over the Gigabit Ethernet
connection between two MicroZed and ZedBoards across a Level One
GWS-0807 switch, measured for a 2-byte UDP broadcast packet ( 
iterations total). Number of trials in each bin is shown on a log-scale.

To evaluate the timing properties, two sets of experiments were per-
formed on one ZedBoard and one MicroZed. In the �rst, one program
would assert a digital output and immediately send a 1-byte UDP packet,
whereas the other would receive the packet and then toggle its output
in turn. �e di�erence in time between those two events was measured
with an oscilloscope to give an estimate for the latency of the networked
triggermethod. �e results for several di�erent con�gurations are shown
in table 3.8. Note that the performance heavily depends on the network
con�guration: While the Level One GSW-0807 switch used in one test
adds only . µs of latency to the connection, a Netgear GS108 switch
produced a signi�cant extra delay of . µs. To estimate the overhead
due to the lwIP Ethernet/IP stack, the low-level Ethernet driver code that
reads the received packet from the network interface controller (NIC)
ring bu�er was instrumented in a similar fashion. �e extra latency from
this point to the receive callback function in user code is approximately
. µs, which suggests that there is signi�cant potential for optimisation
in the network stack for applications that require even lower latencies.
Both of the above switches are consumer-level commodity products

and no latency properties are indicated in their data sheets. From testing
several more similar products, there does not seem to be a reliable
indicator for the latency behaviour of a givenmodel – all tested consumer
switches operate on the store-and-forward principle (as opposed to cut-
through), where complete packets are bu�ered by the switch before
routing them to the target port. However, empirically products that
advertise extra features such as quality-of-service (QoS) support are
more likely to add signi�cant processing latency (even if those features
are not in use).
To obtain more detailed information on the statistical distribution

of latencies, a second experiment was set up where the MicroZed board
simply echoed back any received UDP packets to their sender. �e
�rmware for the ZedBoard would send out  -byte UDP packets

31

containing a sequence number and measure the time until the reply
arrives. �e resulting histogram for the boards connected using a Level
One GSW-0807 switch is shown in �gure 3.9. While UDP does not
o�er any guarantees regarding packet loss and ordering, all test packets
arrived in order. �e median and mean latencies were . µs and
. µs, the 99.99-th percentile . µs, and the longest observed time
was . µs.
Note that the data for this was acquired sending out IP broadcast

packets from the ZedBoards, matching the situation for DEATH branch-
ing. When using packets addressed directly to the MicroZed board, the
used switch would sporadically reorder packets, holding single ones of
them in an internal bu�er for tens of milliseconds. �is might explain
the discrepancy between the two presented measurements, where the
round-trip latency appears to be smaller than twice the one-way latency
by a non-negligible amount, as regular packets were used for the �rst
measurement.

3.2.4 Output Calibration
�e DEATH hardware was designed to provide an output voltage swing
of at least ± V, with a linear mapping between digital output words and
analogue voltages. [8] Nevertheless, there are small residual di�erences
in the response of the channels, which are corrected to �rst (linear)
order by an additional calibration step. In the �rst �rmware revision, the
calibration consisting of gain and o�set adjustments used to be applied
directly to the waveform data �les as part of the generation process.
�is of course necessitated regenerating all used �les every time the
hardware calibration changed. Since the capability for making on-the-
�y adjustments to electrode voltages was going to be built into the new
�rmware anyway, the output calibration was also folded into it.
As depicted in �gure 3.7, each output data word is subjected to an

a�ne linear transformation with con�gurable coe�cients before being
sent to the DACs. All calculations are performed using 16-bit �xed-
point arithmetic, with the gain factor being in the interval [, ). In
other words, the transformation is described by

y(x) = ⌊ k
 

x + d⌋ (3.1)

for gain and o�set coe�cients k and d. Negative o�sets can be applied
by using the two’s-complement representation.
In order to obtain the calibration coe�cients, it is �rst necessary to

determine what the maximum range supported should be. �e absolute
range limits slightly varied from channel to channel as to be expected,
but were near −. V and +. V. Keeping the range symmetrical for
convenience and budgeting for some further compensation due to dri�s
or ageing, a target range of [− V,  V]was chosen for the full waveform
data range of [,  − ]. Note that this particular range is a user-level
32

−6 −4 −2 0 2 4 6
Uideal / V

−2

0

2

4

6
(U m

ea
s
−U �

t)/m
V



















Figure 3.10: Linear �t residuals for the output DAC response curves of each DEATH
channel (measurement resolution ≈ . mV due to noise). Data points at Uideal =
{−,−, , , } V, lines to guide the eye. Two lines of the same colour correspond
to the two channels driven by the same DAC chip.

choice that is not known by any part of the �rmware or control libraries
(with the exception of the Ionizer waveform loading code, which needs
to convert the physical voltages from the waveform �le to memory
contents).

�e actual response of each hardware channel then needs to be
determined. A straightforwardway to do this is to null out the calibration
for all the channels (gain  , o�set ) and load a waveform �le with a
set of �xed voltages across all the channels. For each channel, the output
for a few di�erent voltages is recorded. For the transport experiments
performed thus far, this was done by manually measuring the outputs
for waveform voltages ofUideal = {−,−, , , }V using a Keithley 2100
 -digit digital multimeter, although this could easily be automated.
A linear polynomial is then �tted to the data to obtain the calibration
coe�cients according to (3.1).

�e calibration constants are entered into Ionizer, which sends them
to IonPulse on startup where they are in turn forwarded to the respective
DEATH boards. Subsequently, the IonPulse user code can also alter
this calibration to add a static o�set to the voltage on a certain channel
(modify d, leaving k constant) or to keep a certain electrode at a �xed
voltage (set k =  and d to the desired value), which can be useful for
calibrating some transport routines (e.g. splitting of ion strings).

�e residuals from one such calibration measurement are shown in
�gure 3.10. Interestingly, two di�erent classes of behaviour are visible:
While there seems to be no clear trend for one half of the channels, the

33

other half exhibits a bump in the response around  V. Note that two
channels sharing a DAC chip always show the same behaviour, while
there is no such correlation across the two chips per physical PCB (0–3,
4–7, 8–11, 12–15). �is suggests that the reason for this might be related to
manufacturing di�erences between batches of DAC chips. No attempts
were made to better characterise and compensate this non-linearity,
since in practice other de�ciencies in the model used for waveform
generation due to imperfect geometry, stray �elds and so on lead to
corrections exceeding it in magnitude (cf. [35]).
No systematic investigations of the long-term dri�s in calibration

have been performed yet. Anecdotally, however, the output voltages
appear to be stable to within ≈  mV over the course of one month or so.
Some measurements for shorter-term temperature-related dri�s (on the
scale of several hours) can be found in [8].

3.2.5 Future Improvements
�e combination of new DEATH �rmware and so�ware has been in
continuous use in our group for approximately a year with no major
issues remaining. Transport is being used as part of loading the trap,
and the system has also been used for the dedicated transport gate
experiments described in [9] and [10]. Nevertheless, there are a few
remaining improvements to be made.
Firstly, two particular adjacent channels on one circuit board (i.e.

from the same DAC chip) experience an issue where for large jumps
in voltages, the output will sometimes jump to a seemingly arbitrary
value instead of to the target voltage. �e values have been veri�ed to be
correct up until the di�erential bu�er at the very end of the �rmware
pipeline. �is suggests that the issue might be due to borderline timing
on the parallel outputs to the DACs, maybe together with some ringing
or crosstalk introduced by changes in the most signi�cant bits of the
output word. A �rst step to start investigating this would be to set up
rigorous constraints for the timing relationship between data and clock
outputs during FPGA design synthesis, which has not been done yet.
In terms of functionality, it would be useful for some experiments15

15. For example, to automatically
explore a larger space of waveform
parameters, although for this a
script could also be used to up-
load new waveforms as needed.

to increase the amount of memory available to the system. A factor of
two in capacity would be trivial to gain by synchronising the sequencing
core to the interleaving done in the DAC output core to avoid discarding
half of the data unused when executing a waveform without slowdown.
It would also be fairly straightforward to extend the system to read
waveform data from the on-board DDR3 RAM, which would make the
waveform storage virtually unlimited (hundreds of megabytes).16

16. �is will require a somewhat
careful approach in order to keep
the output timing deterministic
even though the latency through

the memory subsystem is not. Since
timing stability is more impor-
tant than the absolute latency

from trigger to start of playback,
a fairly simple strategy of just bu�er-
ing, say, . µs of waveform data
would probably su�ce, though.

