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Abstract

In this report I will describe the modeling, designing and testing of
an RF helical resonator suitable for delivering RF signal to a double-
junction ion trap in a cryogenic environment.
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Chapter 1

Introduction

Quantum computing is an exciting and rapidly evolving field of modern
science. One of the most promising implementations of a quantum com-
puter is based on the ability to control and measure systems of trapped ions.
Those ions are typically confined in Paul (RF) [15] traps by applying static
and oscillating RF signals to the trap electrodes, which on average generate
a confining electric potential.

1.1 Why do we need resonators?

One could potentially couple a radio frequency source directly to an ion’s
trap. However this creates the following challenges:

• noise from the source may contribute to heating of trapped ions [19],

• in order to maintain efficient cryostat cooling the amount of generated
heat within it should be minimized. In order to stabilize ions in the
ion trap the confining RF signal must have a reasonably high voltage
amplitude. An RF resonator close to the signal consumption area al-
lows to reduce the length of an actively heated (with accordance to the
Joule–Lenz law [16]) high voltage wire,

• impedance mismatch between source and trap leads to an additional
dissipation of RF power.

These issues can be avoided by placing an amplifier close to the Paul trap,
which would filter the incoming signal and output it with a voltage suitable
for operating the trap. There are two available options: active and passive
amplifiers. The core difference between them is that active amplifiers use an
additional power source to increase output power of the signal while passive
amplifiers rather modify the shape of the input signal conserving the overall
power — in our case the voltage amplitude gain is balanced by the current
amplitude decline.
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1.2. Context of this project

Active amplifiers perform better in terms of voltage gain at room tempera-
tures. However, the aim of this project is to create a resonator used within
a cryogenic environment. The properties of transistors powering active am-
plifiers depend heavily on a combination of densities of free electrons and
holes. Lowering the temperature tends to reduce [2] these densities sig-
nificantly, turning semiconductors at room temperatures into practically di-
electrics.

It leaves us with passive amplifiers (resonators).

1.2 Context of this project

This semester project aims to be a part of an attempt to create a scalable
quantum computing architecture by Chiara Decaroli. It provides the follow-
ing benefits compared to existing solutions:

• using subtractive laser writing to manufacture wafers eliminates mis-
alignment effects by allowing a “self assembly” of different wafers,

• double junction ion trap designed for parallel operations, Decoherence
Free Subspace (DFS) ion transport across the junctions, and manipula-
tion of long chains of ions,

• potential integrated laser delivery through optical lensed fibers elim-
inates the need for bulky optics and custom objectives which limit
scalability.

Figure 11: Top wafer of the double junction trap

2



1.3. Kinds of resonators

1.3 Kinds of resonators

The required frequency of 40 MHz limits our selection to the following types
of resonators: helical [7, 8, 20, 11, 10] or, for higher frequencies, coaxial [9],
RLC [5, 12, 6], and crystal oscillators. Multiple available solutions require us
to do an analysis for a reasoned choice.

1.3.1 Helical

Figure 12: Schematic diagram of a helical resonator indicating shield diameter D, shield height
h, coil diameter d, coil height b, winding pitch τ, and coil wire diameter d0. [1]

Helical resonators are commonly selected to be coupled with ion traps due
to their high quality factors and ability to operate on high frequencies. It is a
perfect option for ion traps operated at room temperatures, since in absence
of space constraints they are able to provide Q values of a couple of thou-
sands. However in order to achieve those Q, the fabrication process needs
to be quite precise to avoid reflections of traveling waves which negatively
influence the overall gain.
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1.3. Kinds of resonators

1.3.2 RLC

Figure 13: Example of a parallel RLC circuit

RLC amplifiers are a convenient choice for space-bounded environments,
such as cryostats. Typical implementation pumps energy between two reac-
tive components — inductor and capacitor. Assembly of RLC circuit is easier
than of helical resonator since the physical placement of lumped parts does
not influence the resulting quality factor. But it also means that the quality
of these components is a major factor for successful creation. Given that
units’ data sheets rarely provide values for cryogenic or vacuum setup it
takes a lot of trial and error to find the right ones [5].

1.3.3 Crystal

Unlike helical and RLC resonators, the crystal oscillators do not store energy
just in the electric field. This type or resonator utilizes piezoelectric effect
to transform applied harmonic voltage into surface mechanical modes and
vice versa.

Narrow excitation spectrum is provided by physical dimensions imposing
hard constraints on vibrational oscillations and could have made such device
an ideal filtering solution for ions traps. Unfortunately, there are some major
downsides that seriously limit its applicability:

• after fabrication resonant frequency can not be widely tuned

• limited stability of the crystal does not allow high voltages

4



1.3. Kinds of resonators

1.3.4 Choosing the right one

Summarizing constraints for a resonator within the cryostat:

• Helical

– Max voltage is limited by the size (we want to avoid electrical
breakdown between the helix and the shield), generated thermal
power (mainly because of the resistance of the solder joints) and
the thickness of the coil wire,

– Max frequency is limited by the manufacturing complexity —
high frequencies in small resonators require the coil to be pro-
duced from a very thin wire,

– Resonant frequency tunability depends on the exact design, is
typically crude and is achieved by varying capacitive or inductive
coupling between the helix and the antenna.

• RLC

– Max voltage is limited by the quality of components used and
generated thermal power,

– Max frequency is limited by the quality of components used,

– Resonant frequency can be fine-tuned by using variable electrical
components.

