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Abstract

In this semester project we expand an existing atomic properties python library by implementing
the calculation of the polarizability and the magic wavelength of atomic states. To test the
library, we calculate the polarizability of the 4s 2S1/2, 4p 2P1/2,3/2 and 3d 2D3/2,5/2 states of
Ca+ when exposed to a linearly and circularly polarized laser field. We present the obtained
magic wavelengths of the 4s 2S1/2 ↔ 3d 2D3/2,5/2 transitions and compare them to literature
values. The polarizability as a function of the wavelength of the laser field shows the expected
behaviour. We find magic wavelengths that closely match the literature values with only small
misalignment. This is mainly due to the limited set of atomic transitions available to calculate
the polarizability. We use the Alkali-Rydberg-Calculator python library to calculate the trap
depth of Ca in 4s ns 3S1 Rydberg states by adding the ponderomotive potential experienced
by the outer electron to the trap depth of the Ca+ core. We see that this approximation is
problematic for states with low principle quantum number n. The trap depth as a function
of n shows a discontinuity at n = 97, which we can not explain.
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1 Introduction

The development of the optical tweezer has allowed researchers to manipulate and observe single
atoms in a controlled environment. The optical trapping technique has essential applications in
quantum computing and quantum simulation. Recently, several groups have advanced the neutral
Rydberg atoms trapped in optical tweezers as a promising platform for realizing scalable and
universal quantum computers [1] as they provide flexible experimental geometries, large system
sizes, very good coherence, and strong interactions [2]. Furthermore, optical tweezers provide
excellent single-atom control and can produce defect-free atomic arrays [3].

Leveraging the atomic interaction via Rydberg states for quantum computation purposes requires
a superposition of two atomic states. It is an essential task to realize a setup that allows one to
trap and control the atoms in either state [4]. The optical tweezer can be tuned to a wavelength at
which the atomic states have the same polarizability and experience the same trapping potential.
This prevents unwanted effects like heating and decoherence[5]. This wavelength is referred to as
the magic wavelength.

In this semester project, we are interested in testing and expanding an existing python library to
reliably calculate the polarizability of atoms in an external laser field. This is a crucial step to
finding the magic wavelength of the optical tweezers that can trap the atom both in its ground
state and an excited state. The TIQI-group is interested in utilizing Calcium in Rydberg states to
conduct quantum information experiments and aims to trap the atoms by controlling the atomic
ion core. To that end, the goal is to calculate the magic wavelengths of Ca+.
As a next step, we use the ’Alkali-Rydberg-Calculator’[6] python library (ARC) to extract the
radial wave function of Rydberg states of Calcium and perform calculations of the trap depth that
help analyse which states would be viable candidates for later experiments.

2 Theoretical Background

Trapping techniques like optical tweezers operate with focused laser beams, making use of the effect
that dielectric objects are attracted towards the region of highest laser intensity. The potential a
trapped atom experiences corresponds to the shift of the energy levels due to the external field,
known as the AC Stark shift. This potential is called the trap depth.

The following subsections will give a summary of the description of laser fields, the mechanics of
a dipole in an electric field and the polarizability of atoms. The concept of the magic wavelength
and Rydberg states of atoms will be explained and a short description of Calcium will be given.

2.1 Properties of a Laser Field

In the following, we consider a monochromatic field of the form

E(r, t) = ε̂ E
(+)
0 (r) e−iωt + c.c. (1)

Here, ω is the angular frequency of the field, c.c. stands for the complex conjugate of the preceding
term. This term arises from a separation of the field into its positive and negative frequency
components[5]. The polarization of the light is expressed in the complex polarization vector ε̂. It
is a unit vector orthogonal to the wave vector k and thus orthogonal to the propagation direction
of the light

ε̂∗ · ε̂ = 1 ε̂ · k = 0. (2)

It follows that
ε̂∗ × ε̂ = iAk̂, (3)

where k̂ denotes the unit wave vector and A describes the degree of circular polarization[7]. A
takes values in the interval [−1, 1], with A = 0 describing linearly and A = +1(−1) describing
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right(left)-handed circularly polarized light. In the context of an experimental setup the angles θk
and θp are additional properties of the laser beam. θk is the angle between the wave vector of the
electric field and the defined z-axis, θp the angle between polarization vector of the field and the
quantization axis.[8]. From geometrical considerations, it follows that

cos2 θk + cos2 θp ≤ 1. (4)

Optical trapping techniques operate with focused laser beams. For simplicity we assume a
Gaussian intensity profile. The intensity of a Gaussian laser beam is given by [9]

I(r, z) = I0

(
w0

w(z)

)2

exp

(
−2 r2

w(z)2

)
, (5)

where

I0 :=
2 P

π w2
0

w(z) := w0

√
1 +

(
z

zR

)2

zR :=
πw2

0n

λ
.

