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Chapter 1

Introduction and Motivation

In Quantum Information Processing, qubit readout is an essential step for obtaining the

state of the qubit for classical post-processing and Quantum Error Correction (QEC)

protocols.Useful QEC requires correcting the detection errors (caused due to reading

out some part of the qubit register) on timescales which are much shorter than typical

physical qubit coherence times (tens of ms) [1]. This demands low latency for readout

while keeping the readout fidelity high. In ion-trap applications, Photo-Multiplier Tubes

(PMTs) are a good candidate for achieving low latency whilst keeping the fidelity high for

single ion systems [2]. However when it comes to multi-ion systems, using a PMT array

for parallel readout results in limited flexibility as the associated optics are specific to

the setup. There has also been considerable cross-talk observed between PMTs within

an array [3] [4]. Another option is using a an Electron Multiplying Charge-Coupled

Device (EMCCD). High fidelity readout using an EMCCD array has been achieved

before albeit with accompanying high latency [5]. In this case, the image processing had

been done on a desktop computer (PC) which led to a limited performance due to the

hardware limitations of a PC and a software implementation which was not optimized.

If the post processing could be done on a platform which offers more resources for

parallel processing like a Field Programmable Gate Array (FPGA) with an optimised

software implementation, one could aim for low latency high fidelity parallel readout of

multiple ions. Nick Schwegler’s work for his Master Thesis explores exactly this where

he concluded that an EMCCD based readout setup can achieve parallel readout of more

than 50 ions in a linear chain with infidelity less than 10−4 in 225 us using an FPGA [6].

For this he interfaces an EMCCD camera (NuVu Hnu128) with an FPGA (VC707 board

from Xilinx) using a commercially available frame grabber (FMC422, Abaco Systems)

and verifies a state discrimination algorithm using this set-up. My work during for this

semester project is built on this work where I improve the state discrimination algorithm

and attempt to interface the camera with a different FPGA and Frame Grabber system
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((Mars EB1+XU3 from Enclustra) ) for reasons that are outlined in the second chapter.

The outline of my report is as follows: In the second chapter I give an overview of the

readout system followed by the reasons to switch to a new FPGA and the frame grabber

system. The third chapter talks about the new image processing algorithm implemented

on the new FPGA system which reduces the comparator resource usage such that it

does not scale with the number of ions. The fourth chapter talks about setting up the

Ethernet Communication between the FPGA and a PC. The fifth and the last chapter

talks about the algorithm for detecting the ions and retrieving the regions of interest

(ROI) from an overexposed ion array image. These ROI will be crucial for the FPGA

image processing algorithm. Finally I conclude this report with a chapter summarizing

my work and discussing the outlook and the future aspects of the project.



Chapter 2

Readout Scheme

In the set-up where this readout scheme is implemented, the qubit is encoded in a

trapped Ca+ ion using a linear Paul trap. As shown in fig 2.1, the ground state |g〉 is

the natural ground state S of the ion and the excited state |e〉 is the dark D state [2].

The reason |e〉 is called the dark state is because when the decay time from |e〉 to |g〉
(or D to S) is almost 1s in a linear Paul trap [7]. This is in stark contrast to the P to

S transition (given by a resonant 397 nm transition) where the electron spontaneously

decays in the order of ns.

Leveraging this the following readout scheme is performed:

Figure 2.1: Energy diagram of the qubit readout scheme. The 397nm is continuously
driven to excite the ion from S to P and back to S emitting photons in the process.
Whereas the 866nm Red laser is continuously driven to pump any leakage from P → D

back to P

3
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1. The 397 nm (blue) and 866 (red) lasers are turned on for the duration of the

readout.

2. If the qubit is in |g〉 the 397 nm laser would excite the ion to P and back to S at

the end of each Rabi cycle giving out a 397nm photon.

3. Whereas if the qubit is in D, this laser will have no effect and therefore no photon

will be emitted.

4. Hence, in a given time window if the number of photons are above a certain

threshold, we can conclude that our qubit underwent multiple Rabi cycles and

was therefore in a bright (|g〉) state and a dark state |e〉 otherwise.

