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Abstract

The Dicke model is known for its superradiant phase transition. In dissipative Dicke
systems a similar transition can exist. Here we have studied such a dissipative system with
individual spin decay. However, the size of the density matrix increases exponentially with
number of spins. As the number of spins is increased, the naive approach to solving for
the time evolution will rather quickly deplete the computational resources available. By
exploiting the systems permutation invariance in spins, the computational workload can be
reduced significantly and we are able to evolve systems of up to 7 spins. In the superradiant
steady state we find large spin-spin correlations along the x-axis. Further, we make use
of the quantum regression theorem to calculate various first and second order coherence
functions. For 7 spins, we find that the photonic part of the steady state doesn’t deviate
much from coherent light.
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1 Introduction

The Dicke Hamiltonian

HDicke =
1

2

N∑
i=1

ωaσ
(i)
z + ωca

†a+ g(a† + a)
N∑
i=1

σ(i)x . (1)

is widely studied and describes the interaction of N identical spin-1/2 systems with a harmonic
oscillator [1]. We will refer to excitations of the harmonic oscillator as photons. When g = 0,
the ground state is the one where all spins point downward and there are no photons. When
g � ωa, ωc, however, the coupling between spins and photons dominates. In this regime the
spins are aligned parallel or anti-parallel to the x-axis. As g is increased the ground state
changes (in the thermodynamic limit), meaning there is a phase transition [2],[3].
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In dissipative systems a similar phase transition can still occur for the steady state [4]. In
this work we consider a system, where the spins independently decay towards the spin down

state at rate γ = γi = 0.1. When the coupling surmounts a critical value gc =
√

ωc(ω2
a+(γ/2)2)
4Nωa

[5],
the system will relax to a different steady state than below gc. This is the so-called superradiant
phase transition and we will refer to the steady state appearing at gc as the superradiant phase.
More recently, it was shown that a second transition to a non-steady phase with unlimited
heating can exist at a coupling about twice as strong as gc [5]. To describe the evolution density
matrices are used. However, their size grows exponentially with the number of spins and hence
also the computational cost. An exact method presented by Kirton and Kneeling allows to
reduce this scaling significantly [6]. Using this method, we are able to calculate spin-spin
covariance and coherence functions for systems of up to 7 spins. Nonetheless, the calculations
use computational resources by far exceeding the ones supplied by common home computers
(as of today). Therefore, the computations are executed on ETHZ’s Euler Cluster, using 30
CPU’s in parallel and a memory storage of up to 180GB. The system consisting of 7 spins took
roughly 19hrs.

2 Methods

For the following discussion on the Lindblad master equation and quantum regression theorem,
we closely follow [7]. If the initial state of the open system ρ(0) is not correlated with the
environment, i.e. the full state can be written as a product state ρSE(0) = ρ(0)⊗ρE(0) and the
state of the environment ρE(0) is assumed fixed, the evolution of the system can be described
by a one-parameter family of completely positive and trace-preserving maps (CPTP) {Λ(t)}t≥0,
such that ρ(t) = Λ(t)ρ(0). Furthermore, we assume the composition law Λ(t)Λ(s) = Λ(t + s),
∀t, s ≥ 0 to hold. Physically this can be thought of the dynamics not depending on the history
nor on time. The composition law formalizes this statement. Under these assumptions the
dynamics of the system is governed by the Lindblad master equation

∂ρ(t)

∂t
= ρ̇(t) = −i[H, ρ(t)] +

∑
i

γi(Liρ(t)L†i −
1

2

{
L†iLi, ρ(t)