Here, λ is the wavelength, wo is the waist, zR is the Rayleigh length, P is the total power of the
laser beam and n the refractive index of the medium (n = 1 for vacuum). r is the radial distance
from the beam’s center axis and z is the distance from its focus point along the beam.

2.2 Polarizability

The polarizability is a property both of atoms and of larger objects that obey the laws of classical
mechanics, e.g., glass spheres [10], in an external electric field.

Unless indicated otherwise, this section is based on [5](D. Steck, Quantum and Atom Optics,
sections 1.1, 1.4.1, 7.7.1-3).

2.2.1 Classical Introduction to the Polarizability

The separation in Eq. (1) enables us to look at the interaction with an electric field of the form

E(+)(r, t) = ε̂ E
(+)
0 (r)e−iωt =: E(+). (6)

Since the positive and negative frequency components of the electric field are complex conjugates
we can write the physical field as

E(r, t) = 2Re
[
E(+)

]
. (7)

Given the real amplitude of the electric field E0 and the complex amplitude E
(+)
0 the intensity is

given by

I(r) =
1

2
cε0 |E0(r)|2 = 2cε0

∣∣∣E(+)
0 (r)

∣∣∣2 , (8)

where r denotes the position of the atom, ε0 the vacuum permittivity and c the speed of light.

An electron within an atom that is exposed to the electric field E(+) experiences a displacement
from its equilibrium position, resulting in an electric dipole moment d(+) of the atom. We define
the polarizability α(ω) to describe the degree to which an electric field can induce the dipole
moment:

d(+) = α(ω)E(+) (9)

Taking into account also the complex conjugate term in Eq.(1) the potential energy of the electric
dipole is given by

VDipole = −1

2
d ·E = −1

2
(d(+) + d(−))(E(+) + E(−)). (10)
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The terms d(±) ·E(±) oscillate with twice the frequency of the field. We can drop these terms by
assuming that this frequency is too fast for the atom to respond mechanically. Using Eq.(7), (8)
and (9) we can then write the potential as

VDipole = −1

2
d(+) ·E(−) − 1

2
d(−) ·E(+) = −Re [α(ω)]

∣∣∣E(+)
∣∣∣2 = − 1

2cε0
Re [α(ω)] I(r). (11)

The corresponding force on the dipole is related to the potential gradient, i.e. intensity gradient,
meaning the atom will be in equilibrium at the point of maximum intensity

FDipole = −∇VDipole ∝ ∇I(r). (12)

2.2.2 Quantum Mechanical Introduction to the Polarizability

In order to talk about the polarizability of atoms, it is necessary to express the above in quantum
mechanical terms. Consider a laser whose electric field component is characterized by Eq. (1)
interacting with a two-level-atom with ground state |α〉, excited state |β〉 and corresponding
energies Eα and Eβ . The atomic dipole operator is given by

d = −er. (13)

where r is the position of the atomic electron. The interaction of the atom with the electric field
is given by

V = −E · d. (14)

We can treat this interaction as a perturbation. The energy shift of state |α〉 , i.e. the AC Stark
shift, is first relevant for the second order, since the first order shift vanishes[7]. The second order
AC Stark shift is given by

∆Eα = −
2 ωβα |〈α|ε̂ · d|β〉|2

∣∣∣E(+)
0 (r)

∣∣∣2
~(ω2

βα − ω2)
(15)

with

ωβα =
(Eβ − Eα)

~
.

Generalizing from a two level to a multi level system introduces a sum over all other states |β〉.

∆Eα = −
∑
β

2 ωβα |〈α|ε̂ · d|β〉|2
∣∣∣E(+)

0 (r)
∣∣∣2

~(ωβα2 − ω2)
(16)

Together with Eq. (10), this leads to the Kramers-Heisenberg formula for the real part of the
polarizability for state |α〉:

α(ω) =
∑
β

2 ωβα |〈α|ε̂ · d|β〉|2

~(ω2
βα − ω2)

(17)

We will generalize this treatment to a tensor representation to find an explicit formula for the
polarizability with angular momentum degeneracy. The Kramers-Heisenberg polarizability tensor
is a rank 2 tensor whose components are expressed as in Eq. (17) with the polarization vector
omitted.