2.1 Readout Set-Up

Figure 2.2: The integrated readout set-up containing the EMCCD camera, frame
grabber, the slave (Mars EB1 + XU3) and the master FPGA (Zynq7 XC72020). The
interface between these components are mentioned on the legend box on the top left.

The qubit readout is based on the number of photons detected per unit detection window

( < 10 ms). Therefore we need a camera which records frames in this time window and

send it to the post processing module which would be responsible for computing the

number of photons in each frame. This is achieved as shown in Fig 2.2. The Camera

(NuVu Hnu128) attached to the frame grabber (SISO Marathon) is responsible for

recording and sending the frames and the FPGA (Mars EB1 + XU3) is responsible

for analysing the frame. The components marked in double stars (**) constitute my

work for this semester project and is detailed in this report.
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2.2 Motivation to Migrate To A New Device and a New

Algorithm

The initial implementation of this set-up as described in Nick Schwegler’s thesis [6]

contains the Virtex VC707 evaluation kit from Xilinx for the image analysis using FPGA

and the FMC422 board as the frame grabber. The total cost of this set-up comes

out to be around $3500 + 2700 = $6200. The replacement that we propose, uses

the Mars EB1 board [8] with the Mars XU3 chip [9] in place of the VC707 and the

inbuilt Camera Link interface for the frame grabber. The total cost for this set-up

comes out to be CHF 760 which is around 8 times cheaper than the VC707 +

FMC422 set-up. Since December 2020, the FMC422 has been discontinued and has

entered restricted production. This restricts scaling up the readout set up for multiple

experiments in the future. Moreover the Mars XU3 consists of a Zynq Ultrascale +

MPSoC chip (XCZU3EG-2SBVA484I) which combines parallel processing of an FPGA

with an ARM microprocessor providing additional flexibility towards communication

with a PC and also opens doors for software based on-chip image processing applications

possibilities in the future. Besides the cost and the hardware utility of the board,

the previous implementation is designed to support at most 60 ions utilising all of the

available hardware resources. However the same scale of architecture is not available in

our low cost FPGA Mars XU3, therefore we implement an image processing circuit which

utilizes less hardware resources. The previous implementation lacked the automation

of finding the masks/regions of interest (ROI) and required the user to manually input

the mask coordinates. During the course of the semester project, we are now able to

automate this process upto a certain accuracy (discussed in detail in the fifth chapter).



Chapter 3

Image Processing Using FPGA

As mentioned in the preceding chapter, the FPGA is responsible for analysing the frames

to output whether a certain ion is in state |g〉 or |e〉. If the cumulative pixel intensity for

the corresponding ROI over a number of frames is greater than the threshold, then the

ion belonging to that ROI is in |g〉; and |e〉 otherwise. The frames are output line-by-line

(or row-by-row) pixel-after-pixel (serially) as shown in Fig 3.3. These serialized data is

then taken up by the FPGA and deserialized in order to feed it to the state discrimination

algorithm which compares the cumulative pixel intensity with the threshold (Fig 3.1) .

Figure 3.1: Flowchart summarising the Frame Grabber + FPGA image processing

3.1 Previously Implemented State Discrimination Algo-

rithm

The initial readout implemented by Nick Schwegler for his master thesis at TIQI uses

the following algorithm:

6
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This algorithm utilizes the parallel processing capabilities of an FPGA and hence does

the readout on all the ions in the array at once. However, it does so by paying the

overhead resource cost at step 2 where it uses comparators to compare the incoming

pixel with the stored mask pixels. For a setup which has an array of Ni ions, and each

ion having a mask with M pixels, with each of the two pixel coordinates (x,y) being

stored as a 16bit number this implementation uses a total number of comparators (Nc):

Nc = Ni x M x 16 x 2 For a set up consisting of 10 ions, with each ion having 25

pixels per mask, this already takes up: Nc = 8000 comparators. As the number of ions

scale up to 100, the number of comparators required scales up almost a 100000. The

available look-up table (LUT) resources in the FPGA is limited to 71000 (Pg 4 of [10])

and each comparator would require several LUTs for its implementation making the

previous algorithm not scalable for an array of ions in the hundreds.
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Figure 3.3: Timing diagram of the frame grabber output. Here, fval switches from 0
to 1 at the start of a frame and remains 1 until it switches back to 0 at the end. lval
is 1 as long as a particular line is read before switching back to 0 at the end of a line.
The 16 bit data consists of the pixel intensity value where pxy denotes pixel value at

line y and column x.