Another improvement would be to go back to using spline interpo-
lation for generating the output data on-the-�y, as done previously for
EVIL pulse shaping (cf. [8]). Since the waveform shapes are greatly over-
sampled – the low-pass �lters before the trap have a corner frequency of
 kHz, compared to the  MHz DAC update rate –, splines would

34

considerably reduce the amount of memory needed for faithful repro-
duction. Perhaps more importantly, spline interpolation could also be
implemented in such a way as to allow much more �ne-grained control
about the playback speed than is currently possible with the integer clock
divider.
From a so�ware architecture point of view, it would be desirable to

increase the encapsulation of the interface exposed by the hardware. For
example, if the �ash memory present on the hardware is integrated into
the �rmware, it could be used to store the output calibration constants,
and the waveform upload interface could subsequently be changed to
accept voltages instead of raw 16-bit integers. In a similar fashion, now
that it is clear that the networking protocol can support complex data
structures with relatively little overhead, it might be desirable to manage
all state (for example, the assignment of the numeric ids to sequences) on
the DEATH ARM CPU and consequently also con�ne all the encoding
of hardware tables to it. Such changes would make it easier to test and
perform incremental improvements to individual devices in future, more
complex quantum information experiments, by making it less likely that
a certain change will require synchronised modi�cations to more than
one system.
Finally, there currently is no convenient way of managing overrides

to the output calibration constants from user code (as discussed in the
previous chapter). It would be useful to add a thin layer of abstraction
that saves the actual hardware calibration and then allows the user to
specify voltages to pin a channel to or to add as an o�set in physical
units. Work on this has been started by Vlad Negnevitsky.

3.3 dashboard for electronically
variable interactive lock-boxes
(devil)

As alluded to in the introduction to this chapter, an increasingly cum-
bersome aspect of the experimentalist’s day in our lab was to keep track
of the status of the ever-growing number of feedback control loops. In
particular, this became apparent when what ultimately turned out to be
an intermittent source of mechanical noise degraded the performance
of the frequency-doubling cavities for addressing the 9Be+ transitions.
Similarly, a readily available overview of the state of the system would
have been helpful when searching for the reason for slow dri�s in the
40Ca+ laser systems at one point.
Unless there are particularly stringent requirements in terms of loop

bandwidth or noise performance,17
17. �ese exceptions are mostly fast
control loops locking laser currents
to ultra-high �nesse cavities, for
which analogue servo circuits
with a bandwidth on the order of
 MHz are used.

the default PI controller solution
in our group is the EVIL hardware originally started by Ludwig de
Clercq and later co-developed by Vlad Negnevitsky. [8] Short for Elec-
tronically Variable Interactive Lock-Box, an EVIL device consists of a

35

backplane-mounted printed circuit board with two  bit analogue-to-
digital converters and two DAC counterparts; one with  bit resolution
and a parallel interface, the other with  bit resolution and a (slower)
SPI interface. A commercially available daughter board houses a Xilinx
Spartan 3 FPGA that uses the two independent PI controller channels.
Since the initial release, the �rmware has undergone several revisions
by Vlad Negnevitsky, Alexander Hungenberg and myself. [38, 39]

�e FPGA o�ers a serial interface that can be used to con�gure the
controller parameters andmonitor several digital signals. It is exposed to
the user via an FTDI USB-to-serial converter chip on the daughter board.
Previously, a client program written in Python using the PyQt library
was used to provide a graphical user interface for devices connected
locally to the USB port of a PC, a single device at a time. �ere are several
downsides to this approach. Firstly, the fact that the device needed to be
connected directly to the PC controlling it led to a tangled nest of USB
cables and repeaters throughout the lab, which caused various issues
regarding ground loops and signal integrity. Secondly, the so�ware
supported no way of identifying the channels apart from the serial port
numbers assigned by the operating systems, which are not persistent
across reboots. �irdly, this meant that naturally only a single PC could
be used to monitor and manipulate a certain lock channel. Li�ing the
latter restriction was of particular interest in our case, as the 40Ca+ laser
systems are shared between three di�erent trap projects. It would also
allow easy addition of additional logging and monitoring systems, such
as described later in the section.
A natural solution for all of these issues is to run a server executable

on a computer close to (subsets of) the controllers, which identi�es the
connected devices and provides access to the rest of the laboratory via a
network connection. �is idea of quickly and locally converting control
interfaces to Ethernet has become especially appealing with the advent
of cheap o�-the-shelf mini-computers, such as the Raspberry Pi series
of ARM-based devices.

3.3.1 Design and Implementation
One possible way to add network support to the existing EVIL user inter-
face would have been to use an emulated serial port driver on the control
PC, which would forward the serial connection data over a TCP/IP net-
work to another computer to which the device is actually connected.
Such so�ware packages exist and were experimented with in our group,
but mostly seem to be designed for low data rates, lower than e�ective
use of the data streaming feature requires. Another similar approach
would be to simply break up the existing Python so�ware – which al-
ready happened to use a background process for serial communication
– into two parts that communicate over the network. �e latter was
attempted by Christoph Fischer, but he found that his so�ware was two
orders of magnitude slow to support streaming of even a single channel

36

from a Raspberry Pi. [40] Of course, both of these options still would
not enable multiple clients to concurrently access the same hardware.

�us, the decision was made to start from scratch and develop a
system that cleanly abstracts away all the synchronous serial connection
handling into the server part and allows several separate clients to con-
nect. Following the group’s acronyming tradition, the project was named
DEVIL, where the �rst latter stands for the dashboard the new client
so�ware would provide. �e design goal for the server so�ware was to
be able to control at least four EVILs from a single Raspberry Pi-style
device, transparently handling hot-plugging (which is is important as
some part of the laser system is being worked on most of the time), and
providing su�cient streaming performance to allow a real-time view
of all thirty-odd channels in our laboratory. It was also desirable that
the new so�ware require no modi�cations to the FPGA bitstream, so
that the networked system could be rolled out incrementally and the old
so�ware would still be available as an emergency fall-back on the laptop
computers in case of issues with the network control.
Because of the previous sobering performance results and the au-

thor’s familiarity with developing performance-critical server applica-
tions in native programming languages, it was decided to write the server
part in C++. To handle data input/output, the Boost.Asio library was
selected since it supports non-blocking serial port input/output opera-
tions in addition to networking, contrary to alternatives such as libevent
or libev. As a network messaging layer18 18. �e networking model is simple

enough such that using raw sockets
would not have required too much
extra e�ort. However, ZeroMQ was
already being used in a di�erent
project concurrently developed in
the group anyway.

, ZeroMQ was used in the form
of the azmq library.

�e �nal server program consists of just under 3000 lines of C++
code (including extensive documentation comments), and uses libudev
to continuously monitoring the system for hot-plug events. When a
EVIL is detected, the serial number (read from the FTDI serial converter
chip) is used to look up the channel names from a con�guration �le19 19. �is is the only server-side piece

of state/con�guration.
and

the serial connection is opened. For each logical channel (i.e. twice for
dual-channel �rmware versions) amsgpack-rpc-based control interface
is opened on an automatically selected port and announced on the local
subnet via a custom UDP-based resource discovery protocol (Fliquer).
�e single-threaded (event-based) server application continuously polls
the hardware for status register updates and streaming packets (if re-
quested), interleaving control commands as they are received from the
clients.
In previous iterations of the client so�ware iteration, the combination

between the Python programming language and the Qt/pyqtgraph user
interface libraries proved to work well for rapid and easily accessible
GUI development. Cursory tests revealed that as long as updates were
handled somewhat carefully, pyqtgraph would easily be fast enough
to show a real-time overview of 50+ channels. �us, the new client
application was also developed on top of this technology stack – in
fact, small portions of the control panel widget code could be directly
reused. �e client is now an entirely single-threaded20

20. As far as the user code is con-
cerned, that is – the ZeroMQ li-
brary might internally use threads.and single-process

37

Figure 3.11: �e PyQt-based DEVIL user interface, here running on Microso� Windows 8.1. Le�: �e dashboard, giving an
overview of status and error signals for the locks in the laboratory. Right: �e interface for modifying the lock parameters
of a single channel. A variable number of live plots can be displayed in the right half for error input, controller output and
internal �lter signals.

application, made possible by integrating the pyzmq library with the Qt
event loop.
Altogether, the client program is made up of about 1900 lines of

Python code and o�ers two main user interface components, as shown
in �gure 3.11. One is a dashboard that shows the lock status and error
signal for a con�gurable subset of channels. �e other is made up by the
actual control panels for the parameters of each lock channel, the layout
of which is based on the previous client so�ware. �e latter also allows
the user to view additional streaming channels (such as the controller
output) and to align the view of the streamed data to the hardware sweep
generator cycle.
Although several hardware communication �aws were uncovered

during the implementation of the new high-performance server so�-
ware (see appendix A), the system has been tested to run stably with
�ve client PCs concurrently displaying 30 channels. �e precise data
rates achieved by the system depend heavily on the acquisition settings
and other factors. For a rough benchmark, one of the servers uses a
. GHz ARMv7 core to about % to handle �ve connected EVILs. �e
client so�ware uses about % of a single CPU core on a typical desktop
computer2121. Intel i7-4790,  GiB RAM, Win-

dows 8.1, Python 3.5.
to display  MB s− of streaming data.

3.3.2 Long-Term Logging
In addition to the real-time control so�ware, a data logging client was
also implemented. While based on the same Python code base as the
graphical user interface, it is a basic command line application that
subscribes to changes for all the channels on the local subnet. It monitors
the error signal and controller output streams along with all the register
values and writes the acquired data to an In�uxDB time series database
on a remote server.