• Crystal

– Max voltage is limited by the mechanical stability of the crystal,

– Max frequency — no information,

– Resonant frequency is almost fixed.

Table 11 gives a more visual explanation of above.

Type Max voltage Max frequency Tunability
Helical +++ +++ ++
RLC ++ ++ +++
Crystal + ? +

Table 11: Empirical interrelation between parameters of different types of resonators

In our setup, the combination of high voltage and frequency values with
our constraints on available space makes helical resonator the optimal op-
tion. However, difficulties of assembly do not make it a perfect solution in
terms of scalability — for a production-grade setup RLC amplifier might be
preferred.
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1.3. Kinds of resonators

Figure 14: 3D model of the 4K cryostat chamber, design by Roland Matt
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Chapter 2

Theory

2.1 What is a resonator?

By resonator we mean a harmonic oscillator within which some quantity
varies harmonically with time. In case of a helical resonator an alternating
current in electrical circuit periodically transfers the inductive energy stored
in a magnetic field of the helix into the capacitive electric field energy be-
tween the helix and the shield. When being stimulated by an RF signal
with a natural frequency of the system, voltage amplitude grows until the
damping mechanisms are strong enough to balance the resonant effect.

2.2 Helical resonator models

In order to create a helical resonator satisfying our experimental conditions
and limitations we inevitably come to a need for a theoretical model that
would be able to predict the essential characteristics of the resulting unit.
The following sections aim to provide an overview and comparison between
the models.

2.2.1 Macalpine & Schildknecht

A well-known approach [14] for describing helical resonators was intro-
duced in the same year as Richard Feynman’s idea [4] to use quantum sys-
tems for computations. It was motivated by the possibility to reduce volume
compared to TEM-mode coaxial-line resonators (90% volume reduction for
the reference case [14]). While skipping a detailed theoretical analysis it
nevertheless provides a basis for constructing a resonator: such as regions
of usefulness, design considerations and a set of parameters’ dependencies
maximizing Q.
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2.2. Helical resonator models

Figure 21: Design chart for quarter-wave helical resonators [14]

While describing essential properties of an unloaded helical quarter-wave
resonator, this paper [14] also predicts the shift of resonant frequency if an
external load is connected. In order to define a new frequency one can
make use of telegraph equations [17] by effectively treating the ion trap as a
capacitor.

Important results of [14] can be found in equations 2.1 with parameters
named as in the figure 12.

d/D = 0.55
b/d = 1.5

h ≈ (b + D/2)
(2.1)

2.2.2 Siverns et al.

Unfortunately modeling an ion trap as a pure capacitive load is not always
accurate. Introducing resistive losses imposes an additional shift of resonant
frequency which pushes the deviation from self-resonant frequency even fur-
ther. It is possible to tune the strength of the inductive coupling between the
antenna and the main coil to compensate this shift while losing in efficiency.

These limitations of Macalpine’s & Schildknecht’s [14] model have been over-
come in a newer paper [18] which takes the development of an amplifier,
specifically for the needs of quantum computing, one step further. By tak-
ing a look at the joint resonator + ion trap system as a whole it aims to
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2.2. Helical resonator models

predict the effective Q and frequency. This model ensures that it’s possible
to find optimal parameters for given experimental constraints.

While it is heavily recommended to check the original [18] paper to under-
stand the theory behind calculations in appendix B we will provide a short
explanation of the exact usage below. All symbols correspond to [18].

In our approach the only varying parameters are the diameter of a shield D
and the diameter of a helix d with α = d/D.

Formula for Q from [18] depends on the inductance of the coil LC (2.3),
the real part of the total impedance Zreal (2.11) and the target frequency ω0
(2π ∗ 40 MHz). In the following equations we would expand dependencies
until it is possible to express everything through our target and varying
parameters.

Q =
LC ω0

Zreal
(2.2)

Let’s start with defining the inductance of the coil LC. For a long solenoid
as modified by the effect of the shield [14] inductance can be described as
linearly dependent on the length of the coil b (2.4) and a coefficient KLc (2.5).

LC = b ∗ KLc (2.3)

The length of the coil b can be derived [14] from the height h (56 mm) and
the inner diameter D of the shield. Since D varies resulting b might become
less than 0 — this case is handled properly in the appendix B.

b = h− D/2 (2.4)

The coefficient KLc depends on the diameter of the helix d, the inner diameter
D of the shield and the winding pitch τ (2.7).

KLc = 39.37
0.025 d2 (1− α2)

τ2 10−6 H/m (2.5)

We take d0 from Macalpine’s calculations (see appendix A) and define τ as
suggested in [14].

d0 = Macalpine’s (2.6)

τ = 2 ∗ d0 (2.7)

Looking back at the equation for Q (2.2) we can see that the only undefined
part is Zreal (2.11). Naturally, first we need to define total impedance Ztot as
a sum of the following impedances: coil Zcoil (2.9), equivalent ZE (2.10) and
resistances: shield Rs (2.24) and helical coil to shield junction Rj (2.28).

Ztot = Zcoil + ZE + Rs + Rj (2.8)
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2.2. Helical resonator models

The impedance of the coil is dependent on the coil resistivity Rc (2.21) and
reactances XLc (2.12, due to the inductance of the coil) and XCc (2.13, due to
the the coil self-capacitance).