}
) (2)

with a (system) Hamiltonian H, rates γi ≥ 0 and Lindblad operators Li (sometimes called
jump operators). The Lindblad operators describe the effect of the system’s interaction with
its environment on the system. The square (curly) brackets denote the commutator (anti-
commutator). When all rates γi = 0, the master equation reduces to the von Neumann equa-
tion describing closed systems. For closed (i.e. unitary) system the two-time correlation func-
tion of Heisenberg operators A and B at times t + τ and t respectively, can be defined as
〈A(t+ τ)B(t)〉 := Tr[U †(t + τ)AU(t + τ)U †(t)BU(t)ρ(0)], where U(t) := exp(−iHt) the usual
unitary evolution operator for a Hamiltonian H. The Hamiltonian is assumed time-independent.
For the open system, following the definition, we would have to consider the system together
with its environment as one closed system. This is beyond the scope of what we do here.
To find a calculable expression, however, we make use of the quantum regression theorem:
〈A(t+ τ)B(t)〉qrt = Tr[AΛ(τ){BρS(t)}] (again in Schrödinger picture). This last expression for
the two-time correlation converges to the definition in the weak coupling limit. In that case,
the dynamics of the open system follows the composition law. Also here, a full treatment is
far beyond the scope of this project. Therefore we refer the interested reader to literature on
the quantum regression theorem and Markovian quantum systems, such as the one cited at the
beginning of this paragraph.

From now on, we take eq. 2 and the quantum regression theorem as granted. The quantum
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regression theorem allows us to evaluate the first order coherence function

g(1)(t, t+ τ) :=

〈
A†(t+ τ)A(t)

〉√
〈A†(t+ τ)A(t+ τ)〉 〈A†(t)A(t)〉

=
Tr[A†Λ(τ){Aρ(t)}]√
〈A†A〉ρ(t+τ) 〈A†A〉ρ(t)

(3)

and similarly also the second order coherence function

g(2)ρ (t, t+ τ) :=

〈
A†(t)A†(t+ τ)A(t+ τ)A(t)

〉
〈A†(t+ τ)A(t+ τ)〉 〈A†(t)A(t)〉

=
Tr[A†AΛ(τ){Aρ(t)A†}]
〈A†A〉ρ(t+τ) 〈A†A〉ρ(t)

(4)

for all operators A. If ρ(t) is a steady state of eq. 2, then the denominators simplify further,

since
〈
A†A

〉
ρ(t+τ)

=
〈
A†A

〉
ρ(t)

for τ ≥ 0. For later use, let’s define jx :=
∑N

i=1 σ
(i)
x .

2.1 Numerical Simulation

The above discussion laid the groundwork of what we’re about to implement on a computer.
Firstly, we find a steady state ρss, i.e. a state such that ρ̇ss = 0 in eq. 2. One approach is to
convert the density matrix ρ into a column vector ρvec by stacking its columns (column-stacking).
The evolution is then written in form of a (d2 x d2)-matrix L (the Liouvillian superoperator),
where d is the dimension of the Hilbert space. The Liouvillian L acts on the state vector by
left-multiplication Lρvec = ρ̇vec. An easy but tedious calculation shows that for column-stacking
it holds: Aρ ∼= (1 ⊗ A)ρvec and ρA ∼= (AT ⊗ 1)ρvec for all operators A. Rewriting eq. 2 and
usage of the relations just mentioned, gives

L = −i1⊗H + iHT ⊗ 1 +
∑
i

γi[(L
†
i )
T ⊗ Li −

1

2
{1⊗ L†iLi + (L†iLi)

T ⊗ 1}]. (5)

Note however, that we need to limit the number of photons the Hilbert space can host. Com-
puters can only deal with finite-dimensional Hilbert spaces. This is, we need to truncate the
physically infinite-dimensional Fock space of photons to a finite dimension nmax. Furthermore,
the density matrix has (2Nnmax)2 complex entries and for the Liouvillian superoperator this
number is squared. Hence the entries grow exponentially in number of spins N . For modest
N = 7 and nmax = 60 the Liouvillian has more than 3.4e15 complex entries and would use
roughly 83′000 TB (!) of storage (assuming 24 bytes per complex number). To reduce these
numbers, we can make use of the permutation symmetry (w.r.t. the spins). A more in-depth
explanation of the idea is given in [6] and in fact, our code is adapted/extended from the code
accompanying this paper (published here[8]). The idea and most important results are explained
now. The dissipative system we treat here, is only subject to individual spin decay on each of