3.2 New Algorithm

The new algorithm that I implemented during the course of this semester project is

outlined as follows (NB: The variable names in the following pseudo code are NOT the

variable names used in the actual code):
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Figure 3.5: Simple flowchart of the working of the new algorithm. Fig 2.2 details this
flowchart and has a side by side comparison of the new and the old algorithms.

This implementation reduces the number of comparator usages to just two and it does

not scale with the number of ions. Instead it uses up the internal memory in order to

store the mask coordinates. This is acceptable since the internal memory (7.6 Mb) [10]

is far more than the number of comparators and in addition, we could use the inbuilt

DDR memory along with an option of extending it with an external SD card.
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Figure 3.6: (from top) Comparison of algorithms of previous implementation (a) and
the new implementation (b)

3.2.1 Simulation Results

Fig 2.3 b and c contain the simulation results acquired using a testbench which emulates

the frame grabber (provides lval, fval and pixdata; refer to Fig 2.2 for more information.)

Fig 2.3a contains the frame which was fed into the testbench which was an overexposed

image which was used to generate the masks (as per chapter 4). The final result that

we are interested in is contained in the variable par data o which is an array of ion state

data with the index corresponding to the ion number and as per the input image 1, we

1Input image has been taken from Google Images.
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expect all the states to be 1 as the input image was overexposed with all bright states.

And as one can see from Fig 2.3 b, they are all at state 1 at the end of the simulation.

Fig 2.3 a shows a screenshot after a few cycles where some of the ions are still in state 0.

To check the validity of these results, I first ran the algorithm on a PC using python and

compared the results with that of the simulation results. The values for camera counts

which correspond to the total intensity in the mask of each ion, match exactly with the

Vivado simulation results.



12

Figure 3.7: (from top) a) Image fed into the simulation b) Screenshot of the simulation
at around 1 percent of the total time c) Screenshot of the simulation at the end of 1

ms.

The following table elaborates on the variables shown in the simulation
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Figure 3.8: Table summarizing all the variables in the simulation results shown in
Fig 3.7



Chapter 4

Ethernet Communication Using

FPGA

4.1 Introduction

As detailed in the third chapter, image masks are an integral component of the algorithm.

The masks are generated on a PC and are supposed to be sent to the FPGA to be

stored in its local memory before the experiment. For this purpose, communication

between PC and FPGA is rather important and is carried out via an ethernet connection.

In this chapter, I go over the important settings to be done on the FPGA side in

order to establish an ethernet communication followed by a simple demonstration of a

Transmission Control Protocol (TCP) based data transfer over the ethernet between the

PC and FPGA. I use Lightweight Internet Protocol (LWIP) to carry out the TCP/IP

implementation [11].

4.2 Setting Up An Ethernet Connection

An ethernet interface consists of two components- the PHY (short for physical layer)

and the Media Access Controller (MAC). The MAC is the device which one would

like to communicate over the ethernet and PHY enables the interface between our MAC

and the ethernet cable. PHY does this commonly through the Gigabit Media Indepen-

dent Interface (GMII) and its more efficient equivalent the Reduced Gigabit Media

Independent Interface (RGMII). The MARS XU3 module has an inbuilt PHY chip

which is the Micrel KSZ9031RNX chip. And our MAC can be one of the four

Gigabit Ethernet Modules (GEM0...GEM3) which are inbuilt in the Xilinx FPGA

14
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chip (XCZU3EG-2SBVA484I). The GEM3 inside MARS XU3 are internally connected

(hardwired) via the MIO pins (64..75) [8] to the Micrel PHY chip. This PHY connection

allows the GEM3 to send data over the ethernet cable to the desired client/server.

4.2.1 Enabling The MAC (GEM3)

To enable the Gigabit Ethernet Module (GEM3) of the Zynq ultrascale MPSoC chip,

carry out the following steps:

1. Open the block design in Vivado as per section 3.3-3.4 of the Mars XU3-EB1

reference design manual [12].