Zcoil =
(
(iXLc + Rc)

−1 + (XCc /i)−1
)−1

(2.9)

In order to define the equivalent impedance we use the resistance of the ion
trap Rt (expected value of 0.1 Ohm was used) and some reactances, such as
XCt (2.14, caused by the capacitance of the trap), XCw (2.15, caused by the
capacitance of the ion trap connecting wires), and XCs (2.16, caused by the
capacitance between the coil and the shield).

ZE =
(
(XCt /i + Rt)

−1 + (XCw /i)−1 + (XCs /i)−1
)−1

(2.10)

By substituting equations 2.9 and 2.10 into 2.8 and extracting the real part
we can express Zreal .

Zreal =
Rc X2

Cc

R2
c + (XCc − XLc)

2

+
Rt XCs XCw

R2
t (XCs + XCw)

2 + (XCs (XCt + XCw) + XCt XCw)
2

+ Rs + Rj (2.11)

Let us expand all reactances of Zreal (2.11). Their definitions would include
the target frequency ω0, the inductance of the coil LC (2.3) and a group of
capacitances: coil self Cc (2.17), ion trap Ct (varied parameter of 10, 15, 20
pF), ion trap connecting wires Cw (expected value of 1 ∗ 10−5 pF was used),
and coil to shield Cs (2.18).

XLc = ω0 LC (2.12)

XCc = (ω0 Cc)
−1 (2.13)

XCt = (ω0 Ct)
−1 (2.14)

XCw = (ω0 Cw)
−1 (2.15)

XCs = (ω0 Cs)
−1 (2.16)

The coil self capacitance Cc can be calculated as below.

Cc =

((
11.26

b
d

)
+ 8 +

(
27√
b/d

))
d pF (2.17)
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2.2. Helical resonator models

In order to express the capacitance between the coil and the shield we use an
approach similar to what was used for LC (2.3) by introducing a coefficient
KCs (2.19).

Cs = b ∗ KCs (2.18)

The equation for the multiplier KCs is shown below.

KCs = 39.37
0.75

log10 (D/d)
pF/m (2.19)

With all capacitances in place the resonant frequency ωres can be found. We
only use it to determine whether it is close to the target frequency ω0 which
is actually used in the calculations.

ωres = ((Cs + Ct + Cw + Cc) LC)
−1/2 (2.20)

In order to complete the derivation of the coil impedance Zcoil (2.9) we need
to additionally provide a value for the coil resistance Rc. It depends on the
copper resistivity ρ (1.7 ∗ 10−8 Ohm∗m), the unwound length of the coil lc
(2.22), thickness of the coil wire d0, and the skin depth of copper δ (2.23,
since the current would only flow through the skin region).

Rc =
ρ lc

d0 π δ
(2.21)

From the geometry of the coil we can express the unwound length through
the diameter d, pitch τ, and height b.

lc = 2π

√(
d
2

)2

+
( τ

2π

)2 b
τ

(2.22)

Calculations of the skin depth are standard.

δ =

√
2ρ

ω0 µ0
(2.23)

Looking again at the expression for the real part of total impedance Zreal
(2.11) we see that the only missing parts are the shield Rs (2.24) and heli-
cal coil to shield junction Rj (2.28) resistances. Similar to the coil resistance
Rc (2.21) we can define Rs by accounting for the coil height b and the ”un-
wound“ length ls (2.25) that the currents take on the shield inner surface.

Rs =
ρ ls

b δ
(2.24)
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2.3. Comparison

The distance of the path ls in the shield is dependent on the number of
”turns“ Ns (2.26) the current takes.

ls = Ns

√(
π d
α

)2

+

(
b

Ns

)2

(2.25)

This number Ns can be defined as below, with r (2.27) being the difference
between the coil and inner shield radii.

Ns =
b lc

4π r2 (2.26)

Calculations for the difference between radii r follows naturally from the
geometrical considerations.

r =
d
2

(
α−1 − 1

)
(2.27)

The resistance of the solder joint is dependent on the target frequency ω0
with 3 ∗ 10−3 Ohm being a typical resistance value for a DC current.

Rj = 0.003
√

ω0

2π 105 Ohm (2.28)

With these we have everything required for the expression for Q (2.2).

2.3 Comparison

Macalpine’s and Schildknecht’s [14] model gives insights for designing a he-
lical quarter-wave resonator with a given self-resonant frequency. However
major shifts from it can be expected when connecting the ion trap. Siverns’
et al. approach [18] investigates connections between various parameters in
the total circuit. As a result one could create a resonator which implements
a transfer function closer to a desired one. Considering these benefits the
Siverns model [18] was selected.
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Chapter 3

Design

This chapter provides a representation of efforts one must face to make a
jump from dry theoretical models to a virtually real device.

3.1 On a quest to perfect parameters

Our journey begins with a necessity to define restrictions of the problem.
The intended environment would be a 4K cryogenic chamber (figure 14),
which imposes dimensions restrictions. The ion trap requires a defined fre-
quency for successful confinement of ions and has a capacitance. Summa-
rized restrictions can be found in table 31.

Parameter Description Value

Vmax Maximum volume of the resonator (60 mm)3

ω0 Target frequency of the trap 40 MHz
Ctrap Capacitance of the trap 10–20 pF

Table 31: Restrictions of a system

3.1.1 First iteration

Siverns’ model [18] is dependent on outcomes from Macalpine’s model [14]
thus one needs to find these beforehand. Exact value of a trap’s capacitance
is unknown at the moment of calculations so it was decided to use and com-
pare values from a following set of capacitances: Ctrap = [10, 15, 20] pF. The
modified Macalpine’s model, found in the appendix A, also predicts reso-
nant frequency shift when connecting a capacitor. The unloaded frequency
needed to be varied until the loaded frequency equals target frequency. Re-
sults are provided in table 32, naming is consistent with [14].