the N spins (Lindblad operators σ
(i)
− ). The rate of decay γi is equal for all spins. For the same

initial conditions on all spins, solving eq. 2 must therefore result in a permutation symmetric
density matrix〈

sL1 ...s
L
i ...s

L
j ...s

L
N

∣∣ ρ ∣∣sR1 ...sRi ...sRj ...sRN〉 =
〈
sL1 ...s

L
j ...s

L
i ...s

L
N

∣∣ ρ ∣∣sR1 ...sRj ...sRi ...sRN〉 (6)

for all times. Here s
L(R)
i ∈ {|↓〉 , |↑〉} labels the basis elements for each spin and photons are not

yet included in the expression. This means, all density matrix elements, that result from each
other by permutation of the spin labeling (permutation of subscripts), are the same. Hence, it
is enough to only keep a smaller number of elements (compression) and evolve these. After the
evolution we can reconstruct all missing density matrix elements by permuting the spin labels
(decompression). A word on compression and decompression: Consider an arbitrary square
complex matrix with dimension 2Nnmax respecting permutation symmetry in spins (similarly
as in eq. 6, but now including photons). Choose any minimal set of density matrix elements
(representatives) that allows to reconstruct all others elements. This set can be arranged in the
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Figure 1: The number of elements in Liouvillian superoperator that describe the evolution
without compression (red) and with compression as explained in the text (blue) as function of
number of spins N (nmax = 60). For modest 7 spins the compression achieves a reduction of
several orders of magnitude.

form of a vector Mcomp,vec. From this vector we can reconstruct the complete density matrix (as
explained below). We have achieved compression and vectorized the matrix M at the same time.
The minimal set (in general not unique) and order chosen (for the arrangement into a vector)
have no effect on the calculation, other than the need to write the Liouvillian superoperator L
in a form consistent with these choices. For decompression, we need to reconstruct all density
matrix elements from Mcomp,vec. All we need to do, is to use eq. 6. We can conveniently extract
the density matrix: Multiplication of Mcomp,vec with an appropriate matrix with (2Nnmax)4

rows and entries being either 0 or 1, succeeded by an operation reversing the column-stacking.
Hence, taking photons into consideration doesn’t add much to the complexity. We only need
to apply the idea for the compression and decompression scheme n2max times - once for each
element in a density matrix describing the photon Fock space (dimension nmax). With this
compression scheme we are able to reduce the number of complex entries in a density matrix to(
N+3
N

)
n2max. For each spin combine left and right spin indices and encode into a unique number

from zero to 3. The cardinality of the minimal set can then be written as a sum of N sums,
where each sum runs from zero to the value of the previous index: n2max(

∑3
i=0

∑i
j=0 ...

∑k
l=0 1).

The (reduced) number of entries needed for the density matrix as given above follows. For
N = 7 and nmax = 60 this is a reduction from 58’982’400 to 432’000 complex entries! Fig.
1 shows the massive reduction in entries needed for the Liouvillian superoperator and saving
these entries corresponds to roughly 4.5 TB of memory. Sparse matrices reduce memory usage
even more. The reduction is significant, especially since the system of differential equations has
also become much smaller - hence a great reduction of memory usage and computation time.

