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1 Introduction

Trapped ions are a promising platform for quantum computation and simulation. Long coherence
times and high-fidelity state preparation allow for the precise manipulation of ions’ internal degrees
of freedom which can be used for quantum information processing purposes. The coupling of the
ions’ motion via the Coulomb interaction allows for the coherent operation of two-qubit gates by
exploiting the joint motion of the ions.

Although the physical principles of operation of various ion trap platforms are the same, dif-
ferent designs have been proposed to circumvent the issues arising when trying to scale up the
number of ions. For example: linear chains of ions in a micro-fabricated surface electrode trap
[17], Quantum Charged Coupled Device (QCCD) architecture in which the ions are physically
transported between sites to perform the desired gate operations [11], or theoretical proposals for
micro-fabricated arrays of micro-penning traps with individual trapping potentials [5].

Cirac and Zoller proposed microtrap arrays in the year 2000 [1] as 2D grid of harmonic potentials
with individual ions trapped in them, which would allow for the implementation of quantum gates.
Since then, technological advances have allowed for the trapping and manipulation of two ions
in a similar linear configuration [15], and even a triangular array [9]. The microtrap approach al-
lows for tuning the individual trap frequencies and their separation, in turn modifying the motional
eigenstates of the system at low temperatures, also know as normal modes. By precisely choosing
these parameters it is possible to engineer the resulting normal modes to exhibit desirable proper-
ties, such as restricting ions to only interact with their nearest neighbors, which in turn can be used
for quantum simulation purposes [12, 18, 2].

For this work we studied the normal modes of the ions in a microtrap array configuration, con-
sidering only an effective harmonic potential in three dimensions without any magnetic field. The
goal is to develop an understanding the structure of these modes when scaling the number of ions,
or varying parameters such as distance or microtrap frequency in the system. Additionally, we pro-
posed alternatives for creating localized motional modes, such that only a certain number of ions
have significant contribution to particular motional states. This report is split between analytical
studies of specific configurations of motional modes, and the numerical simulation of such systems
via the python package ion sim, developed for internal use by the TIQI group .

In the second section we present the common derivation for normal modes in a 1D potential,
with an example in the case of two ions. We then extend the same calculation for microtraps
with different frequencies and separated by arbitrary distances. For the third section, we present
three different cases where we find approximate analytical expressions for mode frequencies, and
the comparison to simulation results. In the fourth section, we briefly introduce the ideas behind
localized modes and present two alternatives for 5 ion localization. Finally, on the fifth section we
extend the simulation to allow for two dimensional arrays and show results for simple arrays.

2 Normal Mode Calculation

2.1 N ions in 1D effective potential

The problem of the motion of ions in a classical potential is a problem easily studied in the context
of classical mechanics. The ions are positively charged particles that repel each other via Coulomb
interaction, and the external harmonic potential brings them close together. The detail of how the
potential is achieved will not be covered here in detail, but it involves a combination of static and
oscillating electric fields in what is know as a Paul trap [16].
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To experimentally trap the ions, one of the directions of the potential has to be weaker (axial) than
the other two (radial) [4]. This allows for the ions to form a one dimensional chain structure along
the axial direction, and hence the ion-ion interactions to be studied are only one dimensional. For
simplicity we will be considering ions of the same species and thus having the same mass [6].

Suppose we have N ions ordered as xN(t) > xN−1(t) > ... > x1(t), where xi(t) is the position
of the ion i with respect to the center of the potential time t. Taking into account the Coulomb
interaction between each ion and an effective potential we can write the total potential for this
problem as:

V =
N∑
m=1

1

2
mν2xm(t)2 +

∑
n,m=1
n>m

Z2e2

4πε0

1

|xn(t)− xm(t)|
(1)

With m being the mass of each ion, ν the effective frequency of the trap along the axial direction,
Z the degree of ionization, e the electron charge and ε0 the permittivity of free space. For this
configurations, and ignoring any thermal fluctuations from the ions, the system will reach an equi-
librium position when (∂V/∂xm) |

xm=x
(0)
m

= 0, with x(0)i being the equilibrium position for the ion
i. The derivative is as it follows:

∂V

∂xi
= mν2xi −

i−1∑
j=1

Z2e2

4πε0

1

(xi − xj)2
+

N∑
j=i+1

Z2e2

4πε0

1

(xi − xj)2
(2)

Where the second term accounts for the ions with xj < xi and the third term for xj > xi, the time
dependence of the coordinates is omitted to simplify the notation. Introducing a dimensionless
scale factor um = x

(0)
m /l with l3 = (Z2e2)/(4πε0mν

2) allows us to simplify the equations to:

ui −
i−1∑
j=1

1

(ui − uj)2
+

N∑
j=i+1

1

(ui − uj)2
= 0 (3)

With the index i is running from 1 to N and defining a set of N coupled non linear equations that
define the ions’ equilibrium positions.