38

Figure 3.12: �e Grafana-based long term logging web interface showing  h worth of data recorded for some of the locks in
the 40Ca+ laser system. �e orange plots in the top half show the error signal input streams, the green plots in the bottom
half the corresponding PI controller output. In the latter, slow dri�s in the laser controllers and/or reference cavities are
apparent.

For the long-term recording of data, the amount of streaming data
received needs to be reduced considerably. As a compromise between
time resolution (which is useful to detect correlations between dri�/out-
of-lock events) and bandwidth/storage requirements, a target stream
update rate of one point each several seconds was chosen. In order to be
less a�ected by changes to the stream acquisition settings in the regular
client so�ware, the logging client waits until chunks of  samples have
been accumulated for a given channel, then computes a statistical sum-
mary (mean, 20th/80th percentile, minimum/maximum) and pushes
it to the database. �e recorded data can then be accessed using a web
interface based on the open-source Grafana so�ware (see �gure 3.12), or
by directly using the In�uxDB API from a programming language like
Python.

Averaging thatmany samples also helps with the  bit resolution limit
of the hardware streaming implementation. To match the real-time user
interface, the stream data is scaled by a factor of 4 such that each unit
in the recorded data corresponds to a code point of the hardware input
converter. �e percentile measures thus appear quantized to 4 y-axis
units. �e analogue outputs have  bit resolution, which corresponds
to . units.

39

3.3.3 Future Improvements
One possible direction for the future would be to design new hardware
that integrates more higher-resolution channels onto a single board,
maybe also directly integrating the networking capabilities by using a
Zynq-like combinedCPU/FPGAchip. However, there remains a number
of improvements to be done to the current so�- and �rmware.
Firstly, for certain applications, the 10 bit input resolution a�orded

by the analogue-to-digital converters is not su�cient. At the same time,
the system operates at a higher clock speed than useful for the achievable
loop bandwidth anyway ( MHz vs. ≈  kHz). �us, one possible
improvementwould be to include a switchable averaging �lter to increase
the e�ective resolution by oversampling.
Secondly, the current controller �rmware does not gracefully handle

integrator over�ow – the output just wraps around without any indica-
tion to the user. �is behaviour should at least be detected and reported
using the system status register, as done in [39]. Perhaps a feature that
automatically clips the integrator values or just pauses the controller in
this case would also be useful.
For both this as well as the automatic relocking mechanism devel-

oped in [38], it would be useful to route the out-of-lock status signal to
the TTL port on the EVIL device. �is signal could then be correlated
with the scheduling information by the main control system to elimi-
nate experiments a�ected by a laser glitch a�er the fact (or to possibly
immediately retaking the a�ected data sets).
As for the client so�ware, development initially targeted PyQt ver-

sion 5, which is the most current version (Qt 5 is also used for Ionizer).
However, pyqtgraph su�ered from several hard-to-debug memory cor-
ruption issues when used with this version, which would lead to nonsen-
sical plotted data and program crashes2222. One likely cause for this would

be an unforeseen interaction be-
tween the Python garbage collector
and the Qt/C++ manual memory
management system – it should
not be possible to arbitrarily cor-
rupt memory in Python at all.

. To work around the issues, the
client was downgraded to PyQt 4. At some later point – once pyqtgraph
o�cially supports Qt 5 –, it should be ported to version 5 again, at it is
currently the only piece of so�ware still relying on version 4 in use in
the laboratory.
Feature-wise, one useful addition to the so�ware would be to detect

when the control loop dri�s close to the limits of the controller output
range, and then display an alert to the experimenter so they can attend
to the loop before it negatively a�ects the experiment in progress. �ese
alerts could either be implemented in the main client so�ware or, if
the functionality is only wanted for slow dri�s, on top of the long-term
logging database.

40

STATIC QUBIT RESULTS

In preparation for evaluating the performance of the transport gates
on the �eld-independent qubit in 9Be+, the same experiments were
performed on the conventional, static gates. �is not only establishes
a baseline for comparing the �delities achieved with transport gates –
no closer analysis of the static gates from a quantum-information point
of view had been attempted in our group before –, but also served as
a good test bed for the code to track and manipulate AOM phases in
order to implement qubit rotations around di�erent axes.

Due to ongoing problems with the 9Be+ laser systems, randomised
benchmarking was �rst performed on the 40Ca+ quadrupole transition,
even though the limited coherence time due to magnetic �eld �uctua-
tions was likely to pose a considerable restriction for the achievable gate
�delities. �e randomised benchmarking experiments are discussed
in section 4.1, with a cursory estimation of the relative importance of
some of the imperfections. Some proof-of-principle results for gate set
tomography are presented in section 4.2.

�e same experiment routines were also developed for 9Be+, and
attempts to run it were made at various points. However, even though
the laser system was ultimately functional again, issues leading to large
intensity �uctuations on the lasers for the Raman beam pair driving the
qubit transitions were resolved only a�er the end of the project. Hence,
the data for randomised benchmarking on the �eld-independent qubit
presented in section 4.3 are to be taken merely as a proof of concept.

4.1 randomised benchmarking on
40ca+

A�er developing the randomised benchmarking code for the  nm
carrier transition of the ∣P/,m = /⟩ ↔ ∣D/,m = /⟩ qubit in
40Ca+, experiments were performed at various points as other aspects of
the apparatus were improved. In this section the data with the highest
�delity obtained to date is presented, which is also the most recent data
set.

41

4.1.1 Apparatus Calibration

For this data set, a harmonic potential centred in the main experimental
zone of the trap was used, with (measured) frequency fz = . MHz
and a nominal o�set of  meV. �e radial modes of motion were
found at fx = . MHz and fy = . MHz.
Since previous experiments had shown that the deviation from the

simple (motion-insensitive) carrierHamiltonian due to population of the
highermotional Fock states can considerably limit the reachable �delities
(for example, a�er only using regular Doppler cooling), some care was
taken to optimise the cooling parameters �rst. �e laser intensities and
polarisations for Doppler cooling were �rst adjusted to match settings
previously determined to be close to ideal for these well parameters.
For EIT cooling, the pump beam intensity and the shared pump/probe
beam detuning were optimised for cooling the �rst (x) radial mode, as
diagnosed by driving its �rst red sideband transition. Cooling the axial
(z) mode to the ground state using (pulsed) resolved sideband cooling
in addition to that did not improve the observed �delities any further.

�e frequency of the  nm carrier transitionwas then calibrated us-
ing Ramsey experiments. �e resolution during the calibration process
(as limited by feature width and statistical uncertainties) was signi�-
cantly better than  Hz. In addition to that, however, slow dri�s on
the order of  Hz per hour were observed, which would necessitate
periodic recalibration of the frequency in longer experiments.
To stabilise the magnetic �eld of B = . mT the external current

stabilisation and active feed-forward described in [41] were used. �e
latter was used to inject �elds to cancel the �rst and third AC mains
harmonics ( and Hz) at the position of the ion, with the phases and
amplitudes chosen to visually cancel out the respective components in
a line-triggered Bayesian-optimized Ramsey spectroscopy experiment
with a wait time of  µs.
To calibrate the rotation angles for the gates, progressively longer

sequences of the respective π- and π/-rotations were used. For most
of the experiments, the time for a π/-rotation was �xed close to the
limit of the current DDS hardware (which is already rather close to
the limits imposed by the switching times of the used AOMs anyway).
Figure 4.1 shows an experiment with 50 π/-rotations about the x axis,
where the gate duration is �xed to tπ/ = . µs and the RF amplitude
sent to the driver for the main double-pass switching AOM for the
beam line is varied.11. In all experiments discussed

here, the single-pass AOM used for
creating multichromatic beams is
switched on once before the begin-
ning of the gate sequence and le� at

constant settings.

�e laser intensity at the input of the AOM setup
was actively stabilised using a photo-diode to feed back on the  nm
tapered ampli�er current.

�e sequence was executed using a special experiment de�nition
which allows the experimenter to execute sequences of gates entered
in string form (e.g. “x” for a series of 50 π/ rotations around the
x-axis, or “xY x” corresponding to a π-rotation around the y-axis inter-
leaved between two x π/-rotations) using exactly the same routines as
42

44.8 45.0 45.2 45.4 45.6
 nm master AOM RF / %

0.0

0.1

0.2

0.3

0.4
p ↓

Figure 4.1: Bright state population a�er 50 π
 pulses versus

RF amplitude for the main switching double-pass AOM in
the  nm beam path, to calibrate the laser intensity for
tπ/ = . µs. A parabolic �t is shown, centred around
a = .()% (arb. units).

2.74 2.76 2.78 2.80
tπ / µs

0.0

0.1

0.2

0.3

0.4

p ↓

Figure 4.2: Bright state population a�er 25 π pulses versus
RF duration per pulse. A parabolic �t is shown, with the
calibrated pulse time being tπ = .() µs.

later used for executing the automatically generated randomised bench-
marking sequences. To absorb shot-to-shot intensity noise into reduced
contrast for later analysis,  ⋅  repetitions were performed per point.
A parabolic �t was used to extract the minimum of a = .()%.2 2. Since the precise shape of the

curve depends on many uncharac-
terised response curves (DDS out-
put, RF ampli�ers, AOM di�raction
e�ciency), a parabola is used as an
approximation under the assump-
tion that the feature is symmetric.
Due to the fact that a double-pass
AOM is used, this is quite a good
approximation as long as the scan
range is small enough.