Now knowing how to compress and vectorize the master equation, we can use a complex
ODE solver of choice. We use a ’backward differentiation formula’ (BDF) as implemented in
the ’scipy.integrate.ode’-class for python. To find a steady state, we evolve the system from an
initial condition for ’enough’ time steps. How much ’enough’ is, depends on the choices made for
the Hamiltonian, initial conditions, Lindblad operators and rates. We choose the initial state
where all spins point down and there are no photons. Following this recipe, we find a density
matrix for each time step, in particular the steady state. This allows us to calculate all possible
(same time) expectation values - however not yet coherence functions such as in eqs. 3 and 4.
Here we use the quantum regression theorem. For the numerator of these functions, we need to
apply the appropriate operator(s) on the steady state by matrix multiplication, compress and
take the resulting vector as the initial condition for a new evolution for time τ . Decompression,
multiplication with the appropriate operator(s) and taking the trace follows. It is important to
recognize, that this compression only works because we choose operators that are permutation
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Figure 2: Photon number obtained by simulations with different truncations (7 spins). While
the results coincide for low coupling, the truncation strongly affects the obtained solution in
the breakdown phase.

invariant in spins, i.e. j{x,z} and a. Otherwise, the resulting matrix might not be invariant
and hence after compression and evolution one might not be able to faithfully reconstruct the
matrix.

3 Results

We have simulated the dissipative Dicke system with individual spin decay (towards the spin

down state at rate γi = 0.1, Lindblad operators: σ
(i)
− ). As the coupling g increases, we see a

sharp rise in the expected photon number. For low enough coupling, the truncation doesn’t
affect the result of the calculation (fig. 2). For couplings larger than 1/

√
N the results are

largely influenced by the chosen truncation. This regime has been identified as a ’non-steady
breakdown phase’ and does not relax to a steady state [5]. For this influence, we should be
careful when interpreting the results in this high coupling regime. Therefore we have marked
the two critical couplings (for superradiant and breakdown phase transition) in all figures by
two red lines. In the following, we will show, compare and interpret results for 3 and 7 spins
(nmax = 60). All figures will show the results for 3 (7) spins on the left (right). We set
ωa = ωc = 1.0. As initial state ρinitial we choose the ground state of the Hamiltonian (eq. 1)
with g = 0. That is all spins point downward and no photons are in the cavity. From the
expectation values in fig. 3 we conclude that the system is in a steady state after at most t = 50
time steps (taking into account that the breakdown phase cannot reach a steady state).

3.1 Interpretation

In fig. 4, we can see that the expected photon number as well as the spin expectation value 〈σz〉
starts increasing at the critical coupling strength gc

√
N ≈ 0.5. The change of slope at gc

√
N is

sharper for 7 spins. This is the well-studied superradiant phase transition and is consistent with
previous results (e.g. compare with [5], [6]). For N = 7 we can see the onset of the breakdown
phase transition (at approx. 2gc, fig. 2 and 4 (right)).

Evolving from a non-steady initial state, we find that oscillations in spin-spin correlation

cov(σ
(i)
x , σ

(j 6=i)
x ) die out more quickly for 7 spins (fig. 5). The spin behavior is governed not

only by the Hamiltonian, which is the same for all spins, but also by the individual decay at
rate γi. The decay for each spin is a stochastic process and hence it is reasonable to see a faster
damping of oscillation amplitude for more spins. Further, we find a maximum of correlation in
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Figure 3: The time evolution of expectation values 〈n〉, 〈σz〉 for 7 spins. The system reaches
a steady state for g

√
N < 1 after roughly 50 time steps. For larger couplings the system only

reaches a steady state due to truncation.
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Figure 4: Steady state expectation values 〈n〉 and 〈σz〉 are shown for N = 3 (left) and N = 7
(right). The steady state changes from a fully polarized state with all spins pointing downwards
〈σz〉 = −1 (g = 0) to a state with only small polarization as the coupling strength is increased.
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Figure 5: Spin-spin correlation cov(σ
(i)
x , σ

(j 6=i)
x ) of spins on different sites. The relaxation towards

a steady state can be observed. For the steady state (i.e. t = 200): In the normal and breakdown
phase we observe small correlation, whereas in the superradiant phase it reaches its maximum.
As the number of spins is increased, the peak changes shape and slightly shifts its position.
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Figure 6: First order coherence function g(1)(τ) of destruction operator a in steady state.
Especially for N=7, there seem to appear qualitative differences between all 3 phases: While
the normal phase oscillates differently for different couplings, the breakdown phase oscillates
at only one specific frequency. The superradiant phase shows intermediary behavior (N=3) or
quick decay to comparably small values (N=7).

the superradiant steady state, which is strictly larger than the values obtained in either of the
other two phases (fig. 5). The shape and position of the maximum are slightly different for 3
and 7 spins.