As mentioned in the introduction, the motional modes of arrays of ions allow for the operation of
two-qubit gates, such as the Molmer-Sorensen gate [13]. In order to perform these operations the
motion of the ions has to be cooled to near ground state. We can then treat the motion of the ions
as a small perturbation around the equilibrium position xi = x0i + qi. We can do a series expansion
up to second order of the potential defined in equation (1) expressed with the new coordinates qi:

V = V |x=x(0) +
N∑
i=1

qi
∂V

∂xi

∣∣∣
xi=x

(0)
i

+
1

2

N∑
i,j=1

qiqj
∂2V

∂xj∂xi

∣∣∣
xi=x

(0)
i

xj=x
(0)
j

(4)

The first term is a constant that does not affect the dynamics of the system while the second one
evaluates to zero. Calculating the third term by doing a second derivative of equation (1):
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∂2V

∂xj∂xi
= mν2δi,j +

i−1∑
m=1

Z2e2

2πε0

δi,j − δj,m
(xi − xm)3

−
N∑

m=i+1

Z2e2

2πε0

δi,j − δj,m
(xi − xm)3

(5)

i = j ⇒ mν2 +
N∑
m=1
m6=i

Z2e2

2πε0

1

|xi − xm|3
= mν2

(
1 + 2

N∑
m=1
m 6=i

1

|ui − um|3

)
(6)

i 6= j ⇒ −Z
2e2

2πε0

1

|xi − xj|3
= mν2

(
−2

|ui − uj|3

)
(7)

The constants multiplying equations (6) and (7) can be factorized, so we can express
∂V 2/∂xj∂xi = mν2Ai,j , with:

Ai,i = 1 + 2
N∑
m=1
m6=i

1

|ui − um|3
(8)

Ai,j = − 2

|ui − uj|3
(9)

Using the potential express in terms of the linearized coordinates the Lagrangian of the system is
constructed as it follows:

L =
N∑
i=1

m

2
q̇i

2 − 1

2
mν2

N∑
i,j=1

qiqjAi,j (10)

The matrixAi,j is real and symmetric, thus it has positive eigenvalues and can be ortho-normalized.
We can express it as A = BΛBT , where B is a matrix consisting of the columns of the eigenvec-
tors of A, and Λ is the matrix with the eigenvalues of A as the diagonal entries. Inserting into the
Lagrangian with vector notation gives the result:

L =
m

2

[
(~̇q)T ~̇q − ν2~qTBΛBT~q

]
(11)

L =
m

2

[
( ~̇Q)T ~̇Q− ν2 ~QTΛ ~Q

]
(12)

L =
m

2

N∑
i=1

[
Q̇2
i − ν2λiQ2

i

]
(13)

Where we used the orthogonality of B(BBT = 1) and defined the normal modes ~Q =
∑N

i
~biqi,

where the ~bi are the eigenvectors of A.

Equation (13) can be solved by using the Euler-Lagrange equation, and results in a set of N decou-
pled harmonic oscillators for the normal modes ~Q, each with a frequency ωi = ν

√
λi.
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2.1.1 Two ion case

To illustrate in more practical terms the calculation of the modes we present the solution for the
case of two ions. The equilibrium position follows from (3):

u1 +
1

(u1 − u2)2
= 0 (14)

u2 −
1

(u1 − u2)2
= 0 (15)

The resulting solution are u1 = −2−2/3 and u2 = 2−2/3. A can be then calculated as:

A =

(
2 −1
−1 2

)
(16)

with eigenvalues and eigenvectors:

λ1 = 1 ~b1 =

(
1
1

)
(17)

λ2 = 3 ~b1 =

(
−1
1

)
(18)

The first eigenvector (17) is known as the Center of Mass (COM) mode, in which the ions oscillate
with the same phase, i.e. if one moves to the right the other one does as well such that the distance
between the two is conserved. The second eigenvector (18) is known as the stretch mode, where
the ions oscillate with exactly opposite phase.

2.2 N ions in a 1D microtrap array

Whereas in the previous section we considered an effective potential acting on all the ions, for the
microtrap array we will assume each ion having their own external harmonic potential acting on
it. These microtraps will only contain one ion, which we still assume to be of the same species,
and can be placed with arbitrary distance from each other. For the following calculations we will
work with the coordinates ri(t) representing the distance of the i-th ion to the center of its trap.
If the distance between trap i and j is di,j = di − dj , then we can directly express ri in terms of
the previous coordinate system as ri = xi − d1,i. Writing down the potential in terms of this new
coordinate system:

V =
N∑
i=1

1

2
mνir

2
i +

N∑
i,j=1
i 6=j

Z2e2

4πε0

1

|ri − rj + di,j|
(19)

Repeating the previous procedure to find the equilibrium positions we arrive at a very similar
expression:
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∂V

∂ri
= mν2i ri −

i−1∑
j=1

Z2e2

4πε0

1

(ri − rj + di,j)2
+

N∑
j=i+1

Z2e2

4πε0

1

(ri − rj + di,j)2
= 0 (20)

The difference with respect to equation (3) are the different trap frequencies in each index, so we
define a frequency dependant scaling ui = r