13



3.1. On a quest to perfect parameters

Parameter Value
Ctrap, pF 10 15 20
B, mm (length of a shield) 60.0
D, mm (diameter of a shield) 45.0
b, mm (length of a coil) 37.1
Nt (number of turns) 11.0 9.2 8.1
d0, mm (diameter of a wire) 1.7 2.0 2.3
τ, mm (pitch of a helix) 3.4 4.0 4.6
f0, MHz (unloaded frequency) 97.0 116.0 132.8
Q (unloaded quality factor) 873.2 954.8 1022.4

Table 32: Joint output of the appendix A

3.1.2 Precise fit

After defining an approximate region of interest we can proceed to calcu-
lations utilizing Siverns’ model [18] with implementation provided in the
appendix B. Volume requirements were also better clarified with the goal to
get the best quality factor by varying coil’s parameters. Updated restrictions
can be found in the table 33. One could argue that all values of d0 are lower
than the recommended in [18] thickness of 5 mm. This is true and additional
measures to handle it can be found in section 3.2.5.

Parameter Value
Ctrap, pF 10 15 20
B, mm (length of a shield) 56.0
Dmax, mm (max diameter of a shield) 38.0
d0, mm (diameter of a wire) 1.7 2.0 2.3
τ, mm (pitch of a helix) 3.4 4.0 4.6
ω0, MHz (resonator frequency) 44.6 45.6 46.9
Q 418 360 311

Table 33: Restrictions for the Siverns’ model

Fixed values of the table 33 allow us to independently change 2 remaining
parameters — diameter of a shield and diameter of a coil. Appendix’s B
output of Q values is provided in the figures 31, 32, 33. By selecting a point
in a {d, γ = d/D} space that maximizes Q for a set of Ctrap values we get
final parameters for our RF resonator as defined in the table 34.

Since selected dimensional parameters in the table 34 correspond to those of
Ctrap = 10 pF we would expect the unloaded frequency f0 and the unloaded
Q to be equal to ones mentioned in the table 32.

14



3.1. On a quest to perfect parameters

Figure 31: Q values plot for Ctrap = 10 pF

Figure 32: Q values plot for Ctrap = 15 pF
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3.2. Shaping the 3D model

Figure 33: Q values plot for Ctrap = 20 pF

Parameter Value
B, mm (length of a shield) 56.0
D, mm (diameter of a shield) 34.5
d, mm (diameter of a coil) 19.0
b, mm (length of a coil) 40.0
Nt (number of turns) 10.0
d0, mm (diameter of a wire) 2.0
τ, mm (pitch of a helix) 4.0

Table 34: Final parameters of an RF resonator

3.2 Shaping the 3D model

With all dimensions in our hands we can start implementing them in a 3D
design for the workshop. This section provides an overview of all parts used,
their features and reasonings. One important feature to notice beforehand
is the tunability. With the resonator as small as ours the chances that man-
ufacturing complications would shift the target frequency further are rather
high. In order to be able to vary it precisely the angular scale on the top cap
(3.2.6) and the linear scale on the antenna mount (3.2.8) were designed.
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3.2. Shaping the 3D model

3.2.1 RF resonator

Assembly of the RF resonator is shown on the figure 34. Every part is pro-
duced from oxygen-free copper to lower the resistivity. Colors are adjusted
for a better perception.

Figure 34: 3D model of an RF resonator

17



3.2. Shaping the 3D model

3.2.2 Bottom cap

Bottom cap as displayed in the figure 35 features:

• output hole for the helix (3.2.4)

• 4xM4 clearance holes to connect to the shield (3.2.3)

• 2xM2 thread holes for a SMA connector (RND 205-00499) for the helix
(3.2.4)

Figure 35: 3D model of a bottom cap

18



3.2. Shaping the 3D model

3.2.3 Shield

Shield as displayed in the figure 36 features:

• 4xM4 thread holes to connect to the top cap (3.2.6)

• 4xM4 thread holes to connect via a copper adapter to the top cover of
the 4K chamber (figure 14)

• 4xM4 thread holes to connect to the bottom cap (3.2.2)

• 12x ventilation holes for M4 thread holes to avoid the slow leakage of
the remaining air between the screw and the shield into the vacuum
of the cryostat

• hole for the helix connection (3.2.4)

Figure 36: 3D model of a shield
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3.2. Shaping the 3D model

3.2.4 Helix

Helix as displayed in the figure 37 features:

• end soldered to the shield (3.2.3)

• end soldered to a SMA (RND 205-00499) on the bottom cap (3.2.2)

Figure 37: 3D model of a helix

20



3.2. Shaping the 3D model

3.2.5 Helix support

Since d0 as specified in the table 34 is smaller than recommended thickness
of 5 mm the question of mechanical stability arises. In order to eliminate
potential mechanical oscillations we introduce a helix support made of PEEK
to be inserted inside of the helix (3.2.4). PEEK was selected as a cryogenic
compatible insulator thus minimizing its influence on the helix’s inductivity.