A�er calibrating the laser intensity in this way, the duration of the π gates
was calibrated in a similar fashion using a string of 25 gates (see �g. 4.2).
Again, a parabolic �t was used to obtain the gate time tπ = .() µs
(which is less than  ⋅ tπ/ due to the �nite AOM bandwidth).

4.1.2 Results
A�er calibrating the qubit rotations in this fashion, they were analysed
using a randomised benchmarking experiment. �e data shown here
has been acquired using a scheme similar to the original publication
[16], where in lieu of choosing a series of minimal realisations of Cli�ord
group elements, the random sequences consist of a series of random
“computational” π/-pulses interleaved with random Pauli group ele-
ments (including ±1 and ±Z, which are just implemented by altering the
phase of the RF pulses sent to the AOMs for further gates, i.e. rotating
the reference frame instead of modifying the physical state).
For the results presented here, a set of  di�erent random π/ ro-

tation sequences was executed with  di�erent random sequences of
interleaved Pauli gates each, for a total of  random gate sequences.
Due to issues with the communication between the ZedBoard and the
DDS cards3

3. While not tracked down at the
time of writing, the problem is
likely related to the capacity of the
control FIFO used to update pulse
parameters. What triggers the issue
is not the number of pulses, but the
total number of pulse parameters
sent through the FIFO during a
sequence.

, the maximum sequence length was restricted to  compu-
tational gates, equivalent to a total number of  pulses per sequence.
Each such sequencewas also truncated to several shorter lengths, leading
to a total of   sequences ranging between  and  computational

43

0 20 40 60 80 100
Number of comp. gates

0.900

0.925

0.950

0.975

1.000

Ta
rg
et
st
at
e
oc
cu
pa
tio
n

Figure 4.3: Mean 40Ca+ target state populations for  ×  =  random gate se-
quences truncated to di�erent lengths (log-scale). Whiskers show minima/maxima,
shaded areas a kernel density estimate. A least-squares �t yields an estimated aver-
age �delity of .() per computational gate (an error rate of .() ⋅ −) with
the axis intercept being .().

gates in length. Due to constraints in the current DDS drivers, a pause of
. µs between each gate pulse was inserted, which also helps absorb any
transient behaviour in the main switching AOM44. If the pulses were applied back-to-

back, the gate times would have to
be chosen based on the preceding
pulses to re�ect the AOM switching

dynamics.

. Hence, the total dura-
tion per computational gate of tcg = . µs+. µs+. µs+. µs =
. µs.

�e gate sequences were generated on-the-�y on the ZedBoard CPU
using a pseudo random number generator such that the expected target
state would be ∣⟩ or ∣⟩with equal probability (with the initial seed being
set from and recorded by Ionizer for reproducibility). For each data
point, the experiment was repeated  times. Shots where an unusually
low number of scattered photons was observed during the Doppler
cooling process (e.g. due to  nm laser dropouts or heating caused by
background gas collisions) were detected on-the-�y and acquired again.

�e results are summarised in �gure 4.3. An exponential least-
squares �t to the probabilities of �nding the ion in the expected state
yields an average in�delity of .() ⋅ − per computational gate. Note
that the quoted uncertainty is merely the statistical error estimated from
the �tting process – as also observed in other experiments and theoreti-
cally predicted in the presence of non-Markovian noise, the spread in
observed outcomes for a given sequence length dominates it by far.

�e full data set is shown in �gure 4.4. As in the previous �gure, the
di�erent sequence lengths are laid out horizontally, whereas the vertical
axis now enumerates the di�erent randomly selected gate sequences.
�e data points were acquired in two randomised scans over each lines,

44

0 50 100
Number of comp. gates

0

20

40

60

80

100

120

R
an
do
m
isa
tio
n
in
de
x

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ta
rg
et
st
at
e
po
pu
la
tio
n

0.0003 0.0001
Average error over slices of  randomisations

Figure 4.4: Results for individual 40Ca+ randomised benchmarking sequences, with
 repetitions per point. On the horizontal axis, the number of computational
gates per sequences is shown. �e vertical axis arbitrarily indexes di�erent random
sequences, with each block of  corresponding to a di�erent set of Pauli randomi-
sations for the same sequence of π/ pulses. �e signal has already been inverted
where the dark state was the expected outcome. Overlaid is a dashed line show-
ing the error as obtained from an exponential �t to a moving vertical slice of 32
randomisations each, where a slight dri� over the total acquisition time of  s is
visible.

45

but sequentially in the randomisation index. No drastic di�erence in
�delity between the data points taken at the beginning and the end of
the total  minutes is visible, although there might be a slight systematic
dri� towards lower �delities that warrants closer investigation for future
high-�delity experiments.
In the following sections, I will brie�y consider the impact of a

selection of known imperfections on the overall �delity. �is should
not be taken as a full, rigorous characterisation of the system, however –
none such was attempted, since the experiments with 40Ca+ were only
intended as a brief tangent on the way to evaluating 9Be+ FIQ transport
gates.

4.1.3 Error Sources
One source of errors that immediately comes to mind is imperfect con-
trol over the rotation angle of the gates. �ere are two possible issues
here: Static miscalibration of the rotation angle, and fast intensity noise
of the  nm laser light. As for the former, evaluating (2.21) for a relative
miscalibration εΩ of the total rotation angle per computational gate (on
average, π) yields

Fint.miscal.(εΩ) =  ( + cos(πεΩ)) (4.1)

Comparing the 95-con�dence intervals from the �ts to the π/ and
π calibration scans shown in 4.1 and 4.2 to the respective widths of the
features translates to a relative error in rotation angles of smaller than≈  ⋅ −. In addition to that, even with the intensity feedback loop
engaged, relative long-term dri�s of the Rabi frequency on the order of
− h− were observed, likely due to beam pointing instabilities. Even a
conservative estimate of εΩ =  ⋅ − yields only an in�delity of  ⋅ −
per computational gate – the contribution of static calibration errors to
the total in�delity is negligible.

�e amount of intensity noise can be estimated from the contrast in
the calibration scans: Assuming that the actual shot-to-shot carrier Rabi
frequency follows a Gaussian distribution around the ideal value with
relative standard deviation σΩ, the signal of a Rabi �opping experiment
is given by

p∣⟩(θ) = 

( + e−  θσ Ω cos(θ)) . (4.2)

�e data from �gure 4.2 leads to an estimate of σΩ =  ⋅ −. Taking
the ensemble average for an ideal rotation with angle π leads to the
dephasing channel given by the Kraus operators {√ − p1,

√
pσz} with

p = 
( − e−  πσ Ω), resulting in a �delity of

Fint. noise(σΩ) =  ( + e−  πσ Ω) , (4.3)

or for the above value, an error per computational gate of  ⋅ −.
46

0.0 0.5 1.0 1.5 2.0
Ramsey wait time / ms

0.0

0.2

0.4

0.6

0.8

1.0
C
on
tr
as
t

regular
spin echo

Figure 4.5: Contrast in a Ramsey experiment (amplitude
of oscillations when scanning the phase of the second π/
pulse) on the 40Ca+  nm carrier transition as a function
of wait time, with and without an interleaved spin-echo
π-pulse. Dashed lines show duration of a -computational-
gate randomised benchmarking sequence and the level of
contrast equivalent to the result from �g. 4.3.

0 10 20 30 40 50 60
Number of detected photons

10−6
10−5
10−4
10−3
10−2
10−1
100

Fr
eq
ue
nc
y

Figure 4.6: Distribution of photon counts observed during
40Ca+ readout (tr =  µs window, . ⋅  shots total).
Lines show a double-Poissonian model including decay from
the dark state and Gaussian intensity noise on the detection
laser, with parameters obtained using maximum-likelihood
estimation: λ∣⟩ = ., λ∣⟩ = ., σ = .%, τ = . s.

In summary, e�ects from imperfect laser intensity control are cur-
rently negligible. Similarly, a cursory estimate shows that even if the
static qubit frequency error were to reach  Hz due to the observed
slow dri�s, the error per gate would still be below −. However, there
is a signi�cant amount of frequency noise a�ecting the qubit on shorter
time scales, as determined from the loss of contrast in Ramsey exper-
iments with varying wait times (�gure 4.5). Comparing the data to
the sequence duration of  µs for  computational gates, it is clear
that this decoherence process is currently the main source of errors. In
fact, the target state populations observed in randomised benchmark-
ing almost reach the results for the spin echo sequence, matching the
insensitivity of randomised benchmarking sequences to slow noise pre-
dicted in [17]. �e hypothesis that this is the dominant error source is
also corroborated by additional experiments with an additional wait
time inserted in between gates, where an accordingly lower �delity was
observed.
From comparison to the coherence times observed in other traps

using the same laser source, these �uctuations seems to be mainly due
to magnetic �eld �uctuations rather than phase noise on the  nm
laser. Giving a precise expression for the loss of �delity due to frequency
noise is hard, however, as it depends heavily on its power spectrum
(which is known to be very much non-white due to residual pick-up at
the harmonics of  Hz, the AC mains frequency). [42]
Even though randomised benchmarking is insensitive to errors in

state preparation and measurement5

5. As long as they are uncorrelated
to the sequence length, they do not
a�ect the observed decay used to
derive the error per gate in the ideal
case at all.