(0)
i /li with l3i = (Z2e2)/(4πε0mν

2
i ), such that we can

rewrite our system of equations as:

ui −
i−1∑
j=1

1(
ui − uj

(
νi
νj

)2/3
+

di,j
li

)2 +
N∑

j=i+1

1(
ui − uj

(
νi
νj

)2/3
+

di,j
li

)2 = 0 (21)

And as for the second order derivatives:

∂2V

∂rj∂ri
= mν2i δi,j +

i−1∑
m=1

Z2e2

2πε0

δi,j − δj,m
(ri − rm + di,j)3

−
N∑

m=i+1

Z2e2

2πε0

δi,j − δj,m
(ri − rm + di,j)3

(22)

i = j ⇒ mν2i

(
1 + 2

N∑
m=1
m6=i

1

|ui − um( νi
νm

)
2
3 +

di,m
li
|3

)
(23)

i 6= j ⇒ mν2i

(
−2

|ui − uj( νiνj )
2
3 +

di,j
li
|3

)
(24)

We can proceed as before defining ∂2V/∂xj∂xi = mν2iAi,j , but an important difference is that,
although ∂2V/∂xj∂xi is a symmetric quantity in the indices i and j, Ai,j is not, as seen from the
following calculation:

1

mν2i

∂2V

∂rj∂ri
= Ai,j =

−2

|ui − uj( νiνj )
2
3 +

di,j
li
|3

=
l3i
l3j

−2

|ui lilj − uj
li
lj

( νi
νj

)
2
3 +

di,j
lj
|3

=
ν2j
ν2i

1

|uj − ui(νjνi )
2
3 +

dj,i
lj
|3

=
ν2j
ν2i
Aj,i

(25)

In order to preserve the real and positive eigenvalue properties of symmetric matrices, the La-
grangian has to be written in the form:

L =
N−1∑
i=1

m

2
q̇i

2 −
N∑

i,j=1

m

2
qiqj

∂2V

∂rj∂ri
(26)

and the solutions to the Euler-Lagrange equations will have a frequency dependence of ωi =
√
λi,

where λi is the i-th eigenvalue of the second order derivative of the potential. That is, there will
not be an explicit νi dependence as before.
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2.2.1 Two ion case

When dealing with microtrap arrays the solution for the equilibrium positions is not as straightfor-
ward as in the standard harmonic trap. Whereas before an analytic solution could be obtained for
the simple two ion case, now the system of equations requires a numerical solution:

u0 +
1(

u0 − u1
(
ν0
ν1

) 2
3 − d

l0

)2 = 0 (27)

u1 +
1(

u1 − u0
(
ν1
ν0

) 2
3 − d

l1

)2 = 0 (28)

The expected behavior is observed when substituting the cases d = 0 and d→∞, with the former
recovering the known solution of the previous section, and the latter having both ions without
interaction in the bottom (u0,1 = 0) of their respective potentials. In the case when one of the
trap frequencies is much greater than the other one (ν0 � ν1), we have the simplified system of
equations:

u0 ≈ 0 (29)

u1 −
1

(u1 − d
l1

)2
≈ 0 (30)

where the ion in the high frequency trap is barely affected by the presence of the one in the low
frequency trap. While the latter sees the first one as a point charge sitting in the bottom of the trap.

To find the eigenstates of the system we write down the Hessian elements in the form Hi,j =
∂2V/∂rj∂ri:
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H0,0 =ν20

1 +
2∣∣∣∣u0 − u1 (ν0ν1) 2

3 − d
l0

∣∣∣∣3
 = ν20 (1 + 2c0,1) (31)

H1,1 =ν21

1 +
2∣∣∣∣u1 − u0 (ν1ν0) 2

3
+ d

l1

∣∣∣∣3
 = ν21

(
1 + 2

ν20
ν21
c0,1

)
(32)

H0,1 =
−2ν20∣∣∣∣u1 − u0 (ν1ν0) 2

3 − d
l0

∣∣∣∣3
= −2ν20c0,1 (33)

H1,0 =
−2ν21∣∣∣∣u0 − u1 (ν0ν1) 2

3
+ d

l1

∣∣∣∣3
= −2ν20c0,1 (34)

(35)

where we introduced the variable c0,1 which represent the mode coupling strength between the first
and the second ion, and is explicitly defined as:

c0,1 =
1∣∣∣∣u0 − u1 (ν0ν1) 2

3 − d
l0

∣∣∣∣3
(36)

Substituting those expressions in the known solutions for the eigenvalues of a 2x2 symmetric
matrix:

λ± =
1

2

(
H0,0 +H1,1 ±

√
(H1,1 −H0,0)

2 + 4H2
0,1

)
(37)

λ± =
1

2

(
ν20 + ν21 + 4c0,1ν

2
0 ±

√
(ν21 − ν20)

2
+ 16ν40c

2
0,1

)
(38)

For the simple case when ν0 = ν1 we recover the solutions:

λ− = ν21 (39)
λ+ = ν21 (1 + 4c0,1) (40)

The stretch mode frequency is different compared to the result obtained in equation (18) with the
standard trap potential, which has a value of λ+ = 3. For a simulation with two calcium ions in
microtraps a λ+ ∼ 1/d3 decay is observed due to the distance dependence in c0,1.
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Figure 1: Values for the λ+ eigenvalue in microtrap array with m = 40 amu and ν1 = ν2 = 1
MHz. This corresponds to the square of the stretch mode frequency

From the figure (1) we can see that for around a typical experiment of d = 30µm, we have a value
of λ+ = 1.0128, which means the difference between the stretch and COM modes is of only of
∆ν = 6.4 kHz as opposed to the ∆ν = 732 kHz difference in a standard harmonic trap with a
frequency of 1 MHz. This could be problematic when applying a Molmer-Sorensen gate, due to
the lower frequency spacing of the modes.