Figure 38: 3D model of a helix support
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3.2. Shaping the 3D model

3.2.6 Top cap

Top cap as displayed in the figure 39 features:

• 4xM4 clearance holes to connect to the shield (3.2.3)

• 4xM2 thread holes to connect to the top cap clamp (3.2.7)

• tight hole for an antenna mount (3.2.8)

• angular scale for an antenna mount (3.2.8) as discussed in 3.2

Figure 39: 3D model of a top cap
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3.2. Shaping the 3D model

3.2.7 Top cap clamp

Top cap clamp as displayed in the figure 310 features:

• 4xM2 clearance holes to connect to the top cap (3.2.6)

• truncated semicircle to clamp an antenna mount (3.2.8)

Figure 310: 3D model of a top cap clamp
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3.2. Shaping the 3D model

3.2.8 Antenna mount

Antenna mount as displayed in the figure 311 features:

• 2xM2 thread holes for a SMA (RND 205-00499) connector for the an-
tenna (3.2.9)

• hole for the antenna (3.2.9)

• cut for a precise usage of the angular scale on the top cap (3.2.6)

• 1 mm period cuts to determine the distance to the top cap (3.2.6) as
discussed in 3.2

Figure 311: 3D model of an antenna mount
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3.2. Shaping the 3D model

3.2.9 Antenna

Antenna as displayed in the figure 312 features:

• end connecting to a SMA (RND 205-00499) on the antenna mount
(3.2.8)

• end soldered to the bottom of the antenna mount (3.2.8)

• using empirical estimation from [18] a diameter of 11 mm was selected

Figure 312: 3D model of an antenna
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3.3. Final assembly

3.3 Final assembly

An overview of the assembled resonator can be seen in the figure 313.

Huge thanks to the ETH Workshop for their help in fitting the final appara-
tus into machinery constrains and for producing this delicate device.

Figure 313: Assembled resonator
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Chapter 4

Validation

Two parameters defining the assembled resonator are the central frequency
ω0 and the quality factor Q. In this chapter we measure their experimental
values and compare to those defined in the table 33.

4.1 Measurements

In order to determine ω0 and Q we would take a look at the reflection spec-
trum of the system consisting of resonator + coaxial cable + capacitor. For
every configuration the depth of the resonance was optimized by changing
the distance and the angle between the antenna mount 3.2.8 and the top cap
3.2.6, effectively adjusting the antenna to coil coupling.

Parameter Definition Values Units
Cload External capacitive load 10, 15, 22 pF
Lcoax Length of the coaxial cable 10, 20, 50 cm

Table 41: Additional experimental parameters

At the time of writing there is no clear values for the capacitance of the trap
and the length of the wires connecting it with the resonator. By using a
set of parameters defined in the table 4.1 we aim to measure ω0 and Q in
the region similar to the one used for the numerical calculations and broad
enough to include the point {Cload = Ctrap; Lcoax} of the final setup.

• For Lcoax = 50 two coaxial cables were connected, introducing 2 addi-
tional SMA connectors to the contour

• Available SMA connectors were of the male type. Unfortunately it
is also the type commonly used for the wires, so we had to use an
additional female-female adapter (+1 for Lcoax = 50)
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4.1. Measurements

Figure 41: Reflection spectrum for C = 10

Figure 42: Reflection spectrum for C = 15
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4.2. Analysis

Figure 43: Reflection spectrum for C = 22

4.2 Analysis

Finding ω0 from experimental data is trivial, it is the central frequency of
the peak. For the transmission spectrum Q can be defined as

Q =
ω0

∆ω
, (4.1)

where ∆ω is the width of the peak at the 1/
√

2 height. Since we are working
with the reflection spectrum we need to adjust the height using the following
expression

R1/
√

2 = 1−
1− Rpeak√

2
. (4.2)

Measured values of ω0 and Q are presented in the table 4.2. Visual compar-
ison with the predicted values from the table 33 is shown in the chart 4.2.
Cload = 22 pF is not equal to the simulated Ctrap = 20 pF but was considered
being close enough. The closer experimental data is to the point {0; 0} the
better it reflects the simulations. It can be seen that increased capacitance
due to both Cload and Lcoax tends to increase deviations from predictions.
Our model does not account for the additional capacitances and resistances
of the SMA connectors and the wires. Thus the predicted values in the table
4.2 are expected to be independent of the wire length and the number of
SMA connectors with “ ” standing for the “same as above”.
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4.3. Ideal drive

Cload, pF Lcoax, cm ωsimul
0 , 2π∗MHz ω0, 2π∗MHz Qsimul Q

10 10 44.6 44.7 418 223.5
10 20 36.3 269.9
10 50 22.3 140.4
15 10 45.6 40.6 360 216.5
15 20 33.9 268.6
15 50 21.6 69.7
22 10 46.9 36.5 311 153.5
22 20 31.2 192.3
22 50 20.8 145.6

Table 42: Measured Q and ω0 for various configurations

Figure 44: Relative deviations of Q and ω0

4.3 Ideal drive

This section includes simulations of the ideal drive for a 300 and 320 V drive
by Chiara Decaroli, figures 4.3 and 4.3 respectively. Let’s take a look at the
figure 4.3. If the resonator frequency is below ≈ 2π ∗ 34 MHz the ion trap
becomes unstable. On the other hand, with frequencies larger than≈ 2π ∗ 39
MHz the secular frequency of the ion itself drops below 2π ∗ 6 MHz which
does not allow certain quantum operations. Thus it is desired for the ω0
to belong to the intersection of the white areas. We show what measured
points respect this condition in the table 4.3.
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4.3. Ideal drive

Figure 45: Simulation of the ideal drive for 300V
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4.3. Ideal drive

Figure 46: Simulation of the ideal drive for 320V
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4.4. Power dissipation