αµν(ω) =
∑
β

2 ωβα 〈α|dν |β〉 〈β|dµ|α〉
~(ω2

βα − ω2)
(18)
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In the case of the fine structure levels |JmJ〉 with total angular momentum J and projection mJ

this yields

αµν(ω) =
∑
J′mJ′

2 ωβα 〈J mJ |dν |J ′mJ′〉 〈J ′mJ′ |dµ|J mJ〉
~(ω2

αβ − ω2)
=:
∑
J′

2 ωβαTµν
~(ω2

βα − ω2)
(19)

where we have defined the rank 2 dipole-product tensor Tµν . This tensor can be decomposed into
its irreducible parts of rank 0, 1 and 2:

Tµν =
∑
mJ′

〈J mJ |dµ|J ′mJ′〉 〈J ′ mJ′ |dν |J mJ〉 =
1

3
T (0)δµν +

1

4
T (1)
σ εσµν + T (2)

µν (20)

T (0) = Tµµ T (1)
σ = εσµν (Tµν − Tνµ) T (2)

µν = Tµν −
1

3
Tσσδµν (21)

(scalar part) (vector part) (tensor part)

This leads to the decomposition of the polarizability tensor (19). With the definition of the Wigner
6j symbol and the Wigner-Eckart theorem it takes the following form (see Eq.(36) and (35) in the
appendix):

α(0)(J, ω) =
∑
J′

2ωJJ ′ |〈J ||d||J ′〉|2

3~(ω2
J′J − ω2)

(scalar polarizability) (22)

α(1)(J, ω) =
∑
J′

(−1)J+J
′+1

√
6J(2J + 1)

J + 1

{
1

J

1

J

1

J ′

}
ωJ′J |〈J ||d||J ′〉|2

~(ω2
J′J − ω2)

(vector polarizability)

(23)

α(2)(J, ω) =
∑
J′

(−1)J+J
′

√
40J(2J + 1)

(J + 1)(2J + 3)

{
1

J

1

J

2

J ′

}
ωJJ ′ |〈J ||d||J ′〉|2

~(ω2
J′J − ω2)

(tensor polarizability)

(24)

Finally, for arbitrarily polarized light, the polarizability α(ω) is given by [8]:

α(ω) = α(0)(ω) +A cos θk
mJ

2J
α(1)(ω) +

(
3 cos2 θp − 1

2

)
3m2

J − J(J + 1)

J(2J − 1)
α(2)(ω) (25)

2.3 Magic Wavelength

The polarizability of atoms in an external laser field depends on the angular frequency ω of the
field and consequently on the wavelength λ. For two atomic states, there exists a wavelength at
which the polarizability takes the same value. From Eq.(17) the identical polarizability implies
an identical shift of the energy levels, which causes the atom to experience the same potential in
either state. This wavelength is called the magic wavelength. With a fitting polarization of the
laser, it is even possible to find the magic wavelength of more than two atomic states.

2.4 Rydberg Atoms and the Ponderomotive Potential

Rydberg atoms are characterized by having their valence electrons in highly excited states. When
exposed to an external laser field, an outer electron experiences the ponderomotive potential [11]

Unl(R) =
e2

2ε0cmeω2

∫
|Ψnl(r)|2 I(r + R) d3r. (26)
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Here, e is the elementary charge, me the electron mass, ω the laser frequency and I(r) the laser
intensity as in Eq.(5). Ψnl(r) is the wave function of the valence electron in the nl state, n
denoting the principle quantum number and l the orbital angular momentum quantum number.
The coordinate r refers to the electron position relative to the nucleus, and R is the position of
the nucleus relative to the focus point of the laser beam. Recent studies have demonstrated the
possibility to trap Rydberg atoms by trapping the ion core. The ponderomotive potential will
be important to study, since it can cause a repulsion from the intensity maximum of the applied
laser[11].

2.5 Calcium - Properties and Notation

Calcium is an alkaline earth metal with atomic number Z = 20. The electron configuration in
the ground state is [Ar]4s2, where [Ar] denotes the configuration of Argon. Calcium has two
valence electrons occupying the state with n = 4, l = 0, and in the ground state the electron spins
are oriented such that they oppose each other with a total angular momentum of zero. In the
following, the atomic states will be referred to by their term symbols:

(2S+1)LJ

S is the total spin, L the total orbital angular momentum and J the total angular momentum
quantum number. Rydberg states of Ca with one excited electron will have the configuration
[Ar]4s nl, with n large. The total spin can then take the values 0 and 1.