In figure (2) we can observe the behaviour of the λ+ and λ− eigenvalues when the νi frequencies
are different. After a certain frequency difference between ν1 and ν0, the eigenvalues approach the
values λ+ = ν1, λ− = ν0, as expected when the motion of the ions is decoupled.

Figure 2: Values for the λ+ and λ+ eigenvalues in microtrap array with m = 40 amu d = 30 µm
and ν0 = 1 MHz

With the eigenvalues in hand it is possible to study the structure of the normal modes, to confirm we
indeed recover the expected COM and stretch mode in microtrap arrays in the case when ν0 = ν1
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b+ = C

(
H0,1

λ+ −H0,0

)
= C

(
−2ν21c0,1
2ν21c0,1

)
=

1√
2

(
−1
1

)
(41)

b− = C

(
H0,1

λ− −H0,0

)
= C

(
−2ν21c0,1
−2ν21c0,1

)
=

1√
2

(
1
1

)
(42)

An important behavior in the case of the normal modes of microtrap arrays with different frequen-
cies is the decoupling of the ions from certain normal modes. Such that in cases where the differ-
ence in frequency between the sites is greater than the exchange frequency Ωex = e2/(4πε0mω0d

3),
there are no normal modes where both ions oscillate together. This can be seen in the figure (3),
where the values of the first component of the normal modes, corresponding to the contribution of
the first ion to the motional mode.

Figure 3: Contribution of the first ion to the motional modes b+ (COM) and b− (Stretch) in a
configuration with the first trap frequency set to ν0 = 1 MHz, and d = 30 µm. The frequency
range for ν1 being from 1 - Ωex to 1 + Ωex

So if we wish the ions of our microtraps to interact via motional coupling, it is required that their
microtrap frequency differences are on the order of around 50 kHz if dealing with typical trap
frequencies of the order of 1 MHz.

2.3 Simulation

As seen from section 2.2.1, analytical solutions to even simple cases for microtrap arrays are com-
plicated. More complex configurations require the use of numeric solutions to find the eigenvectors
and frequencies corresponding. We achieved this by working with a python package created by
Matthew Grau called ion sim to numerically solve for ion motion in arbitrary potentials. This is
done by creating a class where this potentials can be defined and built in methods that numerically
calculate the normal modes and equilibrium positions via automatic differentiation package auto-
grad [8], a method to efficiently calculate numerical derivatives, of the sum of the trap and the
Coulomb potential.

For standard linear ion traps the potential is straightforward to calculate, defining a harmonic po-
tential for x, y and z. In the case of the microtrap array we defined a piecewise potential, where
there is either a distance defined as a input (1D case) or a set of coordinates (2D case) that will
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serve as the origin for each of the microtraps. The limits beings halfway the distance to the nearest
origin point (1D case), or a circle with radius halfway the distance to the nearest coordinate (2D
case). Providing a list of frequencies will completely define the potentials. The code used to derive
all the results in this project can be found in https://gitlab.phys.ethz.ch/graum/ion_sim/
-/blob/Javier_Project/examples/Project_Javier.ipynb.

In figure (4) we show a standard output by the simulator. The columns of the left side of the
figure represents the eigenvectors, while the rows are the contribution of each ion to each motional
mode. From this figure we can recognize the COM and stretch modes as the first and second
columns. On the lower side of the figure we can see a plot of the corresponding frequencies for
each of the modes. The right side of the figure shows a direct comparison of the simulation and the
diagonalization of the equation (22). The good match between the two gives us a good indication
of the validity of the derivations done in section 2.1.

Figure 4: Left figure shows the eigenvectors and mode frequency for two ions with m = 40 amu,
d = 30 µm and ν0 = ν1 = 1 MHz. Right figure shows the comparison of simulation with the
diagonalization of the matrix defined by equation (22)

3 Analytical Approximation

To find the normal modes of an ion configuration we need to find the eigenstates and eigenvalues of
a general symmetric matrix, which in general does not have a closed-form solution. Although this
is not a numerically hard problem it is interesting to consider approximations on different types of
arrays that reduce the problem to one with an analytical solution.

The case of a long string of ions, a long array of repeating pairs of closely spaced ions (or alter-
nating distances), and periodic boundary conditions will be presented. To approach them we will
consider only nearest-neighbor interactions for the first two cases. This is not an unreasonable
assumption given that off diagonal elements decay with the inverse power law Ai,j 1/d3, such that
for an equally spaced array Ai,i+2 = Ai,i+1/8.
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3.1 Ion string

The solution to a long string of ions in a single trapping potential is well known and has been
extensively studied numerically [6]. But in our configuration, the constant distance between traps
yields a different mode structure that is more akin to the isospaced linear string studied in [7].
Although most of the features we will study have been already covered in that paper, here the
contribution comes from the attempt to obtain an analytical expression for the eigenvectors and
frequencies.