Cload, pF Lcoax, cm Compatible with 300V Compatible with 320V
10 10 7 7

10 20 3 3

10 50 7 7

15 10 7 3

15 20 3 7

15 50 7 7

22 10 3 3

22 20 7 7

22 50 7 7

Table 43: Fitting the experimental data into the ion trap constrains

4.4 Power dissipation

Since the experiment would run in a cryogenic environment it is crucial to
estimate the dissipated power to find out whether a cryostat should be able
to handle it. According to [13] average dissipated power P can be written as

P =
I2
0 R
2

=
(U0 ω0 C)2 R

2
=

U2
0

2 ω0 Q L
(4.3)

with a peak current I0, peak voltage U0, inductance of the resonator L, and
capacitance of the system C. Since in the section 4.1 we made measurements
with various known values of a capacitive load it is possible to give an
estimation of L = 600 nH. By picking the values from the table 4.3 that are
compatible with U0 = 300 or 320V we present results for the needed input
power in the table 4.4.

Cload, pF Lcoax, cm U0, V P, W
10 20 300 1.20
10 20 320 1.37
15 10 320 1.53
15 20 300 1.30
22 10 300 2.11
22 10 320 2.40

Table 44: Estimated input power P for various configurations

4.5 Voltage gain

We would also like to know what kind of an input signal should be provided
to the resonator to successfully operate an ion trap. By taking a quick look

33



4.5. Voltage gain

at [13] we can define the voltage gain as given by the absolute of the transfer
function like the following:

G(ω) =

∣∣∣∣U0(ω)

Ui(ω)

∣∣∣∣ = ∣∣∣∣ 1/ (iωC)
R + iωL + 1/ (iωC)

∣∣∣∣ = ω2
0√(

ω2 −ω2
0

)2
+ (ωω0/Q)2

(4.4)

Most likely we would like to operate the trap in the resonant mode in which
ω = ω0 and thus G = G(ω0) = Q. However in some scenarios it might be
beneficial to select a different frequency. In order to describe this case we
have used the equation 4.4 to plot G(ω) for all configurations from the table
4.3 where ω0 already belongs to the approximate desired joint interval of
the 2π ∗ 34 – 2π ∗ 42 MHz. Results can be seen in the figure 4.5.

Figure 47: Plot of G(ω) for various configurations
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Chapter 5

Results

The aim of this project was to create an RF helical resonator to support an
ion trap. This goal was successfully achieved. As a result we were able to
design, produce, and validate a delicate helical resonator with reasonable
Q and ω0 values. However a watchful reader can rightfully point out that
those do not correspond exactly to the predictions. Let us provide a short
analysis of the potential reasons that could lead to that:

• Resonance frequency is not exactly 2π ∗ 40 MHz because algorithm
provided in the appendix B only allows to select values in the vicinity
of the target frequency. We have used the ±15% frequency margin

• Helical resonator has spent a fair share of time being in contact with air
between production and validation phases which has led to oxidation
of the copper thus effectively increasing the resistivity of the skin layer

• Q and ω0 were measured at the room temperature while the theoretical
model has operated with the resistivity in the cryogenic environment

• Calculations have not accounted for the additional capacitance and
resistance introduced by the SMA connectors and external wires

• Distance tuning almost didn’t work, for an optimal tuning the distance
between the antenna mount and the top cap was kept close to 0
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Chapter 6

Outlook

In this chapter we would respond to the issues lifted by the chapter 5 and
share tips for the future similar projects.

• Ideally initial ω0 for the algorithm defined in the appendix A should
be picked as a middle value in the intervals discussed in the section
4.3. Afterwards in the appendix B instead of a percentage frequency
margin we check whether the resulting frequency belongs to the corre-
sponding interval.

• Cleaning the outer oxide layer by sanding or acid and placing the
resonator into the cryostat should lower the resistivity of the skin layer
thus improving Q [13, 3]

• Model should account better for the SMA connectors and wires. Just
like with the trap capacitance and the resistance of the solder joint,
approximate values should be used for the calculations

• Removing additional capacitance and resistance by soldering the non-
coaxial cable directly to the shield might yield better results

• In order to improve the distance-based tuning the length of the an-
tenna mount can be increased and/or antenna should contain more
turns to strengthen the antenna to coil coupling

• Lack of the angular tuning means that the resonator was produced
with high precision since it shows that the system has a circular sym-
metry. However this can be also verified without the angular scale,
which allows us to drop it in the new designs
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Chapter 7

Conclusion

This project shows that in principle it is possible to produce a reasonably
small and efficient helical resonator for the ion trap. However the mechani-
cal and assembly challenges would advise to evaluate the available resonator
options carefully when designing for a comparable or smaller volume.

If you are reading this, you got to the end of the main part of my report!
I hope that it helped you to understand the theory behind the helical res-
onators and gave an idea of how one could get the maximum Q and the
closest to targeted ω0 out of the provided setup. I wish you best of luck in
using this knowledge for your aims.
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Appendix A

Mathematica code for Macalpine’s
model

This is a relevant part of the script supporting calculations in [13].