3 Method

3.1 Structure and Features of the Atom-phys Python Library

In this semester project we expanded an existing python library called atom-phys. It is a practical
tool for accessing physical properties of the elements. It operates by automatically fetching atomic
data from the National Institute of Standards and Technology Atomic Spectra Database (NIST
ASD)[12]. This includes the atomic states, energy levels, transitions, transition wavelengths and
transition rates. Additionally, there is the possibility to input atomic data in JSON format. This
is useful in the case that there is additional data to an element that is not provided by NIST ASD.
From the atomic data, atom-phys can then calculate various properties of the atoms. The user can
create an object of the class Atom. This class can then access the classes State and Transition.
The atomic properties are calculated in the suitable class, e.g. the transition rate Γ is a member
of the Transition class and the total angular momentum quantum number J is a property of the
State class. The user would access the data with the following commands:

>>> atom = atomphys.Atom(’Ca+’)

>>> atom(’2S1/2’)

State(4s 2S1/2: 0 E_h)

>>> atom(’2S1/2’).to(’4p 2P1/2’)

Transition(4s 2S1/2 <---> 4p 2P1/2*, λ=397 nm, Γ=2π×22.28 MHz)

>>> print(atom(’2S1/2’).to(’4p 2P1/2’).Γ)
3.3864380572199533×10-9 E_h/~

Consequently, the polarizability should be a member of the State class and the magic wavelength
a member of Transition, since a Transition object holds information about both the upper and
lower state. To be able to calculate the polarizability of atoms, the scalar part (22) was already
implemented in State and the calculation for the vector and tensor part was implemented outside
of the class.
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3.2 Added Features

The calculation of the polarizability and the ponderomotive potential depends on the parameters
describing an external laser field. As a compact solution, we added a class Laser to the library
that has the wavelength λ, the degree of circular polarization A and the angles θk and θp as
properties.

To calculate the total polarizability with Eq.(25) we added the scalar and vector polarizability
to complete the calculation in State. The total polarizability function takes the total angular
momentum projection mJ as an input, since it is not a property of State. In this process we
consult the calculations in [8] and [5].

To find the magic wavelength of two states we need to find the wavelength at which the difference
between the polarizabilities vanish. We implement this with a root finding algorithm in Transition.

4 Polarizability and Magic Wavelengths of Ca+

4.1 Calculation

To preclude mistakes due to limited data on Ca+ provided by NIST ASD, we generated a JSON
file with data on additional transitions calculated by Kaur et al. [13]. To check whether our
calculations are correct, we compared results for the polarizabilities of the 4s 2S1/2, 4p 2P1/2,3/2,
3d 2D3/2,5/2 states of Ca+ including the possible orientations of angular momentum with
mJ = −J,−J + 1, ..., J to the results by Kaur et al.[4] and Jiang et al.[8]. Here, 4s, 4p and 3d
indicate the state of the valence electron. Kaur et al. use linearly polarized light (A=0) with
θk = π/2, θp = 0, thus dropping the vector polarizability in Eq.(25). For A 6= 0 we compared our
results to Jiang et al., who use circularly polarized light (A=±1) with θk = 0 and θp = π/2.

We then calculated the magic wavelengths of the 4s 2S1/2 ground state and the excited states. The
3d 2D5/2 state is the most relevant to applications in quantum computing and simulation because
of its relatively long lifetime of 1.1s[14]. For the three 3d 2D5/2 states with mJ = 1/2, 3/2, 5/2 we
found a common magic wavelength by choosing a polarization of the laser that causes the vector
and tensor polarizability to vanish.

4.2 Results

Fig.1 shows the polarizability of the 4s 2S1/2 mJ=1/2 and 3d 2D5/2 mJ = ±1/2, ±3/2, ±5/2
states, calculated using the transitions from NIST ASD (1a) and the transitions from Kaur et
al.(2b)[13] for linearly polarized light as a function of the wavelength. The points at which magic
wavelengths with the 4s 2S1/2 state were found are indicated with black. Tab.1 lists the calculated
magic wavelengths λNIST

magic and λKaur
magic and allows to compare them to the literature values λexpmagic

as reported by Kaur et al.[4]. The polarizability of the 4p 2P1/2,3/2 and 3d 2D3/2 states with
indicated magic wavelengths are shown in Fig.5 and 6.

Comparing Fig.1 and the corresponding magic wavelengths to the literature values, we see that
we achieve better matching results using the transitions by Kaur et al.. From this point on we
only use this method to calculate the polarizability.

Fig.2 shows the polarizability of the 4s 2S1/2 mJ = -1/2 and 3d 2D3/2,5/2 mJ = ±1/2,±3/2,±5/2
states for circularly polarized light with A = 1 (2a) and A = −1 (2b) as a function of the
wavelength. The points at which magic wavelengths with the 4s 2S1/2 state were found are
indicated with black. Tab.2 lists the calculated magic wavelengths λKaur

magic and allows to compare
them to the literature values λexpmagic as reported by Jiang et al.[8]. The uncertainty of the literature

values is given in parentheses. The polarizability of the 4p 2P1/2,3/2 and 3d 2D3/2 states with
indicated magic wavelengths are shown in Fig.7 and 8 for right handed circularly polarized light
(A=1).
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4.3 Discussion

In the above, the results were given without uncertainties. Possible errors arising from our
calculation mainly come from the limited set of transitions available for the calculation of the
polarizability.