The first order coherence function g(1)(τ) for photons (fig. 6) looks fundamentally different
in all 3 phases: In the normal phase oscillating at frequencies depending on coupling strength
while in the breakdown phase only oscillating at one given frequency irrespective of coupling!
The oscillation amplitude in the breakdown phase seems to decrease for more spins. In the
superradiant phase, for N=3 (left), the system behaves either more like the normal phase or
the breakdown phase, depending on the coupling. For N=7 (right), any kind of oscillation is
damped rather quickly to a comparably small amplitude.

For g = 0 it is clear that the ground state will have 〈σx〉 = 0, as the state is fully polarized
along the z-direction. As our calculation shows, the expectation value 〈σx〉 vanishes for all
times and couplings. Nonetheless, the first order coherence function of the jx-operator takes
on different values in the normal and superradiant phase and oscillates for couplings smaller
than gc (fig. 7). Now, consider the second order coherence function g(2)(τ). For the operator jx
(fig. 8), we see some oscillation in the normal phase. In the superradiant phase, we observe a
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Figure 7: First order coherence function of total spin operator jx (in steady state). In the
normal phase we observe damped oscillations.
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Figure 8: Second order coherence function g(2)(τ) of jx in steady state. The correlation function
at τ = 0 drops noticeably when entering the superradiant phase to a value of about 1.5. Similarly
to observations made for fig. 5, the minima broadens and shifts a bit towards the superradiant
phase transition for more spins.

maximum at τ = 0 and a tendency to decrease as τ increases. Similar, to the maximum in spin-
spin correlation, we find a minimum in the superradiant steady state, also changing shape and
position slightly for different numbers of spin. We are not aware of an accepted interpretation
of the second order coherence function for spin operators, as it is usually not applied to such.

In contrast, the photonic second order coherence function has an interpretation as an indi-
cator of how likely it is to measure a photon at time τ given a photon was measured at τ = 0.
For coherent light, we expect g(2)(τ) = 1, for anti-bunched light a minima at τ = 0. For small
couplings (fig. 9), we see a gradual increase of g(2). In the superradiant phase, the coherence
function is closer to a coherent state with values < 2 for all τ and fluctuating comparably close
to 1.
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Figure 9: Second order coherence function for destruction operator a. For small couplings
(g ≈ 0) values increase gradually. In comparison, the values in the superradiant phase are fairly
close to the value of 1. For 7 spins, there are slight fluctuation around that same value.

4 Conlusion

We have simulated a driven-dissipative Dicke system for up to 7 spins. A compression scheme
making clever use of permutation symmetry while still allowing for individual dissipation on
the spins was employed. The compression scheme gives a significant reduction of the problem
size and only its application allowed us to simulate this many spins on Euler (ETHZ’s clus-
ter). Combining the Lindblad master equation and the quantum regression theorem, we have
calculated spin-spin correlations and two-time coherence functions (first and second order). In
several of our results, we see a qualitative different behavior in the different phases. Namely, the
superradiant phase exhibits stronger spin-spin correlation (along the x-axis) than either of the
other phases. Correlation is larger for 7 than for 3 spins (in superradiant phase). The second
order coherence function of the total spin operator jx is suppressed in the superradiant steady
state. The first order coherence function of the destruction operator a shows differences in
periodicity in all three phases. The second order coherence function (of a) for 7 spins fluctuates
around 1 in the superradiant phase. For a closed system, i.e. no spin decay, a coherent state is
expected (that is a constant value of 1). Hence, it is reasonable to expect a state similar to a
coherent state for not too large interaction of the system with its environment.
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