, the characteristics of the readout
process are still relevant for quantum information experiments mak-

47

ing use of those operations. �e overall distribution of the number of
photons detected during the state-dependent �uorescence of a number
of experiments can be modelled as a weighted mixture of two Poisso-
nian processes with di�erent mean values for the dark state, λ∣⟩, and
the bright state, λ∣⟩. In addition, there is a �nite probability that ∣⟩
spontaneously decays into the bright state mid-way during the �uores-
cence process and then scatters photons for the remainder of its duration.
�is is a function of the ratio of readout duration to dark state lifetime,
γ = tr/τ, and extends the count distribution for ∣⟩ by a low “shelf ”. If the
 nm �uorescence laser exhibits an appreciable amount of intensity
noise66. In our experiment, the light

at  nm is generated using fre-
quency doubling in a resonant
cavity, which regularly results in
a moderate amount of intensity

noise without further stabilisation.

– most easily assumed to be Gaussian with some relative standard
deviation σ –, the distributions are accordingly broadened.

�e overall distribution observed during a sequence of randomised
benchmarking experiments (including the main result presented here)
is shown in �gure 4.6, and can be described well using such a model.
No special care was taken to optimise the readout process parameters,
and with a threshold of 10 counts, the probability for misclassifying ∣⟩
as ∣⟩ is ε =  ⋅ −, and its reverse ε =  ⋅ −, yielding an optimal
average error of εavg =  ⋅ −. �is could be improved by optimising
the experimental parameters (laser intensities, etc.) and then choosing
the optimal detection time accordingly, and even further by using using
time-resolved methods. From the intercept of the �t to �gure 4.3, a total
state preparation andmeasurement error of .()⋅− can be extracted,
which suggests that the bulk of the state preparation and measurement
errors is due to the pumping process used for initialisation.
Note that the ∣⟩ lifetime of τ = . s derived from the maximum-

likelihood �t of the model to the data is signi�cantly less than the ex-
pected lifetime of the state in vacuum, τ = . s. While τ should only
be regarded as a lower bound for the actual lifetime since there might
be additional non-Poissonian sources of dark counts, this suggests that
theremight be a signi�cant leakage of the  nm laser light used to reset
the qubit. As this bound for the lifetime is still two orders of magnitude
longer than the coherence time due to dephasing, it is currently not
the dominating factor. Since the �delity for the corresponding decay
channel described by the Kraus operators

{∣⟩⟨∣ + e− γ
 ∣⟩⟨∣ ,√ − e−γ ∣⟩⟨∣}

evaluates as
Fdecay (γ) = 


( + e−γ +  e− γ

) , (4.4)

which leads to an error per gate of . ⋅ −, this might be interesting to
investigate in the future as other sources of errors are reduced.
One source of errors not considered here is the residual in�uence

of the ion’s thermal motion. �e carrier Hamiltonian is independent of
the motional state only in the Lamb-Dicke approximation, and since
the residual motion of n̄ ≈  a�er Doppler cooling (i.e. without EIT
48

cooling) caused carrier �ops to loose contrast faster than the other
mechanisms discussed here, the magnitude of this coupling should
be evaluated more carefully. In addition, unwanted excitation of the
sidebands due to auxiliary peaks in the laser spectrum7 7. For example, “servo bumps” due

to the �nite bandwidth of the laser
frequency control loop.

would entangle
the qubit state with the ion’s motion and hence lead to decoherence.
In future investigations, the e�ect of the AC stark shi� induced by the
 nm laser during gates should also be considered. While it is possible
to correct for experimentally, it is currently neglected (the unperturbed
frequency is used for the laser drive as well as the phase calculations).

4.2 gate set tomography on 40ca+

�e same method of calibrating and executing gate sequences as de-
scribed in the last section was also used to perform gate set tomography
on the optical qubit in 40Ca+. �e target gate set consisted of the two π/
rotations Rx = Rx(π/) and Ry = Ry(π/), together with the identity
Ri = 1. For the numerical representation, the Pauli basis was chosen forS(C). Hence, the ideal state preparation and measurement operators
are given by

ρ = ∣⟩⟨∣ ↔ ∣ρ⟫ = √

(   )T

E = ∣⟩⟨∣ ↔ ⟪E∣ = √

(   ) (4.5)

and the matrices for the target CPTP gate maps Gx , Gy are illustrated in
�gure 2.1.
As suggested in [28], an over-complete set of �ducial sequences

was chosen, F = {(),Gx ,Gy ,Gx
,Gx

,Gy
}. �e main gate strings used

consisted of the germs8 8. �is choice is not particularly
interesting if only a single repetition
of the germs sequences is used;
they are designed for longer eGST
experiments.

G = {Gx , Gy , Gi , GxGy , GxGyGi , GxGiGy , Gx , GxGiGi ,
GyGiGi , GxGxGiGy , GxGyGyGi , GxGxGyGxGyGy}. (4.6)

338 distinct gate sequences were executed using the Ionizer scripting
interface, for an overall total of   detections. A�er applying the
detection threshold, the resulting data was imported into the pyGSTi
so�ware package for further analysis. [32]
A linear GST estimate was �rst computed, contracted to the nearest

CPTP gate set, and then further re�ned by using a weighted least-squares
approximation (as discussed in [28]) to the full maximum-likelihood
problem for the observed data. In the �nal step, the gauge transformation
was chosen to minimise the Frobenius distance to the target gate set and
the amount of CPTP violation. �e �nal estimates for state preparation
and readout and the gate maps are given in �gure 4.7.
Note that the calculated % con�dence intervals are frequently

larger than the distance to the corresponding ideal operators. �is

49

∣ρ⟫ = ⎛⎜⎜⎜⎝
.
.
.
.

⎞⎟⎟⎟⎠ ±
⎛⎜⎜⎜⎝
.
.
.
.

⎞⎟⎟⎟⎠ ⟪E∣ =
⎛⎜⎜⎜⎝
.
.−.
.

⎞⎟⎟⎟⎠ ±
⎛⎜⎜⎜⎝
.
.
.
.

⎞⎟⎟⎟⎠

Gi =
⎛⎜⎜⎜⎝
. −. . .
. . −. .
. −. . .
. . −. .

⎞⎟⎟⎟⎠ ±
⎛⎜⎜⎜⎝
. . . .
. . . .
. . . .
. . . .

⎞⎟⎟⎟⎠

Gx =
⎛⎜⎜⎜⎝
. −. −. .−. . −. −.−. −. . −.−. . . .

⎞⎟⎟⎟⎠ ±
⎛⎜⎜⎜⎝
. . . .
. . . .
. . . .
. . . .

⎞⎟⎟⎟⎠

Gy =
⎛⎜⎜⎜⎝
. −. . −.−. . . .
. . . −.
. −. . .

⎞⎟⎟⎟⎠ ±
⎛⎜⎜⎜⎝
. . . .
. . . .
. . . .
. . . .

⎞⎟⎟⎟⎠
Figure 4.7: GST estimate for state preparation, readout and gates in the Calcium-40 optical qubit, given in the Pauli basis.
Uncertainties are half-widths of the respective % con�dence intervals(see text).

is even more apparent when looking at the �delities calculated from
these results: �e in�delities for Gi , Gx and Gy are . ± .,
. ± . and . ± ., respectively. In other words, the
gates are too close to the target unitaries to reliably distinguish them
with the short sequences used and ≈  runs each. �us, the given
con�dence intervals are not to be taken to be exact; they extend into
unphysical (non-CPTP) gates and, consequently, �delities greater than .
No attempt to extract further information from the data is thus made, as
any closer analysis e.g. of the error symptoms would su�er from similar
caveats.

To combat this, one could adopt a more rigorous method that de-
rives con�dence intervals that represent some operational meaning, for
example the algorithm presented in [30]. However, the much more
straightforward solution would simply be to simply take data for ex-
tended long-sequence GST, avoiding the issues entirely by making sure
the con�dence region is well contained within the subset of physical
gates. All the provisions for this are already in place in the current con-
trol infrastructure; the extension should be as simple as modifying a few
lines in the data acquisition script.