Looking at Fig.1, we see that the overall dependence of the polarizability on the wavelength of
the external laser field aligns with the findings by Kaur et al.[4]. The polarizability for A = 0
only depends on m2

J (see Eq.25). Thus it is the same for either sign of mJ . The polarizability
of the 4s 2S1/2 ground state shows a divergence at ∼400nm, for the 3d 2D5/2 mJ = ±1/2,±3/2
it shows a divergence at ∼ 900nm. These wavelengths characterize atomic transitions, leading to
a divergence due to the definition in Eq.17. In agreement with Kaur et al., we find two magic
wavelengths with the ground state for each mJ sub level. The polarizability for the 3d 2D5/2

mJ = ±5/2 state stays close to constant and we find one magic wavelength. Looking at Tab.1
we see that the calculated magic wavelengths are closer to the literature values λexpmagic if they are
closer to a divergence. Here, deviations of the polarizabilities have smaller impact on the position
of an intersection, where magic wavelengths are found. For instance for mJ = ±3/2 , λexpmagic =

1052.26 nm and we find λKaurmagic = 1050.45 nm whereas for λexpmagic = 395.79 nm we find a matching
magic wavelength.

Looking at Fig.2 and comparing to the findings by Jiang et al.[8] we observe similar phenomena for
circularly polarized light. For right handed circularly polarized light (A = 1) we see characteristic
divergences of the polarizability of the 3d 2D5/2 mJ = ±1/2,−3/2,−5/2 states at ∼ 850 nm.
For the 4s 2S1/2 mJ = −1/2 ground state we see a divergence at ∼400 nm. The mJ = 3/2,
5/2 sub levels show an approximately constant polarizability. We find the same number of
magic wavelengths as Jiang et al.. Tab 2 shows that our results match better to Jiang et al.
at shorter wavelengths, e.g. λexpmagic=394.6339(1) nm. Again this is due to the proximity to a
divergence at ∼400 nm. For left handed circularly polarized light (A = −1) the behaviour of the
polarizability differs systematically. Here, we see characteristic divergences of the polarizability of
the 3d 2D5/2 mJ = ±1/2, 3/2, 5/2 states at ∼ 850 nm. For the 4s 2S1/2 mJ = −1/2 ground state
we see a divergence at ∼400 nm. The mJ=-5/2,-3/2 sub levels show an approximately constant
polarizability. Comparing Fig.2a and 2b we see that a state with mJ shows the behaviour of
−mJ with the opposite polarization of light. Also for A = −1 we find the same amount of magic
wavelengths as Jiang et al..
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Figure 1: Polarizability of the 4s 2S1/2 mJ=1/2 and 3d 2D5/2 mJ = ±1/2, ±3/2, ±5/2 states of
Ca+ calculated using transitions from NIST ASD (a) and the transitions found by Kaur et al.(b)
[13] for linearly polarized light as a function of its wavelength (A=0). The points at which magic
wavelengths with the 4s 2S1/2 state were found are indicated with black and the values are listed
in Tab.1.
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Figure 2: Polarizability of the 4s 2S1/2 mJ = -1/2 and 3d 2D3/2,5/2 mJ = ±1/2,±3/2,±5/2 of
Ca+ for circularly polarized light with A=1 (a) and A=−1 (b) as a function of its wavelength.
The polarizability was calculated using transitions found by Kaur et al.[13]. The points at which
magic wavelengths with the 4s 2S1/2 state were found are indicated with black and the values are
listed in Tab 2.

4s2S1/2 - 3d2D5/2 mJ λNIST
magic [nm] λKaur

magic [nm] λexpmagic[nm]

±1/2 395.81 395.79 395.79
1335.61 1258.67 1271.92

A = 0 ±3/2 395.81 395.79 395.79
1076.09 1050.45 1052.26

± 5/2 395.81 395.79 395.79

Table 1: Results for the calculated magic wavelength λNIST
magic and λKaur

magic of the 4s 2S1/2 mJ = 1/2

←→ 3d 2D5/2 mJ = ±1/2, ±5/2, ±3/2 transitions of Ca+. λNIST
magic was calculated using transitions

from NIST ASD[12], λKaur
magic was calculated using transitions from Kaur et al.[13]. We compare

our values to the expected magic wavelengths λexpmagic found by Kaur et al.[4].
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4s 2S1/2mJ=−1/2 - 3d2D5/2 mJ λKaur
magic [nm] λexpmagic [nm]

1/2 394.63 394.6339(1)
890.06 894.50(4.03)

-1/2 394.63 394.6357(1)
981.17 986.63(14.76)

A = 1 3/2 394.63 394.6324(2)
-3/2 394.63 394.6377(2)

1220.95 1185.07(46.46)
5/2 394.63 394.6311(3)
-5/2 394.63 394.6400(4)