2. Double Click on the Zynq Ultrascale+ component of the block design.

3. Click on I/O configuration and type ‘GEM’ in the search bar.

4. Under the list of high speed I/O peripheral section tick ‘GEM3’.

Figure 4.1: Enabling the MAC

4.2.2 Setting Up the PHY

The PHY layer is managed by the Micrel chip as mentioned in the introduction and is

internally connected to the GEM3 on the Mars XU3 board. We however have to set up

the RGMII delays in order to get it working [13]. The following steps enable you to do

that:
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1. Once you have enabled the GEM3 according to the previous section, you can

generate the bitstream file for this project and open it in Vitis.

2. In Vitis, create the board support package as per the steps detailed in step 2 of

section 3.4 of the reference design.

3. Go to board the support package settings, enable LWIP.

4. Inside LWIP settings, change two things under the temac adapter options: The

value of emac number to 3 (since we use GEM3) and phy link speed to 1000 Mbps.

(See fig 4.2 ).

5. Build the project. Post building, you can see the binary files which are generated

as part of LWIP.

Figure 4.2: Setting up PHY : The settings that need to be changed are highlighted

4.3 Testing the Ethernet Connection

4.3.1 Running an LWIP Echo Server

Once you have followed the previous two sections, the GEM3 and the PHY should

hopefully be enabled and working. In order to test the ethernet connection, we can

run a simple Echo server which echos the data sent to it from the client (PC) via the

ethernet connection. The following steps outline the process:

1. Connect the board to your PC via an ethernet cable
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2. Go to the network settings of your PC, find the ethernet connection with the board

and open the properties window.

3. Set the IP address of your PC for this connection as 192.168.1.11 (you can use 11

for the last digits or any number except 10 as this is the default address given to

the board by the BSP).

4. Open PuTTy (or any serial port communication tool of your choice) and connect

to the board using the settings mentioned on section 2.1.7 of the reference design.

5. Open Vitis with the board support package containing all the LWIP settings men-

tioned in the last section. Go to file → New → Application Project.

6. Type in an appropriate name, select the appropriate bitstream (.xsa) files and click

next.

7. From the list of example servers, choose LWIP Echo Server

8. Click finish. The Echo server should now be visible on the left-hand side section

listing the projects.

9. Before building this application project, go to the Binary Files section of the Echo

server project, open the file xadapter.c (./Mars XU3 EB1/psu cortexa53 0/

standalone domain/bsp/psu cortexa53 0/include/netif/xadapter.h).
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10. Comment the lines:

if ((eth link status == ETH LINK UP) && (!phy link status))

eth link status = ETH LINK DOWN;

This is done to prevent a future error while running the server which could lead to

an infinite looping between switching the adapter on and off (more on this error

can be found here https://github.com/Xilinx/embeddedsw/issues/70).

11. Build the project and run the application on the board. The serial console output

should look something like Fig 3.3a upon successful connection.

12. Open a telnet connection to the board (192.168.1.10) via a separate terminal of

PuTTy.

13. Send random characters over this terminal and see if they are echoed back.

4.3.2 Board - PC Communication via TCP

4.3.2.1 Running TCP Server Example

Once you have verified according to the previous section that your ethernet connection

works, you can proceed to set up a TCP server on the board and use the PC as a client

to communicate with the board.

1. Follow steps 1-6 of the previous section.

2. From the list of example projects, choose TCP server.

3. Build it. And run it on the board.

4. Upon successful implementation, you should see the output as per Fig 3.3 b.

5. You can connect to the server using a suitable client (for e.g iperf client or the

python socket module).

4.3.2.2 Handling Packets From The Stream

The example project for TCP server on the board sets up the connection by setting up

various components required for TCP communication as can be seen from the functions

in the main.c file of the project (Fig 3.2 a). The data that the client or server sends to

the stream is stored as a special structure which consists of a buffer, the buffer len, the

pointer to the recently received data among other things. The libraries of Xilinx SDK
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Figure 4.3: (From left) Outputs from the console (PuTTY) of echo server (a) and
TCP Server (b)

handles the receiving of packets using a series of callback routines whose hierarchy is

outlined in Fig 3.2 b. One can edit these callback functions to customise a lossless reading

of the data from the stream. Sending of data is handled by the function tcp write().

Figure 4.4: (From left) a) Sequence of events as it happens in main.c of TCP server
example project. b) Callback hierarchy for receiving the data from the stream.