50

4.3 randomised benchmarking on
9be+

�e experiments analogous to those presented for 40Ca+ were also imple-
mented for the di�erent 9Be+ qubit transitions (FDQ/FIQ) and Raman
beam con�gurations (collinear/○, with the option to use the micro-
motion sidebands for the latter). In theory, the FIQ should o�er the
best performance of all the options in the current experimental setup,
as it mostly eliminates decoherence due to magnetic �eld �uctuations.
With the default Raman detuning of ≈  GHz, the achievable �delities
would be limited to ≈ . ⋅ − due to o�-resonant scattering [37] similar
to those achieved in 40Ca+, but this could be further reduced by going
to larger detunings at the expense of longer gate times or higher laser
intensities.
Indeed, during calibration the qubit frequency could easily be deter-

mined to better than  Hz using Ramsey experiments, and even without
carefully re-calibrating the magnetic �eld to match the �eld-insensitive
point, the loss of contrast due to decoherence was negligible for wait
times of  ms, which is much longer than any of the sequences that
would be used for benchmarking or tomography. While operations on
the �eld-dependent qubit – which is even more sensitive to �eld �uctua-
tions than the 40Ca+ optical qubit – are necessary for state preparation
and readout, both randomised benchmarking and gate set tomography
would be insensitive to errors caused by them.
However, at the time there were issues with keeping the second-

harmonic generation cavity used for generating the  nm Raman
beams on resonance with the input lasers, leading to large intensity
�uctuations. �eir relative amplitude has been measured to reach ≈ %,
which according to (4.3) limits the error per pulse area of π to at least
 ⋅ −.
To perform randomised benchmarking, the gate times were cali-

brated using the same approach as described in section 4.1.1, yielding
tπ/ = . µs and tπ = . µs. �e average duration of coherent FIQ
manipulations during the longest used benchmarking sequences (
pulses) was thus . ms. During calibration, slow intensity dri�s on the
order of % over some minutes were noticeable in addition to the fast
noise which will become signi�cant a�er the fast noise has been �xed,
but should be easy to counteract by an AOM feedback loop.
One example set of results is shown in �gure 4.8. �is particular

dataset has been acquired in a slightly di�erent fashion from the pro-
tocol used for 40Ca+; namely, by choosing between π/ and π pulses at
random9

9. �is was done with the idea
of directly randomising over the
full Cli�ord group to be direct
correspondence with the theo-
retical treatment of randomised
benchmarking as twirling the error
channel over it. Unfortunately, a
comparison with the table from
�gure 2.2 shows it to be insu�cient.

, which has been shown to lead to slightly lower error estimates
than the original scheme, as the ±Rz(π/) gates are included in the set
of gates and ±1 and ±σz occur with a higher frequency (all of which are
simply implemented by modifying the phase of subsequent gate pulses).
�e exponential �t yields a �delity of .()% per gate pair, which

51

0 10 20 30 40 50 60 70
(Number of gates + ) / 

0.10

1.00

Ta
rg
et
st
at
e
oc
cu
pa
tio
n

Figure 4.8: Mean 9Be+ FIQ target state populations for  random gate sequences
truncated to di�erent lengths (log-scale). Whiskers show minima/maxima, shaded
areas a kernel density estimate. A least-squares �t yields an estimated average
�delity of .() per gate pair, or an error rate of .() ⋅ −, with the axis
intercept being .().

suggests that the the large intensity �uctuations were indeed the factor
limiting the �delity in the experiments presented here.

�e data was acquired with Doppler cooling only, but the coupling to
the Raman beams in collinear con�guration is to �rst order insensitive
to the ion motion. In fact, the ions exhibited a large amount of excess
micro-motion, the modulation reducing the amount of light scattered
during �uorescence detection by as much as %. If the ○ Raman
beam con�guration – as required for coupling to the motional modes
– were to be used for high-�delity gates, the e�ect of this would need
closer study (along with the relative phase stability of the two beams).

�e full set of data is shown in �gure 4.9. �is time, considerable
dri�s in the average �delities over the total acquisition duration of min
for the  ⋅  ⋅  =   points are visible, likely due to the afore-
mentioned dri�s in the Raman laser intensity.
Note that there are some outliers where target state populations of

below . are reached for rather short sequences, only for the average
to then tend to . again as expected as the sequences are extended. It
might be that this is due to sequences which are particularly sensitive to
over- or under-rotations, but it is also possible that that there might be
an issue in the program code used for translating the gates to laser pulse
phases that is only triggered for certain combinations of gates. �is will
be easy to investigate once the intensity stability has been improved by
just executing and analysing one a�ected sequence in isolation, tracking
the evolution of the state.

52

20 40 60
(Number of gates + ) / 

0

20

40

60

80

100

120

R
an
do
m
isa
tio
n
in
de
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ta
rg
et
st
at
e
po
pu
la
tio
n

0.0010.010
Average error over slices of  randomisations

Figure 4.9: Results for individual 9Be+ FIQ randomised benchmarking sequences,
with  repetitions per point. �e main (lower) horizontal axis shows the number
of pairs of gates randomly chosen from all possible π/- and π-pulses, including ±1
and ±σz . �e signal has already been inverted where the dark state was the expected
outcome. Overlaid is a dashed line (top axis) showing the error obtained from an
exponential �t to a moving slice of  randomisations each, showing considerable
dri�s over the total acquisition time of  s.

O�-resonant excitations of other transitions in the S/ manifold due
to imperfect Raman-beam polarisation will also need to be considered,
as will – similar to 40Ca+ – the AC stark shi� of the qubit transition
during gates due to the presence of the Raman beams (although the
latter can again be suppressed almost perfectly by taking the two di�erent
frequencies into account for the AOM drive calculations).

53

OUTLOOK

�e ultimate goal behind most of the work completed as part of this
project was to demonstrate transport quantum logic gates with a compa-
rable �delity to that reachable in the usual way, where the ions remain
static. All the components necessary for this have been realised:
A completely new �rmwarewas developed for theDEATHwaveform

generator system in order to make complex experiments feasible, by
integrating it with the main experimental control system and adding the
capability to synchronise complex control �ows between them. �e gen-
eral laboratory control system itself has been extended in multiple ways
to make it possible to automate involved experimental sequences and to
o�er better diagnostic capabilities for performing longer experiments
that require high-�delity operations.
In addition to that, two schemes for evaluating the performance of

quantum gates have been discussed in the abstract, and demonstrated
in the two di�erent ion species available in the experimental setup. �e
developed control system components and analysis programs are su�-
ciently general to be reusable for other gate implementations.
What unfortunately remains yet to be done is the last step, combining

the above to demonstrate and characterise a complete set of high-�delity
single-qubit transport gates in the �eld-independent 9Be+ qubit. �is is
merely a question of �xing the issues with stability and performance of
the laser system used to drive the qubit transition. Once stable operation
and satisfactory �delities in the �eld-independent qubit are reached (e.g.
−F = −), it should be straightforward to demonstrate transport gates
at a comparable level. �e level of control over the ion velocity already
demonstrated in this apparatus [10, 35] is su�cient not to introduce any
signi�cant intensity errors. �e gate times will increase slightly, but due
to the long observed coherence times, the e�ect of this should still be
minimal. �e considerable insensitivity of the transition frequency to
changes in the magnetic �eld [43] should also be su�cient to protect
against the observed spatial variations on the . µT-level along the
transport axis.
For static 40Ca+ single qubit gates, it is clear that the limiting factor

is currently the stability of the magnetic �eld environment, necessitating
further work on �eld stabilisation and cancellation, and/or additional
shielding. To inform such measures, a limited amount of information
about the frequency spectrum of the �uctuations could be gained by
performing randomised benchmarking experiments for a number of

55

di�erent gate times, where the di�erent in�uences of low-frequency
coherent �uctuations and fast noise would be visible. It seems prudent,
however, to augment this by a full characterisation of the noise spectrum
at the position of the ion, for example using methods like that demon-
strated in [44]. With that knowledge, it might be possible to further
increase the �delity by designing composite gate pulse sequences that
are insensitive to the dominant noise frequencies. [45]
Finally, I expect that the control infrastructure will continue to re-

ceive signi�cant amounts of work as the trend towards more complex
experiments continues, in the short term in particular regarding the
scheduling of more complex, concurrent sequences and the automated
tracking and optimisation of calibration parameters. In the years to
come, the quest for a scalable quantum information processing platform
composed of individual modules will also provide formidable challenges
in experimental control. It is my hope that the perhaps uncharacteris-
tically extensive coverage of some of the design decisions behind the
current system in this report will provide useful background for such
discussions.

56

AEVIL HARDWARE
COMMUNICATION GLITCHES

While working on the new networked client so�ware for the EVIL loop
controller (see chapter 3.3), several previously unknown issues in the
hardware communication were uncovered, particularly in combination
with the ARM-based mini-computers tested.

�e �rst concerns the hardware start-up process: Whereas previously
a connection would only be opened a�er the user selected a serial port
and pressed a button in the server program, the new client so�ware
continuously listens for hot-plug events from the operating systemdevice
manager. �is led to the discovery that if data is sent on the serial
connectionwithin ≈  s a�er hardware power-on, the connection is likely
to become completely inoperable. �e reason for this is unclear, but it
might be related to the FPGA re-con�guration process. As aworkaround,
the so�ware now waits  s before establishing the connection to a newly
enumerated device.1 1. �is is also the cause for the delay

between connecting a controller
and the respective channels being
displayed in the UI; if the initial
timeout is removed, the process is
virtually instant.