3173.85 1726.68(198.7)

4s 2S1/2mJ=−1/2 - 3d2D5/2 mJ λKaur
magic [nm] λexpmagic [nm]

1/2 983.13 987.60(14.87)
-1/2 890.55 894.81(4.06)

A = −1 3/2 1228.73 1187.42(46.79)
5/2 3441.59 1732.77(200.04)

Table 2: Results for the magic wavelength λKaur
magic of the 4s 2S1/2 mJ =−1/2 ←→ 3d 2D5/2

mJ = ±1/2, ±3/2, ±5/2, transitions of Ca+ calculated using the transitions from Kaur et al.
[13]. These are compared to the literature values λexpmagic found by Jiang et al. [8] for circularly
polarized light with A = ±1.The uncertainties are given in parentheses.

4.4 Triple Magic Wavelength

We want to find a common magic wavelength of the 3d 2D5/2 mJ=1/2,3/2,5/2 states with the 4s
2S1/2 ground state of Ca+ by choosing a fitting polarization of the external laser field. Fig.3 shows
the magic wavelengths of the 4s 2S1/2 mJ=1/2 and 3d 2D5/2 mJ=1/2,3/2,5/2 states for linearly

polarized light as a function of |cos(θp)|2. θp is the angle between the polarization vector and the
quantization axis. As expected from Eq.25 we find a common magic wavelength λmagic =1069.96
nm at | cos θp|2 = 1/3 where the tensor polarizability vanishes (see Eq.(25)). The polarizability of
the three 3d 2D5/2 states does not depend on mJ anymore.
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Figure 3: Magic wavelengths of the 4s 2S1/2 mJ=1/2 ←→ 3d 2D5/2 mJ=1/2,3/2,5/2 transitions

of Ca+ for linearly polarized light with A = 0 as a function of |cos(θp)|2. θp is the angle between
polarization vector of the electric field and the quantization axis.

5 Ponderomotive Potential and Trap Depth for Ca

5.1 Calculation

We calculated the ponderomotive potential (26) experienced by the outer electron of the 4s ns
3S1 Rydberg states of Ca in an external laser field. To calculate the electron wave function for the
state nl and orbital angular momentum quantum number projection ml in spherical coordinates

Ψnlml
(r, θ, φ) = Rnl(r) Y

ml

l (θ, φ)

we used the radial wave functions Rnl(r) of the Rydberg states from the ARC using the built in
method radialWavefunction[15]. Y ml

l (θ, φ) are the spherical harmonics which are provided by
the python SciPy library[16]. Similar to atom-phys, we can access data from the ARC by creating
objects of the classes that hold data on the atom we are interested in, e.g., by using the following
commands:

>>> atom = arc.Calcium40()

>>> atom.Z

20

radialWavefunction is implemented for the alkali atoms only. To deal with this problem we
create a new class Calcium with the atomic number Z = 20 and atomic mass of Ca that inherits
all properties from the alkali atom class AlkaliAtom [17] from the ARC. Thus a Calcium object
has the radialWavefunction method while holding data on an alkline earth atom. Note that
ARC does not distinguish between the possible values of the total spin when calculating the radial
wave functions.

We calculated the intensity of the laser beam from Eq.(5) assuming a total power P = 1mW and
wavelength λ = 532nm. For simplicity, we assume that the ionic core of the Rydberg atom is at
the focus of the beam, thus R = ~0.

We calculate the trap depth US1
of the 3S1 States of Ca relative to the trap depth US0

of the
1S0 ground state by calculating the ratio of the trapping potentials. To calculate US1

we add the
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ponderomotive potential Uns(~0) of the outer electron and the trap depth UCa+ of Ca+ in the 2S1/2

ground state, effectively neglecting interactions between the outer electron and the Ca+ ion core.

US1

US0

=
UCa+ + Uns(~0)

US0

(27)

We calculate UCa+ and US0
from the polarizability provided by atom-phys and the laser intensity

using Eq.(5) and (10).

5.2 Results

Fig.4 shows the trap depth for 4s ns 3S1 Rydberg states, normalized to the 1S0 ground state as a
function of the principle quantum number n of the outer electron. For the trap depth of Ca+ we
find UCa+ ' −1.82 ·10−8 eV. For the 1S0 ground state of Ca we find US0

' −4.46 ·10−8 eV. As the
distance between the electron and the nucleus increases, i.e. n increases, the trap depth of the 3S1

states converges towards the trap depth of the Ca+ ion core. Hence the ponderomotive potential
of the outer electron becomes smaller with increasing n. We see a discontinuity at n = 97 where
the calculated ponderomotive potential jumps from U96s ' 2.02 · 10−8 eV to an approximately
constant value of order ∼ 10−10 eV, which is very small compared to the magnitude of UCa+ . The
reason for this discontinuity is not clear.