In[1]:= (* Physical Constants and Units *)

µ0 = 4*π*10-7;
ε0 = 8.854187817*10-12;

c = 299792458;

AMU = 1.6605402*10-27;

h = 6.6260755*10-34;

h̄ =
h

2π
;

µB = 9.2740154*10-24;

kB = 1.380658*10-23;

grav = 9.8;

a0 = 0.5291772108*10-10;

me = 9.1093826*10-31;

ee = 1.60217733*10-19; eV = ee;

Eh =
h̄2

me a02
;

m=1; µm=10-6m; mm=10-3m; cm=10-2m; nm=10-9m; km=103m;

in=2.54cm; ft=12in; mi=5280*ft;

K=1; mK=10-3K; µK=10-6; nK=10-9K; pK=10-12;

T=1; mT=10-3K; G=10-4; mG=10-3G; µG=10-6;
sec=1; s=1; ms=10.0-3s; µs=10-6s; ns=10-9s;

Ω=1; mΩ=10-3; kΩ=103; MΩ=106;

A=1; mA=10-3A; µA=10-6; nA=10-9;

W=1; mW=10-3; µW=10-6; nW=10-9;

Hz=1; kHz=103; MHz=106; GHz=109;

nF=10-9; pF=10-12;

nH=10-9; pH=10-12;
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In[2]:= (* Calculations for Cu resonator *)

Ds[Bs_]:= 0.75Bs; (*diameter of shield*)

d[Bs_]:= 0.55Ds[Bs]; (*diameter of helix*)

b[Bs_]:= 1.5d[Bs]; (*length of helix*)

Nt[Bs_,f0_]:=
48.26*106

f0 Ds[Bs]
; (*number of turns*)

d0[Bs_,f0_]:= 0.5
b[Bs]

Nt[Bs, f0]
; (*diameter of wire*)

τ[Bs_,f0_]:=
b[Bs]

Nt[Bs, f0]
; (*pitch*)

(*effective inductance*)

Leff[Bs_,f0_]:= 9.84*10-7*(
Nt[Bs, f0] d[Bs]

b[Bs]
)
2

*(1-(
d[Bs]

Ds[Bs]
)
2

);

Ceff[Bs_]:=
2.95*10-11

Log[10,Ds[Bs]
d[Bs]

]
; (*effective capacitance*)

Z0[Bs_,f0_]:=

√
Leff[Bs,f0]

Ceff[Bs]
; (*characteristic impedance*)

v[Bs_,f0_]:=
1√

Leff[Bs,f0] Ceff[Bs]
; (*velocity*)

λ[Bs_,f0_]:=
v[Bs,f0]

f0
; (*wavelength*)

Q[Bs_,f0_]:= 1.97 Ds[Bs]
√
f0;

omega[Bs_,f0_,Cl_]:= Module[{w},

w = ν/.FindRoot[
1

2π*Z0[Bs,f0]*Cl*ν
==Tan[

2πν b[Bs]

v[Bs,f0]
],{ν,f0}][[1]];

Return@w;

]

In[3]:= Bs = 60mm; (*length of shield*)

(* This frequency needs to be varied

until loaded frequency is close to target frequency*)

f0 = 97.023MHz; (*center frequency*)

Cl = 10pF; (*trap capacitance*)

Print["Bs = ",Bs/mm," mm (length of shield)"]

Print["Ds = ",Ds[Bs]/mm," mm (diameter of shield)"]

Print["d = ",d[Bs]/mm," mm (diameter of helix)"]

Print["b = ",b[Bs]/mm," mm (length of helix)"]

Print["Nt = ",Nt[Bs,f0]," (number of turns)"]

Print["d0 = ",d0[Bs,f0]/mm," mm (diameter of wire)"]
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Print["τ = ",τ[Bs,f0]/mm," mm (pitch of helix)"]

Print["Z0 = ",Z0[Bs,f0]/ω," ω (characteristic impedance)"]

Print["Leff = ",Leff[Bs,f0]/(nH/mm)," nH/mm (effective inductance)"]

Print["Ceff = ",Ceff[Bs]/(pF/mm)," pF/mm (effective capacitance)"]

Print["v = ",v[Bs,f0]/(m/s)," m/s (velocity)"]

Print["λ = ",λ[Bs,f0]/mm," mm (wavelength)"]

Print["f0 = ",f0/MHz," MHz (unloaded frequency)"]

Print["Q = ",Q[Bs,f0]," (quality factor)"]

Print["ν0 = ",omega[Bs,f0,Cl]/MHz," MHz (loaded frequency)"]

Clear[Bs,f0,Cl];

Bs = 60 mm (length of shield)

Ds = 45. mm (diameter of shield)

d = 24.75 mm (diameter of helix)

b = 37.125 mm (length of helix)

Nt = 11.0535 (number of turns)

d0 = 1.67933 mm (diameter of wire)

τ = 3.35866 mm (pitch of helix)

Z0 = 572.731 Ω (characteristic impedance)

Leff = 37.2698 nH/mm (effective inductance)

Ceff = 0.11362 pF/mm (effective capacitance)

v = 1.53672*10^7 m/s (velocity)

λ = 158.387 mm (wavelength)

f0 = 97.023 MHz (unloaded frequency)

Q = 873.205 (quality factor)

ν0 = 40. MHz (loaded frequency)
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Appendix B

Mathematica code for Siverns’ model

Following calculations are heavily based on a script generously provided by
James David Siverns. All variables and references correspond to [18].