For the microtrap configuration we have a high radial (ωx and ωy) trapping potential compared
to the axial direction (ωz), equal spacing d between the ions and all traps sharing the same axial
frequencies. Furthermore, we will assume the rest positions to be at the trap centers (ui = 0), this
approximation holds for an infinitely long chain, but even in the finite case the displacement is
small enough compared to d that it doesn’t significantly affect the results as can be seen in figure
(5) where the ions in the edges are at most displaced by 0.4 µm.

Taking then into account only nearest-neighbour interactions, and approximating the diagonal ele-
ment of the first and last ions to be the same as the rest, we can write the normal mode matrix as in
a tridiagonal Toeplitz form:

A =


β g 0
g β g

g β g
. . . g

0 g β

 (43)

with entries

β = ω2
z

(
1 +

4l3

d3

)
(44)

g = −ω2
z

2l3

d3
(45)

The eigensystem solution to matrix of the type (43) are well know in the literature [10]. To solve
for the eigenvalues of a matrix we have to find the roots of the polynomial:

det(A− λI) =

∣∣∣∣∣∣∣∣∣∣∣

β−λ
g

1 0

1 β−λ
g

1

1 β−λ
g

1
. . .

0

∣∣∣∣∣∣∣∣∣∣∣
= 0 (46)

For a system of size N the expression in (46) can be expanded as:
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Pn(µ) = µ

∣∣∣∣∣∣∣∣∣∣∣

β−λ
g

1 0

1 β−λ
g

1

1 β−λ
g

1
. . .

0

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
Size N-1

−

∣∣∣∣∣∣∣∣∣∣∣

β−λ
g

1 0

1 β−λ
g

1

1 β−λ
g

1
. . .

0

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
Size N-2

(47)

where µ = β−λ
g

. This can be expressed as the recurrence relation, with the initial conditions:

Pn(µ) = µPn−1(µ)− Pn−2 (48)
P2(µ) = µ2 − 1 (49)
P1(µ) = µ (50)

which defines the well-known Chebyshev polynomials with zeros in µr = 2 cos( rπ
N+1

), so the
eigenvalues are:

λr = β − 2g cos

(
rπ

N + 1

)
(51)

λr = ω2
z

(
1 +

8l3

d3
cos2

(
rπ

2(N + 1)

))
(52)

with r = 1, 2, ..., N

The mode frequencies resulting from the solutions to the harmonic oscillator according to (26) are
then:

ωr = ωz

√
1 +

8l3

d3
cos2

(
rπ

2(N + 1)

)
(53)

The analytical expression of the eigenvectors given in [10] are of the simple form:

br,k = sin

(
rkπ

N + 1

)
(54)

representing the rth entry with of the kth eigenvector. Notice there is no eigenvector with all the
entries having the same weight, so there is no COM mode when considering only nearest neighbor
interactions.

In figure (5) we present the simulation results of a chain of 30 ions in microtrap, while in figure (6) a
comparison of the results with the results in equations (53) and (54). Although the modes from the
simulation and the analytical results strongly resemble each other, the former does posses a COM
mode where all ions oscillate in phase. As for the eigenvalues, the approximation follows closely
the frequencies obtained by simulation but having lower frequencies for higher number modes.
Such shift can be attributed to only considering nearest-neighbor interactions, which lowers the
value of the potential energy in the system and thus the frequency of modes where the second
neighbor interaction becomes more meaningful.
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Figure 5: Simulation of 30 ions in microtraps with m = 40 amu, d = 30 µm and νi = 1 MHz. The
second figure shows the positioning of the ions, the microtrap frequencies and the displacement
from the origin.

Figure 6: Left figure shows the comparison between the eigenvalues in equation (53) and the
simulation with 30 ions, alongside a diagonalization of the matrix defined by (22). Right figure
plots the eigenvectors in equation (54) for 30 ions.

3.2 Alternating distance

For the second case we will consider an array where the distance between each of the traps alter-
nates after every ion. That is, the chain with groups of two ion traps close together with a distance
d1 between them, and a distance d2 from the other nearest ion. For this problem we will also ap-
proach it using the nearest neighbor approximation, reducing the problem to the one of a 2-Toepliz
matrix of the form:
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A =


β g1 0
g1 β g2

g2 β g1
. . .

0 g1,2 β

 (55)

with the second to last element being g1 if the size N of the matrix is odd and g2 if its even. And
with:

β = ω2
z

(
1 + 2l3

(
1

d31
+

1

d32

))
(56)

g1 = −ω2
z

2l3

d31
(57)

g2 = −ω2
z

2l3

d32
(58)

In order to obtain a closed expression for the eigensystem, we will assume as before that the ions
rest in their equilibrium positions. Although this is is not the case even when considering an infinite
array. We can justify it by observing that the ions are displaced around 0.1 micrometers at most
when performing a simulation for d1 = 30 µm and d2 = 45 µm, as seen in figure (7).