Chapter 5

Mask Retrieval Using Python

5.1 Introduction

As elaborated in the third chapter, the incoming pixel coordinates are compared against

the stored mask coordinates in order to do the readout. For this, we need to be able to

retrieve the masks from a given (overexposed) image of an array of ions (Fig 3.1). For

this purpose, I wrote a python code which takes in an image of an ion array and outputs

the masks by means of a simple image processing algorithm. This automates the entire

process of finding the masks and serves to improve upon the previous implementation

where the masks were fed manually to the FPGA. The previous implementation had the

masks grouped per ion. During the readout process, the FPGA compares the incoming

pixel value with the masks of all the ions in parallel to look for a match. In my imple-

mentation, I order the masks not with respect to the ions but with respect to the row

(y) and column (x) values. To keep track of the ion number belonging to a certain mask

pixel, the information is stored as a 3-tuple consisting of (x coordinate,y coordinate, ion

number) for each mask pixel. These 3-tuples are stored in a python list where the high-

est y and lowest x pixel of a mask gets index 0 and so on. For eg a mask-pixel at (y,x)

= (19,35) will be arranged before (18,56); and (18,30) will be arranged before (18,50).

An example of such a list would [(18,30,1), (18,40,1),(18,70,2) (21,20,1),(21,40,1)....].

Figure 5.1: (From left) a) Overexposed image of a ion-chain (courtesy: Google Im-
ages) b) Same image with Masks marked on it obtained from the algorithm

20
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5.1.1 Algorithm

The pseudocode for the algorithm is as follows:

Figure 5.2: Flowchart describing the algorithm
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5.2 Results, Caveats and Shortcomings

5.2.1 Results

The algorithm has various parameters that one can control in order to increase the accu-

racy of detection of the masks namely the threshold,window resolution and window size

(section 5.2). The window size parameter controls the dimensions of the enclosing rect-

angular box that scans over the image to detect the masks; the window resolution is the

number of pixels moved by the box in each iteration – in other words, the step size. The

threshold parameter determines how much of the enclosing box needs to be filled (in per-

centage) in order for the area of interest to be detected as an ion. This section outlines

the results for the windowing algorithm for different thresholds and window resolution

parameters since the window size parameter is image/frame dependent and is set at the

beginning of the experiment. For this purpose I used a dummy ion chain image (cour-

tesy:Google Images). Fig 5.3 illustrates the results for a scan of threshold from 0 to 0.75

for a window resolution of 1. The algorithm yielded zero masks for threshold ¿ 0.75 for

this particular window size which makes sense as it becomes increasingly less probable

to find a space with more than 75% region filled with bright pixels. The bottom image

describes the Accuracy plotted against different thresholds. Accuracy here is defined as
no of masks detected

actual no of ions .

Fig 5.4 describes algorithm outputs for different window resolution inputs for a fixed

threshold. I chose the fixed threshold at the value 0.3 owing to the median value giving

the maximum accuracy from the previous plot. The accuracy sharply drops beyond a

value of 1.6 owing to the problem overcounting the same pixels given small step sizes as

can be seen from the Accuracy vs Window Resolution plot below.

5.2.2 Caveats

Ideally, the algorithm is supposed to work for any given image and the parameter

ROI window size as described in the pseudocode should adapt to the image dimensions.

However, as it stands currently, the algorithm only works for a ROI window size = 15

which limits the dimensions of the image input from the user. The algorithm works well

for input sizes of 150*40px (roughly 4:1 size) for a ROI window size = 15 and threshold

= 0.5. Though this limits the use cases, one can either resize the input image to the

aforementioned dimensions or scan through the parameter space to optimise the result.

Since this is done before the experiment, the parameter space scanning would not be

a bottleneck in terms of the time and thus would be a one time procedure. And this

aspect is certainly something that the future versions of the code could improve upon.
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Figure 5.3: Images describing algorithm outputs for different thresholds for a fixed
window resolution (top) and Accuracy vs Threshold plot (bottom)

5.2.3 Shortcomings

There are a few visible shortcomings that the user may come across while using this

algorithm:

1. Overlap of ROI : This happens when the step size is too little. As a result two

closely located ROIs are allocated to the same ion giving redundant masks (Fig

5.5 a).