In[1]:= (* Units and constants *)

MHz = 106;

pF = 10-12;

Ω = 1;

mm = 10-3;

m = 1;

H = 1;

µ0 = 4π*10-7;

In[2]:= (* Trap and wire values *)

Cw = 0.00001 pF; (* Wire to trap capacitance *)

Rt = 0.1 Ω; (* Trap resistance *)

CΣ[Ct_]:= Cw + Ct; (* Sum of above *)

In[3]:= calculateQ[dMillimeters_, γ_]:=Module[{
(* Arguments naming as in Siverns paper *)

d0,τ,d,De,α,ρ,eN,b,Cc,KLc,KCs,Cs,LC,ω0,δ,lc,r,Ns,ls,a,
Rs,Rc,Rj,XLc,XCc,Xct,Xcw,XCs,Zcoil,ZE,Ztot,RealZ,Q,

maxSize, log, ωRes, Capacitance

},
Capacitance = 20pF;

(* Switch log function for plotting *)

log = Print;

log = (#)&;

(* Resonator parameters *)

(* Coil wire diameter, we take it from Macalpine *)

d0 = 1.95mm;
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τ = 2*d0; (* Winding pitch *)

d = dMillimeters*mm; (* Diameter of coil *)

De = d/γ; (* Diameter of a shield *)

α = d/De;

(* Resistivity of resonator material *)

ρ = 1.7*10-8*Ω*m;

(* Given by the 4K chamber design *)

maxSize = 36mm;

b = 56mm - De/2;

(* Handling case of a too large resonator *)

If[d>maxSize || De>maxSize || b≤≤≤0, Return@0];

log["b = ", b/mm, "mm"];

log["d = ", d/mm, "mm"];

log["D = ", De/mm, "mm"];

eN = b/τ;(* Number of turns in the coil *)

log["N = ", eN];

(* Coil self capacitance - equation 25 *)

Cc = ((11.26
b

d
)+8+(

27

Sqrt[b
d
]
))d pF;

KLc = 39.37
0.025 (d)2 (1-α2)

(τ)2
10-6

H

m
;

KCs = 39.37
0.75

Log[10, 1
α]

pF

m
;

(* Shield-coil capacitance - equation 26 *)

Cs = b KCs;

(* Inductance of coil inside a shield - equation 27 *)

LC = b KLc;

(* Resonant frequency - equation 21 *)

ωRes[Ct_]:=
1

Sqrt[(Cs+Ct+Cw+Cc)LC]
;

log["ω = ", ωRes[Capacitance]/(2π MHz), "MHz"];

ω0[Ct_]:= 2π*40 MHz; (* This is a target frequency *)

(* Allowing 15% accuracy for the frequency *)

If[
Abs[ω0[Capacitance] - ωRes[Capacitance]]

ω0[Capacitance]
> 0.15,

Return@0

];
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δ[Ct_]:= Sqrt[
2 ρ

(ω0[Ct] µ0 )
]; (* Skin depth *)

(* Unwound length of the coil *)

lc = 2π Sqrt[(
d

2
)
2

+(
τ

2π
)
2

]
b

τ
;

r =
d

2
(
1

α
-1);

(* Number of "turns" in the currents path in the shield

- equation 31 *)

Ns =
b lc

4π r2
;

(* Distance of current path in the shield - equation 32 *)

ls = Ns Sqrt[π2(
d

α
)
2

+(
b

Ns
)
2

];

Rs[Ct_]:=
ρ ls

b δ[Ct]
;

Rc[Ct_]:=
ρ lc

d0 π δ[Ct]
;

(* Resistance of solder joint as a function of frequency -

the 0.003 is the DC resistance of a typical solder joint

between shield and coil, however this can vary

and is best to measure *)

Rj[Ct_]:= 0.003 Sqrt[
ω0[Ct]

2π 105
] Ω;

(* Q calculations *)

XLc[Ct_]:= ω0[Ct ]LC;

XCc[Ct_]:=
1

ω0[Ct] Cc
;

Xct[Ct_]:=
1

ω0[Ct] Ct
;

Xcw[Ct_]:=
1

ω0[Ct] Cw
;

XCs[Ct_]:=
1

ω0[Ct] Cs
;

Zcoil[Ct_]:= (
1

(i XLc[Ct]+Rc[Ct])
+

1
1
i
XCc[Ct]

)
-1

;

ZE[Ct_]:= (
1

(1
i
Xct[Ct]+Rt[Ct])

+
1

1
i
Xcw[Ct]

+
1

1
i
XCs[Ct]

)
-1

;

Ztot[Ct_]:= Zcoil[Ct] + ZE[Ct] + Rs[Ct] + Rj[Ct];
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RealZ[Ct_]:=
Rc[Ct] XCc[Ct]2

Rc[Ct]2+(XCc[Ct]-XLc[Ct])2
+

Rt XCs[Ct]2 Xcw[Ct]2

Rt2(XCs[Ct]+Xcw[Ct])2+(XCs[Ct](Xct[Ct]+Xcw[Ct])+Xct[Ct]Xcw[Ct])2

+ Rs[Ct] + Rj[Ct];

Q[Ct_]:=
LC ω0[Ct]

RealZ[Ct]
;

Return@Q[Capacitance];

]

In[4]:= SetDirectory[NotebookDirectory[]];

contourData = Table[

{γ, d, calculateQ[d,γ]},
{d, 15, 25, 0.01},
{γ, 0.4, 0.7, 0.01}

] // Flatten[#,1]&;

ListContourPlot[

contourData,

PlotLegends → Automatic,

FrameLabel → {"d/D", "d, mm"}
]

In[5]:= (* Final parameters *)

calculateQ[19, 0.55]

b = 38.7273mm

d = 19mm

D = 34.5455mm

N = 9.93007

ω = 39.7919MHz

Out[5]= 362.188
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