The solution for this type of system is more involved but also consists of finding a recursive re-
lationship for the characteristic equation of the matrix (55) [3]. The results are split into the case
when the size of the matrix is N = 2m and N = 2m + 1. There exist a formula for the former,
but it includes the zeros of a polynomial that, although it possesses the Chebyshev recurrence for-
mula, the initial conditions are not Chebyshev polynomials. In case of the latter there is an explicit
solution as:

λr,± = β ±

√
g21 + g22 + 2|g1||g2| cos

(
rπ

m+ 1

)
(59)

for r = 1, 2, ...,m, and the eigenvalue λ0 = β. In the case where g1 = g2, it can be shown that the
formula reduces to equation (51). The motional modes frequencies will then be:

ωr,± = ωz

√√√√1 + 2l3
(

1

d31
+

1

d32

)
± 2l3

√(
1

d61
+

1

d62

)
+

2

d31d
3
2

cos

(
rπ

m+ 1

)
(60)

There is also a way to explicitly calculate the eigenvectors in terms of the Chebyshev polynomials,
but their expression is much more complicated than the standard Toepliz matrix and for that reason
we will obtain them by numerically diagonalizing the matrix (55).

In figure (7) can find the simulation for a case with 31 ions. The eigenvectors can be understood as
a (N − 1)/2 chain of groups of two ions oscillating as a standard ion string. In half of the modes,
the two ions forming each group move in the same directions, while in the other half they mode
with opposite phase and with no contribution from the last ion.
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Figure 7: Simulation of a chain of 31 ions with with m = 40 amu, νi = 1 MHz, and alternating
distances d1 = 30 µm and d2 = 45 µm. The second figure shows the arrangement of the ions ad
well as frequencies of microtraps and equilibrium positions of ions.

The comparison of the simulation to the results from equation (60) can be seen in figure (8). In this
case, the analytical results don’t agree with the simulation results, as before the frequencies are
lowered due to limiting ourselves to only nearest neighbor interactions. There is also a mode with
eigenfrequency set precisely halfway between the two sets of modes (λ0 = β), which does not
appear in the simulated results. As for the eigenvectors, while the same mode structure is present
in the simulation from figure (7), the localized mode in the analytical result is localized in the last
ion, while in the simulation it is in the first one of the chain.

Figure 8: Left figure shows the comparison between the eigenvalues in equation (60) and the
simulation with 31 ions, alongside a diagonalization of the matrix defined by (22). Right figure
plots the eigenvectors resulting from the numerical diagonalization of the matrix (55).

The disparity present in figure (8) can be explained by the equilibrium positions in figure (7). The
first ion in the simulation is almost twice as far form the second ion compared to any two ions in
the group chain, breaking the symmetry of the system. To fix the ion equilibrium positions we

16



introduced two ions on each side with microtrap frequencies of ν = 100 MHz such that they are
decoupled from the modes of the chain with 31 ions as seen in figure (9).

Figure 9: Simulation of a chain of 35 ions with with m = 40 amu, and alternating distances
d1 = 30 µm and d2 = 45 µm. The frequency of the first two and last two microtraps is ν = 100
while for the rest is ν = 1. The second figure shows the arrangement of the ions ad well as
frequencies of microtraps and equilibrium positions of ions.

Figure 10: Comparison between the eigenvalues in equation (60) and simulations with 35 ions
with high frequency traps in the edges to correct the equilibrium positions.

From the frequency comparison in figure (10), and the mode structure in figure (9) we can observe
more similarities between the analytical and simulation results. The simulated frequencies now
have the middle mode with frequency in between the first and second half, but still higher than the
analytical ones. And the eigenvectors having a localized modes in the last ion rather than the first
one. Similar findings were found for the case of an even number of ions, where edge traps with
high frequencies were required to have the structure similar to the matrix (55).
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The results in this section highlight the advantage of developing analytical models in parallel with
numerical ones. With the former ones giving us insight into what else can be achieved by the later
ones. In this case predicted the existence of localized modes in the edges with distinct frequency
from the rest of the other modes.

3.3 Periodic Boundary Conditions

In this section we will consider the more exotic case of periodic boundary conditions. Where the
coupling from the first ion and the last ion is the same as the first to the second one. As opposed
to the previous two cases, this model is exactly solvable, with the caveat of of not being physically
implementable in a one dimensional case. Although in the case of two dimensions we will see that
it’s possible to recreate the some of these results.

When writing down the contribution, the hessian matrix takes the form of a circulant symmetric
matrix where each of the subsequent columns is a permutation of the previous one:

A =



β g1 · · · g2 g1
g1 β · · · g3 g2
g2 g1 · · · g4 g3
...

... . . . ...
...

gN
2
−1 gN

2
−2 · · · gN

2
+1 gN

2

gN
2

gN
2
−1 · · · gN

2
+2 gN

2
+1

gN
2
+1 gN

2
· · · gN

2
+3 gN

2
+2

...
... . . . ...