5.3 Discussion

Since we neglected the interaction between the outer electron and the ion core, our calculations of
the trap depth of Ca in Rydberg states are an approximation. Especially for low n our results are
most likely not exact. Using this approximation we find a trap depth of −3.52 · 10−9 eV for the
1S0 ground state. This is one order of magnitude smaller than the trap depth US0 calculated from
the polarizability provided by atom-phys using Eq.(10). An additional error can come from the
calculation of the radial wave functions, since we use the radialWavefunction method that was
not originally built for the Calcium class of the ARC[15]. This includes that radialWavefunction
does not depend on the total spin of the Rydberg state.

Looking at Fig.4, we conclude that for later experiments using Ca Rydberg states in optical
tweezers, the states with 50 < n < 70 are viable candidates. In this regime the ponderomotive
potential is smallest while still allowing for enough control of the Rydberg state.
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Figure 4: Calculated trap depth for 4s ns 3S1 Rydberg states of Ca, normalized to the 1S0 ground
state for a Gaussian laser beam of total power P=1 mW and wavelength λ=532 nm. The relative
trap depth of the 4s 2S1/2 Ca+ core is shown in red for comparison.

6 Conclusion

In this semester project we successfully expanded the python library atom-phys to calculate the
polarizability and magic wavelengths of atoms in an external, arbitrarily polarized laser field. We
calculated the polarizability and the magic wavelengths of the 4s 2S1/2 and 3d 2D3/2,5/2 states
of Ca+ including all possible orientations of angular momentum with mJ = −J,−J + 1, ..., J .
Comparing our results to the findings by Kaur et al.[4] and Jiang et al.[8] for linearly and circularly
polarized laser light respectively, we conclude that our calculations are correct. Misalignment with
expected magic wavelengths can be due to our limited set of atomic transitions, which are needed
for the calculation of the polarizability. We see that this leads to errors especially when using data
provided by the NIST ASD. We find the same number of magic wavelength as Kaur and Jiang et
al. that can differ from the literature value slightly depending on their proximity to a divergence
of the polarizability.

As expected, for linearly polarized light with |cos(θp)|2 = 1/3 we find a common magic wavelength
of the 3d 2D5/2 mJ=1/2,3/2,5/2 states of Ca+ with the 4s 2S1/2 ground state at λmagic = 1069.96
nm.

We implemented a calculation of the ponderomotive potential experienced by the valence electron
of Ca in 4s ns 3S1 Rydberg states. Using this we calculated the trap depth of the 3S1 states
and normalized to the trap depth of the 1S0 ground state. This lead to the conclusion that the
Rydberg states with 50 < n < 70 are viable candidates for later experiments. As expected we see
that for increasing n, the trap depth of the 3S1 states converges towards the trap depth of the ion
core. Concerning our calculation, there are multiple sources of errors. Especially for the states
with low n, the approximation that the valence electron does not interact with the ion core leads
to errors. Using the ARC to fetch the radial wave functions of Ca leads to uncertainties coming
from the fact that the radialWavefunction method from the ARC is not implemented for alkali
earth atoms and does not depend on the total spin. We see a discontinuity of the ponderomotive
potential at n = 97 that we can not explain.

For further development of the atom-phys library it might be helpful to implement a fetching of
atomic data from a source other than the NIST ASD. This could lead to more exact calculations
of the polarizability and the magic wavelengths of atoms. Additionally, to implement a calculation
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of the radial wave function of alkali earth atoms would help eliminate that source of error in the
calculation of the trap depth of Ca in Rydberg states.

7 Appendix

For a more detailed derivation of the results presented below, see [5] (D.Steck, Quantum and Atom
Optics, section 7.1.4 and 7.3.4)

7.1 Addition of Angular Momenta and Wigner 6j Symbol

The Hilbert space of a quantum mechanical system can be described using different bases. If we
want to add two or three angular momenta of the system, we can find a basis of simultaneous
eigenstates. Consider the angular momentum operators J1, J2 and J12 = J1 + J2. Since these
commute, we can find a basis of simultaneous eigenstates |j1m1; j2m2〉 := |j1m1〉 |j2m2〉 of J2

1,
J1z, J

2
2 and J2z. The operators J2

1 and J2
2 also commute with J2

12 and J12z, consequently we can
find a basis of simultaneous eigenstates labeled |j1, j2; j12m12〉. As a transformation rule between
the bases we have the following

|j1m1; j2m2〉 =
∑
j12m12

m1+m2=m12

|j1, j2; j12m12〉 〈j1, j2; j12m12|j1m1; j2m2〉 (28)