2. Sharing of ROI : If the ions are too closely located, there is a probability that

one ROI/mask is shared by two ions. This results in a single mask coordinate

being allocated to both ions (Fig 5.5 b).
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Figure 5.4: Images describing algorithm outputs for different window resolutions for
a fixed thresholds (top) and Accuracy vs Window Resolutions plot (bottom)

Figure 5.5: Illustrations showing overlap error (a) and sharing error (b).



Chapter 6

Summary and Outlook

The main aim of my project has been to investigate the possibility of running a state

discrimination algorithm of multiple trapped ions with high fidelity and low latency that

uses less lookup-table resources than the previously implemented algorithm. In addition,

an auxiliary goal was to automate the calibration mask retrieval using a python script.

Both of these goals were achieved but up-to varying degrees.

The state discrimination algorithm was conceived, written and tested up-to the com-

putational simulation stage; moving the synthesis and netlist optimization and program-

ming the FPGA with this firmware, to a future project. In order to have a complete

system for experimental evaluation of the readout scheme, we would also require a

camera-link interface within the set-up and implementing this would be an immediate

future task. In terms of reducing the resource usage further, one can look into storing

the masks in Block RAMs (BRAMs) available in Mars XU3 taking the memory load

away from the flip-flops of the FPGA. And during the experimental evaluation phase,

the ethernet communication between the FPGA and the PC would be an important

component in the experimental control system. I hope the experience gained in terms of

understanding the ethernet system including some additional non-trivial changes (with

respect to setting the RGMII delays, section 4.2.2) to the templates provided by Xilinx

software development kit (SDK) would be helpful in the future for setting up a TCP

based robust ethernet communication system between the FPGA and the PC.

The mask retrieval algorithm works well with constraints on the dimensions of the

input image with fairly good accuracy leaving room for improvements in both accuracy

and adaptations to all image sizes and resolutions. Currently, the mask shapes are

strictly square with fixed lengths. In a future work, this implementation can be modified
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to have the ROIs to be a shape which gives the best signal to noise ratio 2. To improve

the accuracy in estimating the ion positions, We can leverage ion-trap physics knowledge.

For eg, the separation of ions in a string is completely regular and this information could

be used when setting the masks. In addtion, imaging aberrations should be used and

characterized for setting the optimal masks.

2For a more detailed discussion, refer to Section 1.4 of Nick Schwegler’s thesis [6]



Appendix

Reference Design Manual

For the sake of completeness, I attach the reference design manual of Mars EB1 + Mars

XU3 provided by Enclustra Inc which is also publicly available online at:

(https://github.com/enclustra/Mars XU3 EB1 Reference Design/blob/master/

reference design/doc/Mars XU3 EB1.pdf). The latest version of the reference design

manual as per 23 Mar 2021 for which the algorithm in chapter has been tested can

be found with other important backup files at the J folder of Trapped Ion Quantum

Information (TIQI) Lab network drive.

MCT

The Module Configuration Tool (MCT) is a software provided by Enclustra for config-

uring the device and also use it as a medium to check if the board is powered on as per

the user’s need. The ‘Scan for Device Changes shows the number of FTDI devices and

the related settings with which it has been powered on.

Useful Links

Enclustra

1. Mars EB1 : https://www.enclustra.com/en/products/base-boards/mars-eb1 .

2. Mars XU3: https://www.enclustra.com/en/products/system-on-chip-modules/mars-

xu3/

3. Enclustra Github Link: https://github.com/enclustra/

27
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Xilinx

1. Zynq UltraScale+ MPSoC Product Tables and Product Selection Guide (xilinx.com):

https://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-

plus-product-selection-guide.pdf

2. Xilinx Synthesis and Simulation Design Guide

https://www.xilinx.com/support/documentation/sw manuals/xilinx11/sim.pdf

3. Vivado Design Suite User Guide: Synthesis (xilinx.com):

https://www.xilinx.com/support/documentation/sw manuals/xilinx2019 2/ug901-

vivado-synthesis.pdf

4. Xilinx XAPP1026 LightWeight IP (lwIP) Application Examples, v5.1, Application

Note:

https://www.xilinx.com/support/documentation/application notes/xapp1026.pdf

Appendix
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