Secondly, it was observed that when using a Raspberry Pi for a server,
using a USB hub would render the communication non-functional,
even with just one connected device. Several models were tested, both
powered and non-powered, and inevitably the USB-to-serial converters
either would not be enumerated by the operating system in the �rst place,
or the communication would time out as soon as the server so�ware
tried to access the hardware. �is was observed both with a Raspberry
Pi 1 Model B+, featuring a single-core Broadcom BCM2835 chipset and
running the o�cial Ubuntu-based Linux distribution, and the newer
Raspberry Pi 2 Model B with its quad-core BCM2836 CPU, this time
running Arch Linux ARM with kernel version 3.XXX. No workaround
for this was found; it seems plausible that this is due to some interaction
between the USB stack in those systems-on-a-chip (which are intended
for applications in mobile phones and similar devices), some packet
handling peculiarities of common UBS hub chipsets, and/or the FTDI
serial converter drivers.
As connecting just three EVILs to each Raspberry Pi would leave a

lot of CPU power and network bandwidth unused, alternative hardware
in the form of theHardkernel ODROID-C1 board was investigated. Its
speci�cations are quite similar to the Raspberry Pi 2, but it notably uses
a di�erent USB chipset. And indeed, the hardware did not seem to
show any issues regarding USB hubs; up to eight hardware channels

57

connected via a 13-port USB 3 hub were tested successfully. However,
at a later time it was found that upgrading the Arch Linux ARM kernel
package to version 3.18.XX lead to the serial links stopping to transmit
or receive data if continuously used for some ten seconds. �is occurred
independently of whether a USB hub was used, and downgrading the
kernel to version 3.XX solved the issue.
It was also discovered that for requests for streaming packets longer

than approximately 800 bytes, sometimes too little data would arrive
back over the serial connection when using an acquisition interval that
would correspond to a data rate near the nominal connection speed
( Mbit s−). �e detailed characteristics of this failure mode (for exam-
ple, which pieces of the packet are missing) were not investigated any
further, but the fact that the packet length triggering it did not seem to
depend on the precise data rate suggest the problem to somehow involve
a constant bu�er of some hundred bytes of data. Given the lack of hand-
shaking on the UART connection between FPGA and serial converter
chip, one possible explanation is that some of the data sent is ignored
by the latter because it is e.g. internally busy exchanging some bu�ers
with its USB protocol handling section. �e idea that the USB bus part
is involved in the issue is corroborated by the fact that it it would occur
with the ODROID-C1 board for parameters that were stable when used
with a Raspberry Pi 2.
In the end, these unresolved issues were worked around by slightly

limiting the sample acquisition rates for long packets as well as imple-
menting heuristics for returning the connection to a valid state a�er data
corruption has taken place. �is is non-trivial because the EVIL serial
protocol uses variable-length commands with no explicit message fram-
ing. �ere is some anecdotal evidence that similar issues also occurred
with the old client so�ware, i.e. when driving the connection from a
regular USB chipset as found in an x86-based PC or laptop. Because
only individual controller channels were observed for short periods of
time back then, such issues would have likely happened infrequently
enough to just be ignored.
In spite of all those caveats, the resulting system runs stably over

extended periods of time. �e server so�ware has been observed to
be running continuously for several months without any interventions
being required, although the communication issues are triggered from
time to time when changing the streaming settings, causing the data not
to be updated momentarily as the recovery heuristics are run.

58

BLIST OF SOFTWARE
REPOSITORIES

As mentioned in chapter 3, additional documentation for most of the
so�ware and �rmware projects developed or extended as part of this
work can be found along with their source code. �e following list
provides an overview of the respective group-internal Git repositories
to make locating it easier.

bram_ctrl_16b_adapter A small FPGA core to convert a 32-bit wide
memory to a 16-bit wide interface. (Verilog)

ca-ionizer �emain graphical user interface for the experimental con-
trol system. Extended as described in section 3.1, along with a
number of general bug �xes. (C++)

cavity-pi-server Provides a network interface to control reference cav-
ity piezo actuators from Ionizer. Its implementation was partially
rewritten to use tiqi-rpc. (Python)

death_control �eclient libraries for theDEATHwaveform generators,
used from Ionizer and IonPulse. (C++)

death_�rmware_arm �eprogram running on theDEATHARMCPU.
Notably, the �le network-interface.md describes the various func-
tions of its tiqi-rpc interface in considerable detail. (C++)

death_�rmware_fpga Ties together the various other FPGA cores to
form the main DEATH bitstream. (Xilinx Vivado/Verilog)

devil �e client so�ware for the networked PI controller described in
chapter 3.3, providing the graphical user interface and long-term
logging. (Python)

devil_server Runs on a Linux system and exposes several connected
EVIL controllers to an IP network, as discussed in chapter 3.3.
(C++)

ionpulse_sdk �e program executed on the main control system Zed-
Board, signi�cantly extended during this project (network com-
munication layer, ability to detect and react to transitory errors).
Contains the sequence de�nitions developed for the transport,
randomised benchmarking and tomography experiments. (C++)

59

linear_transform A small FPGA core to apply an a�ne linear transfor-
mation with coe�cients set via an AXI4-Lite interface. (Verilog)

scythe �emain sequencer core of the DEATH FPGA �rmware. Con-
tains a description of the various internal memory layouts. (Ver-
ilog)

tiqi-noti�er Small helper script to dispatch real-time alerts from the
control system via e-mail, Slack and SMS. (Python)

tiqi-rpc Implementations of the network protocol discussed in section
3.1.1 for several platforms, along with a detailed description of the
protocol. (C++/Python)

tiqi-rpc-dissector Provides support for decoding the tiqi-rpc protocol
in the Wireshark network tra�c analyser. (C++/Lua)

tiqi-tomography Data analysis scripts for randomised benchmarking
and gate set tomography experiments. (Julia/Python)

TIQI.jl Functions for importing, analysing and plotting results saved
from Ionizer. (Julia)

xilinx_standalone_emu An adapted version of lwIP and other Xilinx-
speci�c libraries to execute and test Zynq-based so�ware on a
personal computer, including its networking stack. (C)

60

BIBLIOGRAPHY

[1] R. P. Feynman, “Simulating physics with computers”, Interna-
tional Journal of �eoretical Physics 21, 467 (1982).

[2] T. D. Ladd, F. Jelezko, R. La�amme, Y. N. Y, C. Monroe, and J. L.
O’Brien, “Quantum computers”, Nature 464, 45 (2010).

[3] J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Towards fault-
tolerant quantum computing with trapped ions”, Nature Physics
4, 463 (2008).

[4] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a
large-scale ion-trap quantum computer.”, Nature 417, 709 (2002).

[5] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M.
Lucas, “Laser-driven quantum logic gates with precision beyond
the fault-tolerant threshold”, arxiv:1512.04600 (2015).

[6] R. B. Blakestad, C. Ospelkaus, A. P. Vandevender, J. H.Wesenberg,
M. J. Biercuk, D. Leibfried, and D. J. Wineland, “Near-ground-
state transport of trapped-ion qubits through a multidimensional
array”, Physical Review A 84, 1 (2011).

[7] D. Leibfried, E. Knill, C. Ospelkaus, and D. J. Wineland, “Trans-
port quantum logic gates for trapped ions”, Physical Review A 76,
32324 (2007).

[8] L. de Clercq, “Transport quantum logic gates for trapped ions”,
PhD thesis (ETH Zürich, 2015).

[9] L. E. de Clercq, H.-Y. Lo, M. Marinelli, D. Nadlinger, R. Oswald,
V. Negnevitsky, D. Kienzler, B. Keitch, and J. P. Home, “Parallel
Transport Quantum Logic Gates with Trapped Ions”, Physical
Review Letters 116, 080502 (2016).

[10] L. E. de Clercq, R. Oswald, C. Flühmann, B. Keitch, D. Kienzler,
H.-Y. Lo, M. Marinelli, D. Nadlinger, V. Negnevitsky, and J. P.
Home, “Estimation of a general time-dependent Hamiltonian for
a single qubit”, Nature Communications 7, 11218 (2016).

[11] D. Kienzler, C. Flühmann, V. Negnevitsky, H.-Y. Lo, M. Marinelli,
D. Nadlinger, and J. P. Home, “Observation of Quantum Inter-
ference between Separated Mechanical Oscillator Wave Packets”,
Physical Review Letters 116, 140402 (2016).

[12] M. A. Nielsen and I. L. Chuang,Quantum Computation and Quan-
tum Information: 10th Anniversary Edition (2011).

61

http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nphys961
http://dx.doi.org/10.1038/nphys961
http://dx.doi.org/10.1038/nature00784
http://arxiv.org/abs/1512.04600
http://dx.doi.org/10.1103/PhysRevA.84.032314
http://dx.doi.org/10.1103/PhysRevA.76.032324
http://dx.doi.org/10.1103/PhysRevA.76.032324
http://dx.doi.org/10.1103/PhysRevLett.116.080502
http://dx.doi.org/10.1103/PhysRevLett.116.080502
http://dx.doi.org/10.1038/ncomms11218
http://dx.doi.org/10.1103/PhysRevLett.116.140402

[13] A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance mea-
sures to compare real and ideal quantum processes”, Physical
Review A 71, 1 (2005).