=
∑
j12m12

m1+m2=m12

|j12m12〉 〈j12m12|j1m1; j2m2〉 . (29)

When adding three angular momenta, the order of this operation becomes relevant. Consider J12,
J3 and J = J12+J3. We can then similarly find a basis of simultaneous eigenstates |j12m12; j3m3〉
as well as a basis of simultaneous eigenstates |j12, j3; jm〉. On the other hand, we can first form
the sum J23 := J2 + J3. Then J = J1 + J23 and we find the basis of simultaneous eigenstates
|j1m1; j23m23〉 and |j1, j23; jm〉. A compact transformation rule between these bases is given by

|j12, j3; jm〉 =
∑
j23

|j1, j23; jm〉 (−1)j1+j2+j3+j
√

(2j12 + 1)(2j23 + 1)

{
j1
j3

j2
j

j12
j23

}
, (30)

where the Wigner 6j-symbol is defined as{
j1
j3

j2
j

j12
j23

}
:=

(−1)j1+j2+j3+j 〈j1, j23; jm|j12, j3; jm〉√
(2j12 + 1)(2j23 + 1)

. (31)

7.2 Spherical Tensor Operators and the Wigner-Eckart Theorem

An irreducible tensor operator of rank k denoted as T(k) is a set of 2k + 1 operators, i.e. a rank
k tensor for which each component is taken as an operator.
We consider the angular momentum state |γ′J ′m′J〉, where γ′ represents quantum numbers necessary
to describe the state that are without angular dependence. We call these radial quantum numbers.
The action of a tensor operator on an angular momentum state is like the mixing of two angular
momenta. For a tensor-operator component q we have the relation (compare to Eq.(29))

T (k)
q |γ′J ′m′J〉 =

∑
k′q′

|∼γk′q′〉 〈k′q′|J ′m′J ; kq〉 . (32)

∼
γ describes the transformed radial quantum numbers. We can then calculate the matrix element

〈γJmJ |T (k)
q |γ′J ′m′J〉 =

∑
k′q′

〈γJmJ |
∼
γk′q′〉 〈k′q′|J ′m′J ; kq〉 = 〈γ|∼γ〉 〈JmJ |J ′m′J ; kq〉 (33)
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where in the last equality we used the orthogonality of the angular momentum states. We define
the reduced matrix element as:

〈γJ ||T(k)||γ′J ′〉 := (−1)2k 〈γ|∼γ〉 (34)

which is as notation suggests independent of mJ and depends on J J ′ and T(k) via the way γ′

transforms into
∼
γ.

We arrive at the Wigner Eckart Theorem

〈γJmJ |T (k)
q |γ′J ′m′J〉 = (−1)2k 〈γJ ||T(k)||γ′J ′〉 〈JmJ |J ′m′J ; kq〉 (35)

7.3 Additional Results
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Figure 5: Polarizability of the 4s 2S1/2, 4p 2P1/2,3/2 and 3d 2D3/2,5/2 states of Ca+ calculated using
transitions from NIST ASD and linearly polarized light (A = 0) as a function of its wavelength.The
points at which magic wavelengths were found with the 4s 2S1/2 state are indicated with black.
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Figure 6: Polarizability of the 4s 2S1/2, 4p 2P1/2,3/2 and 3d 2D3/2,5/2 states of Ca+ calculated
using transitions found by Kaur et al.[13] and linearly polarized light with A = 0 as a function
of its wavelength. The points at which magic wavelengths were found with the 4s 2S1/2 state are
indicated with black.
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Figure 7: Polarizability of the 4s 2S1/2, mj = -1/2, 4p 2P1/2,3/2 mj = -3/2, -1/2, 1/2, 3/2 states
of Ca+ calculated using transitions found by Kaur et al.[13] and circlularly polarized light with
A = 1 as a function of its wavelength. The points at which magic wavelengths with the 4s 2S1/2

state were found are indicated with black.
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Figure 8: Polarizability of the 4s 2S1/2 mJ = -1/2, 3d 2D3/2,5/2 with mJ = -3/2, -1/2, 1/2, 3/2,
-5/2, 5/2 of Ca+ calculated using transitions found by Kaur et al.[13] and circularly polarized
light with A = 1 as a function of its wavelength. The points at which magic wavelengths with the
4s 2S1/2 state were found are indicated with black.

(36)
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[15] E.J.Roberston, N. Šibalić,R. M. Potvliege,M. P. A. jones; Alkali Rydberg Calculator
documentation on radialWavefunction method;
https://arc-alkali-rydberg-calculator.readthedocs.io/en/latest/alkali atom functions.html#arc.alkali atom functions.AlkaliAtom.radialWavefunction

[16] Scipy.org; scipy.special.sph harm reference guide (April 26, 2021)
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sph harm.html
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