...
g3 g4 · · · g1 g2
g2 g3 · · · β g1
g1 g2 · · · g1 β


(61)

For a size N even. In the case of N odd the maximum index would be g(N−1)/2. The values of the
variables are in this case not as straight forward as before, with β taking different values depending
on whether N is even or odd:

β = 1 +
4l3

d3

bN−1
2
c∑

j=1

1

j3
if N odd (62)

β = 1 +
4l3

d3

bN−1
2
c∑

j=1

1

j3
+

4

N3

 if N even (63)

gi = −2l3

d3
1

i3
(64)

The eigenvalues and eigenvectors of this matrix are obtained by expressing the matrix (61) as a
linear combination of a permutation matrix, which is itself diagonalizable by the discrete Fourier
transform [14]. They take the form:
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q
(j)
i = ρik λj = β + g1ρj + g2ρ

2
j + · · ·+ g1ρ

N−1
j (65)

with q(j)i being the ith component of the jth eigenvector, λj the jth eigenvalue, and ρj = ei2πj/N .
In our case, the matrix is symmetric, so the eigenvalues will be real and can be expressed more
concisely as:

λi = β + 2

bN−1
2
c∑

j=1

gj cos

(
2πij

N

)
N odd (66)

λi = β + 2

bN−1
2
c∑

j=1

gj cos

(
2πij

N

)
+ gN

2
(−1)i N even (67)

An important observation that can be made is that of the degeneracy λi = λN−i, expect in the case
λ0 where it will be the sum of the values of a column in the matrix. In the case when N is even the
eigenvalue λN/2 = β +

∑N/2
j=0 gj(−1)j will also not be degenerate.

Substituting the values of the variables into the expressions:

λi = 1 +
8l3

d3

bN−1
2
c∑

j=1

1

j3
sin2

(
πij

N

)
N odd (68)

λi = 1 +
8l3

d3

bN−1
2
c∑

j=1

1

j3
sin2

(
πij

N

)
+

4

N3
δi mod(2),1

 N even (69)

(70)

For the eigenvectors, the degeneracy in the pairs (j,N − j) allows us to write linear combinations
such that the resulting pair has real components:

b(j)
i =

1

2
(q(j)

i + q(N−j)
i ) =

1√
N

cos

(
2πjk

N

)
(71)

b(N−j)
i =

1

2i
(q(j)

i − q(N−j)
i ) =

1√
N

sin

(
2πjk

N

)
(72)

Although it’s possible to express them in this simple form, the degeneracy means there is not
a unique description for them. So the numerical eigenvectors are not necessarily just sines and
cosines as can be seen from the figures (11) and (12).
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Figure 11: Eigenvalues and eigenvectors of a periodic array with N = 30 and a distance of 30
micrometers apart

Figure 12: Eigenvalues and eigenvectors of a periodic array with N = 31 and a distance of 30
micrometers apart
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4 Localized modes in microtrap arrays

One of the objectives of this work is to find combinations of parameters that would result in mo-
tional modes that have desirable contributions from different ions in the chain. A good example
would be the result from [12] replicated in figure (13), where the interaction is localized on three
modes, with each ion interacting weakly with other two. This is done mainly by the mechanism
outlined in section 2.2.1, where different frequency microtraps tend to not interact if tuned beyond
a certain threshold amount.

Figure 13: Simulation of a chain of 10 ions with linear frequency increases of 33 kHz for the
microtraps. With alternating masses of 40 amu for coolant and 43 amu for spin ions and a distance
of d = 30 µm

The current goal is to have a system composed of two species, one acting as a coolant (40Ca+ with
m = 40 amu) and another one as a spin ion (43Ca+ with m = 43 amu), with modes where 3 spin
ions are interacting with each other an there is at least one coolant ion. One way of archiving this
is by using the same strategy as before of linearly increasing the frequency of the microtraps but
by a smaller amount. The mode structure of such configuration can be seen in figure (14)
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Figure 14: Simulation of a chain of 10 ions with linear frequency increases of 5 kHz for the
microtraps. With alternating masses of 40 amu for coolant and 43 amu for spin ions and a distance
of d = 30 µm between microtraps

The problem with this configuration is that each spin ion has contributions in five different modes.
This is because, asides from the three modes where there are three spin ion, there are two modes
where there is a majority of coolant ions and only two spin ions. In theory we could simply not
address those modes and work with the ones we like, but with only around 10 kHz of difference
between the desired and undesired modes, this could probe to be difficult.

As a workaround for this problem we propose a different frequency configuration. In the case
above each coolant ion participates in three modes with three coolant and two spin ions, and two
modes with two coolant and three spin ions, mirroring the spin ions. Such that if we would wish to
select only the desirable modes, each spin ion would participate in three modes and each coolant
ion in two modes. As an additional restriction, its clear the need of an increasing frequency for the
spin microtraps, otherwise there would be no mode localization and the structure would be similar
to the ion string we presented before.