[14] L. H. Pedersen, N. M. Møller, and K. Mølmer, “Fidelity of quan-
tum operations”, Physics Letters, Section A 367, 47 (2007).

[15] A. Y. Kitaev, “Quantum computations: algorithms and error cor-
rection”, Russian Math. Surveys 52, 53 (1997).

[16] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D.
Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Ran-
domized benchmarking of quantum gates”, Physical Review A 77,
012307 (2008).

[17] H. Ball, T. M. Stace, S. T. Flammia, and M. J. Biercuk, “�e e�ect
of noise correlations on randomized benchmarking”, Physical
Review A 93, 022303 (2016).

[18] S. Anders andH. J. Briegel, “Fast simulation of stabilizer circuits us-
ing a graph-state representation”, Physical Review A 73, 1 (2006).

[19] E. Magesan, J. M. Gambetta, and J. Emerson, “Scalable and ro-
bust randomized benchmarking of quantum processes”, Physical
Review Letters 106, 8 (2011).

[20] E. Magesan, J. M. Gambetta, and J. Emerson, “Characterizing
quantum gates via randomized benchmarking”, Physical Review
A 85, 042311 (2012).

[21] J. M. Epstein, A. W. Cross, E. Magesan, and J. M. Gambetta, “In-
vestigating the limits of randomized benchmarking protocols”,
Physical Review A 89, 1 (2014).

[22] I. L. Chuang and M. a. Nielsen, “Prescription for experimental
determination of the dynamics of a quantum black box”, Journal
of Modern Optics 44, 2455 (1997).

[23] H. Hä�ner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar,
M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C.
Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle
entanglement of trapped ions.”, Nature 438, 643 (2005).

[24] S. T. Merkel, J. M. Gambetta, J. a. Smolin, S. Poletto, A. D. Cór-
coles, B. R. Johnson, C. a. Ryan, and M. Ste�en, “Self-consistent
quantum process tomography”, Physical Review A 87, 062199
(2013).

[25] R. Blume-Kohout, J. K. Gamble, E. Nielsen, J. Mizrahi, J. D. Sterk,
and P. Maunz, “Robust, self-consistent, closed-form tomography
of quantum logic gates on a trapped ion qubit”, arxiv:1310.4492
(2013).

[26] D. Kim, D. Ward, and C. Simmons, “Microwave-driven coherent
operations of a semiconductor quantum dot charge qubit”, Nature
Nanotechnology 10, 243 (2014).

62

http://dx.doi.org/10.1103/PhysRevA.71.062310
http://dx.doi.org/10.1103/PhysRevA.71.062310
http://dx.doi.org/10.1016/j.physleta.2007.02.069
http://dx.doi.org/10.4213/rm892
http://dx.doi.org/10.1103/PhysRevA.77.012307
http://dx.doi.org/10.1103/PhysRevA.77.012307
http://dx.doi.org/10.1103/PhysRevA.93.022303
http://dx.doi.org/10.1103/PhysRevA.93.022303
http://dx.doi.org/10.1103/PhysRevA.73.022334
http://dx.doi.org/10.1103/PhysRevLett.106.180504
http://dx.doi.org/10.1103/PhysRevLett.106.180504
http://dx.doi.org/10.1103/PhysRevA.85.042311
http://dx.doi.org/10.1103/PhysRevA.85.042311
http://dx.doi.org/10.1103/PhysRevA.89.062321
http://dx.doi.org/10.1080/095003497152609
http://dx.doi.org/10.1080/095003497152609
http://dx.doi.org/10.1038/nature04279
http://dx.doi.org/10.1103/PhysRevA.87.062119
http://dx.doi.org/10.1103/PhysRevA.87.062119
http://arxiv.org/abs/1310.4492
http://arxiv.org/abs/1310.4492
http://dx.doi.org/10.1038/nnano.2014.336
http://dx.doi.org/10.1038/nnano.2014.336

[27] G. Feng, B. Buonacorsi, J. J. Wallman, F. H. Cho, D. Park, T. Xin,
D. Lu, J. Baugh, and R. La�amme, “Estimating the coherence of
noise in quantum control of a solid-state qubit”, arxiv:1603.03761
(2016).

[28] R. Blume-Kohout, J. K. Gamble, E. Nielsen, P. Maunz, T. Scholten,
and K. Rudinger, Turbocharging Quantum Tomography, tech. rep.
(Sandia National Laboratories, Albuquerque, New Mexico, 2015).

[29] D. Greenbaum, “Introduction toQuantumGate Set Tomography”,
arXiv:1509.02921 (2015).

[30] P. Faist and R. Renner, “Practical, Reliable Error Bars in Quantum
Tomography”, arxiv:1509.06763 (2015).

[31] M. Christandl and R. Renner, “Reliable quantum state tomogra-
phy”, Physical Review Letters 109, 1 (2012).

[32] E.Nielsen andK.Rudinger, pyGSTi: Version 0.9.1 Alpha (doi:10.5281
/zenodo.46200, Feb. 2016).

[33] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King,
and D. M. Meekhof, “Experimental issues in coherent quantum-
state manipulation of trapped atomic ions”, Journal of Research
of the National Institute of Standards and Technology 103, 259
(1998).

[34] D. Kienzler, “Quantum harmonic oscillator state synthesis by
reservoir engineering”, PhD thesis (ETH Zürich, 2015).

[35] R. Oswald, “Velocity Control of Trapped Ions for Transport Quan-
tum Logic Gates”, MSc thesis (ETH Zürich, 2015).

[36] L. Gerster, “Spectral �ltering and laser diode injection for multi-
qubit trapped ion”, MSc thesis (ETH Zürich, 2015).

[37] H.-Y. Lo, “Creation of Squeezed Schrödinger’s Cat States in a
Mixed-Species Ion Trap”, PhD thesis (ETH Zürich, 2015).

[38] A. Hungenberg, “Automatic relocking of an FPGA-based PID
controller using a bandpass-�ltering approach”, Semester project
report (ETH Zürich, 2013).

[39] D. Nadlinger, “Laser Intensity Stabilization and Pulse Shaping
for Trapped-Ion Experiments using Acousto-Optic Modulators”,
Semester project report (ETH Zürich, 2013).

[40] C. Fischer, “Implementation of a Digital Lock-in Ampli�er on a
Field Programmable Gate Array and its Remote Control in a Local
Area Network”, Semester project report (ETH Zürich, 2015).

[41] C. Flühmann, “Stabilizing lasers and magnetic �elds for quantum
information experiments”, MSc thesis (ETH Zürich, 2014).

[42] Z. Chen, J. G. Bohnet, J. M.Weiner, and J. K.�ompson, “General
formalism for evaluating the impact of phase noise onBloch vector
rotations”, Physical Review A 86, 1 (2012).

63

http://arxiv.org/abs/1603.03761
http://arxiv.org/abs/1603.03761
http://arxiv.org/abs/1509.02921
http://arxiv.org/abs/1509.06763
http://dx.doi.org/10.1103/PhysRevLett.109.120403
http://dx.doi.org/10.6028/jres.103.019
http://dx.doi.org/10.6028/jres.103.019
http://dx.doi.org/10.6028/jres.103.019
http://dx.doi.org/10.1103/PhysRevA.86.032313

[43] C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. Demarco, A. Ben-
Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D.
Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and
D. J. Wineland, “Long-lived qubit memory using atomic ions”,
Physical Review Letters 95, 2 (2005).

[44] S. Kotler, N. Akerman, Y. Glickman, and R. Ozeri, “Nonlinear
single-spin spectrum analyzer”, Physical Review Letters 110, 1
(2013).

[45] T. Green, H. Uys, and M. J. Biercuk, “High-order noise �ltering
in nontrivial quantum logic gates”, Physical Review Letters 109, 1
(2012).

64

http://dx.doi.org/10.1103/PhysRevLett.95.060502
http://dx.doi.org/10.1103/PhysRevLett.110.110503
http://dx.doi.org/10.1103/PhysRevLett.110.110503
http://dx.doi.org/10.1103/PhysRevLett.109.020501
http://dx.doi.org/10.1103/PhysRevLett.109.020501

	Contents
	Introduction
	Background
	Quantum States and Channels
	Randomised Benchmarking
	Gate Set Tomography
	9Be+ and 40Ca+ in the TIQI Segmented Trap

	Technical Improvements
	Main Real-Time Control System
	Direct Ethernet-Adjustable Transport Hardware (DEATH)
	Dashboard for Electronically Variable Interactive Lock-Boxes (DEVIL)

	Static Qubit Results
	Randomised Benchmarking on 40Ca+
	Gate Set Tomography on 40Ca+
	Randomised Benchmarking on 9Be+

	Outlook
	EVIL Hardware Communication Glitches
	List of Software Repositories
	Bibliography