To proceed, the coolant ions were given a higher frequency than the spin ions, not too much as to
completely decouple them from the chain, but also enough such that it weakly interacts with its
neighboring spin ions. So in theory only only those two modes would interact with the spin ions, as
desired, and the rest of the interacts with the other coolant ions would be separated by a frequency
of around 50 kHz from the modes in the spin chain. As for the spin ions we implemented the same
linear increase as before, such that they only interact with their nearest neighbor spin ions. Figure
(15) shows a simulation with these constrains
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Figure 15: Simulation of a chain of 24 ions with the coolant ions having a constant frequency of
1.07 MHz and spin ions linearly increasing their frequency by 5 kHz.

There are some obvious disadvantages with these approach, mainly the interaction of the spin ions
with the coolant ions is particularly weak. Also, the number of ions in a chain possible is limited
by how much you can separate the frequency of the coolant ions without isolating them from the
spin ions, which limits how many spin ions can be put with increasing frequency until you reach
the frequency of the coolant ions. Its not possible to fix this by also increasing the frequency of
the coolant ions, because this would create and asymmetry where they don’t interact with the same
strength between the neighboring spin ions. Still, this is just an example of the flexibility of using
individually tunable microtrap arrays to perform normal mode engineering.

5 2D structures

Using the same simulation strategy as the 1D case, its possible to create arrays of potentials in a 2D
plane. This idea was explored with Micro-Penning traps in [5], but here we assume independent
harmonic trapping potentials, such that we can increase the trapping frequency in the z direction
without affecting the modes in the x-y plane. The mode structure becomes more complicated as
well, with mixing of the x and y coordinates, then each ion not only has an amplitude related to
its motion, but a direction as well. With the additional coordinate there is also a total of 2N modes
of motion in the system. For the simulations that are presented below the x-y microtrap potentials
were circularly symmetric, meaning ωx = ωy, but with only a parameter change as an input, it is
possible to modify the shape of these potentials to generate ellipses in any desirable direction.

In figure (16) we can observe the mode structure of a hexagon. An interesting feature being the
high number of modes with degeneracy that are present, likely due to the high rotational symmetry
of the system.
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Figure 16: Hexagonal array of ions with a radius of r = 30µm and ions with m = 40 amu

The additional complexity of 2D arrays can have its benefits, for its possible to construct the
periodic arrays we did the calculations for in the previous section. In the case of a big circle of
ions in the 2D plane, plotting the mode structure projected onto the x and y axis respectively as
we can see in figure (17), greatly resembles the mode structure seen in figures (11) and (12). The
differences arise from the angle dependent contribution of each ion. For example, the two ions that
are horizontally separated in the x-axis have no y-coordinate interaction, while the ions precisely
next to them have almost none x-coordinate force either. Although not done in this work, I believe
it’s possible to use the periodic boundary condition approach to find the analytical solutions for the
circular system.

Figure 17: Vector mode structure for an array of 150 ions arranges in a circle of radius of r = 350µ
m and ions with m = 40 amu
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To further showcase the robustness of the simulation package we present in figure (18) other ex-
amples of modes in 2D arrays, one being a 5x5 grid and another an extended hexagonal array. The
highly circular symmetry of both systems highly encourages analysis of the mode structure to be
decomposed in a coordinate system that rotates with the systems but that is beyond the scope of
this work.

Figure 18: Example of motional modes for a 5x5 grid array (left) and hexagonal array (right) with
m = 40 amu

6 Conclusion

In this work, we reviewed the treatment of motional modes for ions in a harmonic potential, to fur-
ther expand it into the case of arbitrarily spaced microtraps with each one having individually tuned
frequencies. Focusing on the case of only one ion per trap, we derived the equivalent equations
to determine the frequency and structure of the motional modes of the array, as well as comparing
these results with numerical simulations in python to test their validity.

With analytical and numerical tools we explored the solutions and structures of motional normal
modes and their frequencies, using approximations such as only considering nearest-neighbor in-
teractions to find approximate solutions to some configurations. By solving the simplified analyt-
ical problems we were able to identify particular characteristics that weren’t immediately evident
from the numerical solutions, such as the frequency splitting in the case of alternating distances
or the mode degeneracy present in the periodic boundary condition. Although most of the micro-
trap configurations were only studied numerically, we obtained a good qualitative knowledge of
their mode structure such as expecting ions to only weakly interact in case of detuned microtrap
frequencies, a sinusoidal type modes for long chains. We even extended our simulation results for
2D arrays, but did not study them as extensively as in the 1D case.

With this knowledge of mode structures, it is possible to construct arrays that localize interactions
to only a selected number of ions. This is done mainly through linearly increasing the frequency
by a certain amount. While previously this was limited to 3 modes we proposed a structure where
interactions with groups of 5 ions per mode but with specific ions only participating in 3 of these
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modes. This is only a preliminary result so it can be further tuned, but it shows potential for the
construction of more complex more structures with localized modes.

This is just an exploratory work on the richness of the motional mode structures of microtrap
arrays, so there is still lots of work to be done to fully understand what is possible to archive.
The complexity of the system even in 1D shows great promise for what can be done with these
systems, and we hope that this discussion and tools develop here serves only as starting point for
future work and applications in microtrap arrays.
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